1
|
Marignol L, McMahon SJ. Research Trends in the Study of the Relative Biological Effectiveness: A Bibliometric Study. Radiat Res 2024; 202:177-184. [PMID: 38918000 DOI: 10.1667/rade-24-00023.1.s1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/23/2024] [Indexed: 06/27/2024]
Abstract
The relative biological effectiveness is a mathematical quantity first defined in the 1950s. This has resulted in more than 4,000 scientific papers published to date. Yet defining the correct value of the RBE to use in clinical practice remains a challenge. A scientific analysis in the radiation research literature can provide an understanding of how this mathematical quantity has evolved. The purpose of this study is to investigate documents published since 1950 using bibliometric indicators and network visualization. This analysis seeks to provide an assessment of global research activities, key themes, and RBE research within the radiation-related field. It strives to highlight top-performing authors, organizations, and nations that have made major contributions to this research domain, as well as their interactions. The Scopus Collection was searched for articles and reviews pertaining to RBE in radiation research from 1950 through 2023. Scopus and Bibiometrix analytic tools were used to investigate the most productive countries, researchers, collaboration networks, journals, along with the citation analysis of references and keywords. A total of 4,632 documents were retrieved produced by authors originating from 71 countries. Publication trends could be separated in 20-year groupings beginning with slow accrual from 1950 to 1970, an early rise from 1970-1990, followed by a sharp increase in the years 1990s-2010s that matches the development of charged particle therapy in clinics worldwide and opened discussion on the true value of the RBE in proton beam therapy. Since the 2010s, a steady 200 papers, on average, have been published per year. The United States produced the most publications overall (N = 1,378) and Radiation Research was the most likely journal to have published articles related to the RBE (606 publications during this period). J. Debus was the most prolific author (112 contributions, with 2,900 citations). The RBE has captured the research interest of over 7,000 authors in the past decade alone. This study supports that notion that the growth of the body of evidence surrounding the RBE, which started 75 years ago, is far from reaching its end. Applications to medicine have continuously dominated the field, with physics competing with Biochemistry, Genetics and Molecular Biology for second place over the decades. Future research can be predicted to continue.
Collapse
Affiliation(s)
- L Marignol
- Applied Radiation Therapy Trinity (ARTT), Discipline of Radiation Therapy, School of Medicine, Trinity St. James's Cancer Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - S J McMahon
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland
| |
Collapse
|
2
|
Góra J, Grosshagauer S, Fossati P, Mumot M, Stock M, Schafasand M, Carlino A. The sensitivity of radiobiological models in carbon ion radiotherapy (CIRT) and its consequences on the clinical treatment plan: Differences between LEM and MKM models. J Appl Clin Med Phys 2024; 25:e14321. [PMID: 38436509 PMCID: PMC11244672 DOI: 10.1002/acm2.14321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/11/2024] [Accepted: 02/07/2024] [Indexed: 03/05/2024] Open
Abstract
PURPOSE Carbon ion radiotherapy (CIRT) relies on relative biological effectiveness (RBE)-weighted dose calculations. Japanese clinics predominantly use the microdosimetric kinetic model (MKM), while European centers utilize the local effect model (LEM). Despite both models estimating RBE-distributions in tissue, their physical and mathematical assumptions differ, leading to significant disparities in RBE-weighted doses. Several European clinics adopted Japanese treatment schedules, necessitating adjustments in dose prescriptions and organ at risk (OAR) constraints. In the context of these two clinically used standards for RBE-weighted dose estimation, the objective of this study was to highlight specific scenarios for which the translations between models diverge, as shortcomings between them can influence clinical decisions. METHODS Our aim was to discuss planning strategies minimizing those discrepancies, ultimately striving for more accurate and robust treatments. Evaluations were conducted in a virtual water phantom and patient CT-geometry, optimizing LEM RBE-weighted dose first and recomputing MKM thereafter. Dose-averaged linear energy transfer (LETd) distributions were also assessed. RESULTS Results demonstrate how various parameters influence LEM/MKM translation. Similar LEM-dose distributions lead to markedly different MKM-dose distributions and variations in LETd. Generally, a homogeneous LEM RBE-weighted dose aligns with lower MKM values in most of the target volume. Nevertheless, paradoxical MKM hotspots may emerge (at the end of the range), potentially influencing clinical outcomes. Therefore, translation between models requires great caution. CONCLUSIONS Understanding the relationship between these two clinical standards enables combining European and Japanese based experiences. The implementation of optimal planning strategies ensures the safety and acceptability of the clinical plan for both models and therefore enhances plan robustness from the RBE-weighted dose and LETd distribution point of view. This study emphasizes the importance of optimal planning strategies and the need for comprehensive CIRT plan quality assessment tools. In situations where simultaneous LEM and MKM computation capabilities are lacking, it can provide guidance in plan design, ultimately contributing to enhanced CIRT outcomes.
Collapse
Affiliation(s)
- Joanna Góra
- MedAustron Ion Therapy CenterWiener NeustadtAustria
| | - Sarah Grosshagauer
- MedAustron Ion Therapy CenterWiener NeustadtAustria
- Technical University of ViennaWienAustria
| | - Piero Fossati
- MedAustron Ion Therapy CenterWiener NeustadtAustria
- Karl Landsteiner University of Health SciencesKrems an der DonauAustria
| | - Marta Mumot
- MedAustron Ion Therapy CenterWiener NeustadtAustria
| | - Markus Stock
- MedAustron Ion Therapy CenterWiener NeustadtAustria
- Karl Landsteiner University of Health SciencesKrems an der DonauAustria
| | - Mansure Schafasand
- MedAustron Ion Therapy CenterWiener NeustadtAustria
- Karl Landsteiner University of Health SciencesKrems an der DonauAustria
- Medical University of ViennaWienAustria
| | | |
Collapse
|
3
|
Inaniwa T, Kanematsu N, Nakajima M. Modeling of the resensitization effect on carbon-ion radiotherapy for stage I non-small cell lung cancer. Phys Med Biol 2024; 69:105015. [PMID: 38604184 DOI: 10.1088/1361-6560/ad3dbb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/11/2024] [Indexed: 04/13/2024]
Abstract
Objective. To investigate the effect of redistribution and reoxygenation on the 3-year tumor control probability (TCP) of patients with stage I non-small cell lung cancer (NSCLC) treated with carbon-ion radiotherapy.Approach. A meta-analysis of published clinical data of 233 NSCLC patients treated by carbon-ion radiotherapy under 18-, 9-, 4-, and single-fraction schedules was conducted. The linear-quadratic (LQ)-based cell-survival model incorporating the radiobiological 5Rs, radiosensitivity, repopulation, repair, redistribution, and reoxygenation, was developed to reproduce the clinical TCP data. Redistribution and reoxygenation were regarded together as a single phenomenon and termed 'resensitization' in the model. The optimum interval time between fractions was investigated for each fraction schedule using the determined model parameters.Main results.The clinical TCP data for 18-, 9-, and 4-fraction schedules were reasonably reproduced by the model without the resensitization effect, whereas its incorporation was essential to reproduce the TCP data for all fraction schedules including the single fraction. The curative dose for the single-fraction schedule was estimated to be 49.0 Gy (RBE), which corresponds to the clinically adopted dose prescription of 50.0 Gy (RBE). For 18-, 9-, and 4-fraction schedules, a 2-to-3-day interval is required to maximize the resensitization effect during the time interval. In contrast, the single-fraction schedule cannot benefit from the resensitization effect, and the shorter treatment time is preferable to reduce the effect of sub-lethal damage repair during the treatment.Significance.The LQ-based cell-survival model incorporating the radiobiological 5Rs was developed and used to evaluate the effect of the resensitization on clinical results of NSCLC patients treated with hypo-fractionated carbon-ion radiotherapy. The incorporation of the resensitization into the cell-survival model improves the reproducibility to the clinical TCP data. A shorter treatment time is preferable in the single-fraction schedule, while a 2-to-3-day interval between fractions is preferable in the multi-fraction schedules for effective treatments.
Collapse
Affiliation(s)
- Taku Inaniwa
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- Department of Medical Physics and Engineering, Graduate School of Medicine, Division of Health Sciences, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Nobuyuki Kanematsu
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Mio Nakajima
- QST Hospital, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
4
|
Hernández Millares R, Bae C, Kim SJ, Kim T, Park SY, Lee K, Ye SJ. Clonogenic assay and computational modeling using real cell images to study physical enhancement and cellular sensitization induced by metal nanoparticles under MV and kV X-ray irradiation. NANOSCALE 2024; 16:7110-7122. [PMID: 38501279 DOI: 10.1039/d3nr06257k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
This study was initiated due to the physically unexplainable tumor controls resulting from metal nanoparticle (MNP) experiments even under MV X-ray irradiation. A more accurate explanation of the mechanism of radiosensitization induced by MNP is warranted, considering both its physical dose enhancement and biological sensitization, as related research is lacking. Thus, we aimed to examine the intricate dynamics involved in MNP-induced radiosensitization. We conducted specifically designed clonogenic assays for the A549 lung cancer cell line with MNP irradiated by 6 MV and 300 kVp X-rays. Two types of MNP were employed: one based on iron oxide, promoting ferroptosis, and the other on gold nanoparticles known for inducing a significant dose enhancement, particularly at low-energy X-rays. We introduced the lethality enhancement factor (LEF) as the fraction in the cell killing attributed to biological sensitization. Subsequently, Monte Carlo simulations were conducted to evaluate the radial dose profiles for each MNP, corresponding to the physical enhancement. Finally, the local effect model was applied to the clonogenic assay results on real cell images. The LEF and the dose enhancement in the cytoplasm were incorporated to increase the accuracy in the average lethal events and, consequently, in the survival fraction. The results reveal an increased cell killing for both of the MNP under MV and kV X-ray irradiation. In both types of MNP, the LEF reveals a biological sensitization evident. The sensitizer enhancement ratio, derived from the calculations, exhibited only 3% and 1% relative differences compared to the conventional linear-quadratic model for gold and ferroptosis inducer nanoparticles, respectively. These findings indicate that MNPs sensitize cells via radiation through mechanisms akin to ferroptosis inducers, not exclusively relying on a physical dose enhancement. Their own contributions to survival fractions were successfully integrated into computational modeling.
Collapse
Affiliation(s)
- Rodrigo Hernández Millares
- Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chaewon Bae
- Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seok-Jin Kim
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Taewan Kim
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea.
| | - So-Yeon Park
- Department of Radiation Oncology, Veterans Health Service Medical Center, Seoul, 05368, Republic of Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, 03080, Republic of Korea
| | - Kangwon Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea.
- Research Institute for Convergence Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sung-Joon Ye
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea.
- Research Institute for Convergence Science, Seoul National University, Seoul, 08826, Republic of Korea
- Advanced Institute of Convergence Technology, Seoul National University, Suwon 16229, Korea
| |
Collapse
|
5
|
Mao H, Zhang H, Luo Y, Yang J, Liu Y, Zhang S, Chen W, Li Q, Dai Z. Primary study of the relative and compound biological effectiveness model for boron neutron capture therapy based on nanodosimetry. Med Phys 2024; 51:3076-3092. [PMID: 38408025 DOI: 10.1002/mp.16998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/31/2023] [Accepted: 02/07/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND The current radiobiological model employed for boron neutron capture therapy (BNCT) treatment planning, which relies on microdosimetry, fails to provide an accurate representation the biological effects of BNCT. The precision in calculating the relative biological effectiveness (RBE) and compound biological effectiveness (CBE) plays a pivotal role in determining the therapeutic efficacy of BNCT. Therefore, this study focuses on how to improve the accuracy of the biological effects of BNCT. PURPOSE The purpose of this study is to propose new radiation biology models based on nanodosimetry to accurately assess RBE and CBE for BNCT. METHODS Nanodosimetry, rooted in ionization cluster size distributions (ICSD), introduces a novel approach to characterize radiation quality by effectively delineating RBE through the ion track structure at the nanoscale. In the context of prior research, this study presents a computational model for the nanoscale assessment of RBE and CBE. We establish a simplified model of DNA chromatin fiber using the Monte Carlo code TOPAS-nBio to evaluate the applicability of ICSD to BNCT and compute nanodosimetric parameters. RESULTS Our investigation reveals that both homogeneous and heterogeneous nanodosimetric parameters, as well as the corresponding biological model coefficients α and β, along with RBE values, exhibit variations in response to varying intracellular 10B concentrations. Notably, the nanodosimetric parameterM 1 C 2 $M_1^{{{\mathrm{C}}}_2}$ effectively captures the fluctuations in model coefficients α and RBE. CONCLUSION Our model facilitates a nanoscale analysis of BNCT, enabling predictions of nanodosimetric quantities for secondary ions as well as RBE, CBE, and other essential biological metrics related to the distribution of boron. This contribution significantly enhances the precision of RBE calculations and holds substantial promise for future applications in treatment planning.
Collapse
Affiliation(s)
- Haijun Mao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou, China
| | - Hui Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying Luo
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingfen Yang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yinuo Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- School of Future Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shichao Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou, China
| | - Weiqiang Chen
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Putian Lanhai Nuclear Medicine Research Center, Putian, China
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Putian Lanhai Nuclear Medicine Research Center, Putian, China
| | - Zhongying Dai
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Masuda T, Inaniwa T. Effects of cellular radioresponse on therapeutic helium-, carbon-, oxygen-, and neon-ion beams: a simulation study. Phys Med Biol 2024; 69:045003. [PMID: 38232394 DOI: 10.1088/1361-6560/ad1f87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/17/2024] [Indexed: 01/19/2024]
Abstract
Objective. Helium, oxygen, and neon ions in addition to carbon ions will be used for hypofractionated multi-ion therapy to maximize the therapeutic effectiveness of charged-particle therapy. To use new ions in cancer treatments based on the dose-fractionation protocols established in carbon-ion therapy, this study examined the cell-line-specific radioresponse to therapeutic helium-, oxygen-, and neon-ion beams within wide dose ranges.Approach. Response of cells to ions was described by the stochastic microdosimetric kinetic model. First, simulations were made for the irradiation of one-field spread-out Bragg peak beams in water with helium, carbon, oxygen, and neon ions to achieve uniform survival fractions at 37%, 10%, and 1% for human salivary gland tumor (HSG) cells, the reference cell line for the Japanese relative biological effectiveness weighted dose system, within the target region defined at depths from 90 to 150 mm. The HSG cells were then replaced by other cell lines with different radioresponses to evaluate differences in the biological dose distributions of each ion beam with respect to those of carbon-ion beams.Main results. For oxygen- and neon-ion beams, the biological dose distributions within the target region were almost equivalent to those of carbon-ion beams, differing by less than 5% in most cases. In contrast, for helium-ion beams, the biological dose distributions within the target region were largely different from those of carbon-ion beams, more than 10% in several cases.Significance.From the standpoint of tumor control evaluated by the clonogenic cell survival, this study suggests that the dose-fractionation protocols established in carbon-ion therapy could be reasonably applied to oxygen- and neon-ion beams while some modifications in dose prescription would be needed when the protocols are applied to helium-ion beams. This study bridges the gap between carbon-ion therapy and hypofractionated multi-ion therapy.
Collapse
Affiliation(s)
- Takamitsu Masuda
- Department of Accelerator and Medical Physics, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Taku Inaniwa
- Department of Accelerator and Medical Physics, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| |
Collapse
|
7
|
Bazani A, Brunner J, Russo S, Carlino A, Simon Colomar D, Ikegami Andersson W, Ciocca M, Stock M, Fossati P, Orlandi E, Glimelius L, Molinelli S, Knäusl B. Effects of nuclear interaction corrections and trichrome fragment spectra modelling on dose and linear energy transfer distributions in carbon ion radiotherapy. Phys Imaging Radiat Oncol 2024; 29:100553. [PMID: 38419802 PMCID: PMC10901128 DOI: 10.1016/j.phro.2024.100553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024] Open
Abstract
Background and Purpose Nuclear interaction correction (NIC) and trichrome fragment spectra modelling improve relative biological effectiveness-weighted dose (DRBE) and dose-averaged linear energy transfer (LETd) calculation for carbon ions. The effect of those novel approaches on the clinical dose and LET distributions was investigated. Materials and Methods The effect of the NIC and trichrome algorithm was assessed, creating single beam plans for a virtual water phantom with standard settings and NIC + trichrome corrections. Reference DRBE and LETd distributions were simulated using FLUKA version 2021.2.9. Thirty clinically applied scanned carbon ion treatment plans were recalculated applying NIC, trichrome and NIC + trichrome corrections, using the LEM low dose approximation and compared to clinical plans (base RS). Four treatment sites were analysed: six prostate adenocarcinoma, ten head and neck, nine locally advanced pancreatic adenocarcinoma and five sacral chordoma. The FLUKA and clinical plans were compared in terms of DRBE deviations for D98%, D50%, D2% for the clinical target volume (CTV) and D50% in ring-like dose regions retrieved from isodose curves in base RS plans. Additionally, region-based median LETd deviations and global gamma parameters were evaluated. Results Dose deviations comparing base RS and evaluation plans were within ± 1% supported by γ-pass rates over 97% for all cases. No significant LETd deviations were reported in the CTV, but significant median LETd deviations were up to 80% for very low dose regions. Conclusion Our results showed improved accuracy of the predicted DRBE and LETd. Considering clinically relevant constraints, no significant modifications of clinical protocols are expected with the introduction of NIC + trichrome.
Collapse
Affiliation(s)
- Alessia Bazani
- Clinical Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
| | - Jacob Brunner
- Department of Radiation Oncology, Medical University of Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Stefania Russo
- Clinical Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
| | | | | | | | - Mario Ciocca
- Clinical Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
| | - Markus Stock
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Piero Fossati
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Ester Orlandi
- Clinical Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Services, University of Pavia, Pavia, Italy
| | | | - Silvia Molinelli
- Clinical Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
| | - Barbara Knäusl
- Department of Radiation Oncology, Medical University of Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| |
Collapse
|
8
|
Dordevic M, Fattori S, Petringa G, Fira AR, Petrovic I, Cuttone G, Cirrone GAP. Computational approaches in the estimation of radiobiological damage for human-malignant cells irradiated with clinical proton and carbon beams. Phys Med 2024; 117:103189. [PMID: 38043325 DOI: 10.1016/j.ejmp.2023.103189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/26/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023] Open
Abstract
PURPOSE The use of Monte Carlo (MC) simulations capable of reproducing radiobiological effects of ionising radiation on human cell lines is of great importance, especially for cases involving protons and heavier ion beams. In the latter, huge uncertainties can arise mainly related to the effects of the secondary particles produced in the beam-tissue interaction. This paper reports on a detailed MC study performed using Geant4-based approach on three cancer cell lines, the HTB-177, CRL-5876 and MCF-7, that were previously irradiated with therapeutic proton and carbon ion beams. METHODS A Geant4-based approach used jointly with analytical calculations has been developed to provide a more realistic estimation of the radiobiological damage produced by proton and carbon beams in tissues, reproducing available data obtained from in vitro cell irradiations. The MC "Hadrontherapy" Geant4 application and the Local Effect Model: LEM I, LEM II and LEM III coupled with the different numerical approaches: RapidRusso (RR) and RapidScholz (RS) were used in the study. RESULTS Experimental survival curves are compared with those evaluated using the highlighted Geant4 MC-based approach via chi-square statistical analysis, for the combinations of radiobiological models and numerical approaches, as outlined above. CONCLUSION This study has presented a comparison of the survival data from MC simulations to experimental survival data for three cancer cell lines. An overall best level of agreement was obtained for the HTB-177 cells.
Collapse
Affiliation(s)
- Milos Dordevic
- Vinca Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Serena Fattori
- Istituto Nazionale di Fisica Nucleare (INFN), Laboratori Nazionali del Sud (LNS), Catania, Italy.
| | - Giada Petringa
- Istituto Nazionale di Fisica Nucleare (INFN), Laboratori Nazionali del Sud (LNS), Catania, Italy
| | - Aleksandra Ristic Fira
- Vinca Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ivan Petrovic
- Vinca Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Giacomo Cuttone
- Istituto Nazionale di Fisica Nucleare (INFN), Laboratori Nazionali del Sud (LNS), Catania, Italy
| | - G A Pablo Cirrone
- Istituto Nazionale di Fisica Nucleare (INFN), Laboratori Nazionali del Sud (LNS), Catania, Italy; Centro Siciliano di Fisica Nucleare e Struttura della Materia, Catania, Italy; Dipartimento di FISICA ED ASTRONOMIA "Ettore Majorana" - Università degli Studi di Catania, Catania, Italy
| |
Collapse
|
9
|
Sakae T, Takada K, Kamizawa S, Terunuma T, Ando K. Formulation of Time-Dependent Cell Survival with Saturable Repairability of Radiation Damage. Radiat Res 2023; 200:139-150. [PMID: 37303133 DOI: 10.1667/rade-21-00066.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/10/2023] [Indexed: 06/13/2023]
Abstract
This study aims to provide a model that compounds historically proposed ideas regarding cell survival irradiated with X rays or particles. The parameters used in this model have simple meanings and are closely related to cell death-related phenomena. The model is adaptable to a wide range of doses and dose rates and thus can consistently explain previously published cell survival data. The formulas of the model were derived by using five basic ideas: 1. "Poisson's law"; 2. "DNA affected damage"; 3. "repair"; 4. "clustered affected damage"; and 5. "saturation of reparability". The concept of affected damage is close to but not the same as the effect caused by the double-strand break (DSB). The parameters used in the formula are related to seven phenomena: 1. "linear coefficient of radiation dose"; 2. "probability of making affected damage"; 3. "cell-specific repairability", 4. "irreparable damage by adjacent affected damage"; 5. "recovery of temporally changed repairability"; 6. "recovery of simple damage which will make the affected damage"; 7. "cell division". By using the second parameter, this model includes cases where a single hit results in repairable-lethal and double-hit results in repairable-lethal. The fitting performance of the model for the experimental data was evaluated based on the Akaike information criterion, and practical results were obtained for the published experiments irradiated with a wide range of doses (up to several 10 Gy) and dose rates (0.17 Gy/h to 55.8 Gy/h). The direct association of parameters with cell death-related phenomena has made it possible to systematically fit survival data of different cell types and different radiation types by using crossover parameters.
Collapse
Affiliation(s)
- Takeji Sakae
- Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
- University of Tsukuba Hospital, Proton Medical Research Center, 2-1-1, Amakubo, Tsukuba, Ibaraki, 305-8576, Japan
| | - Kenta Takada
- Graduate School of Radiology, Gunma Prefectural College of Health Sciences, 323-1 Kamiokimachi, Maebashi, Gunma 371-0052, Japan
| | - Satoshi Kamizawa
- University of Tsukuba Hospital, Proton Medical Research Center, 2-1-1, Amakubo, Tsukuba, Ibaraki, 305-8576, Japan
| | - Toshiyuki Terunuma
- Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
- University of Tsukuba Hospital, Proton Medical Research Center, 2-1-1, Amakubo, Tsukuba, Ibaraki, 305-8576, Japan
| | - Koichi Ando
- Gunma University Heavy Ion Medical Center, 3-39, Showamachi, Maebashi, Gunma 371-0034, Japan
| |
Collapse
|
10
|
Modelling tissue specific RBE for different radiation qualities based on a multiscale characterization of energy deposition. Radiother Oncol 2023; 182:109539. [PMID: 36806602 DOI: 10.1016/j.radonc.2023.109539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
PURPOSE We present the nanoCluE model, which uses nano- and microdosimetric quantities to model RBE for protons and carbon ions. Under the hypothesis that nano- and microdosimetric quantities correlates with the generation of complex DNA double strand breakes, we wish to investigate whether an improved accuracy in predicting LQ parameters may be achieved, compared to some of the published RBE models. METHODS The model is based on experimental LQ data for protons and carbon ions. We generated a database of track structure data for a number of proton and carbon ion kinetic energies with the Geant4-DNA Monte Carlo code. These data were used to obtain both a nanodosimetric quantity and a set of microdosimetric quantities. The latter were tested with different parameterizations versus experimental LQ-data to select the variable and parametrization that yielded the best fit. RESULTS For protons, the nanoCluE model yielded, for the ratio of the linear LQ term versus the test data, a root mean square error (RMSE) of 1.57 compared to 1.31 and 1.30 for two earlier other published proton models. For carbon ions the RMSE was 2.26 compared to 3.24 and 5.24 for earlier published carbon ion models. CONCLUSION These results demonstrate the feasibility of the nanoCluE RBE model for carbon ions and protons. The increased accuracy for carbon ions as compared to two other considered models warrants further investigation.
Collapse
|
11
|
Shin HB, Kim C, Han MC, Hong CS, Park S, Koom WS, Kim JS. Dosimetric comparison of robust angles in carbon-ion radiation therapy for prostate cancer. Front Oncol 2023; 13:1054693. [PMID: 36874141 PMCID: PMC9978491 DOI: 10.3389/fonc.2023.1054693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/27/2023] [Indexed: 02/18/2023] Open
Abstract
The objective of this study is to compare the plan robustness at various beam angles. Hence, the influence of the beam angles on robustness and linear energy transfer (LET) was evaluated in gantry-based carbon-ion radiation therapy (CIRT) for prostate cancer. 10 patients with prostate cancer were considered, and a total dose of 51.6 Gy (Relative biological effectiveness (RBE) was prescribed for the target volume in 12 fractions. Five beam field plans comprising two opposed fields with different angle pairs were characterized. Further, dose parameters were extracted, and the RBE-weighted dose and LET values for all angle pairs were compared. All plans considering the setup uncertainty satisfied the dose regimen. When a parallel beam pair was used for perturbed scenarios to take into account set-up uncertainty in the anterior direction, the LET clinical treatment volume (CTV) D 95% standard deviation was 1.5 times higher, and the standard deviation of RBE-weighted CTV D 95% was 7.9 times higher compared to an oblique pair. The oblique beam fields were superior in terms of dose sparing for the rectum compared to the dose distribution using two conventional lateral opposed fields for prostate cancer.
Collapse
Affiliation(s)
- Han-Back Shin
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Changhwan Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Cheol Han
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chae-Seon Hong
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seyjoon Park
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei Severance Hospital, Seoul, Republic of Korea
| | - Woong Sub Koom
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Sung Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
12
|
Wang W, Huang Z, Sun W, Wang X, Zhao J, Shen H. Calibration and evaluation of the relative biological effectiveness for carbon-ion radiotherapy in a new relative to a clinically applied treatment planning system. Radiat Oncol 2022; 17:219. [PMID: 36587224 PMCID: PMC9805684 DOI: 10.1186/s13014-022-02181-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/15/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The study objective was to validate the relative biological effectiveness (RBE) in RayStation for carbon-ion radiotherapy (CIRT) using the Syngo treatment planning system as reference. METHODS Local effect model I was established in RayStation (Ray-LEM) with the same parameters as in LEM I in Syngo (Syngo-LEM). Three cube plans covering most of the tumors treated at our center were generated with Syngo-LEM. Ray-LEM re-calculated the Syngo plans and compared the RBEs to the Syngo counterparts. The results showed that RayStation RBE was smaller than Syngo RBE. To ensure that Ray-LEM reproduced Syngo RBE, the observed deviations were used to scale the maximum RBE (RBEmax) in Ray-LEM. After this calibration, we further compared the RayStation RBE to Syngo RBE using additional plans in both homogeneous phantoms and patients, to ensure that the calibrated Ray-LEM reproduced Syngo RBE even with more complex planning features. RESULTS The calibration increased the RBEmax by 2.3% to raise the Ray-LEM RBE. The target mean RBE deviations in the phantom evaluation plans were median: 0.0 (minimum: - 1.1 to maximum: 0.7) %, and the target mean RBE deviations of the clinical target volumes of 16 patient cases were - 0.4 (- 1.5 to 0.2) %. CONCLUSIONS The residual RBE difference between RayStation and Syngo was found to be ≤ 1.0%. Thus, we can propose to use RayStation for clinical CIRT treatment planning. However, the potential differences due to the absorbed beam model warrants further exploration.
Collapse
Affiliation(s)
- Weiwei Wang
- grid.8547.e0000 0001 0125 2443Institute of Modern Physics, Applied Ion Beam Physics Laboratory, Fudan University, Shanghai, 200433 China ,grid.452404.30000 0004 1808 0942Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, 4365 Kangxin Road, Pudong District, Shanghai, 201315 China
| | - Zhijie Huang
- grid.452404.30000 0004 1808 0942Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, 4365 Kangxin Road, Pudong District, Shanghai, 201315 China
| | - Wei Sun
- grid.452404.30000 0004 1808 0942Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, 4365 Kangxin Road, Pudong District, Shanghai, 201315 China
| | - Xufei Wang
- grid.8547.e0000 0001 0125 2443Institute of Modern Physics, Applied Ion Beam Physics Laboratory, Fudan University, Shanghai, 200433 China
| | - Jingfang Zhao
- grid.452404.30000 0004 1808 0942Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, 4365 Kangxin Road, Pudong District, Shanghai, 201315 China ,grid.452404.30000 0004 1808 0942Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, 270 Dongan Road, Xuhui District, Shanghai, 200032 China
| | - Hao Shen
- grid.8547.e0000 0001 0125 2443Institute of Modern Physics, Applied Ion Beam Physics Laboratory, Fudan University, Shanghai, 200433 China
| |
Collapse
|
13
|
Mori Y, Okonogi N, Matsumoto S, Furuichi W, Fukahori M, Miyasaka Y, Murata K, Wakatsuki M, Imai R, Koto M, Yamada S, Ishikawa H, Kanematsu N, Tsuji H. Effects of dose and dose-averaged linear energy transfer on pelvic insufficiency fractures after carbon-ion radiotherapy for uterine carcinoma. Radiother Oncol 2022; 177:33-39. [PMID: 36252637 DOI: 10.1016/j.radonc.2022.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND AND PURPOSE The correlation between dose-averaged linear energy transfer (LETd) and its therapeutic or adverse effects, especially in carbon-ion radiotherapy (CIRT), remains controversial. This study aimed to investigate the effects of LETd and dose on pelvic insufficiency fractures after CIRT. MATERIAL AND METHODS Among patients who underwent CIRT for uterine carcinoma, 101 who were followed up for > 6 months without any other therapy were retrospectively analyzed. The sacrum insufficiency fractures (SIFs) were graded according to the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer toxicity criteria. The correlations between the relative biological effectiveness (RBE)-weighted dose, LETd, physical dose, clinical factors, and SIFs were evaluated. In addition, we analyzed the association of SIF with LETd, physical dose, and clinical factors in cases where the sacrum D50% RBE-weighted dose was above the median dose. RESULTS At the last follow-up, 19 patients developed SIFs. Receiver operating characteristic curve analysis revealed that the sacrum D50% RBE-weighted dose was a valuable predictor of SIF. Univariate analyses suggested that LETd V10 keV/µm, physical dose V5 Gy, and smoking status were associated with SIF. Cox regression analysis in patients over 50 years of age validated that current smoking habit was the sole risk factor for SIF. Therefore, LETd or physical dose parameters were not associated with SIF prediction. CONCLUSION The sacrum D50% RBE-weighted dose was identified as a risk factor for SIF. Additionally, neither LETd nor physical dose parameters were associated with SIF prediction.
Collapse
Affiliation(s)
- Yasumasa Mori
- QST Hospital, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan; Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-15, Showa-machi, Maebashi, Gunma 371-8511, Japan.
| | - Noriyuki Okonogi
- QST Hospital, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| | - Shinnosuke Matsumoto
- Department of Accelerator and Medical Physics, National Institutes for Quantum Science and Technology.
| | - Wataru Furuichi
- Accelerator Engineering Corporation, 6-18-1-301 Konakadai, Inage-ku, Chiba 263-0043, Japan.
| | - Mai Fukahori
- Managing Unit, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| | - Yuhei Miyasaka
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-15, Showa-machi, Maebashi, Gunma 371-8511, Japan.
| | - Kazutoshi Murata
- QST Hospital, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| | - Masaru Wakatsuki
- QST Hospital, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| | - Reiko Imai
- QST Hospital, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| | - Masashi Koto
- QST Hospital, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| | - Shigeru Yamada
- QST Hospital, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| | - Hitoshi Ishikawa
- QST Hospital, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| | - Nobuyuki Kanematsu
- Department of Accelerator and Medical Physics, National Institutes for Quantum Science and Technology.
| | - Hiroshi Tsuji
- QST Hospital, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| |
Collapse
|
14
|
Grosshagauer S, Fossati P, Schafasand M, Carlino A, Poljanc K, Radakovits T, Stock M, Hug E, Georg P, Pelak M, Góra J. Organs at risk dose constraints in carbon ion radiotherapy at MedAustron: Translations between LEM and MKM RBE models and preliminary clinical results. Radiother Oncol 2022; 175:73-78. [PMID: 35952977 DOI: 10.1016/j.radonc.2022.08.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/15/2022] [Accepted: 08/01/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Carbon ion radiotherapy (CIRT) treatment planning is based on relative biological effectiveness (RBE) weighted dose calculations. A large amount of clinical evidence for CIRT was collected in Japan with RBE estimated by the modified microdosimetric kinetic model (MKM) while all European centres apply the first version of the local effect model (LEM). Japanese schedules have been used in Europe with adapted prescription dose and organs at risk (OAR) dose constraints. Recently, less conservative adapted LEM constraints have been implemented in clinical practice. The aim of this study was to analyse the new set of LEM dose constraints for brain parenchyma, brainstem and optic system considering both RBE models and evaluating early clinical data. MATERIAL AND METHODS 31 patients receiving CIRT at MedAustron were analysed using the RayStation v9A planning system by recalculating clinical LEM-based plans in MKM. Dose statistics (D1cm3, D5cm3, D0.1cm3, D0.7cm3, D10%, D20%) were extracted for relevant critical OARs. Curve fitting for those values was performed, resulting in linear quadratic translation models. Clinical and radiological toxicity was evaluated. RESULTS Based on derived fits, currently applied LEM constraints matched recommended MKM constraints with deviations between -8% and +3.9%. For particular cases, data did not follow the expected LEM vs MKM trends resulting in outliers. Radiological (asymptomatic) toxicity was detected in two outlier cases. CONCLUSION Respecting LEM constraints does not automatically ensure that MKM constraints are met. Constraints for both RBE models need to be fulfilled for future CIRT patients at MedAustron. Careful selection of planning strategies is essential.
Collapse
Affiliation(s)
- Sarah Grosshagauer
- MedAustron Ion Therapy Center, Austria; Technical University of Vienna, Austria
| | | | - Mansure Schafasand
- MedAustron Ion Therapy Center, Austria; Medical University of Vienna, Austria
| | | | | | | | | | - Eugen Hug
- MedAustron Ion Therapy Center, Austria
| | | | | | | |
Collapse
|
15
|
Taghipour H, Taherparvar P. Development of modified microdosimetric kinetic model for relative biological effectiveness in proton therapy. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2022; 61:375-390. [PMID: 35699753 DOI: 10.1007/s00411-022-00977-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
To predict the biological effects of ionising radiation, the quantity of biological dose is introduced instead of the physical absorbed dose. In proton therapy, a constant relative biological effectiveness (RBE) of 1.1 is usually applied clinically as recommended by the International Commission of Radiation Units and Measurements. This study presents a new model, based on the modified microdosimetric kinetic model (MMKM), for calculating variable RBE values based on experimental data on the induction of DNA double-strand breaks (DSBs) within cells. The MMKM was proposed based on experimental data for the yield of DSBs in mammalian cells, which allows modification of the yield of primary lesions in the MKM. In this approach, a unique function named f(LET), which describes the relation between RBE and linear energy transfer (LET), was considered for charged particles. In the presented model (DMMKM), the MMKM approach was developed further by considering different f(LET)s for different relevant ions involved in energy deposition events in proton therapy. Although experimental data represent the dependence of the yield of primary lesions on the ion species, the DSB yield (assumed as the main primary lesion) is assumed independent of the ion species in the MMKM. In the DMMKM, by considering the yield of primary lesions as a function of the ion species, the α and β values are in better agreement with the experimental data as compared to those of the MKM and MMKM approaches. The biological dose in the DMMKM is predicted to be lower than that in the MMKM. Further, in the proposed model, the variation of the β parameter is higher than the constant value assumed in the MKM, at the distal end of the spread-out Bragg peak (SOBP). Moreover, the level of cell death estimated by the MMKM at the SOBP region is higher than that obtained based on the DMMKM. It is concluded that considering modified f(LET)s in the model developed here is more consistent with experimental results than when MMKM and MKM approaches are considered. The DMMKM examines the biological effects with full detail and will, therefore, be effective in improving proton therapy.
Collapse
Affiliation(s)
- Hossein Taghipour
- Department of Physics, Faculty of Science, University of Guilan, Namjoo Avenue, P.O. Box 41635-1914, Rasht, 4193833697, Guilan, Iran
| | - Payvand Taherparvar
- Department of Physics, Faculty of Science, University of Guilan, Namjoo Avenue, P.O. Box 41635-1914, Rasht, 4193833697, Guilan, Iran.
| |
Collapse
|
16
|
Held T, Tessonnier T, Franke H, Regnery S, Bauer L, Weusthof K, Harrabi S, Herfarth K, Mairani A, Debus J, Adeberg S. Ways to unravel the clinical potential of carbon ions for head and neck cancer reirradiation: dosimetric comparison and local failure pattern analysis as part of the prospective randomized CARE trial. Radiat Oncol 2022; 17:121. [PMID: 35804448 PMCID: PMC9264522 DOI: 10.1186/s13014-022-02093-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/30/2022] [Indexed: 11/21/2022] Open
Abstract
Background Carbon ion radiotherapy (CIRT) yields biophysical advantages compared to photons but randomized studies for the reirradiation setting are pending. The aim of the current project was to evaluate potential clinical benefits and drawbacks of CIRT compared to volumetric modulated arc therapy (VMAT) in recurrent head and neck cancer. Methods Dose-volume parameters and local failure patterns of CIRT compared to VMAT were evaluate in 16 patients from the randomized CARE trial on head and neck cancer reirradiation. Results Despite an increased target dose, CIRT resulted in significantly reduced organ at risk (OAR) dose across all patients (− 8.7% Dmean). The dose-volume benefits were most pronounced in the brainstem (− 20.7% Dmax) and the optic chiasma (− 13.0% Dmax). The most frequent local failure was type E (extraneous; 50%), followed type B (peripheral; 33%) and type A (central; 17%). In one patient with type A biological and/or dosimetric failure after CIRT, mMKM dose recalculation revealed reduced target coverage. Conclusions CIRT resulted in highly improved critical OAR sparing compared to VMAT across all head and neck cancer reirradiation scenarios despite an increased prescription dose. Local failure pattern analysis revealed further potential CIRT specific clinical benefits and potential pitfalls with regard to image-guidance and biological dose-optimization. Supplementary Information The online version contains supplementary material available at 10.1186/s13014-022-02093-4.
Collapse
Affiliation(s)
- Thomas Held
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany. .,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany. .,National Center for Tumor Diseases (NCT), Heidelberg, Germany. .,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany.
| | - Thomas Tessonnier
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany
| | - Henrik Franke
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Sebastian Regnery
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Lukas Bauer
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Katharina Weusthof
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Semi Harrabi
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany.,German Cancer Consortium (DKTK), partner site Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Klaus Herfarth
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany.,German Cancer Consortium (DKTK), partner site Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrea Mairani
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany.,German Cancer Consortium (DKTK), partner site Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Medical Physics, National Centre of Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany.,German Cancer Consortium (DKTK), partner site Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Adeberg
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany.,German Cancer Consortium (DKTK), partner site Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
17
|
Li H. Biological effectiveness and relative biological effectiveness of ion beams for in-vitro cell irradiation. Cancer Sci 2022; 113:2807-2813. [PMID: 35642350 PMCID: PMC9357665 DOI: 10.1111/cas.15446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 11/26/2022] Open
Abstract
Biological effectiveness and relative biological effectiveness are critical for proton and ion beam radiotherapy. However, the relationship between the two quantities and physical character of ion beams is not well established. By analyzing 1188 sets of in‐vitro cell irradiation experiments using ion beams ranging from protons to 238U, compiled by the Particle Irradiation Data Ensemble (PIDE) project, the biological effectiveness of the ion beams, with cell survival fractionation (SF) as the endpoint, was found to be dependent on the fluence and linear energy transfer (LET) of the ion beam. Consequently, the relative biological effectiveness of the ion beam to photon beam was also established as a function of LET. A common form of relationship among SF, fluence, and LET was found to be valid for all ion beam experiments. The close form relationship could be used for proton and ion beam radiotherapy applications.
Collapse
Affiliation(s)
- Heng Li
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
18
|
Battestini M, Schwarz M, Krämer M, Scifoni E. Including Volume Effects in Biological Treatment Plan Optimization for Carbon Ion Therapy: Generalized Equivalent Uniform Dose-Based Objective in TRiP98. Front Oncol 2022; 12:826414. [PMID: 35387111 PMCID: PMC8979211 DOI: 10.3389/fonc.2022.826414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
We describe a way to include biologically based objectives in plan optimization specific for carbon ion therapy, beyond the standard voxel-dose-based criteria already implemented in TRiP98, research planning software for ion beams. The aim is to account for volume effects—tissue architecture-dependent response to damage—in the optimization procedure, using the concept of generalized equivalent uniform dose (gEUD), which is an expression to convert a heterogeneous dose distribution (e.g., in an organ at risk (OAR)) into a uniform dose associated with the same biological effect. Moreover, gEUD is closely related to normal tissue complication probability (NTCP). The multi-field optimization problem here takes also into account the relative biological effectiveness (RBE), which in the case of ion beams is not factorizable and introduces strong non-linearity. We implemented the gEUD-based optimization in TRiP98, allowing us to control the whole dose–volume histogram (DVH) shape of OAR with a single objective by adjusting the prescribed gEUD0 and the volume effect parameter a, reducing the volume receiving dose levels close to mean dose when a = 1 (large volume effect) while close to maximum dose for a >> 1 (small volume effect), depending on the organ type considered. We studied the role of gEUD0 and a in the optimization, and we compared voxel-dose-based and gEUD-based optimization in chordoma cases with different anatomies. In particular, for a plan containing multiple OARs, we obtained the same target coverage and similar DVHs for OARs with a small volume effect while decreasing the mean dose received by the proximal parotid, thus reducing its NTCP by a factor of 2.5. Further investigations are done for this plan, considering also the distal parotid gland, obtaining a NTCP reduction by a factor of 1.9 for the proximal and 2.9 for the distal one. In conclusion, this novel optimization method can be applied to different OARs, but it achieves the largest improvement for organs whose volume effect is larger. This allows TRiP98 to perform a double level of biologically driven optimization for ion beams, including at the same time RBE-weighted dose and volume effects in inverse planning. An outlook is presented on the possible extension of this method to the target.
Collapse
Affiliation(s)
- Marco Battestini
- Department of Physics, University of Trento, Trento, Italy.,Trento Institute for Fundamental Physics and Applications (TIFPA), Istituto Nazionale di Fisica Nucleare (INFN), Trento, Italy
| | - Marco Schwarz
- Trento Institute for Fundamental Physics and Applications (TIFPA), Istituto Nazionale di Fisica Nucleare (INFN), Trento, Italy.,Trento Proton Therapy Center, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | - Michael Krämer
- Biophysics Department, GSI - Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Emanuele Scifoni
- Trento Institute for Fundamental Physics and Applications (TIFPA), Istituto Nazionale di Fisica Nucleare (INFN), Trento, Italy
| |
Collapse
|
19
|
Development and validation of proton track-structure model applicable to arbitrary materials. Sci Rep 2021; 11:24401. [PMID: 34934066 PMCID: PMC8692440 DOI: 10.1038/s41598-021-01822-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/03/2021] [Indexed: 11/09/2022] Open
Abstract
A novel transport algorithm performing proton track-structure calculations in arbitrary materials was developed. Unlike conventional algorithms, which are based on the dielectric function of the target material, our algorithm uses a total stopping power formula and single-differential cross sections of secondary electron production. The former was used to simulate energy dissipation of incident protons and the latter was used to consider secondary electron production. In this algorithm, the incident proton was transmitted freely in matter until the proton produced a secondary electron. The corresponding ionising energy loss was calculated as the sum of the ionisation energy and the kinetic energy of the secondary electron whereas the non-ionising energy loss was obtained by subtracting the ionising energy loss from the total stopping power. The most remarkable attribute of this model is its applicability to arbitrary materials, i.e. the model utilises the total stopping power and the single-differential cross sections for secondary electron production rather than the material-specific dielectric functions. Benchmarking of the stopping range, radial dose distribution, secondary electron energy spectra in liquid water, and lineal energy in tissue-equivalent gas, against the experimental data taken from literature agreed well. This indicated the accuracy of the present model even for materials other than liquid water. Regarding microscopic energy deposition, this model will be a robust tool for analysing the irradiation effects of cells, semiconductors and detectors.
Collapse
|
20
|
Sakata D, Suzuki M, Hirayama R, Abe Y, Muramatsu M, Sato S, Belov O, Kyriakou I, Emfietzoglou D, Guatelli S, Incerti S, Inaniwa T. Performance Evaluation for Repair of HSGc-C5 Carcinoma Cell Using Geant4-DNA. Cancers (Basel) 2021; 13:6046. [PMID: 34885155 PMCID: PMC8656964 DOI: 10.3390/cancers13236046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/30/2021] [Accepted: 09/07/2021] [Indexed: 12/27/2022] Open
Abstract
Track-structure Monte Carlo simulations are useful tools to evaluate initial DNA damage induced by irradiation. In the previous study, we have developed a Gean4-DNA-based application to estimate the cell surviving fraction of V79 cells after irradiation, bridging the gap between the initial DNA damage and the DNA rejoining kinetics by means of the two-lesion kinetics (TLK) model. However, since the DNA repair performance depends on cell line, the same model parameters cannot be used for different cell lines. Thus, we extended the Geant4-DNA application with a TLK model for the evaluation of DNA damage repair performance in HSGc-C5 carcinoma cells which are typically used for evaluating proton/carbon radiation treatment effects. For this evaluation, we also performed experimental measurements for cell surviving fractions and DNA rejoining kinetics of the HSGc-C5 cells irradiated by 70 MeV protons at the cyclotron facility at the National Institutes for Quantum and Radiological Science and Technology (QST). Concerning fast- and slow-DNA rejoining, the TLK model parameters were adequately optimized with the simulated initial DNA damage. The optimized DNA rejoining speeds were reasonably agreed with the experimental DNA rejoining speeds. Using the optimized TLK model, the Geant4-DNA simulation is now able to predict cell survival and DNA-rejoining kinetics for HSGc-C5 cells.
Collapse
Affiliation(s)
- Dousatsu Sakata
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, QST, Chiba 263-8555, Japan; (Y.A.); (M.M.); (S.S.); (T.I.)
| | - Masao Suzuki
- Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, QST, Chiba 263-8555, Japan; (M.S.); (R.H.)
| | - Ryoichi Hirayama
- Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, QST, Chiba 263-8555, Japan; (M.S.); (R.H.)
| | - Yasushi Abe
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, QST, Chiba 263-8555, Japan; (Y.A.); (M.M.); (S.S.); (T.I.)
| | - Masayuki Muramatsu
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, QST, Chiba 263-8555, Japan; (Y.A.); (M.M.); (S.S.); (T.I.)
| | - Shinji Sato
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, QST, Chiba 263-8555, Japan; (Y.A.); (M.M.); (S.S.); (T.I.)
| | - Oleg Belov
- Veksler and Baldin Laboratory of High Energy Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia;
- Institute of System Analysis and Management, Dubna State University, 141980 Dubna, Russia
| | - Ioanna Kyriakou
- Medical Physics Laboratory, Medical School, University of Ioannina, 45110 Ioannina, Greece; (I.K.); (D.E.)
| | - Dimitris Emfietzoglou
- Medical Physics Laboratory, Medical School, University of Ioannina, 45110 Ioannina, Greece; (I.K.); (D.E.)
| | - Susanna Guatelli
- Centre For Medical Radiation Physics, University of Wollongong, Wollongong 2522, Australia;
| | - Sebastien Incerti
- Centre d’Études Nucléaires de Bordeaux Gradignan, CNRS/IN2P3, UMR5797, Université de Bordeaux, F-33170 Gradignan, France;
| | - Taku Inaniwa
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, QST, Chiba 263-8555, Japan; (Y.A.); (M.M.); (S.S.); (T.I.)
| |
Collapse
|
21
|
Kasamatsu K, Tanaka S, Miyazaki K, Takao S, Miyamoto N, Hirayama S, Nishioka K, Hashimoto T, Aoyama H, Umegaki K, Matsuura T. Impact of a spatially dependent dose delivery time structure on the biological effectiveness of scanning proton therapy. Med Phys 2021; 49:702-713. [PMID: 34796522 DOI: 10.1002/mp.15367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/09/2021] [Accepted: 11/02/2021] [Indexed: 11/09/2022] Open
Abstract
PURPOSE In the scanning beam delivery of protons, different portions of the target are irradiated with different linear energy transfer protons with various time intervals and irradiation times. This research aimed to evaluate the spatially dependent biological effectiveness of protracted irradiation in scanning proton therapy. METHODS One and two parallel opposed fields plans were created in water phantom with the prescribed dose of 2 Gy. Three scenarios (instantaneous, continuous, and layered scans) were used with the corresponding beam delivery models. The biological dose (physical dose × relative biological effectiveness) was calculated using the linear quadratic model and the theory of dual radiation action to quantitatively evaluate the dose delivery time effect. In addition, simulations using clinical plans (postoperative seminoma and prostate tumor cases) were conducted to assess the impact of the effects on the dose volume histogram parameters and homogeneity coefficient (HC) in targets. RESULTS In a single-field plan of water phantom, when the treatment time was 19 min, the layered-scan scenario showed a decrease of <0.2% (almost 3.3%) in the biological dose from the plan on the distal (proximal) side because of the high (low) dose rate. This is in contrast to the continuous scenario, where the biological dose was almost uniformly decreased over the target by approximately 3.3%. The simulation with clinical geometry showed that the decrease rates in D99% were 0.9% and 1.5% for every 10 min of treatment time prolongation for postoperative seminoma and prostate tumor cases, respectively, whereas the increase rates in HC were 0.7% and 0.2%. CONCLUSIONS In protracted irradiation in scanning proton therapy, the spatially dependent dose delivery time structure in scanning beam delivery can be an important factor for accurate evaluation of biological effectiveness.
Collapse
Affiliation(s)
- Koki Kasamatsu
- Graduate School of Biomedical Science and Engineering, Hokkaido University, Sapporo, Japan
| | - Sodai Tanaka
- Faculty of Engineering, Hokkaido University, Sapporo, Japan.,Department of Medical Physics, Hokkaido University Hospital, Sapporo, Japan
| | - Koichi Miyazaki
- Faculty of Engineering, Hokkaido University, Sapporo, Japan.,Department of Medical Physics, Hokkaido University Hospital, Sapporo, Japan
| | - Seishin Takao
- Faculty of Engineering, Hokkaido University, Sapporo, Japan.,Department of Medical Physics, Hokkaido University Hospital, Sapporo, Japan.,Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Japan
| | - Naoki Miyamoto
- Faculty of Engineering, Hokkaido University, Sapporo, Japan.,Department of Medical Physics, Hokkaido University Hospital, Sapporo, Japan
| | | | - Kentaro Nishioka
- Department of Radiation Medical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Takayuki Hashimoto
- Department of Radiation Medical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Hidefumi Aoyama
- Department of Radiation Oncology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Kikuo Umegaki
- Faculty of Engineering, Hokkaido University, Sapporo, Japan.,Department of Medical Physics, Hokkaido University Hospital, Sapporo, Japan.,Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Japan
| | - Taeko Matsuura
- Faculty of Engineering, Hokkaido University, Sapporo, Japan.,Department of Medical Physics, Hokkaido University Hospital, Sapporo, Japan.,Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Japan
| |
Collapse
|
22
|
Chen J, Mao J, Ma N, Wu KL, Lu J, Jiang GL. Definitive carbon ion radiotherapy for tracheobronchial adenoid cystic carcinoma: a preliminary report. BMC Cancer 2021; 21:734. [PMID: 34174854 PMCID: PMC8236132 DOI: 10.1186/s12885-021-08493-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/07/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Tracheobronchial adenoid cystic carcinoma (TACC) is a rare tumour. About one-third of patients miss their chance of surgery or complete resection as it is mostly detected in the advanced stage; hence, photon radiotherapy (RT) is used. However, the outcomes of photon RT remain unsatisfactory. Carbon ion radiotherapy (CIRT) is thought to improve the therapeutic gain ratio; however, the outcomes of CIRT in TACC are unclear. Therefore, we aimed to assess the effects and toxicities of CIRT in patients with TACC. METHODS The inclusion criteria were as follows: 1) age 18-80 years; 2) Eastern Cooperative Oncology Group Performance Status 0-2; 3) histologically confirmed TACC; 4) stage III-IV disease; 5) visible primary tumour; and 6) no previous RT history. The planned prescription doses of CIRT were 66-72.6 GyE/22-23 fractions. The rates of overall survival (OS), local control (LC), and progression-free survival (PFS) were calculated using the Kaplan-Meier method. Treatment-induced toxicities and tumour response were scored according to the Common Terminology Criteria for Adverse Events and Response Evaluation Criteria in Solid Tumors, respectively. RESULTS Eighteen patients with a median age of 48 (range 30-73) years were enrolled. The median follow-up time was 20.7 (range 5.8-44.1) months. The overall response rate was 88.2%. Five patients developed lung metastasis after 12.2-41.0 months and one of them experienced local recurrence at 31.9 months after CIRT. The rates of 2-year OS, LC, and PFS were 100, 100, and 61.4%, respectively. Except for one patient who experienced grade 4 tracheal stenosis, which was relieved after stent implantation, no other ≥3 grade toxicities were observed. CONCLUSIONS CIRT might be safe and effective in the management of TACC based on a short observation period. Further studies with more cases and longer observation are warranted.
Collapse
Affiliation(s)
- Jian Chen
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, 201321, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, 201321, China
| | - Jingfang Mao
- Shanghai Key Laboratory of Radiation Oncology, Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, 201321, China.
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, 201321, China.
| | - Ningyi Ma
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, 201321, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, 201321, China
| | - Kai-Liang Wu
- Shanghai Key Laboratory of Radiation Oncology, Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, 201321, China
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, 201321, China
| | - Jiade Lu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, 201321, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, 201321, China
| | - Guo-Liang Jiang
- Shanghai Key Laboratory of Radiation Oncology, Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, 201321, China
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, 201321, China
| |
Collapse
|
23
|
Bennan ABA, Unkelbach J, Wahl N, Salome P, Bangert M. Joint Optimization of Photon-Carbon Ion Treatments for Glioblastoma. Int J Radiat Oncol Biol Phys 2021; 111:559-572. [PMID: 34058258 DOI: 10.1016/j.ijrobp.2021.05.126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/09/2021] [Accepted: 05/21/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE Carbon ions are radiobiologically more effective than photons and are beneficial for treating radioresistant gross tumor volumes (GTV). However, owing to a reduced fractionation effect, they may be disadvantageous for treating infiltrative tumors, in which healthy tissue inside the clinical target volume (CTV) must be protected through fractionation. This work addresses the question: What is the ideal combined photon-carbon ion fluence distribution for treating infiltrative tumors given a specific fraction allocation between photons and carbon ions? METHODS AND MATERIALS We present a method to simultaneously optimize sequentially delivered intensity modulated photon (IMRT) and carbon ion (CIRT) treatments based on cumulative biological effect, incorporating both the variable relative biological effect of carbon ions and the fractionation effect within the linear quadratic model. The method is demonstrated for 6 glioblastoma patients in comparison with the current clinical standard of independently optimized CIRT-IMRT plans. RESULTS Compared with the reference plan, joint optimization strategies yield inhomogeneous photon and carbon ion dose distributions that cumulatively deliver a homogeneous biological effect distribution. In the optimal distributions, the dose to CTV is mostly delivered by photons and carbon ions are restricted to the GTV with variations depending on tumor size and location. Improvements in conformity of high-dose regions are reflected by a mean EQD2 reduction of 3.29 ± 1.22 Gy in a dose fall-off margin around the CTV. Carbon ions may deliver higher doses to the center of the GTV, and photon contributions are increased at interfaces with CTV and critical structures. This results in a mean EQD2 reduction of 8.3 ± 2.28 Gy, in which the brain stem abuts the target volumes. CONCLUSIONS We have developed a biophysical model to optimize combined photon-carbon ion treatments. For 6 glioblastoma patient cases, we show that our approach results in a more targeted application of carbon ions that (1) reduces dose in normal tissues within the target volume, which can only be protected through fractionation; and (2) boosts central target volume regions to reduce integral dose. Joint optimization of IMRT-CIRT treatments enable the exploration of a new spectrum of plans that can better address physical and radiobiological treatment planning challenges.
Collapse
Affiliation(s)
- Amit Ben Antony Bennan
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany; Medical Faculty, Heidelberg University, Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.
| | - Jan Unkelbach
- Department of Radiation Oncology, University Hospital Zurich, Switzerland
| | - Niklas Wahl
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Patrick Salome
- Medical Faculty, Heidelberg University, Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ)
| | - Mark Bangert
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
24
|
On the Equivalence of the Biological Effect Induced by Irradiation of Clusters of Heavy Atom Nanoparticles and Homogeneous Heavy Atom-Water Mixtures. Cancers (Basel) 2021; 13:cancers13092034. [PMID: 33922478 PMCID: PMC8122863 DOI: 10.3390/cancers13092034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/17/2021] [Accepted: 04/21/2021] [Indexed: 12/19/2022] Open
Abstract
A multiscale local effect model (LEM)-based framework was implemented to study the cell damage caused by the irradiation of clusters of gold nanoparticles (GNPs) under clinically relevant conditions. The results were compared with those obtained by a homogeneous mixture of water and gold (MixNP) irradiated under similar conditions. To that end, Monte Carlo simulations were performed for the irradiation of GNP clusters of different sizes and MixNPs with a 6 MV Linac spectrum to calculate the dose enhancement factor in water. The capabilities of our framework for the prediction of cell damage trends are examined and discussed. We found that the difference of the main parameter driving the cell damage between a cluster of GNPs and the MixNP was less than 1.6% for all cluster sizes. Our results demonstrate for the first time a simple route to intuit the radiobiological effects of clusters of nanoparticles through the consideration of an equivalent homogenous gold/water mixture. Furthermore, the negligible difference on cell damage between a cluster of GNPs and MixNP simplifies the modelling for the complex geometries of nanoparticle aggregations and saves computational resources.
Collapse
|
25
|
Kalholm F, Grzanka L, Traneus E, Bassler N. A systematic review on the usage of averaged LET in radiation biology for particle therapy. Radiother Oncol 2021; 161:211-221. [PMID: 33894298 DOI: 10.1016/j.radonc.2021.04.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/20/2022]
Abstract
Linear Energy Transfer (LET) is widely used to express the radiation quality of ion beams, when characterizing the biological effectiveness. However, averaged LET may be defined in multiple ways, and the chosen definition may impact the resulting reported value. We review averaged LET definitions found in the literature, and quantify which impact using these various definitions have for different reference setups. We recorded the averaged LET definitions used in 354 publications quantifying the relative biological effectiveness (RBE) of hadronic beams, and investigated how these various definitions impact the reported averaged LET using a Monte Carlo particle transport code. We find that the kind of averaged LET being applied is, generally, poorly defined. Some definitions of averaged LET may influence the reported averaged LET values up to an order of magnitude. For publications involving protons, most applied dose averaged LET when reporting RBE. The absence of what target medium is used and what secondary particles are included further contributes to an ill-defined averaged LET. We also found evidence of inconsistent usage of averaged LET definitions when deriving LET-based RBE models. To conclude, due to commonly ill-defined averaged LET and to the inherent problems of LET-based RBE models, averaged LET may only be used as a coarse indicator of radiation quality. We propose a more rigorous way of reporting LET values, and suggest that ideally the entire particle fluence spectra should be recorded and provided for future RBE studies, from which any type of averaged LET (or other quantities) may be inferred.
Collapse
Affiliation(s)
- Fredrik Kalholm
- Medical Radiation Physics, Dept. of Physics, Stockholm University, Stockholm, Sweden; Department of Oncology and Pathology, Medical Radiation Physics, Karolinska Institutet, Stockholm, Sweden
| | - Leszek Grzanka
- Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
| | | | - Niels Bassler
- Medical Radiation Physics, Dept. of Physics, Stockholm University, Stockholm, Sweden; Department of Oncology and Pathology, Medical Radiation Physics, Karolinska Institutet, Stockholm, Sweden; Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark; Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
26
|
Vassiliev ON. On calculation of the average linear energy transfer for radiobiological modelling. Biomed Phys Eng Express 2021; 7. [PMID: 33692907 DOI: 10.1088/2057-1976/abc967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Applying the concept of linear energy transfer (LET) to modeling of biological effects of charged particles usually involves calculation of the average LET. To calculate this, the energy distribution of particles is characterized by either the source spectrum or fluence spectrum. Also, the average can be frequency-or dose-weighted. This makes four methods of calculating the average LET, each producing a different number. The purpose of this note is to describe which of these four methods is best suited for radiobiological modelling. We focused on data for photons (x-rays and gamma radiation) because in this case differences in the four averaging methods are most pronounced. However, our conclusions are equally applicable to photons and hadrons. We based our arguments on recently emerged Monte Carlo data that fully account for transport of electrons down to very low energies comparable to the ionization potential of water. We concluded that the frequency average LET calculated using the fluence spectrum has better predictive power than does that calculated using any of the other three options. This optimal method is not new but is different from those currently dominating research in this area.
Collapse
Affiliation(s)
- Oleg N Vassiliev
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America
| |
Collapse
|
27
|
Matsuya Y, Kai T, Sato T, Liamsuwan T, Sasaki K, Nikjoo H. Verification of KURBUC-based ion track structure mode for proton and carbon ions in the PHITS code. Phys Med Biol 2021; 66:06NT02. [PMID: 33588391 DOI: 10.1088/1361-6560/abe65e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The particle and heavy ion transport code system (PHITS) is a general-purpose Monte Carlo radiation transport simulation code. It has the ability to handle diverse particle types over a wide range of energy. The latest PHITS development enables the generation of track structure for proton and carbon ions (1H+, 12C6+) based on the algorithms in the KURBUC code, which is considered as one of the most verified track-structure codes worldwide. This ion track-structure mode is referred to as the PHITS-KURBUC mode. In this study, the range, radial dose distributions, and microdosimetric distributions were calculated using the PHITS-KURBUC mode. Subsequently, they were compared with the corresponding data obtained from the original KURBUC and from other studies. These comparative studies confirm the successful inclusion of the KURBUC code in the PHITS code. As results of the synergistic effect between the macroscopic and microscopic radiation transport codes, this implementation enabled the detailed calculation of the microdosimetric and nanodosimetric quantities under complex radiation fields, such as proton beam therapy with the spread-out Bragg peak.
Collapse
Affiliation(s)
- Yusuke Matsuya
- Nuclear Science and Engineering Center, Research Group for Radiation Transport Analysis, Japan Atomic Energy Agency (JAEA), 2-4 Shirakata, Tokai, Ibaraki, 319-1195, Japan
| | - Takeshi Kai
- Nuclear Science and Engineering Center, Research Group for Radiation Transport Analysis, Japan Atomic Energy Agency (JAEA), 2-4 Shirakata, Tokai, Ibaraki, 319-1195, Japan
| | - Tatsuhiko Sato
- Nuclear Science and Engineering Center, Research Group for Radiation Transport Analysis, Japan Atomic Energy Agency (JAEA), 2-4 Shirakata, Tokai, Ibaraki, 319-1195, Japan
| | - Thiansin Liamsuwan
- Faculty of Medicine and Public Health, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Kohei Sasaki
- Department of Radiological Technology, Faculty of Health Sciences, Hokkaido University of Science, Maeda 7-15, Teine-ku, Sapporo 006-8585, Japan
| | - Hooshang Nikjoo
- Radiation Biophysics Group, Department of Oncology-Pathology, Karolinska Institutet, SE-17176 Stockholm, Sweden
| |
Collapse
|
28
|
The RBE in ion beam radiotherapy: In vivo studies and clinical application. Z Med Phys 2021; 31:105-121. [PMID: 33568337 DOI: 10.1016/j.zemedi.2020.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/23/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022]
Abstract
Ion beams used for radiotherapy exhibit an increased relative biological effectiveness (RBE), which depends on several physical treatment parameters as well as on biological factors of the irradiated tissues. While the RBE is an experimentally well-defined quantity, translation to patients is complex and requires radiobiological studies, dedicated models to calculate the RBE in treatment planning as well as strategies for dose prescription. Preclinical in vivo studies and analysis of clinical outcome are important to validate and refine RBE-models. This review describes the concept of the experimental and clinical RBE and explains the fundamental dependencies of the RBE based on in vitro experiments. The available preclinical in vivo studies on normal tissue and tumor RBE for ions heavier than protons are reviewed in the context of the historical and present development of ion beam radiotherapy. In addition, the role of in vivo RBE-values in the development and benchmarking of RBE-models as well as the transition of these models to clinical application are described. Finally, limitations in the translation of experimental RBE-values into clinical application and the direction of future research are discussed.
Collapse
|
29
|
Miyasaka Y, Okonogi N, Fukahori M, Furuichi W, Wakatsuki M, Kato S, Ohno T, Nakano T, Tsuji H. Pelvic insufficiency fractures following carbon-ion radiotherapy for uterine carcinomas. Radiother Oncol 2020; 156:56-61. [PMID: 33278405 DOI: 10.1016/j.radonc.2020.11.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/18/2020] [Accepted: 11/25/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND PURPOSE There is growing evidence on the role of carbon-ion radiotherapy (C-ion RT) for gynaecological tumours. Pelvic insufficiency fracture (PIF) decreases the quality of life after photon beam radiotherapy (RT). However, there is little information on PIF after C-ion RT. This study retrospectively assessed incidence of PIF after C-ion RT for uterine carcinomas (UCs) and the associations of clinical and dosimetric parameters with PIF incidence. MATERIAL AND METHODS We performed a pooled analysis of 102 patients with UCs who underwent definitive C-ion RT alone and were followed up for >6 months without any additional RT in the pelvic region. PIF occurrence was surveyed using magnetic resonance imaging and/or computed tomography. Associations of clinical and dosimetric parameters with PIF incidence were analysed. RESULTS The 2- and 5-year actuarial incidences of ≥grade 1 PIF in all pelvic regions were 22.3% and 42.4%, respectively. The most frequent site of involvement was the sacrum. Log-rank tests showed that higher volumes receiving >10 Gy (relative biological effectiveness) (V10), V20, V30, and V40, body mass index (BMI) under 18.5, and current smoking were associated with increased incidence of ≥grade 1 PIF in the sacrum. CONCLUSIONS We clarified the actuarial incidence of PIF after C-ion RT for UCs. Higher V10, V20, V30, V40, D50%, Dmean, current smoking, BMI <18.5, and using the anterior-posterior direction in whole pelvic irradiation were associated with higher incidences of PIF in the sacrum. The present results may lead to further improvement of C-ion RT for UCs.
Collapse
Affiliation(s)
- Yuhei Miyasaka
- QST Hospital, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan; Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Noriyuki Okonogi
- QST Hospital, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan.
| | - Mai Fukahori
- Department of Nuclear Safety and Security, International Atomic Energy Agency, Vienna International Centre, Vienna, Austria.
| | | | - Masaru Wakatsuki
- QST Hospital, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan.
| | - Shingo Kato
- Department of Radiation Oncology, Saitama Medical University International Medical Center, Hidaka, Japan.
| | - Tatsuya Ohno
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Japan.
| | - Takashi Nakano
- Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan.
| | - Hiroshi Tsuji
- QST Hospital, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan.
| |
Collapse
|
30
|
Engels E, Bakr S, Bolst D, Sakata D, Li N, Lazarakis P, McMahon SJ, Ivanchenko V, Rosenfeld AB, Incerti S, Kyriakou I, Emfietzoglou D, Lerch MLF, Tehei M, Corde S, Guatelli S. Advances in modelling gold nanoparticle radiosensitization using new Geant4-DNA physics models. Phys Med Biol 2020; 65:225017. [PMID: 32916674 DOI: 10.1088/1361-6560/abb7c2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Gold nanoparticles have demonstrated significant radiosensitization of cancer treatment with x-ray radiotherapy. To understand the mechanisms at the basis of nanoparticle radiosensitization, Monte Carlo simulations are used to investigate the dose enhancement, given a certain nanoparticle concentration and distribution in the biological medium. Earlier studies have ordinarily used condensed history physics models to predict nanoscale dose enhancement with nanoparticles. This study uses Geant4-DNA complemented with novel track structure physics models to accurately describe electron interactions in gold and to calculate the dose surrounding gold nanoparticle structures at nanoscale level. The computed dose in silico due to a clinical kilovoltage beam and the presence of gold nanoparticles was related to in vitro brain cancer cell survival using the local effect model. The comparison of the simulation results with radiobiological experimental measurements shows that Geant4-DNA and local effect model can be used to predict cell survival in silico in the case of x-ray kilovoltage beams.
Collapse
Affiliation(s)
- Elette Engels
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia. Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Petrović IM, Ristić Fira AM, Keta OD, Petković VD, Petringa G, Cirrone P, Cuttone G. A radiobiological study of carbon ions of different linear energy transfer in resistant human malignant cell lines. Int J Radiat Biol 2020; 96:1400-1412. [DOI: 10.1080/09553002.2020.1820609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ivan M. Petrović
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | | | - Otilija D. Keta
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Vladana D. Petković
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Giada Petringa
- Istituto Nazionale di Fisica Nucleare, LNS, Catania, Italy
| | - Pablo Cirrone
- Istituto Nazionale di Fisica Nucleare, LNS, Catania, Italy
| | | |
Collapse
|
32
|
Kundrát P, Friedland W, Becker J, Eidemüller M, Ottolenghi A, Baiocco G. Analytical formulas representing track-structure simulations on DNA damage induced by protons and light ions at radiotherapy-relevant energies. Sci Rep 2020; 10:15775. [PMID: 32978459 PMCID: PMC7519066 DOI: 10.1038/s41598-020-72857-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/17/2020] [Indexed: 01/04/2023] Open
Abstract
Track structure based simulations valuably complement experimental research on biological effects of ionizing radiation. They provide information at the highest level of detail on initial DNA damage induced by diverse types of radiation. Simulations with the biophysical Monte Carlo code PARTRAC have been used for testing working hypotheses on radiation action mechanisms, for benchmarking other damage codes and as input for modelling subsequent biological processes. To facilitate such applications and in particular to enable extending the simulations to mixed radiation field conditions, we present analytical formulas that capture PARTRAC simulation results on DNA single- and double-strand breaks and their clusters induced in cells irradiated by ions ranging from hydrogen to neon at energies from 0.5 GeV/u down to their stopping. These functions offer a means by which radiation transport codes at the macroscopic scale could easily be extended to predict biological effects, exploiting a large database of results from micro-/nanoscale simulations, without having to deal with the coupling of spatial scales and running full track-structure calculations.
Collapse
Affiliation(s)
- Pavel Kundrát
- Institute of Radiation Medicine, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany.,Department of Radiation Dosimetry, Nuclear Physics Institute CAS, Prague, Czech Republic
| | - Werner Friedland
- Institute of Radiation Medicine, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Janine Becker
- Institute of Radiation Medicine, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Markus Eidemüller
- Institute of Radiation Medicine, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Andrea Ottolenghi
- Radiation Biophysics and Radiobiology Group, Physics Department, University of Pavia, Pavia, Italy
| | - Giorgio Baiocco
- Radiation Biophysics and Radiobiology Group, Physics Department, University of Pavia, Pavia, Italy.
| |
Collapse
|
33
|
Dose-averaged linear energy transfer per se does not correlate with late rectal complications in carbon-ion radiotherapy. Radiother Oncol 2020; 153:272-278. [PMID: 32898559 DOI: 10.1016/j.radonc.2020.08.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND PURPOSE Several studies have focused on increasing the linear energy transfer (LET) within tumours to achieve higher biological effects in carbon-ion radiotherapy (C-ion RT). However, it remains unclear whether LET affects late complications. We assessed whether physical dose and LET distribution can be specific factors for late rectal complications in C-ion RT. MATERIALS AND METHODS Overall, 134 patients with uterine carcinomas were registered and retrospectively analysed. Of 134 patients, 132 who were followed up for >6 months were enrolled. The correlations between the relative biological effectiveness (RBE)-weighted dose based on the Kanai model (the ostensible "clinical dose"), dose-averaged LET (LETd), or physical dose and rectal complications were evaluated. Rectal complications were graded according to the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer criteria. RESULTS Nine patients developed grade 3 or 4 late rectal complications. Linear regression analysis found that D2cc in clinical dose was the sole risk factor for ≥grade 3 late rectal complications (p = 0.012). The receiver operating characteristic analysis found that D2cc of 60.2 Gy (RBE) was a suitable cut-off value for predicting ≥grade 3 late rectal complications. Among 35 patients whose rectal D2cc was ≥60.2 Gy (RBE), no correlations were found between severe rectal toxicities and LETd alone or physical dose per se. CONCLUSION We demonstrated that severe rectal toxicities were related to the rectal D2cc of the clinical dose in C-ion RT. However, no correlations were found between severe rectal toxicities and LETd alone or physical dose per se.
Collapse
|
34
|
Dahle TJ, Rusten E, Stokkevåg CH, Silvoniemi A, Mairani A, Fjæra LF, Rørvik E, Henjum H, Wright P, Boer CG, Forsback S, Minn H, Malinen E, Ytre-Hauge KS. The FLUKA Monte Carlo code coupled with an OER model for biologically weighted dose calculations in proton therapy of hypoxic tumors. Phys Med 2020; 76:166-172. [PMID: 32683269 DOI: 10.1016/j.ejmp.2020.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 05/25/2020] [Accepted: 07/02/2020] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION The increased radioresistance of hypoxic cells compared to well-oxygenated cells is quantified by the oxygen enhancement ratio (OER). In this study we created a FLUKA Monte Carlo based tool for inclusion of both OER and relative biological effectiveness (RBE) in biologically weighted dose (ROWD) calculations in proton therapy and applied this to explore the impact of hypoxia. METHODS The RBE-weighted dose was adapted for hypoxia by making RBE model parameters dependent on the OER, in addition to the linear energy transfer (LET). The OER depends on the partial oxygen pressure (pO2) and LET. To demonstrate model performance, calculations were done with spread-out Bragg peaks (SOBP) in water phantoms with pO2 ranging from strongly hypoxic to normoxic (0.01-30 mmHg) and with a head and neck cancer proton plan optimized with an RBE of 1.1 and pO2 estimated voxel-by-voxel using [18F]-EF5 PET. An RBE of 1.1 and the Rørvik RBE model were used for the ROWD calculations. RESULTS The SOBP in water had decreasing ROWD with decreasing pO2. In the plans accounting for oxygenation, the median target doses were approximately a factor 1.1 lower than the corresponding plans which did not consider the OER. Hypoxia adapted target ROWDs were considerably more heterogeneous than the RBE1.1-weighted doses. CONCLUSION We realized a Monte Carlo based tool for calculating the ROWD. Read-in of patient pO2 and estimation of ROWD with flexibility in choice of RBE model was achieved, giving a tool that may be useful in future clinical applications of hypoxia-guided particle therapy.
Collapse
Affiliation(s)
- Tordis Johnsen Dahle
- Department of Physics and Technology, University of Bergen, Allégaten 55, 5007 Bergen, Norway.
| | - Espen Rusten
- Department of Physics, University of Oslo, P.O. Box 1048 Blindern, 0316 Oslo, Norway; Department of Medical Physics, Oslo University Hospital, P.O. Box 4953 Nydalen, 0424 Oslo, Norway
| | - Camilla Hanquist Stokkevåg
- Department of Physics and Technology, University of Bergen, Allégaten 55, 5007 Bergen, Norway; Department of Oncology and Medical Physics, Haukeland University Hospital, Jonas Lies vei 65, 5021 Bergen, Norway
| | - Antti Silvoniemi
- Department of Otorhinolaryngology - Head and Neck Surgery, Turku University Hospital, P.O. Box 52, 20521 Turku, Finland; Turku PET Centre, University of Turku, P.O. Box 52, 20521 Turku, Finland
| | - Andrea Mairani
- Centro Nazionale di Adroterapia Oncologica (CNAO Foundation), Str. Campeggi, 53, 27100 Pavia, Italy; Heidelberg Ion-Beam Therapy Center (HIT), Im Neuenheimer Feld 450, 69120 Heidelberg, Germany
| | - Lars Fredrik Fjæra
- Department of Physics and Technology, University of Bergen, Allégaten 55, 5007 Bergen, Norway
| | - Eivind Rørvik
- Department of Physics and Technology, University of Bergen, Allégaten 55, 5007 Bergen, Norway; Department of Medical Physics, Oslo University Hospital, P.O. Box 4953 Nydalen, 0424 Oslo, Norway
| | - Helge Henjum
- Department of Physics and Technology, University of Bergen, Allégaten 55, 5007 Bergen, Norway
| | - Pauliina Wright
- Department of Oncology and Radiotherapy, Turku University Hospital, P.O. Box 52, 20521 Turku, Finland; Department of Medical Physics, Turku University Hospital, P.O. Box 52, 20521 Turku, Finland
| | - Camilla Grindeland Boer
- Department of Oncology and Medical Physics, Haukeland University Hospital, Jonas Lies vei 65, 5021 Bergen, Norway
| | - Sarita Forsback
- Turku PET Centre, University of Turku, P.O. Box 52, 20521 Turku, Finland
| | - Heikki Minn
- Turku PET Centre, University of Turku, P.O. Box 52, 20521 Turku, Finland; Department of Oncology and Radiotherapy, Turku University Hospital, P.O. Box 52, 20521 Turku, Finland
| | - Eirik Malinen
- Department of Physics, University of Oslo, P.O. Box 1048 Blindern, 0316 Oslo, Norway; Department of Medical Physics, Oslo University Hospital, P.O. Box 4953 Nydalen, 0424 Oslo, Norway
| | | |
Collapse
|
35
|
Czerski K, Kowalska A, Nasonova E, Kutsalo P, Krasavin E. Modeling of chromosome aberration response functions induced by particle beams with different LET. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2020; 59:79-87. [PMID: 31754773 DOI: 10.1007/s00411-019-00822-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 11/03/2019] [Indexed: 06/10/2023]
Abstract
This study is based on our already published experimental data (Kowalska et al. in Radiat Environ Biophys 58:99-108, 2019) and is devoted to modeling of chromosome aberrations in human lymphocytes induced by 22.1 MeV/u 11B ions, 199 MeV/u 12C ions, 150 MeV and spread-out Bragg peak (SOBP) proton beams as well as by 60Co γ rays. The curvature of the dose-effect curves determined by the linear-quadratic model was considered in the frame of a simple analytical approach taking into account increase in the irradiation dose due to overlapping interaction regions of ion tracks. The model enabled to estimate effective interaction radius which could be compared with the physical expectations. The results were also compared to the Amorphous Track Structure Model of Katz which allows to get some additional information about the ion track structure. The analysis showed that the curvature of the experimental dose-effect curves mainly results from highly efficient repair processes of the DNA damage.
Collapse
Affiliation(s)
- Konrad Czerski
- Institute of Physics, University of Szczecin, ul. Wielkopolska 15, 70-451, Szczecin, Poland.
| | - Agata Kowalska
- Faculty of Marine Engineering, Maritime University of Szczecin, Wały Chrobrego 1-2, 70-500, Szczecin, Poland
| | - Elena Nasonova
- Joint Institute for Nuclear Research, Joliot-Curie 6, 141980, Dubna, Russia
| | - Polina Kutsalo
- Joint Institute for Nuclear Research, Joliot-Curie 6, 141980, Dubna, Russia
| | - Evgeny Krasavin
- Joint Institute for Nuclear Research, Joliot-Curie 6, 141980, Dubna, Russia
| |
Collapse
|
36
|
Smith EAK, Henthorn NT, Warmenhoven JW, Ingram SP, Aitkenhead AH, Richardson JC, Sitch P, Chadwick AL, Underwood TSA, Merchant MJ, Burnet NG, Kirkby NF, Kirkby KJ, Mackay RI. In Silico Models of DNA Damage and Repair in Proton Treatment Planning: A Proof of Concept. Sci Rep 2019; 9:19870. [PMID: 31882690 PMCID: PMC6934522 DOI: 10.1038/s41598-019-56258-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 11/29/2019] [Indexed: 01/29/2023] Open
Abstract
There is strong in vitro cell survival evidence that the relative biological effectiveness (RBE) of protons is variable, with dependence on factors such as linear energy transfer (LET) and dose. This is coupled with the growing in vivo evidence, from post-treatment image change analysis, of a variable RBE. Despite this, a constant RBE of 1.1 is still applied as a standard in proton therapy. However, there is a building clinical interest in incorporating a variable RBE. Recently, correlations summarising Monte Carlo-based mechanistic models of DNA damage and repair with absorbed dose and LET have been published as the Manchester mechanistic (MM) model. These correlations offer an alternative path to variable RBE compared to the more standard phenomenological models. In this proof of concept work, these correlations have been extended to acquire RBE-weighted dose distributions and calculated, along with other RBE models, on a treatment plan. The phenomenological and mechanistic models for RBE have been shown to produce comparable results with some differences in magnitude and relative distribution. The mechanistic model found a large RBE for misrepair, which phenomenological models are unable to do. The potential of the MM model to predict multiple endpoints presents a clear advantage over phenomenological models.
Collapse
Affiliation(s)
- Edward A K Smith
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK. .,Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK.
| | - N T Henthorn
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - J W Warmenhoven
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - S P Ingram
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - A H Aitkenhead
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - J C Richardson
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - P Sitch
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - A L Chadwick
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - T S A Underwood
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - M J Merchant
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - N G Burnet
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - N F Kirkby
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - K J Kirkby
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - R I Mackay
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| |
Collapse
|
37
|
Surdutovich E, Solov’yov AV. Science vs. technology in radiation therapy from X-rays to ions. Cancer Nanotechnol 2019. [DOI: 10.1186/s12645-019-0054-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
38
|
|
39
|
de Vera P, Surdutovich E, Solov’yov AV. The role of shock waves on the biodamage induced by ion beam radiation. Cancer Nanotechnol 2019. [DOI: 10.1186/s12645-019-0050-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
40
|
Villagomez-Bernabe B, Currell FJ. Physical Radiation Enhancement Effects Around Clinically Relevant Clusters of Nanoagents in Biological Systems. Sci Rep 2019; 9:8156. [PMID: 31148555 PMCID: PMC6544818 DOI: 10.1038/s41598-019-44482-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 05/09/2019] [Indexed: 12/17/2022] Open
Abstract
Here we show that the determining factor for physical radiation enhancement effects for a clinically realistic cluster of heavy-atom bearing nanoparticles is the total number of heavy atoms packed into the cluster. We do this through a multiscale Monte Carlo approach which permits the consideration of radiation transport through clusters of millions of nanoparticles. The finding is in contrast to that predicted when isolated nanoparticles are considered and is a direct consequence of the Auger electrons playing less of a role for clusters compared to isolate nanoparticles. We further show that this result is agnostic to selection of the subcellular region considered to be sensitive to the effects of radiation, provided the inside the cluster of nanoparticles is not considered to be biologically active.
Collapse
Affiliation(s)
| | - F J Currell
- The University of Manchester The Dalton Cumbrian Facility, Westlakes Science & Technology Park, Moor Row, Cumbria, CA24 3HA, UK. .,School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| |
Collapse
|
41
|
Dressel T, Bug MU, Gargioni E, Rabus H. AN ALGORITHM TO DETERMINE THE NANODOSIMETRIC IMPACT OF GOLD NANOPARTICLES ON CELL MODELS. RADIATION PROTECTION DOSIMETRY 2019; 183:55-59. [PMID: 30535169 DOI: 10.1093/rpd/ncy220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
High-Z nanomaterials, e.g. gold nanoparticles (GNPs), are being investigated worldwide for potential application in radiation imaging and therapy. Photon irradiation of cells containing GNP was shown to produce enhanced DNA damage which is believed to be related to the increased secondary electron (SE) yield and ionization density. In this work, an algorithm was developed for simulating the physical radiation damage inside the nucleus of a spherical cell model for the case of uniformly distributed GNPs within the cytoplasm. Previously calculated energy spectra of SE emerging from a single NP irradiated with different photon sources are used as input to obtain the SE energy spectrum at the surface of the cell nucleus. In a second step, the SE transport inside the cell nucleus is simulated with a track structure Monte Carlo code to obtain the spatial distribution of ionizations. The preliminary results presented here show that the developed algorithm allows for a fast calculation of the SE spectra at the cell nucleus surface, thus enabling a more realistic assessment of the ionization density inside the cell nucleus than that obtained by the simulation of a single GNP. Furthermore, the algorithm can be easily adapted to investigate both the effect of GNP clustering and the impact of GNP-GNP interactions on SE spectra.
Collapse
Affiliation(s)
- T Dressel
- Department 6.5 Radiation effects, Physikalisch-Technische Bundesanstalt, Bundesallee 100, Braunschweig, Germany
| | - M U Bug
- Department 6.5 Radiation effects, Physikalisch-Technische Bundesanstalt, Bundesallee 100, Braunschweig, Germany
| | - E Gargioni
- Department of Radiotherapy and Radio-Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg, Germany
| | - H Rabus
- Department 6.5 Radiation effects, Physikalisch-Technische Bundesanstalt, Bundesallee 100, Braunschweig, Germany
| |
Collapse
|
42
|
Christensen JB, Andersen CE. Applications of amorphous track structure models for correction of ionization quenching in organic scintillators exposed to ion beams. RADIAT MEAS 2019. [DOI: 10.1016/j.radmeas.2019.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
43
|
Christensen JB, Almhagen E, Stolarczyk L, Vestergaard A, Bassler N, Andersen CE. Ionization quenching in scintillators used for dosimetry of mixed particle fields. Phys Med Biol 2019; 64:095018. [PMID: 30909170 DOI: 10.1088/1361-6560/ab12f2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ionization quenching in ion beam dosimetry is often related to the fluence- or dose-averaged linear energy transfer (LET). Both quantities are however averaged over a wide LET range and a mixed field of primary and secondary ions. We propose a novel method to correct the quenched luminescence in scintillators exposed to ion beams. The method uses the energy spectrum of the primaries and accounts for the varying quenched luminescence in heavy, secondary ion tracks through amorphous track structure theory. The new method is assessed against more traditional approaches by correcting the quenched luminescence response from the BCF-12, BCF-60, and 81-0084 plastic scintillators exposed to a 100 MeV pristine proton beam in order to compare the effects of the averaged LET quantities and the secondary ions. Calculations and measurements show that primary protons constitute more than 92% of the energy deposition but account for more than 95% of the luminescence signal in the scintillators. The quenching corrected luminescence signal is in better agreement with the dose measurement when the secondary particles are taken into account. The Birks model provided the overall best quenching corrections, when the quenching corrected signal is adjusted for the number of free model parameters. The quenching parameter kB for the BCF-12 and BCF-60 scintillators is in agreement with literature values and was found to be [Formula: see text] [Formula: see text]m keV-1 for the 81-0084 scintillator. Finally, a fluence threshold for the 100 MeV proton beam was calculated to be of the order of 1010 cm-2, corresponding to 110 Gy, above which the quenching increases non-linearly and the Birks model no longer is applicable.
Collapse
|
44
|
Giordanengo S, Vignati A, Attili A, Ciocca M, Donetti M, Fausti F, Manganaro L, Milian FM, Molinelli S, Monaco V, Russo G, Sacchi R, Varasteh Anvar M, Cirio R. RIDOS: A new system for online computation of the delivered dose distributions in scanning ion beam therapy. Phys Med 2019; 60:139-149. [PMID: 31000074 DOI: 10.1016/j.ejmp.2019.03.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 02/21/2019] [Accepted: 03/27/2019] [Indexed: 02/07/2023] Open
Abstract
PURPOSE To describe a new system for scanned ion beam therapy, named RIDOS (Real-time Ion DOse planning and delivery System), which performs real time delivered dose verification integrating the information from a clinical beam monitoring system with a Graphic Processing Unit (GPU) based dose calculation in patient Computed Tomography. METHODS A benchmarked dose computation algorithm for scanned ion beams has been parallelized and adapted to run on a GPU architecture. A workstation equipped with a NVIDIA GPU has been interfaced through a National Instruments PXI-crate with the dose delivery system of the Italian National Center of Oncological Hadrontherapy (CNAO) to receive in real-time the measured beam parameters. Data from a patient monitoring system are also collected to associate the respiratory phases with each spot during the delivery of the dose. Using both measured and planned spot properties, RIDOS evaluates during the few seconds of inter-spill time the cumulative delivered and prescribed dose distributions and compares them through a fast γ-index algorithm. RESULTS The accuracy of the GPU-based algorithms was assessed against the CPU-based ones and the differences were found below 1‰. The cumulative planned and delivered doses are computed at the end of each spill in about 300 ms, while the dose comparison takes approximatively 400 ms. The whole operation provides the results before the next spill starts. CONCLUSIONS RIDOS system is able to provide a fast computation of the delivered dose in the inter-spill time of the CNAO facility and allows to monitor online the dose deposition accuracy all along the treatment.
Collapse
Affiliation(s)
- S Giordanengo
- Istituto Nazionale di Fisica Nucleare, Via Giuria 1, 10125 Torino, Italy.
| | - A Vignati
- Istituto Nazionale di Fisica Nucleare, Via Giuria 1, 10125 Torino, Italy
| | - A Attili
- Istituto Nazionale di Fisica Nucleare, Via Giuria 1, 10125 Torino, Italy
| | - M Ciocca
- Centro Nazionale di Adroterapia Oncologica, Strada Campeggi 53, 27100 Pavia, Italy
| | - M Donetti
- Centro Nazionale di Adroterapia Oncologica, Strada Campeggi 53, 27100 Pavia, Italy
| | - F Fausti
- Istituto Nazionale di Fisica Nucleare, Via Giuria 1, 10125 Torino, Italy; Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - L Manganaro
- Istituto Nazionale di Fisica Nucleare, Via Giuria 1, 10125 Torino, Italy; Università di Torino, Via Giuria 1, 10125 Torino, Italy
| | - F M Milian
- Universidade Estadual de Santa Cruz, Rod Jorge Amado, km 16, 45652900 Ilheus, Brazil; Università di Torino, Via Giuria 1, 10125 Torino, Italy
| | - S Molinelli
- Centro Nazionale di Adroterapia Oncologica, Strada Campeggi 53, 27100 Pavia, Italy
| | - V Monaco
- Istituto Nazionale di Fisica Nucleare, Via Giuria 1, 10125 Torino, Italy; Università di Torino, Via Giuria 1, 10125 Torino, Italy
| | - G Russo
- Istituto Nazionale di Fisica Nucleare, Via Giuria 1, 10125 Torino, Italy
| | - R Sacchi
- Istituto Nazionale di Fisica Nucleare, Via Giuria 1, 10125 Torino, Italy; Università di Torino, Via Giuria 1, 10125 Torino, Italy
| | - M Varasteh Anvar
- Istituto Nazionale di Fisica Nucleare, Via Giuria 1, 10125 Torino, Italy; Università di Torino, Via Giuria 1, 10125 Torino, Italy
| | - R Cirio
- Istituto Nazionale di Fisica Nucleare, Via Giuria 1, 10125 Torino, Italy; Università di Torino, Via Giuria 1, 10125 Torino, Italy
| |
Collapse
|
45
|
Kowalska A, Nasonova E, Czerski K, Kutsalo P, Pereira W, Krasavin E. Production and distribution of chromosome aberrations in human lymphocytes by particle beams with different LET. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2019; 58:99-108. [PMID: 30656467 PMCID: PMC6394665 DOI: 10.1007/s00411-018-0771-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/11/2018] [Indexed: 06/09/2023]
Abstract
We investigated induction of chromosome aberrations (CA) in human lymphocytes when exposed to 150 MeV and spread out Bragg peak (SOBP) proton beams, and 199 MeV/u carbon beam which are currently widely used for cancer treatment and simultaneously are important components of cosmic radiation. For a comparison, the boron ions of much lower energy 22 MeV/u and a 60Co γ rays were used. Dose-effect curves as well as the distributions of CA were studied using Poisson and Neyman type A statistics. Systematics of experimentally determined parameters, their dependence on applied doses and irradiation quality are presented.
Collapse
Affiliation(s)
- Agata Kowalska
- Department of Physics and Chemistry, Maritime University of Szczecin, Wały Chrobrego 1-2, 70-500, Szczecin, Poland
| | - Elena Nasonova
- Joint Institute for Nuclear Research, Joliot-Curie 6, 141980, Dubna, Russia
| | - Konrad Czerski
- Institute of Physics, University of Szczecin, ul. Wielkopolska 15, 70-451, Szczecin, Poland.
| | - Polina Kutsalo
- Joint Institute for Nuclear Research, Joliot-Curie 6, 141980, Dubna, Russia
| | - Wiktoria Pereira
- Institute of Physics, University of Szczecin, ul. Wielkopolska 15, 70-451, Szczecin, Poland
| | - Evgeny Krasavin
- Joint Institute for Nuclear Research, Joliot-Curie 6, 141980, Dubna, Russia
| |
Collapse
|
46
|
Inaniwa T, Suzuki M, Sato S, Noda A, Iwata Y, Kanematsu N, Shirai T, Noda K. Enhancement of biological effectiveness of carbon-ion beams by applying a longitudinal magnetic field. Int J Radiat Biol 2019; 95:720-724. [DOI: 10.1080/09553002.2019.1569774] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Taku Inaniwa
- Department of Accelerator and Medical Physics, National Institute of Radiological Sciences, Chiba, Japan
| | - Masao Suzuki
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Chiba, Japan
| | - Shinji Sato
- Department of Accelerator and Medical Physics, National Institute of Radiological Sciences, Chiba, Japan
| | - Akira Noda
- Department of Accelerator and Medical Physics, National Institute of Radiological Sciences, Chiba, Japan
| | - Yoshiyuki Iwata
- Department of Accelerator and Medical Physics, National Institute of Radiological Sciences, Chiba, Japan
| | - Nobuyuki Kanematsu
- Medical Physics Section, National Institute of Radiological Sciences, Chiba, Japan
| | - Toshiyuki Shirai
- Department of Accelerator and Medical Physics, National Institute of Radiological Sciences, Chiba, Japan
| | - Koji Noda
- National Institute of Radiological Sciences, Chiba, Japan
| |
Collapse
|
47
|
Petringa G, Romano F, Manti L, Pandola L, Attili A, Cammarata F, Cuttone G, Forte G, Manganaro L, Pipek J, Pisciotta P, Russo G, Cirrone GAP. Radiobiological quantities in proton-therapy: Estimation and validation using Geant4-based Monte Carlo simulations. Phys Med 2019; 58:72-80. [PMID: 30824153 DOI: 10.1016/j.ejmp.2019.01.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 12/11/2022] Open
Abstract
PURPOSE The Geant4 Monte Carlo simulation toolkit was used to reproduce radiobiological parameters measured by irradiating three different cancerous cell lines with monochromatic and clinical proton beams. METHODS The experimental set-up adopted for irradiations was fully simulated with a dedicated open-source Geant4 application. Cells survival fractions was calculated coupling the Geant4 simulations with two analytical radiobiological models: one based on the LEM (Local Effect Model) approach and the other on a semi-empirical parameterisation. Results was evaluated and compared with experimental data. RESULTS AND CONCLUSIONS The results demonstrated the Geant4 ability to reproduce radiobiological quantities for different cell lines.
Collapse
Affiliation(s)
- G Petringa
- INFN-LNS. Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania, Italy; Dipartimento di Fisica e Astronomia, Universitá degli Studi di Catania, Via S. Sofia 64, 95123 Catania, Italy
| | - F Romano
- INFN-LNS. Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania, Italy; National Physical Laboratory, Acoustic and Ionizing Radiation Division, Teddington TW11 0LW, Middlesex, UK
| | - L Manti
- Dipartimento di Fisica E. Pancini, Universitá degli Studi Federico II di Napoli, Via Cinthia, I-80126 Napoli, Italy; INFN-NA, Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, Complesso Universitario di M. S. Angelo, Via Cintia, I-80126 Napoli, Italy
| | - L Pandola
- INFN-LNS. Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania, Italy
| | - A Attili
- INFN-TO, Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Torino, Italy
| | - F Cammarata
- INFN-LNS. Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania, Italy; IBFM-CNR, Institute of Molecular Bioimaging and Physiology - National Research Council, Cefalù, PA, Italy
| | - G Cuttone
- INFN-LNS. Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania, Italy
| | - G Forte
- INFN-LNS. Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania, Italy; IBFM-CNR, Institute of Molecular Bioimaging and Physiology - National Research Council, Cefalù, PA, Italy
| | - L Manganaro
- INFN-TO, Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Torino, Italy
| | - J Pipek
- ELI-Beamline Project, Inst. Physics, ASCR, PALS Center, Prague, Czech Republic
| | - P Pisciotta
- INFN-LNS. Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania, Italy; Dipartimento di Fisica e Astronomia, Universitá degli Studi di Catania, Via S. Sofia 64, 95123 Catania, Italy
| | - G Russo
- INFN-LNS. Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania, Italy; IBFM-CNR, Institute of Molecular Bioimaging and Physiology - National Research Council, Cefalù, PA, Italy
| | - G A P Cirrone
- INFN-LNS. Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania, Italy; ELI-Beamline Project, Inst. Physics, ASCR, PALS Center, Prague, Czech Republic.
| |
Collapse
|
48
|
Burigo LN, Ramos-Méndez J, Bangert M, Schulte RW, Faddegon B. Simultaneous optimization of RBE-weighted dose and nanometric ionization distributions in treatment planning with carbon ions. Phys Med Biol 2019; 64:015015. [PMID: 30523890 DOI: 10.1088/1361-6560/aaf400] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Inverse treatment planning in intensity modulated particle therapy (IMPT) with scanned carbon-ion beams is currently based on the optimization of RBE-weighted dose to satisfy requirements of target coverage and limited toxicity to organs-at-risk (OARs) and healthy tissues. There are many feasible IMPT plans that meet these requirements, which allows the introduction of further criteria to narrow the selection of a biologically optimal treatment plan. We propose a novel treatment planning strategy based on the simultaneous optimization of RBE-weighted dose and nanometric ionization details (ID) as a new physical characteristic of the delivered plan beyond LET. In particular, we focus on the distribution of large ionization clusters (more than 3 ionizations) to enhance the biological effect across the target volume while minimizing biological effect in normal tissues. Carbon-ion treatment plans for different patient geometries and beam configurations generated with the simultaneous optimization strategy were compared against reference plans obtained with RBE-weighted dose optimization alone. Quality indicators, inhomogeneity index and planning volume histograms of RBE-weighted dose and large ionization clusters were used to evaluate the treatment plans. We show that with simultaneous optimization, ID distributions can be optimized in carbon-ion radiotherapy without compromising the RBE-weighted dose distributions. This strategy can potentially be used to account for optimization of endpoints closely related to radiation quality to achieve better tumor control and reduce risks of complications.
Collapse
Affiliation(s)
- Lucas N Burigo
- German Cancer Research Center-DKFZ, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany. National Center for Radiation Research in Oncology - NCRO, Heidelberg Institute for Radiation Oncology - HIRO Heidelberg, Germany. Author to whom any correspondence should be addressed
| | | | | | | | | |
Collapse
|
49
|
Durante M, Paganetti H, Pompos A, Kry SF, Wu X, Grosshans DR. Report of a National Cancer Institute special panel: Characterization of the physical parameters of particle beams for biological research. Med Phys 2018; 46:e37-e52. [PMID: 30506898 DOI: 10.1002/mp.13324] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 10/28/2018] [Accepted: 11/05/2018] [Indexed: 12/16/2022] Open
Abstract
PURPOSE To define the physical parameters needed to characterize a particle beam in order to allow intercomparison of different experiments performed using different ions at the same facility and using the same ion at different facilities. METHODS At the request of the National Cancer Institute (NCI), a special panel was convened to review the current status of the field and to provide suggested metrics for reporting the physical parameters of particle beams to be used for biological research. A set of physical parameters and measurements that should be performed by facilities and understood and reported by researchers supported by NCI to perform pre-clinical radiobiology and medical physics of heavy ions were generated. RESULTS Standard measures such as radiation delivery technique, beam modifiers used, nominal energy, field size, physical dose and dose rate should all be reported. However, more advanced physical measurements, including detailed characterization of beam quality by microdosimetric spectrum and fragmentation spectra, should also be established and reported. Details regarding how such data should be incorporated into Monte Carlo simulations and the proper reporting of simulation details are also discussed. CONCLUSIONS In order to allow for a clear relation of physical parameters to biological effects, facilities and researchers should establish and report detailed physical characteristics of the irradiation beams utilized including both standard and advanced measures. Biological researchers are encouraged to actively engage facility staff and physicists in the design and conduct of experiments. Modeling individual experimental setups will allow for the reporting of the uncertainties in the measurement or calculation of physical parameters which should be routinely reported.
Collapse
Affiliation(s)
- Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung and Technische Universität Darmstadt, Institute of Condensed Matter Physics, Planckstraße 1, 64291, Darmstadt, Germany
| | - Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, 02114, USA
| | - Arnold Pompos
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Stephen F Kry
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xiaodong Wu
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - David R Grosshans
- Departments of Radiation and Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| |
Collapse
|
50
|
Fossati P, Matsufuji N, Kamada T, Karger CP. Radiobiological issues in prospective carbon ion therapy trials. Med Phys 2018; 45:e1096-e1110. [PMID: 30421806 DOI: 10.1002/mp.12506] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 05/29/2017] [Accepted: 07/26/2017] [Indexed: 12/15/2022] Open
Abstract
Carbon ion radiotherapy (CIRT) is developing toward a versatile tool in radiotherapy; however, the increased relative biological effectiveness (RBE) of carbon ions in tumors and normal tissues with respect to photon irradiation has to be considered by mathematical models in treatment planning. As a consequence, dose prescription and definition of dose constraints are performed in terms of RBE weighted rather than absorbed dose. The RBE is a complex quantity, which depends on physical variables, such as dose and beam quality as well as on normal tissue- or tumor-specific factors. At present, three RBE models are employed in CIRT: (a) the mixed-beam model, (b) the Microdosimetric Kinetic Model (MKM), and (c) the local effect model. While the LEM is used in Europe, the other two models are employed in Japan, and unfortunately, the concepts of how the nominal RBE-weighted dose is determined and prescribed differ significantly between the European and Japanese centers complicating the comparison, transfer, and reproduction of clinical results. This has severe impact on the way treatments should be prescribed, recorded, and reported. This contribution reviews the concept of the clinical application of the different RBE models and the ongoing clinical CIRT trials in Japan and Europe. Limitations of the RBE models and the resulting radiobiological issues in clinical CIRT trials are discussed in the context of current clinical evidence and future challenges.
Collapse
Affiliation(s)
- Piero Fossati
- Fondazione CNAO (Centro Nazionale di Adroterapia Oncologica), Pavia, Italy.,European Institute of Oncology, Milano, Italy
| | | | - Tadashi Kamada
- National Institute of Radiological Sciences, Chiba, Japan
| | - Christian P Karger
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| |
Collapse
|