1
|
Son AR, Shin SY, Song YS, Hong B, Kim BG. Effects of dietary deoxynivalenol on growth performance and organ accumulation of growing pigs. Anim Biosci 2024; 37:1614-1621. [PMID: 39164088 PMCID: PMC11366530 DOI: 10.5713/ab.24.0177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/17/2024] [Accepted: 05/16/2024] [Indexed: 08/22/2024] Open
Abstract
OBJECTIVE The present study aimed to study effects of a chronic feeding of deoxynivalenol (DON) on growth performance, organ weight, organ DON accumulation, and blood parameters in pigs. METHODS Forty-eight castrated male pigs with a body weight of 10.4 kg (standard deviation = 1.7) were assigned to one of 2 diet groups in a randomized complete block design with 6 blocks of pens per diet and 4 pigs per pen. A corn-soybean meal-based control diet was prepared to contain a low DON concentration of 0.28 mg/kg. Corn distillers dried grains with solubles naturally contaminated with DON were used at 30.0% to prepare a contaminated diet with a high DON concentration of 1.8 mg/kg. During the 56-day experimental period, body weight and feed intake were recorded every 14 days. A pig from each pen was euthanized for the collection of organs and muscle every 14 days. RESULTS Gain:feed in pigs fed the contaminated diet during days 14 to 28 and days 28 to 42 were less (p<0.05) compared with the control group. As increasing feeding period, the DON concentrations in fresh liver increased during days 14 to 28 and then decreased during the subsequent periods in the DON group, whereas the DON concentrations in fresh liver were constant during the experimental period in the control group (quadratic interaction p = 0.049). The DON concentration in the kidneys in the DON group was greater (p = 0.002) than that in the control group regardless of feeding period. On day 56, the granulocyte count in the DON group was less (p = 0.035) than the control group. CONCLUSION A chronic feeding of DON for 14 to 42 days decreased gain:feed in pigs, and dietary DON naturally contaminated in corn distillers dried grains with solubles accumulated in the liver during days 14 to 28.
Collapse
Affiliation(s)
- Ah Reum Son
- Department of Animal Science, Konkuk University, Seoul 05029,
Korea
| | - Seung Youp Shin
- Department of Animal Science, Konkuk University, Seoul 05029,
Korea
| | - Yoon Soo Song
- Department of Animal Science, Konkuk University, Seoul 05029,
Korea
| | - Bokyung Hong
- Department of Animal Science, Konkuk University, Seoul 05029,
Korea
| | - Beob Gyun Kim
- Department of Animal Science, Konkuk University, Seoul 05029,
Korea
| |
Collapse
|
2
|
Hou B, Wang D, Yan F, Cheng X, Xu Y, Xi X, Ge W, Sun S, Su P, Zhao L, Lyu Z, Hao Y, Wang H, Kong L. Fhb7-GST catalyzed glutathionylation effectively detoxifies the trichothecene family. Food Chem 2024; 439:138057. [PMID: 38100874 DOI: 10.1016/j.foodchem.2023.138057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/05/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023]
Abstract
Trichothecene (TCN) contamination in food and feed is a serious challenge due to the negative health and economic impacts. Here, we confirmed that the glutathione S-transferase (GST) Fhb7-GST could broadly catalyze type A, type B and type D TCNs into glutathione epoxide adducts (TCN-13-GSHs). To evaluate the toxicity of TCN-13-GSH adducts, we performed cell proliferation assays in vitro, which demonstrated decreased cytotoxicity of the adducts. Moreover, in vivo assays (repeated-dose treatment in mice) confirmed that TCN-13-GSH adducts were dramatically less toxic than the corresponding TCNs. To establish whether TCN-13-GSH was metabolized back to free toxin during digestion, single-dose metabolic tests were performed in rats; DON-13-GSH was not hydrolyzed in vivo, but rather was quickly metabolized to another low-toxicity compound, DON-13-N-acetylcysteine. These results demonstrate the promise of Fhb7-GST as a candidate of detoxification enzyme potentially applied in TCN-contaminated agricultural samples, minimizing the detrimental effects of the mycotoxin.
Collapse
Affiliation(s)
- Bingqian Hou
- State Key Laboratory of Wheat Breeding, College of Agronomy, Shandong Agricultural University, Tai'an 271018, PR China
| | - Dawei Wang
- State Key Laboratory of Wheat Breeding, College of Agronomy, Shandong Agricultural University, Tai'an 271018, PR China
| | - Fangfang Yan
- State Key Laboratory of Wheat Breeding, College of Agronomy, Shandong Agricultural University, Tai'an 271018, PR China
| | - Xinxin Cheng
- State Key Laboratory of Wheat Breeding, College of Agronomy, Shandong Agricultural University, Tai'an 271018, PR China
| | - Yongchang Xu
- State Key Laboratory of Wheat Breeding, College of Agronomy, Shandong Agricultural University, Tai'an 271018, PR China
| | - Xuepeng Xi
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, PR China
| | - Wenyang Ge
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei 230036, PR China
| | - Silong Sun
- State Key Laboratory of Wheat Breeding, College of Agronomy, Shandong Agricultural University, Tai'an 271018, PR China
| | - Peisen Su
- College of Agronomy, Liaocheng University, Liaocheng 252059, PR China
| | - Lanfei Zhao
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA
| | - Zhongfan Lyu
- Shool of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, PR China
| | - Yongchao Hao
- State Key Laboratory of Wheat Breeding, College of Agronomy, Shandong Agricultural University, Tai'an 271018, PR China
| | - Hongwei Wang
- State Key Laboratory of Wheat Breeding, College of Agronomy, Shandong Agricultural University, Tai'an 271018, PR China.
| | - Lingrang Kong
- State Key Laboratory of Wheat Breeding, College of Agronomy, Shandong Agricultural University, Tai'an 271018, PR China
| |
Collapse
|
3
|
Patel AR, Frikke-Schmidt H, Sabatini PV, Rupp AC, Sandoval DA, Myers MG, Seeley RJ. Neither GLP-1 receptors nor GFRAL neurons are required for aversive or anorectic response to DON (vomitoxin). Am J Physiol Regul Integr Comp Physiol 2023; 324:R635-R644. [PMID: 36912475 PMCID: PMC10110708 DOI: 10.1152/ajpregu.00189.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/14/2023]
Abstract
Deoxynivalenol (DON), a type B trichothecene mycotoxin contaminating grains, promotes nausea, emesis and anorexia. With DON exposure, circulating levels of intestinally derived satiation hormones, including glucagon-like peptide 1 (GLP-1) are elevated. To directly test whether GLP-1 signaling mediates the effects of DON, we examined the response of GLP-1 or GLP-1R-deficient mice to DON injection. We found comparable anorectic and conditioned taste avoidance learning responses in GLP-1/GLP-1R deficient mice compared to control littermates, suggesting that GLP-1 is not necessary for the effects of DON on food intake and visceral illness. We then used our previously published data from translating ribosome affinity purification with RNA sequencing (TRAP-seq) analysis of area postrema neurons that express the receptor for the circulating cytokine growth differentiation factor (GDF15), growth differentiation factor a-like (GFRAL). Interestingly, this analysis showed that a cell surface receptor for DON, calcium sensing receptor (CaSR), is heavily enriched in GFRAL neurons. Given that GDF15 potently reduces food intake and can cause visceral illness by signaling through GFRAL neurons, we hypothesized that DON may also signal by activating CaSR on GFRAL neurons. Indeed, circulating GDF15 levels are elevated after DON administration but both GFRAL knockout and GFRAL neuron-ablated mice exhibited similar anorectic and conditioned taste avoidance responses compared to WT littermates. Thus, GLP-1 signaling and GFRAL signaling and neurons are not required for DON-induced visceral illness or anorexia.
Collapse
Affiliation(s)
- Anita R Patel
- Neuroscience Graduate Program, University of Michigan-Ann Arbor, Ann Arbor, MI, United States
- Department of Surgery, University of Michigan-Ann Arbor, Ann Arbor, MI, United States
| | | | - Paul V Sabatini
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - Alan C Rupp
- Department of Internal Medicine, University of Michigan-Ann Arbor, Ann Arbor, MI, United States
| | - Darleen A Sandoval
- Department of Pediatrics, Section of Nutrition and Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Martin G Myers
- Department of Internal Medicine, University of Michigan-Ann Arbor, Ann Arbor, MI, United States
| | - Randy J Seeley
- Department of Surgery, University of Michigan-Ann Arbor, Ann Arbor, MI, United States
| |
Collapse
|
4
|
Mycotoxins in Cattle Feed and Feed Ingredients in Brazil: A Five-Year Survey. Toxins (Basel) 2022; 14:toxins14080552. [PMID: 36006214 PMCID: PMC9416694 DOI: 10.3390/toxins14080552] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/30/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Mycotoxins are toxic secondary metabolites produced by a variety of fungi, which when ingested can cause several deleterious effects to the health of humans and animals. In this work, the detection and quantification of six major mycotoxins (aflatoxins-AFLA, deoxynivalenol-DON, fumonisins-FUMO, ochratoxin A-OTA, T-2 toxin-T-2 and zearalenone-ZON) in 1749 samples of feed and feed ingredients for cattle, collected in Brazil between 2017 and 2021, was carried out using enzyme-linked immunosorbent assay (ELISA). In total, 97% of samples were contaminated with at least one mycotoxin, yet, very few samples exceeded the lowest European Union guidance values for cattle, and the estimated daily intake also showed a low risk for the animals. However, co-occurrences were widely observed, as 87% of samples contained two or more mycotoxins at the same time, and the presence of more than one mycotoxin at the same time in feed can lead to interactions. In conclusion, the contamination of feed and feed ingredients for cattle with mycotoxins in Brazil is very common. Hence, the monitoring of these mycotoxins is of significant importance for food safety.
Collapse
|
5
|
Hooft JM, Bureau DP. Deoxynivalenol: Mechanisms of action and its effects on various terrestrial and aquatic species. Food Chem Toxicol 2021; 157:112616. [PMID: 34662691 DOI: 10.1016/j.fct.2021.112616] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/02/2021] [Accepted: 10/12/2021] [Indexed: 11/26/2022]
Abstract
Deoxynivalenol, a type B trichothecene mycotoxin produced by Fusarium species of fungi, is a ubiquitious contaminant of cereal grains worldwide. Chronic, low dose consumption of feeds contaminated with DON is associated with a wide range of symptoms in terrestrial and aquatic species including decreased feed intake and feed refusal, reduced weight gain, and altered nutritional efficiency. Acute, high dose exposure to DON may be associated with more severe symptoms such as vomiting, diarrhea, intestinal inflammation and gastrointestinal hemorrhage. The toxicity of DON is partly related to its ability to disrupt eukaryotic protein synthesis via binding to the peptidyl transferase site of the ribosome. Moreover, DON exerts its effects at the cellular level by activating mitogen activated protein kinases (MAPK) through a process known as the ribotoxic stress response (RSR). The outcome of DON-associated MAPK activation is dose and duration dependent; acute low dose exposure results in immunostimulation characterized by the upregulation of cytokines, chemokines and other proinflammatory-related proteins, whereas longer term exposure to higher doses generally results in apoptosis, cell cycle arrest, and immunosuppression. The order of decreasing sensitivity to DON is considered to be: swine > rats > mice > poultry ≈ ruminants. However, studies conducted within the past 10 years have demonstrated that some species of fish, such as rainbow trout, are highly sensitive to DON. The aims of this review are to explore the effects of DON on terrestrial and aquatic species as well as its mechanisms of action, metabolism, and interaction with other Fusarium mycotoxins. Notably, a considerable emphasis is placed on reviewing the effects of DON on different species of fish.
Collapse
Affiliation(s)
- Jamie M Hooft
- Wittaya Aqua International, 1 University Ave, Floor 5, Toronto, ON, M5J 2P1, Canada.
| | - Dominique P Bureau
- Wittaya Aqua International, 1 University Ave, Floor 5, Toronto, ON, M5J 2P1, Canada; Department of Animal Biosciences, University of Guelph, 50 Stone Road E, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
6
|
González-Alvarez ME, McGuire BC, Keating AF. Obesity alters the ovarian proteomic response to zearalenone exposure†. Biol Reprod 2021; 105:278-289. [PMID: 33855340 PMCID: PMC8256104 DOI: 10.1093/biolre/ioab069] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/10/2021] [Accepted: 04/07/2021] [Indexed: 12/21/2022] Open
Abstract
Zearalenone (ZEN), a nonsteroidal estrogenic mycotoxin, is detrimental to female reproduction. Altered chemical biotransformation, depleted primordial follicles and a blunted genotoxicant response have been discovered in obese female ovaries, thus, this study investigated the hypothesis that obesity would enhance ovarian sensitivity to ZEN exposure. Seven-week-old female wild-type nonagouti KK.Cg-a/a mice (lean) and agouti lethal yellow KK.Cg-Ay/J mice (obese) received food and water ad libitum, and either saline or ZEN (40 μg/kg) per os for 15 days. Body and organ weights, and estrous cyclicity were recorded, and ovaries collected posteuthanasia for protein analysis. Body and liver weights were increased (P < 0.05) in the obese mice, but obesity did not affect (P > 0.05) heart, kidney, spleen, uterus, or ovary weight and there was no impact (P > 0.05) of ZEN exposure on body or organ weight in lean or obese mice. Obese mice had shorter proestrus (P < 0.05) and a tendency (P = 0.055) for longer metestrus/diestrus. ZEN exposure in obese mice increased estrus but shortened metestrus/diestrus length. Neither obesity nor ZEN exposure impacted (P > 0.05) circulating progesterone, or ovarian abundance of EPHX1, GSTP1, CYP2E1, ATM, BRCA1, DNMT1, HDAC1, H4K16ac, or H3K9me3. Lean mice exposed to ZEN had a minor increase in γH2AX abundance (P < 0.05). In lean and obese mice, LC-MS/MS identified alterations to proteins involved in chemical metabolism, DNA repair and reproduction. These data identify ZEN-induced adverse ovarian modes of action and suggest that obesity is additive to ZEN-induced ovotoxicity.
Collapse
Affiliation(s)
- M Estefanía González-Alvarez
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames IA, USA
| | - Bailey C McGuire
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames IA, USA
| | - Aileen F Keating
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames IA, USA
| |
Collapse
|
7
|
Gu P, Li Q, Zhang W, Gao Y, Sun K, Zhou L, Zheng Z. Biological toxicity of fresh and rotten algae on freshwater fish: LC 50, organ damage and antioxidant response. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124620. [PMID: 33338807 DOI: 10.1016/j.jhazmat.2020.124620] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
In recent decades, harmful algal blooms (HABs) induced by eutrophication have caused organisms in freshwater ecosystems to become surrounded by toxic cells and dissolved toxins. In this study, the toxic effects of fresh algae solution (FAS) and rotten algae solution (RAS) were investigated. The results showed that the composition of RAS was predominantly organic acids, ketones, polypeptides, esters, phenols, amino acids and intermediate metabolic products. The safety concentrations (SCs) of FAS to Carassius auratus, Ctenopharyngodon idellus and Hypophthalmichthys molitrix were 1.92 × 1010 cells/L, 1.58 × 1011 cells/L and 1.30 × 1011 cells/L, respectively. The SCs of the RAS were significantly lower than those of the FAS (p < 0.05), with the values of 1.25 × 109 cells/L, 8.8 × 109 cells/L and 9.7 × 109 cells/L, for each species, respectively. The toxic algae solutions caused congestion inside the gills, intestinal lesions and high infection rates in the tested fish. FAS and RAS exposure also activated the antioxidant defense system and changed the intestinal microbial structure, resulting in the damage to the microbial balance in the body, and eventually the death of the fish. By studying the acute toxicity to fish, the harm of HABs to aquatic organisms can be predicted.
Collapse
Affiliation(s)
- Peng Gu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Qi Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Weizhen Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; School of Ecological Environment, Chengdu University of Technology, Chengdu 610059, China.
| | - Yang Gao
- Jiangsu Dongfang Ecological Dredging Engineering Co., Ltd, Jiangsu 214000, China
| | - Ke Sun
- Jiangsu Dongfang Ecological Dredging Engineering Co., Ltd, Jiangsu 214000, China
| | - Liang Zhou
- Nanjing Perennial root flowers Botanical garden, 210017, China
| | - Zheng Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| |
Collapse
|
8
|
Zearalenone and the Immune Response. Toxins (Basel) 2021; 13:toxins13040248. [PMID: 33807171 PMCID: PMC8066068 DOI: 10.3390/toxins13040248] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/20/2021] [Accepted: 03/27/2021] [Indexed: 12/12/2022] Open
Abstract
Zearalenone (ZEA) is an estrogenic fusariotoxin, being classified as a phytoestrogen, or as a mycoestrogen. ZEA and its metabolites are able to bind to estrogen receptors, 17β-estradiol specific receptors, leading to reproductive disorders which include low fertility, abnormal fetal development, reduced litter size and modification at the level of reproductive hormones especially in female pigs. ZEA has also significant effects on immune response with immunostimulatory or immunosuppressive results. This review presents the effects of ZEA and its derivatives on all levels of the immune response such as innate immunity with its principal component inflammatory response as well as the acquired immunity with two components, humoral and cellular immune response. The mechanisms involved by ZEA in triggering its effects are addressed. The review cited more than 150 publications and discuss the results obtained from in vitro and in vivo experiments exploring the immunotoxicity produced by ZEA on different type of immune cells (phagocytes related to innate immunity and lymphocytes related to acquired immunity) as well as on immune organs. The review indicates that despite the increasing number of studies analyzing the mechanisms used by ZEA to modulate the immune response the available data are unsubstantial and needs further works.
Collapse
|
9
|
Kócsó DJ, Ali O, Kovács M, Mézes M, Balogh K, Kachlek ML, Bóta B, Zeebone YY, Szabó A. A preliminary study on changes in heat shock protein 70 levels induced by Fusarium mycotoxins in rats: in vivo study. Mycotoxin Res 2021; 37:141-148. [PMID: 33665736 PMCID: PMC8163673 DOI: 10.1007/s12550-021-00425-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 02/17/2021] [Accepted: 02/21/2021] [Indexed: 01/08/2023]
Abstract
The heat shock protein (Hsp70) level was assessed after 14 days of oral gavage-exposure to fumonisin B1 (FB1: 150 µg/animal/day), deoxynivalenol (DON: 30 µg/animal/day) and zearalenone (ZEN: 150 µg/animal/day), alone or in combinations (in additive manner: FD = FB1 + DON, FZ = FB1 + ZEN, DZ = DON + ZEN and FDZ = FB1 + DON + ZEN) in the liver, kidneys and lung of 24 adult male Wistar rats (n = 3/group). The liver was the most responsive tissue, as compared with kidney and lung. Except of DZ-treatment, mycotoxins elevated the Hsp70 levels in livers. The highest Hsp70-levels (≈ twofold) were in the DON, FD, FZ and FDZ treatments (additive effects). In the kidney, alterations (↑ ≈ twofold) were detected in ZEN, FD, FZ and DZ treatments. The least responsive organ was the lung (↑ only in FDZ, antagonistic effect). DON and ZEA exposures have altered the reduced glutathione concentration (↓) and glutathione peroxidase activity (↓) in the blood serum. The serum malondialdehyde level increased only after exposure to FD (synergistic effect), as compared with the DZ group (antagonistic effect). When the blood clinical chemistry was assessed, significant alterations were in alanine aminotransferase (80% increase in FDZ, antagonistic effect) and total protein (↓ ZEN). Results varied according to the organ, toxin type and interactions. Furthermore, oxidative stress was not the only key player behind the Hsp70 increase, in which another mechanism is suggested.
Collapse
Affiliation(s)
- Dániel J Kócsó
- Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, MTA-KE-SZIE Mycotoxins in the Food Chain Research Group, Kaposvár Campus, Kaposvár, Hungary
| | - Omeralfaroug Ali
- Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Kaposvár, Hungary.
| | - Melinda Kovács
- Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, MTA-KE-SZIE Mycotoxins in the Food Chain Research Group, Kaposvár Campus, Kaposvár, Hungary.,Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Kaposvár, Hungary
| | - Miklós Mézes
- Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, MTA-KE-SZIE Mycotoxins in the Food Chain Research Group, Kaposvár Campus, Kaposvár, Hungary.,Institute of Physiology and Nutrition, Department of Feed Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő Campus, Gödöllő, Hungary
| | - Krisztián Balogh
- Institute of Physiology and Nutrition, Department of Feed Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő Campus, Gödöllő, Hungary
| | - Mariam L Kachlek
- Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, MTA-KE-SZIE Mycotoxins in the Food Chain Research Group, Kaposvár Campus, Kaposvár, Hungary
| | - Brigitta Bóta
- Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, MTA-KE-SZIE Mycotoxins in the Food Chain Research Group, Kaposvár Campus, Kaposvár, Hungary
| | - Yarsmin Y Zeebone
- Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Kaposvár, Hungary
| | - András Szabó
- Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, MTA-KE-SZIE Mycotoxins in the Food Chain Research Group, Kaposvár Campus, Kaposvár, Hungary.,Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Kaposvár, Hungary
| |
Collapse
|
10
|
Claeys L, Romano C, De Ruyck K, Wilson H, Fervers B, Korenjak M, Zavadil J, Gunter MJ, De Saeger S, De Boevre M, Huybrechts I. Mycotoxin exposure and human cancer risk: A systematic review of epidemiological studies. Compr Rev Food Sci Food Saf 2020; 19:1449-1464. [PMID: 33337079 DOI: 10.1111/1541-4337.12567] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 03/13/2020] [Accepted: 04/03/2020] [Indexed: 01/01/2023]
Abstract
In recent years, there has been an increasing interest in investigating the carcinogenicity of mycotoxins in humans. This systematic review aims to provide an overview of data linking exposure to different mycotoxins with human cancer risk. Publications (2019 and earlier) of case-control or longitudinal cohort studies were identified in PubMed and EMBASE. These articles were then screened by independent reviewers and their quality was assessed according to the Newcastle-Ottawa scale. Animal, cross-sectional, and molecular studies satisfied criteria for exclusion. In total, 14 articles were included: 13 case-control studies and 1 longitudinal cohort study. Included articles focused on associations of mycotoxin exposure with primary liver, breast, and cervical cancer. Overall, a positive association between the consumption of aflatoxin-contaminated foods and primary liver cancer risk was verified. Two case-control studies in Africa investigated the relationship between zearalenone and its metabolites and breast cancer risk, though conflicting results were reported. Two case-control studies investigated the association between hepatocellular carcinoma and fumonisin B1 exposure, but no significant associations were observed. This systematic review incorporates several clear observations of dose-dependent associations between aflatoxins and liver cancer risk, in keeping with IARC Monograph conclusions. Only few human epidemiological studies investigated the associations between mycotoxin exposures and cancer risk. To close this gap, more in-depth research is needed to unravel evidence for other common mycotoxins, such as deoxynivalenol and ochratoxin A. The link between mycotoxin exposures and cancer risk has mainly been established in experimental studies, and needs to be confirmed in human epidemiological studies to support the evidence-based public health strategies.
Collapse
Affiliation(s)
- Liesel Claeys
- Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
- Nutritional Epidemiology Group, International Agency for Research on Cancer, Lyon, France
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, Lyon, France
- CRIG, Cancer Research Institute Ghent, Ghent, Belgium
| | - Chiara Romano
- Nutritional Epidemiology Group, International Agency for Research on Cancer, Lyon, France
| | - Karl De Ruyck
- Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
- CRIG, Cancer Research Institute Ghent, Ghent, Belgium
| | - Hayley Wilson
- Nutritional Epidemiology Group, International Agency for Research on Cancer, Lyon, France
| | - Beatrice Fervers
- Department of Cancer and Environment, Centre Léon Bérnard, UA08 INSERM Radiation, Defense, Health and Environment, Lyon, France
| | - Michael Korenjak
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, Lyon, France
| | - Jiri Zavadil
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, Lyon, France
| | - Marc J Gunter
- Nutritional Epidemiology Group, International Agency for Research on Cancer, Lyon, France
| | - Sarah De Saeger
- Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
- CRIG, Cancer Research Institute Ghent, Ghent, Belgium
| | - Marthe De Boevre
- Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
- CRIG, Cancer Research Institute Ghent, Ghent, Belgium
| | - Inge Huybrechts
- Nutritional Epidemiology Group, International Agency for Research on Cancer, Lyon, France
- CRIG, Cancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|
11
|
Xie MY, Chen T, Xi QY, Hou LJ, Luo JY, Zeng B, Li M, Sun JJ, Zhang YL. Porcine milk exosome miRNAs protect intestinal epithelial cells against deoxynivalenol-induced damage. Biochem Pharmacol 2020; 175:113898. [PMID: 32145262 DOI: 10.1016/j.bcp.2020.113898] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/02/2020] [Indexed: 12/18/2022]
Abstract
Porcine milk exosomes play an important role in mother-infant communication. Deoxynivalenol (DON) is a toxin which causes serious damage to the animal intestinal mucosa. Our previous study showed porcine milk exosomes facilitate mice intestine development, but the effects of these exosomes to antagonize DON toxicity is unclear. Our in vivo results showed that milk exosomes attenuated DON-induced damage on the mouse body weight and intestinal epithelium growth. In addition, these exosomes could reverse DON-induced inhibition on cell proliferation and tight junction proteins (TJs) formation and reduce DON-induced cell apoptosis. In vitro, exosomes up-regulated the expression of miR-181a, miR-30c, miR-365-5p and miR-769-3p in IPEC-J2 cells and then down-regulated the expression of their targeting genes in p53 pathway, ultimately attenuating DON-induced damage by promoting cell proliferation and TJs and by inhibiting cell apoptosis. In conclusion, porcine milk exosomes could protect the intestine against DON damage, and these protections may take place through the miRNAs in exosomes. These results indicated that the addition of miRNA-enriched exosomes to feed or food could be used as a novel preventative measure for necrotizing enterocolitis.
Collapse
Affiliation(s)
- Mei-Ying Xie
- College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China; Collaborative Innovation Center of Plant Pest Management and Bioenvironmental Health Application Technology, Guangdong Eco-Engineering Polytechnic, 297 Guangshan First Road, Tianhe District, Guangzhou, Guangdong 510520, China; Guangdong Province Key Laboratory of Animal Nutritional Regulation, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Ting Chen
- College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China; Guangdong Province Key Laboratory of Animal Nutritional Regulation, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China; Guangdong Engineering&Research Center for Woody Fodder Plants, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Qian-Yun Xi
- College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China; Guangdong Province Key Laboratory of Animal Nutritional Regulation, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China; Guangdong Engineering&Research Center for Woody Fodder Plants, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Lian-Jie Hou
- College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Jun-Yi Luo
- College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China; Guangdong Province Key Laboratory of Animal Nutritional Regulation, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Bin Zeng
- College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China; Guangdong Province Key Laboratory of Animal Nutritional Regulation, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Meng Li
- College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China; Guangdong Province Key Laboratory of Animal Nutritional Regulation, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Jia-Jie Sun
- College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China; Guangdong Province Key Laboratory of Animal Nutritional Regulation, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China; Guangdong Engineering&Research Center for Woody Fodder Plants, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China.
| | - Yong-Liang Zhang
- College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China; Guangdong Province Key Laboratory of Animal Nutritional Regulation, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China; Guangdong Engineering&Research Center for Woody Fodder Plants, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
12
|
Mickelson B, Herfel TM, Booth J, Wilson RP. Nutrition. THE LABORATORY RAT 2020:243-347. [DOI: 10.1016/b978-0-12-814338-4.00009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
13
|
Yu M, Peng Z, Liao Y, Wang L, Li D, Qin C, Hu J, Wang Z, Cai M, Cai Q, Zhou F, Shi S, Yang W. Deoxynivalenol-induced oxidative stress and Nrf2 translocation in maternal liver on gestation day 12.5 d and 18.5 d. Toxicon 2019; 161:17-22. [DOI: 10.1016/j.toxicon.2019.02.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/24/2019] [Accepted: 02/26/2019] [Indexed: 02/09/2023]
|
14
|
High contamination levels of deoxynivalenol-induced erythrocyte damage in different models. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Review article: Role of satiety hormones in anorexia induction by Trichothecene mycotoxins. Food Chem Toxicol 2018; 121:701-714. [PMID: 30243968 DOI: 10.1016/j.fct.2018.09.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/12/2018] [Accepted: 09/15/2018] [Indexed: 12/27/2022]
Abstract
The trichothecenes, produced by Fusarium, contaminate animal feed and human food in all stages of production and lead to a large spectrum of adverse effects for animal and human health. An hallmark of trichothecenes toxicity is the onset of emesis followed by anorexia and food intake reduction in different animal species (mink, mice and pig). The modulation of emesis and anorexia can result from a direct action of trichothecenes in the brain or from an indirect action in the gastrointestinal tract. The direct action of trichothecenes involved specific brain areas such as nucleate tractus solitarius in the brainstem and the arcuate nuclei in the hypothalamus. Activation of these areas in the brain leads to the activation of specific neuronal populations containing anorexigenic factors (POMC and CART). The indirect action of trichothecenes in the gastrointestinal tract involved, by enteroendocrine cells, the secretion of several gut hormones such as cholecystokinin (CCK) and peptide YY (PYY) but also glucagon-like peptide 1 (GLP-1), gastric inhibitory peptide (GIP) and 5-hydroxytryptamine (5-HT), which transmitted signals to the brain via the gut-brain axis. This review summarizes current knowledge on the effects of trichothecenes, especially deoxynivalenol, on emesis and anorexia and discusses the mechanisms underlying trichothecenes-induced food reduction.
Collapse
|
16
|
Chang S, Su Y, Sun Y, Meng X, Shi B, Shan A. Response of the nuclear receptors PXR and CAR and their target gene mRNA expression in female piglets exposed to zearalenone. Toxicon 2018; 151:111-118. [PMID: 30017994 DOI: 10.1016/j.toxicon.2018.06.081] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 06/21/2018] [Accepted: 06/25/2018] [Indexed: 12/21/2022]
Abstract
A study was conducted to determine the effects of zearalenone (ZEN) on the mRNA expression of pregnane X receptor (PXR), constitutive and rostane receptor (CAR), and phase I and II enzymes as well as the toxicity in the liver of female weanling piglets. Thirty-two female weanling piglets (Duroc × Landrace × Large white, 12.27 ± 0.30 kg)were divided into four groups (n = 8 piglets/group) that were supplemented with 0 (control), 0.5, 1 or 2 mg/kg ZEN. The trial period lasted for 28 d. The results showed that the ZEN supplementation in the diets (0.5-2 mg/kg) had no effect on growth performance but dose-dependently increased serum aspartate aminotransferase, alanineaminotransferase, alkaline phosphatase, and γ-glutamyltransferase activities (P < 0.05). The ZEN residue in the liver (P < 0.01) was also linearly and dose-dependently increased. Furthermore, the mRNA expression of PXR, CAR, phase I enzymes (i.e., cyp2e1, cyp3a5, cyp2a6, cyp1a1, and cyp1a2), and phase II enzymes (i.e., gsta1, gsta2, ugt1a3) significantly increased linearly in a dose-dependent manner (P < 0.05). However, the spleen relative weight and the glutathione peroxidase activity in the liver (P < 0.05) linearly decreased as the dietary ZEN concentration increased; the mRNA expression of the nuclear receptors PXR and CAR is responsive to ZEN in female piglets, and ZEN increases the mRNA expression of their target genes. This finding shows that the nuclear receptor signaling system plays an important role in the defense against ZEN.
Collapse
Affiliation(s)
- Siying Chang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Yang Su
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Yuchen Sun
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Xiangyu Meng
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Baoming Shi
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
17
|
Wu W, Sheng K, Xu X, Zhang H, Zhou G. Potential roles for glucagon-like peptide-1 7-36 amide and cholecystokinin in anorectic response to the trichothecene mycotoxin T-2 toxin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 153:181-187. [PMID: 29433086 DOI: 10.1016/j.ecoenv.2018.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/28/2018] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
Anorexia is a hallmark of animal and human exposed to T-2 toxin, a most poisonous trichothecene mycotoxins contaminating various cereal grains including wheat, corn and barley. Although this adverse effect has been well characterized in several animal species, the underlying mechanisms are unclear. The goal for this study was to elucidate the roles of two gut satiety hormones, glucagon-like peptide-17-36 amide (GLP-1) and cholecystokinin (CCK) in T-2 toxin-evoked anorectic response using a mouse anorexia bioassay. Elevations of plasma GLP-1 and CCK significantly corresponded to anorexia induction by T-2 toxin. Direct administration of exogenous GLP-1 and CCK markedly evoked anorectic responses similar to T-2 toxin. The GLP-1 receptor (GLP-1R) antagonist Exendin9-39 dose-dependently cause attenuation of both GLP-1- and T-2 toxin-induced anorectic responses. Pretreatment with the CCK1 receptor (CCK1R) antagonist SR 27897 and CCK2 receptor (CCK2R) antagonist L-365,260 attenuated anorexia induction by both CCK- and T-2 toxin in a dose dependent manner. Taken together, our findings suggest that both GLP-1 and CCK play contributory roles in T-2 toxin-induced anorexia.
Collapse
Affiliation(s)
- Wenda Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; Key Laboratory of Meat Processing, Key Lab of Meat Processing and Quality Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, National Center of Meat Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Kun Sheng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xinglian Xu
- Key Laboratory of Meat Processing, Key Lab of Meat Processing and Quality Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, National Center of Meat Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Haibin Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; Key Laboratory of Meat Processing, Key Lab of Meat Processing and Quality Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, National Center of Meat Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Guanghong Zhou
- Key Laboratory of Meat Processing, Key Lab of Meat Processing and Quality Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, National Center of Meat Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
18
|
Ji J, Zhu P, Blaženović I, Cui F, Gholami M, Sun J, Habimana J, Zhang Y, Sun X. Explaining combinatorial effects of mycotoxins Deoxynivalenol and Zearalenone in mice with urinary metabolomic profiling. Sci Rep 2018; 8:3762. [PMID: 29491435 PMCID: PMC5830882 DOI: 10.1038/s41598-018-21555-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 02/06/2018] [Indexed: 12/31/2022] Open
Abstract
Urine metabolic profiling of mice was conducted utilizing gas chromatography-mass spectrometry (GC-MS) to investigate the combinatory effect of mycotoxins deoxynivalenol (DON) and zearalenone (ZEN) on the metabolism of the mice. Experiments were conducted by means of five-week-old mice which were individually exposed to 2 mg/kg DON, 20 mg/kg ZEN and the mixture of DON and ZEN (2 mg/kg and 20 mg/kg, respectively). The intragastric administration was applied for three weeks and urine samples were collected for metabolic analysis. Univariate and multivariate analysis were applied to data matrix processing along with respective pathway analysis by MetaMapp and CytoScape. The results showed that the combined DON and ZEN administration resulted in lower significant changes, compared to the individual mycotoxin treated groups verified by heatmap. Metabolic pathways network mapping indicated that the combined mycotoxins treated groups showed a little effect on the metabolites in most pathways, especially in glucose metabolism and its downstream amino acid metabolism. In glucose metabolism, the content of galactose, mannitol, galactonic acid, myo-inositol, tagatose was drastically down-regulated. Furthermore, the organic acids, pyruvate, and amino acids metabolism displayed the same phenomenon. In conclusion, the combined DON/ZEN administration might lead to an "antagonistic effect" in mice metabolism.
Collapse
Affiliation(s)
- Jian Ji
- School of Food Science, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Joint International Research Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Pei Zhu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Shanghai, 200436, China
| | | | - Fangchao Cui
- School of Food Science, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Joint International Research Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Morteza Gholami
- Department of Chemistry, Faculty of Sciences, Golestan University, Gorgan, Iran
| | - Jiadi Sun
- School of Food Science, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Joint International Research Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jean Habimana
- School of Food Science, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Joint International Research Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yinzhi Zhang
- School of Food Science, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Joint International Research Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xiulan Sun
- School of Food Science, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Joint International Research Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
19
|
Liao Y, Peng Z, Chen L, Nüssler AK, Liu L, Yang W. Deoxynivalenol, gut microbiota and immunotoxicity: A potential approach? Food Chem Toxicol 2018; 112:342-354. [DOI: 10.1016/j.fct.2018.01.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 11/13/2017] [Accepted: 01/09/2018] [Indexed: 12/18/2022]
|
20
|
Gut satiety hormones cholecystokinin and glucagon-like Peptide-17-36 amide mediate anorexia induction by trichothecenes T-2 toxin, HT-2 toxin, diacetoxyscirpenol and neosolaniol. Toxicol Appl Pharmacol 2017; 335:49-55. [DOI: 10.1016/j.taap.2017.09.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/17/2017] [Accepted: 09/25/2017] [Indexed: 12/16/2022]
|
21
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Schwerdtle T, Vleminckx C, Vollmer G, Wallace H, De Saeger S, Eriksen GS, Farmer P, Fremy JM, Gong YY, Meyer K, Naegeli H, Parent-Massin D, Rietjens I, van Egmond H, Altieri A, Eskola M, Gergelova P, Ramos Bordajandi L, Benkova B, Dörr B, Gkrillas A, Gustavsson N, van Manen M, Edler L. Risks to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed. EFSA J 2017; 15:e04718. [PMID: 32625635 PMCID: PMC7010102 DOI: 10.2903/j.efsa.2017.4718] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Deoxynivalenol (DON) is a mycotoxin primarily produced by Fusarium fungi, occurring predominantly in cereal grains. Following the request of the European Commission, the CONTAM Panel assessed the risk to animal and human health related to DON, 3-acetyl-DON (3-Ac-DON), 15-acetyl-DON (15-Ac-DON) and DON-3-glucoside in food and feed. A total of 27,537, 13,892, 7,270 and 2,266 analytical data for DON, 3-Ac-DON, 15-Ac-DON and DON-3-glucoside, respectively, in food, feed and unprocessed grains collected from 2007 to 2014 were used. For human exposure, grains and grain-based products were main sources, whereas in farm and companion animals, cereal grains, cereal by-products and forage maize contributed most. DON is rapidly absorbed, distributed, and excreted. Since 3-Ac-DON and 15-Ac-DON are largely deacetylated and DON-3-glucoside cleaved in the intestines the same toxic effects as DON can be expected. The TDI of 1 μg/kg bw per day, that was established for DON based on reduced body weight gain in mice, was therefore used as a group-TDI for the sum of DON, 3-Ac-DON, 15-Ac-DON and DON-3-glucoside. In order to assess acute human health risk, epidemiological data from mycotoxicoses were assessed and a group-ARfD of 8 μg/kg bw per eating occasion was calculated. Estimates of acute dietary exposures were below this dose and did not raise a health concern in humans. The estimated mean chronic dietary exposure was above the group-TDI in infants, toddlers and other children, and at high exposure also in adolescents and adults, indicating a potential health concern. Based on estimated mean dietary concentrations in ruminants, poultry, rabbits, dogs and cats, most farmed fish species and horses, adverse effects are not expected. At the high dietary concentrations, there is a potential risk for chronic adverse effects in pigs and fish and for acute adverse effects in cats and farmed mink.
Collapse
|
22
|
Ji J, Zhu P, Cui F, Pi F, Zhang Y, Sun X. The disorder metabolic profiling in kidney and spleen of mice induced by mycotoxins deoxynivalenol through gas chromatography mass spectrometry. CHEMOSPHERE 2017; 180:267-274. [PMID: 28411543 DOI: 10.1016/j.chemosphere.2017.03.129] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 03/22/2017] [Accepted: 03/29/2017] [Indexed: 06/07/2023]
Abstract
Gas chromatography mass spectrometry (GC-MS) based metabolomics strategy was implemented for the metabolites detection in kidney and spleen samples of mice, which were treated with 2 mg kg-1 deoxynivalenol (DON), through intragastric administration for three weeks, for studying the toxicity of DON on the metabolic profiling in kidney and spleen. The spectrum was deconvoluted, aligned and identified with MS DIAL, equipped with Fiehn library. And the data matrix was processed with univariate analysis and multivariate analysis for selection of metabolites with VIP >1, t-test p value < 0.05. The metabolic pathway analysis was analyzed with MetaMapp and drew by CytoScape. Result shows that DON could induce an increased protein synthesis to repair the damaged membrane protein structure, in both kidney and spleen, with decrease of valine, leucine and phenylalanine, et al. essential precursors for protein synthesis and energy production; the energy metabolism in kidney disordered by DON, with the decreasing of ribitol, glycerol 1-phosphate, et al. Furthermore, DON could lead to the disorder in immunity function and nucleotide metabolism in spleen, with decreasing trend of cytidine and alanine.
Collapse
Affiliation(s)
- Jian Ji
- School of Food Science, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Foods, Jiangnan University, Wuxi, Jiangsu, 214122, China; Synergetic Innovation Center for Food Safety and Nutrition, Jiangnan University, Wuxi, 214122, China
| | - Pei Zhu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, 200436, China; Synergetic Innovation Center for Food Safety and Nutrition, Jiangnan University, Wuxi, 214122, China
| | - Fangchao Cui
- School of Food Science, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Foods, Jiangnan University, Wuxi, Jiangsu, 214122, China; Synergetic Innovation Center for Food Safety and Nutrition, Jiangnan University, Wuxi, 214122, China
| | - Fuwei Pi
- School of Food Science, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Foods, Jiangnan University, Wuxi, Jiangsu, 214122, China; Synergetic Innovation Center for Food Safety and Nutrition, Jiangnan University, Wuxi, 214122, China
| | - Yinzhi Zhang
- School of Food Science, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Foods, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xiulan Sun
- School of Food Science, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Foods, Jiangnan University, Wuxi, Jiangsu, 214122, China; Synergetic Innovation Center for Food Safety and Nutrition, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
23
|
Chen P, Liu T, Jiang S, Yang Z, Huang L, Liu F. Effects of purified zearalenone on selected immunological and histopathologic measurements of spleen in post-weanling gilts. ACTA ACUST UNITED AC 2017; 3:212-218. [PMID: 29767107 PMCID: PMC5941232 DOI: 10.1016/j.aninu.2017.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 03/10/2017] [Accepted: 04/27/2017] [Indexed: 11/09/2022]
Abstract
The present study was aimed at investigating the adverse effects of dietary zearalenone (ZEA) on the lymphocyte proliferation rate (LPR), interleukin-2 (IL-2), mRNA expressions of pro-inflammatory cytokines, and histopathologic changes of spleen in post-weanling gilts. A total of 20 crossbred piglets (Yorkshire × Landrace × Duroc) with an initial BW of 10.36 ± 1.21 kg (21 d of age) were used in the study. Piglets were fed a basal diet with an addition of 0, 1.1, 2.0, or 3.2 mg/kg purified ZEA for 18 d ad libitum. The results showed that LPR and IL-2 production of spleen decreased linearly (P < 0.05) as dietary ZEA increased. Splenic mRNA expressions of interleukin-1β (IL-1β) and interleukin-6 (IL-6) were linearly up-regulated (P < 0.05) as dietary ZEA increased. On the contrary, linear down-regulation (P < 0.05) of mRNA expression of interferon-γ (IFN-γ) was observed as dietary ZEA increased. Swelling splenocyte in 1.1 mg/kg ZEA treatments, atrophy of white pulp and swelling of red pulp in 2.0 and 3.2 mg/kg ZEA treatments were observed. The cytoplasmic edema in 1.1 mg/kg ZEA treatments, significant chromatin deformation in 2.0 mg/kg ZEA treatment and phagocytosis in 3.2 mg/kg ZEA treatment were observed. Results suggested that dietary ZEA at 1.1 to 3.2 mg/kg can induce splenic damages and negatively affect immune function of spleen in post-weanling gilts.
Collapse
Affiliation(s)
- Peng Chen
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai'an 271018, China
| | - Tingjun Liu
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai'an 271018, China
| | - Shuzhen Jiang
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai'an 271018, China
| | - Zaibin Yang
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai'an 271018, China
| | - Libo Huang
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai'an 271018, China
| | - Faxiao Liu
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
24
|
Bracarense A, Basso K, Da Silva E, Payros D, Oswald I. Deoxynivalenol in the liver and lymphoid organs of rats: effects of dose and duration on immunohistological changes. WORLD MYCOTOXIN J 2017. [DOI: 10.3920/wmj2016.2094] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Deoxynivalenol (DON) is one of the most prevalent type B trichothecenes present in food inducing adverse effects, including intestinal changes and immunosuppression. The aim of the present study was to investigate the effects of DON on rats exposed for 7, 14 and 28 days to mycotoxin-contaminated diets, using histological and immunohistochemical analyses on liver and lymphoid organs. Fifty rats received a control diet, or a diet contaminated with 1.75 mg/kg of DON for 30 days, or a diet contaminated with 11.4 mg/kg of DON for 7, 14 or 30 days. Ingestion of contaminated feed induced a significant increase in the lesional score in the liver, spleen, and lymph nodes. The main histological findings observed in the liver were cytoplasmic vacuolisation and hepatocelular megalocytosis. A significant increase in hepatocyte proliferation was observed in rats that received 1.75 mg/kg of DON. Lymphoid depletion was the main histological alteration observed in lymphoid organs, resulting in a significant increase in the lesional score in all groups that received the contaminated diets. The histological changes and lymphocyte apoptosis were more severe in lymph nodes of rats fed 11.4 mg/kg of DON during 30 days. The results of the morphological and immunohistochemical analyses suggest that the ingestion of DON can induce functional hepatic impairment and immunosuppression in a dose- and time-dependent manner.
Collapse
Affiliation(s)
- A.P.F.L. Bracarense
- Laboratory of Animal Pathology, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, km 380, 86057-990 Londrina, Brazil
| | - K.M. Basso
- Laboratory of Animal Pathology, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, km 380, 86057-990 Londrina, Brazil
| | - E.O. Da Silva
- Laboratory of Animal Pathology, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, km 380, 86057-990 Londrina, Brazil
| | - D. Payros
- INRA, UMR 1331 Toxalim, Research Center in Food Toxicology, 31027 Toulouse, France
- Université de Toulouse, INP, UMR 1331 Toxalim, 31076 Toulouse, France
| | - I.P. Oswald
- INRA, UMR 1331 Toxalim, Research Center in Food Toxicology, 31027 Toulouse, France
- Université de Toulouse, INP, UMR 1331 Toxalim, 31076 Toulouse, France
| |
Collapse
|
25
|
Peng Z, Chen L, Nüssler AK, Liu L, Yang W. Current sights for mechanisms of deoxynivalenol-induced hepatotoxicity and prospective views for future scientific research: A mini review. J Appl Toxicol 2016; 37:518-529. [DOI: 10.1002/jat.3428] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/07/2016] [Accepted: 11/07/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Zhao Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College; Huazhong University of Science and Technology; Hangkong Road 13 430030 Wuhan China
| | - Liangkai Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College; Huazhong University of Science and Technology; Hangkong Road 13 430030 Wuhan China
| | - Andreas K. Nüssler
- Department of Traumatology, BG Trauma center; University of Tübingen; Schnarrenbergstr. 95 72076 Tübingen Germany
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College; Huazhong University of Science and Technology; Hangkong Road 13 430030 Wuhan China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College; Huazhong University of Science and Technology; Hangkong Road 13 430030 Wuhan China
| | - Wei Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College; Huazhong University of Science and Technology; Hangkong Road 13 430030 Wuhan China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College; Huazhong University of Science and Technology; Hangkong Road 13 430030 Wuhan China
| |
Collapse
|
26
|
Wang L, Wang Y, Shao H, Luo X, Wang R, Li Y, Li Y, Luo Y, Zhang D, Chen Z. In vivo toxicity assessment of deoxynivalenol-contaminated wheat after ozone degradation. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2016; 34:103-112. [PMID: 27796167 DOI: 10.1080/19440049.2016.1253112] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The effect of ozone on deoxynivalenol (DON) detoxification was investigated. Ozone treatment could significantly reduce the levels of DON in wheat; 53% of DON in wheat was decomposed with 90 mg l-1 of ozone at a flow rate of 15 l min-1 for 4 h. The safety of DON-contaminated wheats (DCWs) untreated/treated by ozone was also evaluated. Institute of Cancer Research (ICR) mice were divided into a standard diet group and five experimental diet groups for a 51-day orally administration experiment. In the experiment, no remarkable changes in the general appearance of the mice were observed, and all the mice survived until the scheduled necropsy. The results of sub-chronic toxicity indicated that mice fed on DCWs alone had significantly decreased in body weight gain, thymus and spleen weights, ratios of liver, thymus and spleen to body weight, blood indices (red blood cell, haemoglobin, white blood cell), and pro-inflammatory cytokines (interleukin-6 (IL-6), tumour necrosis factor alpha (TNF-α)), while showing a significant increase in alanine aminotransferase, aspartate aminotransferase, blood creatinine and blood urea nitrogen levels. Histopathological examination indicate that DON elicited some degree of toxicity on the liver, kidney and thymus tissue. Mice fed on DCWs treated by ozone mitigated the adverse effects compared with mice fed on DCWs. All the results suggested that the deleterious effects of DON could be highly reduced by ozone, and ozone itself shows minor toxic effects on animals in this process.
Collapse
Affiliation(s)
- Li Wang
- a Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, State Key Laboratory of Food Science and Technology, Collaborative Innovation Center for Food Safety and Quality Control, National Engineering Laboratory for Cereal Fermentation Technology, School of Food Science and Technology , Jiangnan University , Wuxi , China
| | - Ying Wang
- b College of Food Science, National Coarse Cereals Engineering Research Center , Heilongjiang Bayi Agricultural University , Daqing , China
| | - Huili Shao
- a Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, State Key Laboratory of Food Science and Technology, Collaborative Innovation Center for Food Safety and Quality Control, National Engineering Laboratory for Cereal Fermentation Technology, School of Food Science and Technology , Jiangnan University , Wuxi , China
| | - Xiaohu Luo
- a Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, State Key Laboratory of Food Science and Technology, Collaborative Innovation Center for Food Safety and Quality Control, National Engineering Laboratory for Cereal Fermentation Technology, School of Food Science and Technology , Jiangnan University , Wuxi , China
| | - Ren Wang
- a Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, State Key Laboratory of Food Science and Technology, Collaborative Innovation Center for Food Safety and Quality Control, National Engineering Laboratory for Cereal Fermentation Technology, School of Food Science and Technology , Jiangnan University , Wuxi , China
| | - Yongfu Li
- a Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, State Key Laboratory of Food Science and Technology, Collaborative Innovation Center for Food Safety and Quality Control, National Engineering Laboratory for Cereal Fermentation Technology, School of Food Science and Technology , Jiangnan University , Wuxi , China
| | - Yanan Li
- a Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, State Key Laboratory of Food Science and Technology, Collaborative Innovation Center for Food Safety and Quality Control, National Engineering Laboratory for Cereal Fermentation Technology, School of Food Science and Technology , Jiangnan University , Wuxi , China
| | - Yingpeng Luo
- a Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, State Key Laboratory of Food Science and Technology, Collaborative Innovation Center for Food Safety and Quality Control, National Engineering Laboratory for Cereal Fermentation Technology, School of Food Science and Technology , Jiangnan University , Wuxi , China
| | - Dongjie Zhang
- b College of Food Science, National Coarse Cereals Engineering Research Center , Heilongjiang Bayi Agricultural University , Daqing , China
| | - Zhengxing Chen
- a Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, State Key Laboratory of Food Science and Technology, Collaborative Innovation Center for Food Safety and Quality Control, National Engineering Laboratory for Cereal Fermentation Technology, School of Food Science and Technology , Jiangnan University , Wuxi , China
| |
Collapse
|
27
|
Determination of multi-mycotoxin occurrence in maize based porridges from selected regions of Tanzania by liquid chromatography tandem mass spectrometry (LC-MS/MS), a longitudinal study. Food Control 2016. [DOI: 10.1016/j.foodcont.2016.04.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Zhao L, Li X, Ji C, Rong X, Liu S, Zhang J, Ma Q. Protective effect of Devosia sp. ANSB714 on growth performance, serum chemistry, immunity function and residues in kidneys of mice exposed to deoxynivalenol. Food Chem Toxicol 2016; 92:143-9. [DOI: 10.1016/j.fct.2016.03.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 03/15/2016] [Accepted: 03/18/2016] [Indexed: 01/19/2023]
|
29
|
Yang L, Yang W, Feng Q, Huang L, Zhang G, Liu F, Jiang S, Yang Z. Effects of purified zearalenone on selected immunological measurements of blood in post-weaning gilts. ACTA ACUST UNITED AC 2016; 2:142-148. [PMID: 29767104 PMCID: PMC5941023 DOI: 10.1016/j.aninu.2016.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/23/2016] [Accepted: 04/29/2016] [Indexed: 11/22/2022]
Abstract
Zearalenone (ZEA), an estrogenic mycotoxin, is produced mainly by Fusarium fungi. Previous studies have indicated that acute ZEA exposure induced various damages in different species; however, its transparent hematotoxicity in female piglets at dietary levels of 1.1 to 3.2 mg/kg has not been shown. The present study was conducted to investigate the effects of dietary ZEA (1.1–3.2 mg/kg) on hematology, T lymphocyte subset, immunoglobulin, antibody titer, lymphocyte proliferation rate (LPR), and interleukin-2 (IL-2) in peripheral blood of post-weaning gilts. A total of 20 female piglets (Landrace × Yorkshire × Duroc), weaned at 42 d with an average body weight of 10.36 ± 1.21 kg were used in the study. Female piglets were kept in a temperature controlled room, divided into four treatments, and fed a diet based on corn-soybean meal-fishmeal-whey, with an addition of 0, 1.1, 2.0, or 3.2 mg/kg purified ZEA for 18 d ad libitum. Feed intake and refusal were measured daily and individual pigs were weighed weekly. Blood and serum samples were collected for selected immunological measurements. Female piglets fed different levels of dietary ZEA grew similarly with no difference in feed intake. Hematological values including leukocytes, platelets, lymphocytes, hematocrit, and mean corpuscular hemoglobin (MCH) decreased linearly (P < 0.05) as dietary ZEA increased. Female piglets fed diets containing 2.0 mg/kg ZEA or greater showed significantly decreased CD4+CD8+, CD4+, and CD4+/CD8+ in comparison to the control (P < 0.05), whereas CD8+ was significantly increased (P = 0.026) in the gilts which were fed the diet containing 3.2 mg/kg ZEA. Serum immunoglobulin G (IgG) and the antibody titer on d 18 were reduced linearly as dietary ZEA levels increased (P < 0.001). Linear decrease in LPR was observed (P < 0.05). Female piglets fed diets containing 2.0 mg/kg ZEA or more showed significantly decreased IL-2 in comparison to the control (P < 0.05). The results suggested that dietary ZEA at the levels of 1.1 to 3.2 mg/kg can induce different degrees of hematotoxicity and negatively affect immune function in female piglets.
Collapse
Affiliation(s)
- Lijie Yang
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai'an 271018, China
| | - Weiren Yang
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai'an 271018, China
| | - Qiang Feng
- Tai'an Central Hospital, Shandong 271000, China
| | - Libo Huang
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai'an 271018, China
| | - Guiguo Zhang
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai'an 271018, China
| | - Faxiao Liu
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai'an 271018, China
| | - Shuzhen Jiang
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai'an 271018, China
| | - Zaibin Yang
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
30
|
Denli M, Blandon JC, Guynot ME, Salado S, Pérez JF. Efficacy of activated diatomaceous clay in reducing the toxicity of zearalenone in rats and piglets. J Anim Sci 2016; 93:637-45. [PMID: 26020748 DOI: 10.2527/jas.2014-7356] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Two experiments were conducted to evaluate the efficacy of an activated diatomaceous clay (ADC) in reducing the toxic effects of zearalenone (ZEA) in the diet of rats and piglets. In the rat experiment, 90 Sprague-Dawley female weanling rats with an initial BW of 45 ± 1.0 g were assigned to 1 of 6 dietary treatments for 28 d in a completely randomized design (CRD) with a 2 × 3 factorial arrangement (0 or 6 mg ZEA/kg feed and 0, 1, and 5 g ADC/kg feed). In the piglet experiment, 64 female piglets ([Large White × Landrace] × Pietrain with an initial BW of 14.9 ± 1.65 kg) were fed 1 of 8 experimental diets for 26 d in a CRD design with a 2 × 4 factorial arrangement (0 or 0.8 mg ZEA/kg feed and 0, 1, 2, and 5 g ADC/kg feed). The ADFI, ADG, and G:F were determined at the end of each experiment. At the conclusion of studies, serum samples were collected and rats and piglets were euthanized to determine visceral organ weights. The diet contaminated with ZEA did not alter the growth of rats and the relative weight of liver and kidneys. However, ZEA increased ( < 0.05) the relative weight of uterus, ovaries, and spleen and decreased ( < 0.05) the serum activities of alkaline phosphatase and alanine aminotransferase compared to the control group. Supplementation of ADC in the rat diets counteracted ( < 0.05) the observed toxic effects of ZEA on the uterus and ovaries weight. The diet contaminated with ZEA (0.8 mg/kg feed) increased ( < 0.05) the weight of the uterus and ovaries in piglets but did not modify the serum biochemical variables or the relative weight of other visceral organs. The addition of 5 g ADC/kg to the contaminated feed reduced the toxic effects of ZEA on uterus and ovary weights to that of the control group. Zearalenone (10.5 μg/kg bile) and α-zearalenol (5.6 μg/kg bile) residues were detected in the bile of piglets fed the ZEA treatment. Supplementation of ADC to diets contaminated with ZEA reduced ( = 0.001) ZEA content in bile compared to the ZEA treatments. The results of these experiments indicate that a long-term consumption of ZEA-contaminated diets stimulated growth of the reproductive tract in rats and piglets and the presence of ZEA residue in bile in piglets. These effects may be counteracted by the addition of ADC to the diet.
Collapse
|
31
|
Liang Z, Ren Z, Gao S, Chen Y, Yang Y, Yang D, Deng J, Zuo Z, Wang Y, Shen L. Individual and combined effects of deoxynivalenol and zearalenone on mouse kidney. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 40:686-691. [PMID: 26407231 DOI: 10.1016/j.etap.2015.08.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/28/2015] [Accepted: 08/30/2015] [Indexed: 06/05/2023]
Abstract
This study was performed to investigate the individual and combined toxic effects of deoxynivalenol (DON) and zearalenone (ZEA) on mouse kidney. A total of 360 female mice were divided into nine groups. Each group received intraperitoneal injection of solvent (control), DON, ZEA, or DON+ZEA four times for 12d. Results showed that ZEA and/or DON increased the apoptosis rate in the kidney, as well as the levels of serum creatinine and blood urea nitrogen. DON and/or ZEA also induced renal oxidative stress as indicated by increased malondialdehyde concentration and nitric oxide level and reduced superoxide dismutase enzyme activity and hydroxyl radical inhibiting capacity. The observed changes were dose and time dependent. This study reports that DON and/or ZEA induced apoptosis, dysfunction, and oxidative stress in mouse kidney. Furthermore, the combination of DON+ZEA exhibited a sub-additive nephrotoxic effect.
Collapse
Affiliation(s)
- Zhen Liang
- College of Veterinary Medicine, Sichuan Agricultural University, PR China; Sichuan Province Key Laboratory of Animal Disease & Human Health, PR China; Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Yaan 625014, PR China
| | - Zhihua Ren
- College of Veterinary Medicine, Sichuan Agricultural University, PR China; Sichuan Province Key Laboratory of Animal Disease & Human Health, PR China; Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Yaan 625014, PR China
| | - Shuang Gao
- College of Veterinary Medicine, Sichuan Agricultural University, PR China; Sichuan Province Key Laboratory of Animal Disease & Human Health, PR China; Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Yaan 625014, PR China
| | - Yun Chen
- College of Veterinary Medicine, Sichuan Agricultural University, PR China; Sichuan Province Key Laboratory of Animal Disease & Human Health, PR China; Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Yaan 625014, PR China
| | - Yanyi Yang
- College of Veterinary Medicine, Sichuan Agricultural University, PR China; Sichuan Province Key Laboratory of Animal Disease & Human Health, PR China; Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Yaan 625014, PR China
| | - Dan Yang
- College of Veterinary Medicine, Sichuan Agricultural University, PR China; Sichuan Province Key Laboratory of Animal Disease & Human Health, PR China; Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Yaan 625014, PR China
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, PR China; Sichuan Province Key Laboratory of Animal Disease & Human Health, PR China; Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Yaan 625014, PR China.
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, PR China; Sichuan Province Key Laboratory of Animal Disease & Human Health, PR China; Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Yaan 625014, PR China
| | - Ya Wang
- College of Veterinary Medicine, Sichuan Agricultural University, PR China; Sichuan Province Key Laboratory of Animal Disease & Human Health, PR China; Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Yaan 625014, PR China
| | - Liuhong Shen
- College of Veterinary Medicine, Sichuan Agricultural University, PR China; Sichuan Province Key Laboratory of Animal Disease & Human Health, PR China; Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Yaan 625014, PR China
| |
Collapse
|
32
|
Park SH, Kim D, Kim J, Moon Y. Effects of Mycotoxins on mucosal microbial infection and related pathogenesis. Toxins (Basel) 2015; 7:4484-502. [PMID: 26529017 PMCID: PMC4663516 DOI: 10.3390/toxins7114484] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 12/30/2022] Open
Abstract
Mycotoxins are fungal secondary metabolites detected in many agricultural commodities and water-damaged indoor environments. Susceptibility to mucosal infectious diseases is closely associated with immune dysfunction caused by mycotoxin exposure in humans and other animals. Many mycotoxins suppress immune function by decreasing the proliferation of activated lymphocytes, impairing phagocytic function of macrophages, and suppressing cytokine production, but some induce hypersensitive responses in different dose regimes. The present review describes various mycotoxin responses to infectious pathogens that trigger mucosa-associated diseases in the gastrointestinal and respiratory tracts of humans and other animals. In particular, it focuses on the effects of mycotoxin exposure on invasion, pathogen clearance, the production of cytokines and immunoglobulins, and the prognostic implications of interactions between infectious pathogens and mycotoxin exposure.
Collapse
Affiliation(s)
- Seong-Hwan Park
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences, Pusan National University School of Medicine, Yangsan 50612, Korea.
- Research Institute for Basic Sciences and Medical Research Institute, Pusan National University, Busan 46241, Korea.
| | - Dongwook Kim
- National Institute of Animal Science, RDA, Wanju 55365, Korea.
| | - Juil Kim
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences, Pusan National University School of Medicine, Yangsan 50612, Korea.
- Research Institute for Basic Sciences and Medical Research Institute, Pusan National University, Busan 46241, Korea.
| | - Yuseok Moon
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences, Pusan National University School of Medicine, Yangsan 50612, Korea.
- Immunoregulatory Therapeutics Group in Brain Busan 21 Project, Busan 46241, Korea.
| |
Collapse
|
33
|
De Ruyck K, De Boevre M, Huybrechts I, De Saeger S. Dietary mycotoxins, co-exposure, and carcinogenesis in humans: Short review. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2015; 766:32-41. [PMID: 26596546 DOI: 10.1016/j.mrrev.2015.07.003] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 07/05/2015] [Accepted: 07/30/2015] [Indexed: 02/07/2023]
Abstract
Mycotoxins, toxic secondary metabolites of fungi, affect global agriculture so prolifically that they are virtually ubiquitous at some concentration in the average human diet. Studies of in vitro and in vivo toxicity are discussed, leading to investigations of co-exposed mycotoxins, as well as carcinogenic effects. Some of the most common and toxicologically significant mycotoxins, such as the aflatoxins, ochratoxins, fumonisins, deoxynivalenol, T-2 toxin, HT-2 toxin, patulin, zearalenone, and some ergot alkaloids are outlined. The wide variety of pathogenic mechanisms these compounds employ are shown capable of inducing a complex set of interactions. Of particular note are potential synergisms between mycotoxins with regard to carcinogenic attributable risk, indicating an important field for future study.
Collapse
Affiliation(s)
- Karl De Ruyck
- Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Marthe De Boevre
- Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Inge Huybrechts
- International Agency for Research on Cancer, Dietary Exposure Assessment Group, 150 Cours Albert Thomas, 69008 Lyon, France.
| | - Sarah De Saeger
- Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
34
|
Schulz AK, Kersten S, Dänicke S, Coenen M, Vervuert I. Effects of deoxynivalenol in naturally contaminated wheat on feed intake and health status of horses. Mycotoxin Res 2015; 31:209-16. [PMID: 26420605 DOI: 10.1007/s12550-015-0234-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 09/17/2015] [Accepted: 09/18/2015] [Indexed: 10/23/2022]
Abstract
The present study examined the short-term effects of deoxynivalenol (DON), administered at two different concentrations via a feed preparation using naturally contaminated wheat, on feed intake, liver and kidney metabolism and immunomodulatory properties in horses. Twelve geldings were randomly assigned to one of three dietary treatments for 21 days. DON was provided via naturally contaminated wheat (14.6 ± 6.5 mg DON/kg dry matter). The daily feed intake was adjusted to 4 kg of wheat and 1.7 kg of silage per 100 kg of body weight (BW). Horses were fed one of the following diets: control wheat with 0% contaminated wheat (CON), wheat mixture containing 53 ± 2% of DON-contaminated wheat [low DON intake (LDI)] or wheat mixture containing 78 ± 4% of DON-contaminated wheat [high DON intake (HDI)]. CON, LDI and HDI corresponded to a targeted daily DON intake via the complete ration of <5, 50 and 75 μg/kg BW, respectively. None of the horses demonstrated any clinical signs commonly associated with the intake of DON such as colic or depression. HDI was associated with lower daily wheat intake on day 21. Serum DON concentrations increased with higher DON intake. The non-toxic DON metabolite, deepoxy-deoxynivalenol (DOM-1) was only detected on day 21 of the DON feeding period. No changes in haematological and serum parameters or serum globulins or in the ex vivo proliferation response of peripheral blood mononuclear cells were observed. These results suggest that horses are less sensitive to DON exposure than other domestic species, for example, swine. Therefore, the European Commission guidance value for critical DON concentrations in swine feed (complete diet) of 0.9 mg/kg could be safely applied for rations intended for feeding adult horses as well.
Collapse
Affiliation(s)
- Anna-Katharina Schulz
- Institute of Animal Nutrition, Nutrition Diseases and Dietetics, Faculty of Veterinary Medicine, University of Leipzig, An den Tierklinken 9, 04103, Leipzig, Germany
| | - Susanne Kersten
- Institute of Animal Nutrition, Friedrich-Loeffler Institute, Federal Research Institute for Animal Health, Bundesallee 50, 38116, Braunschweig, Germany
| | - Sven Dänicke
- Institute of Animal Nutrition, Friedrich-Loeffler Institute, Federal Research Institute for Animal Health, Bundesallee 50, 38116, Braunschweig, Germany
| | - Manfred Coenen
- Institute of Animal Nutrition, Nutrition Diseases and Dietetics, Faculty of Veterinary Medicine, University of Leipzig, An den Tierklinken 9, 04103, Leipzig, Germany
| | - Ingrid Vervuert
- Institute of Animal Nutrition, Nutrition Diseases and Dietetics, Faculty of Veterinary Medicine, University of Leipzig, An den Tierklinken 9, 04103, Leipzig, Germany.
| |
Collapse
|
35
|
He JW, Bondy GS, Zhou T, Caldwell D, Boland GJ, Scott PM. Toxicology of 3-epi-deoxynivalenol, a deoxynivalenol-transformation product by Devosia mutans 17-2-E-8. Food Chem Toxicol 2015; 84:250-9. [PMID: 26363308 DOI: 10.1016/j.fct.2015.09.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 08/14/2015] [Accepted: 09/02/2015] [Indexed: 11/24/2022]
Abstract
Microbial detoxification of deoxynivalenol (DON) represents a new approach to treating DON-contaminated grains. A bacterium Devosia mutans 17-2-E-8 was capable of completely transforming DON into a major product 3-epi-DON and a minor product 3-keto-DON. Evaluation of toxicities of these DON-transformation products is an important part of hazard characterization prior to commercialization of the biotransformation application. Cytotoxicities of the products were demonstrated by two assays: a MTT bioassay assessing cell viability and a BrdU assay assessing DNA synthesis. Compared with DON, the IC50 values of 3-epi-DON and 3-keto-DON were respectively 357 and 3.03 times higher in the MTT bioassay, and were respectively 1181 and 4.54 times higher in the BrdU bioassay. Toxicological effects of 14-day oral exposure of the B6C3F1 mouse to DON and 3-epi-DON were also investigated. Overall, there were no differences between the control (free of toxin) and the 25 mg/kg bw/day or 100 mg/kg bw/day 3-epi-DON treatments in body and organ weights, hematology and organ histopathology. However, in mice exposed to DON (2 mg/kg bw/day), white blood cell numbers and serum immunoglobulin levels were altered relative to controls, and lesions were observed in adrenals, thymus, stomach, spleen and colon. Taken together, in vitro and in vivo studies indicate that 3-epi-DON is substantially less toxic than DON.
Collapse
Affiliation(s)
- Jian Wei He
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada; School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Genevieve S Bondy
- Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada.
| | - Ting Zhou
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada.
| | - Don Caldwell
- Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Greg J Boland
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Peter M Scott
- Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
36
|
Clark ES, Flannery BM, Pestka JJ. Murine Anorectic Response to Deoxynivalenol (Vomitoxin) Is Sex-Dependent. Toxins (Basel) 2015; 7:2845-59. [PMID: 26230710 PMCID: PMC4549728 DOI: 10.3390/toxins7082845] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/17/2015] [Accepted: 07/17/2015] [Indexed: 11/16/2022] Open
Abstract
Deoxynivalenol (DON, vomitoxin), a common trichothecene mycotoxin found in cereal foods, dysregulates immune function and maintenance of energy balance. The purpose of this study was to determine if sex differences are similarly evident in DON's anorectic responses in mice. A bioassay for feed refusal, previously developed by our lab, was used to compare acute i.p. exposures of 1 and 5 mg/kg bw DON in C57BL6 mice. Greater anorectic responses were seen in male than female mice. Male mice had higher organ and plasma concentrations of DON upon acute exposure than their female counterparts. A significant increase in IL-6 plasma levels was also observed in males while cholecystokinin response was higher in females. When effects of sex on food intake and body weight changes were compared after subchronic dietary exposure to 1, 2.5, and 10 ppm DON, males were found again to be more sensitive. Demonstration of male predilection to DON-induced changes in food intake and weight gain might an important consideration in future risk assessment of DON and other trichothecenes.
Collapse
Affiliation(s)
- Erica S Clark
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA.
- Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA.
| | - Brenna M Flannery
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA.
- Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA.
| | - James J Pestka
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA.
- Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA.
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
37
|
Wu W, He K, Zhou HR, Berthiller F, Adam G, Sugita-Konishi Y, Watanabe M, Krantis A, Durst T, Zhang H, Pestka JJ. Effects of oral exposure to naturally-occurring and synthetic deoxynivalenol congeners on proinflammatory cytokine and chemokine mRNA expression in the mouse. Toxicol Appl Pharmacol 2014; 278:107-15. [PMID: 24793808 DOI: 10.1016/j.taap.2014.04.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 04/15/2014] [Accepted: 04/17/2014] [Indexed: 11/28/2022]
Abstract
The foodborne mycotoxin deoxynivalenol (DON) induces a ribotoxic stress response in mononuclear phagocytes that mediate aberrant multi-organ upregulation of TNF-α, interleukins and chemokines in experimental animals. While other DON congeners also exist as food contaminants or pharmacologically-active derivatives, it is not known how these compounds affect expression of these cytokine genes in vivo. To address this gap, we compared in mice the acute effects of oral DON exposure to that of seven relevant congeners on splenic expression of representative cytokine mRNAs after 2 and 6h. Congeners included the 8-ketotrichothecenes 3-acetyldeoxynivalenol (3-ADON), 15-acetyldeoxynivalenol (15-ADON), fusarenon X (FX), nivalenol (NIV), the plant metabolite DON-3-glucoside (D3G) and two synthetic DON derivatives with novel satiety-inducing properties (EN139528 and EN139544). DON markedly induced transient upregulation of TNF-α IL-1β, IL-6, CXCL-2, CCL-2 and CCL-7 mRNA expressions. The two ADONs also evoked mRNA expression of these genes but to a relatively lesser extent. FX induced more persistent responses than the other DON congeners and, compared to DON, was: 1) more potent in inducing IL-1β mRNA, 2) approximately equipotent in the induction of TNF-α and CCL-2 mRNAs, and 3) less potent at upregulating IL-6, CXCL-2, and CCL-2 mRNAs. EN139528's effects were similar to NIV, the least potent 8-ketotrichothecene, while D3G and EN139544 were largely incapable of eliciting cytokine or chemokine mRNA responses. Taken together, the results presented herein provide important new insights into the potential of naturally-occurring and synthetic DON congeners to elicit aberrant mRNA upregulation of cytokines associated with acute and chronic trichothecene toxicity.
Collapse
Affiliation(s)
- Wenda Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; Dept. of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | - Kaiyu He
- Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA; Dept. of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Hui-Ren Zhou
- Dept. of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | - Franz Berthiller
- Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, University of Natural Resources and Life Sciences, Tulln, Austria
| | - Gerhard Adam
- Dept. of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Yoshiko Sugita-Konishi
- Food and Life Sciences, Azabu University, 1-17-71 Fuchinobe Chuo-ku, Sagamihara, Kanagawa Pref., 252-5201, Japan
| | - Maiko Watanabe
- Division of Microbiology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya, Tokyo 158-8501, Japan
| | - Anthony Krantis
- Dept. of Cellular and Molecular Medicine, University of Ottawa, Canada
| | - Tony Durst
- Dept. of Chemistry, University of Ottawa, Canada
| | - Haibin Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - James J Pestka
- Dept. of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA; Dept. of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
38
|
Wu W, Zhou HR, He K, Pan X, Sugita-Konishi Y, Watanabe M, Zhang H, Pestka JJ. Role of cholecystokinin in anorexia induction following oral exposure to the 8-ketotrichothecenes deoxynivalenol, 15-acetyldeoxynivalenol, 3-acetyldeoxynivalenol, fusarenon X, and nivalenol. Toxicol Sci 2014; 138:278-89. [PMID: 24385417 DOI: 10.1093/toxsci/kft335] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cereal grain contamination by trichothecene mycotoxins is known to negatively impact human and animal health with adverse effects on food intake and growth being of particular concern. The head blight fungus Fusarium graminearum elaborates five closely related 8-ketotrichothecene congeners: (1) deoxynivalenol (DON), (2) 3-acetyldeoxynivalenol (3-ADON), (3) 15-acetyldeoxynivalenol (15-ADON), (4) fusarenon X (FX), and (5) nivalenol (NIV). While anorexia induction in mice exposed intraperitoneally to DON has been linked to plasma elevation of the satiety hormones cholecystokinin (CCK) and peptide YY₃₋₃₆ (PYY₃₋₃₆), the effects of oral gavage of DON or of other 8-keotrichothecenes on release of these gut peptides have not been established. The purpose of this study was to (1) compare the anorectic responses to the aforementioned 8-ketotrichothecenes following oral gavage at a common dose (2.5 mg/kg bw) and (2) relate these effects to changes plasma CCK and PYY₃₋₃₆ concentrations. Elevation of plasma CCK markedly corresponded to anorexia induction by DON and all other 8-ketotrichothecenes tested. Furthermore, the CCK1 receptor antagonist SR 27897 and the CCK2 receptor antagonist L-365,260 dose-dependently attenuated both CCK- and DON-induced anorexia, which was consistent with this gut satiety hormone being an important mediator of 8-ketotrichothecene-induced food refusal. In contrast to CCK, PYY₃₋₃₆ was moderately elevated by oral gavage with DON and NIV but not by 3-ADON, 15-ADON, or FX. Taken together, the results suggest that CCK plays a major role in anorexia induction following oral exposure to 8-ketotrichothecenes, whereas PYY₃₋₃₆ might play a lesser, congener-dependent role in this response.
Collapse
Affiliation(s)
- Wenda Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Wu W, Zhang H. Role of tumor necrosis factor-α and interleukin-1β in anorexia induction following oral exposure to the trichothecene deoxynivalenol (vomitoxin) in the mouse. J Toxicol Sci 2014; 39:875-86. [DOI: 10.2131/jts.39.875] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Wenda Wu
- College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Haibin Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, China
| |
Collapse
|
40
|
Flannery BM, He K, Pestka JJ. Deoxynivalenol-induced weight loss in the diet-induced obese mouse is reversible and PKR-independent. Toxicol Lett 2013; 221:9-14. [PMID: 23707852 DOI: 10.1016/j.toxlet.2013.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 05/15/2013] [Indexed: 11/18/2022]
Abstract
The trichothecene deoxynivalenol (DON), a potent ribotoxic mycotoxin produced by the cereal blight fungus Fusarium graminearum, commonly contaminates grain-based foods. Oral exposure to DON causes decreased food intake, reduced weight gain and body weight loss in experimental animals - effects that have been linked to dysregulation of hormones responsible for mediating satiety at the central nervous system level. When diet-induced obese (DIO) mice are fed DON, they consume less food, eventually achieving body weights of control diet-fed mice. Here, we extended these findings by characterizing: (1) reversibility of DON-induced body weight loss and anorexia in DIO mice and (2) the role of double-stranded RNA-activated protein kinase (PKR) which has been previously linked to initiation of the ribotoxic stress response. The results demonstrated that DON-induced weight loss was reversible in DIO mice and this effect corresponded to initiation of a robust hyperphagic response. When DIO mice deficient in PKR were exposed to DON, they exhibited weight suppression similar to DIO wild-type fed the toxin, suggesting the toxin's weight effects were not dependent on PKR. Taken together, DON's effects on food consumption and body weight are not permanent and, furthermore, PKR is not an essential signaling molecule for DON's anorectic and weight effects.
Collapse
Affiliation(s)
- Brenna M Flannery
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824-1224, USA
| | | | | |
Collapse
|
41
|
Choi BK, Jeong SH, Cho JH, Shin HS, Son SW, Yeo YK, Kang HG. Effects of oral deoxynivalenol exposure on immune-related parameters in lymphoid organs and serum of mice vaccinated with porcine parvovirus vaccine. Mycotoxin Res 2013; 29:185-92. [PMID: 23436220 DOI: 10.1007/s12550-013-0161-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 09/17/2012] [Accepted: 09/17/2012] [Indexed: 10/27/2022]
Abstract
Mice were exposed to deoxynivalenol (DON) via drinking water at a concentration of 2 mg/L for 36 days. On day 8 of treatment, inactivated porcine parvovirus vaccine (PPV) was injected intraperitoneally. The relative and absolute weight of the spleen was significantly decreased in the DON-treated group (DON). Antibody titers to parvovirus in serum were 47.9 ± 2.4 in the vaccination group (Vac), but 15.2 ± 6.5 in the group treated with DON and vaccine (DON + Vac). The IgA and IgG was not different in the DON, Vac an,d DON + Vac groups. IgM was significantly lower only in the DON + Vac group. However IgE was significantly increased in the Vac and DON + Vac group, but no change was observed between the Vac and DON + Vac groups. The concentrations of IL-2, IL-4, GM-CSF, MCP-1 and Rantes in serum, and IL-1α in mesenteric lymph node and MIP-1β in spleen were significantly increased by DON treatment compared to control. The concentrations of IL-2, IL-5, IL-6, IL-9, IL-12, IL-13 and Rantes in thymus, of IL-2 in spleen, and of IL-1α, IL-1β, IL-3, IL-5, IL-10, IL-17, G-CSF, GM-CSF and MCP-1 in mesenteric lymph nodes were significantly decreased in mice compared to those in the Vac group, while concentrations of IL-1α, IL-2, IL-9, IL-13,G-CSF, GM-CSF, IFN-γ, MCP-1, MIP-1α and TNF-α were significantly increased in serum compared to the Vac group. In conclusion, the results presented here indicate that exposure to DON at 2.0 mg/L via drinking water can disrupt the immune response in vaccinated mice by modulating cytokines and chemokines involved in their immune response to infectious disease.
Collapse
Affiliation(s)
- Byung-Kook Choi
- Toxicology & Residue Chemistry Division, Animal, Plant and Fisheries Quarantine and Inspection Agency, Anyang-si, Gyeonggi-do, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
42
|
Lee HM, Song SO, Cha SH, Wee SB, Bischoff K, Park SW, Son SW, Kang HG, Cho MH. Development of a monoclonal antibody against deoxynivalenol for magnetic nanoparticle-based extraction and an enzyme-linked immunosorbent assay. J Vet Sci 2013; 14:143-50. [PMID: 23388439 PMCID: PMC3694185 DOI: 10.4142/jvs.2013.14.2.143] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 06/04/2012] [Indexed: 01/09/2023] Open
Abstract
Monoclonal antibody (mAb, NVRQS-DON) against deoxynivalenol (DON) was prepared. DON-Ag coated enzyme linked immunosorbent assay (ELISA) and DON-Ab coated ELISA were prepared by coating the DON-BSA and DON mAb. Quantitative DON calculation ranged from 50 to 4,000 ng/mL for DON-Ab coated ELISA and from 25 to 500 ng/mL for DON-Ag coated ELISA. 50% of inhibitory concentration values of DON, HT-2, 15-acetyl-DON, and nivalenol were 23.44, 22,545, 5,518 and 5,976 ng/mL based on the DON-Ab coated ELISA. Cross-reactivity levels of the mAb to HT-2, 15-acetyl-DON, and nivalenol were 0.1, 0.42, and 0.40%. The intra- and interassay precision coefficient variation (CV) were both <10%. In the mAb-coated ELISA, mean DON recovery rates in animal feed (0 to 1,000 mg/kg) ranged from 68.34 to 95.49% (CV; 4.10 to 13.38%). DON in a buffer solution (250, 500 and 1,000 ng/mL) was isolated using 300 mg of NVRQS-DON and 3 mg of magnetic nanoparticles (MNPs). The mean recovery rates of DON using this mAb-MNP system were 75.2, 96.9, and 88.1% in a buffer solution spiked with DON (250, 500, and 1,000 ng/mL). Conclusively we developed competitive ELISAs for detecting DON in animal feed and created a new tool for DON extraction using mAb-coupled MNPs.
Collapse
Affiliation(s)
- Hyuk-Mi Lee
- Animal and Plant Quarantine Agency, Anyang 430-757, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Evaluation of insulin-like growth factor acid-labile subunit as a potential biomarker of effect for deoxynivalenol-induced proinflammatory cytokine expression. Toxicology 2013; 304:192-8. [PMID: 23298694 DOI: 10.1016/j.tox.2012.12.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 12/19/2012] [Accepted: 12/27/2012] [Indexed: 01/08/2023]
Abstract
Consumption of the trichothecene deoxynivalenol (DON) suppresses growth in experimental animals - an adverse effect that was used to establish the tolerable daily intake for this toxin. DON ingestion has been recently found to suppress plasma insulin-like growth factor acid-labile subunit (IGFALS), a protein essential for growth. Studies were conducted to explore the feasibility of using plasma IGFALS as a biomarker of effect for DON. In the first study, weanling mice were fed 0, 1, 2.5, 5 and 10 ppm DON and weight and plasma IGFALS determined at intervals over 9 wk. Reduced body weight gains were detectable beginning at wk 5 in the 10 ppm dose and wk 7 at the 5 ppm dose. Plasma IGFALS was significantly depressed at wk 5 in the 5 and 10 ppm groups at wk 9 in the 10 ppm group. Depressed IGFALS significantly correlated with reduced body weight at wk 5 and 9. Benchmark dose modeling revealed the BMDL and BMD for plasma IGFALS reduction were 1.1 and 3.0 ppm DON and for weight reduction were 2.1 and 4.5 ppm DON. In the second study, it was demonstrated that mice fed 15 ppm DON diet had significantly less plasma IGFALS than mice fed identical amounts of control diet. Thus DON's influence on IGFALS likely reflects the combined effects of reduced food intake as well as its physiological action involving suppressors of cytokine signaling. Taken together, these findings suggest that plasma IGFALS might be a useful biomarker for DON's adverse effects on growth.
Collapse
|
44
|
Bonnet MS, Roux J, Mounien L, Dallaporta M, Troadec JD. Advances in deoxynivalenol toxicity mechanisms: the brain as a target. Toxins (Basel) 2012. [PMID: 23202308 PMCID: PMC3509700 DOI: 10.3390/toxins4111120] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Deoxynivalenol (DON), mainly produced by Fusarium fungi, and also commonly called vomitoxin, is a trichothecene mycotoxin. It is one of the most abundant trichothecenes which contaminate cereals consumed by farm animals and humans. The extent of cereal contamination is strongly associated with rainfall and moisture at the time of flowering and with grain storage conditions. DON consumption may result in intoxication, the severity of which is dose-dependent and may lead to different symptoms including anorexia, vomiting, reduced weight gain, neuroendocrine changes, immunological effects, diarrhea, leukocytosis, hemorrhage or circulatory shock. During the last two decades, many studies have described DON toxicity using diverse animal species as a model. While the action of the toxin on peripheral organs and tissues is well documented, data illustrating its effect on the brain are significantly less abundant. Yet, DON is known to affect the central nervous system. Recent studies have provided new evidence and detail regarding the action of the toxin on the brain. The purpose of the present review is to summarize critical studies illustrating this central action of the toxin and to suggest research perspectives in this field.
Collapse
Affiliation(s)
- Marion S. Bonnet
- Laboratory of Physiology and Pathophysiology of Somatomotor and Autonomic Nervous System, Faculty of Sciences and Technology, Escadrille Normandie-Niemen Avenue, Aix-Marseilles University, Marseilles 13397, France; (M.S.B.); (L.M.); (M.D.)
| | - Julien Roux
- Biomeostasis, Contract Research Organization, Faculty of Sciences and Technology, Escadrille Normandie-Niemen Avenue, Marseilles 13397, France;
| | - Lourdes Mounien
- Laboratory of Physiology and Pathophysiology of Somatomotor and Autonomic Nervous System, Faculty of Sciences and Technology, Escadrille Normandie-Niemen Avenue, Aix-Marseilles University, Marseilles 13397, France; (M.S.B.); (L.M.); (M.D.)
| | - Michel Dallaporta
- Laboratory of Physiology and Pathophysiology of Somatomotor and Autonomic Nervous System, Faculty of Sciences and Technology, Escadrille Normandie-Niemen Avenue, Aix-Marseilles University, Marseilles 13397, France; (M.S.B.); (L.M.); (M.D.)
| | - Jean-Denis Troadec
- Laboratory of Physiology and Pathophysiology of Somatomotor and Autonomic Nervous System, Faculty of Sciences and Technology, Escadrille Normandie-Niemen Avenue, Aix-Marseilles University, Marseilles 13397, France; (M.S.B.); (L.M.); (M.D.)
- Author to whom correspondence should be addressed; ; Tel: +33-491-288-948; Fax: +33-491-288-885
| |
Collapse
|
45
|
Wang DF, Zhang NY, Peng YZ, Qi DS. Interaction of zearalenone and soybean isoflavone in diets on the growth performance, organ development and serum parameters in prepubertal gilts. J Anim Physiol Anim Nutr (Berl) 2012; 96:939-46. [PMID: 21883496 DOI: 10.1111/j.1439-0396.2011.01212.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The aim of the present research was to determine the interactive effect of zearalenone (ZEA) and soybean isoflavone (ISO) on the growth performance, development of organs and serum parameters in prepubertal gilts. Ninety 75-day-old female pigs (Duroc × Landrace × Yorkshire, 26.5 ± 0.60 kg) were randomly allocated to nine diet treatments during the 21-day study. The experiment employed a 3 × 3 factorial design using a non-soybean meal diet with the addition of 0, 0.5 or 2.0 mg/kg ZEA and 0, 300 or 600 mg/kg ISO. The results indicated that simultaneous addition of ZEA and ISO had no significant influence on the growth performance in prepubertal gilts. Zearalenone with 2 mg/kg increased (p < 0.05) the relative weight of the reproductive organs (including uterus and vagina) but had no obvious effects (p > 0.05) on the relative weight of the heart, liver, lung, kidney and spleen. Isoflavone at 600 mg/kg could offset the increased weight of the reproductive organs induced by ZEA. Simultaneous addition of ZEA and ISO to prepubertal gilts increased the level of alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase in the serum (p < 0.05) at day 14 but their levels decreased (p < 0.05) over time. Zearalenone increased the level of malondialdehyde and decreased the concentrations of superoxide dismutase and glutathione peroxidase (p < 0.05) in the serum. The results suggested that ISO added to diets at 600 mg/kg could reduce the increase in the relative weight of reproductive organs and relieve the oxidative stress induced by ZEA added at 2 mg/kg during the growth phase in prepubertal gilts.
Collapse
Affiliation(s)
- D F Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, HuaZhong Agricultural University, Wuhan, China
| | | | | | | |
Collapse
|
46
|
Possible role for glutathione-S-transferase in the oligozoospermia elicited by acute zearalenone administration in Swiss albino mice. Toxicon 2012; 60:358-66. [DOI: 10.1016/j.toxicon.2012.04.353] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 04/25/2012] [Accepted: 04/26/2012] [Indexed: 11/22/2022]
|
47
|
The role of biomarkers in evaluating human health concerns from fungal contaminants in food. Nutr Res Rev 2012; 25:162-79. [PMID: 22651937 DOI: 10.1017/s095442241200008x] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mycotoxins are toxic secondary metabolites that globally contaminate an estimated 25 % of cereal crops and thus exposure is frequent in many populations. Aflatoxins, fumonisins and deoxynivalenol are amongst those mycotoxins of particular concern from a human health perspective. A number of risks to health are suggested including cancer, growth faltering, immune suppression and neural tube defects; though only the demonstrated role for aflatoxin in the aetiology of liver cancer is widely recognised. The heterogeneous distribution of mycotoxins in food restricts the usefulness of food sampling and intake estimates; instead biomarkers provide better tools for informing epidemiological investigations. Validated exposure biomarkers for aflatoxin (urinary aflatoxin M(1), aflatoxin-N7-guaunine, serum aflatoxin-albumin) were established almost 20 years ago and were critical in confirming aflatoxins as potent liver carcinogens. Validation has included demonstration of assay robustness, intake v. biomarker level, and stability of stored samples. More recently, aflatoxin exposure biomarkers are revealing concerns of growth faltering and immune suppression; importantly, they are being used to assess the effectiveness of intervention strategies. For fumonisins and deoxynivalenol these steps of development and validation have significantly advanced in recent years. Such biomarkers should better inform epidemiological studies and thus improve our understanding of their potential risk to human health.
Collapse
|
48
|
Abbès S, Ben Salah-Abbès J, Sharafi H, Noghabi KA, Oueslati R. Interaction of Lactobacillus plantarum MON03 with Tunisian montmorillonite clay and ability of the composite to immobilize Zearalenone in vitro and counteract immunotoxicity in vivo. Immunopharmacol Immunotoxicol 2012; 34:944-50. [PMID: 22550972 DOI: 10.3109/08923973.2012.674139] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND AND AIM The present study was conducted to determine the abilities of the living Lactobacillus plantarum MON03 (LP) cells, Tunisian montmorillonite clay and their composites to accumulate Zearalenone (ZEA) from a liquid medium and elucidate the preventive effect of their composite in ZEA-contaminated balb/c mice showing immunotoxicity disorders. MATERIALS AND METHODS In the in vitro study, LP (2 × 10(9) CFU/mL), TM (0.5 mg) and LP+TM were incubated with 50 µg mL(-1) ZEA for 0, 12 and 24 h. For the in vivo study, the composite MT+LP was evaluated also for possible protection regarding ZEA-immunotoxicity in Balb/c mice as a sensitive model. RESULTS Results indicated that TM and LP+TM had a high capacity of adsorbing ZEA 87.2 ± 2.1 and 94.2 ± 2.1%, respectively. However, LP alone able to remove only 78% after 24 h of incubation. The quantity of adsorbed ZEA by LP, TM and LP+TM were 39, 43,5 and 47 µg mL(-1) of PBS, respectively. The in vivo results indicated that mice orally exposed to ZEA- (40 mg/kg bw) for 2 weeks showed severe immunotoxicity typical of fusarotoxicosis regarding thymocytes and splenocytes cell viability count, IFN-γ, IL-12, TNF-α production and B-cell activation. Mice treated with LP and TM alone, and LP+MT in combination with ZEA were comparable to the control. CONCLUSION Both LP and TM are safe by themselves and their composite succeeded to exert a potential prevention by counteracting ZEA-immunotoxicity and can be implicated in the biotechnology of ZEA removal in human food and animal feed.
Collapse
Affiliation(s)
- Samir Abbès
- Unit of Immunology, Environmental Microbiology and Cancerology, Faculty of Sciences Bizerte, University of Carthage, Tunis, Tunisia.
| | | | | | | | | |
Collapse
|
49
|
Grenier B, Oswald I. Mycotoxin co-contamination of food and feed: meta-analysis of publications describing toxicological interactions. WORLD MYCOTOXIN J 2011. [DOI: 10.3920/wmj2011.1281] [Citation(s) in RCA: 231] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Most fungi are able to produce several mycotoxins simultaneously; moreover food and feed can be contaminated by several fungi species at the same time. Thus, humans and animals are generally not exposed to one mycotoxin but to several toxins at the same time. Most of the studies concerning the toxicological effect of mycotoxins have been carried out taking into account only one mycotoxin. In the present review, we analysed 112 reports where laboratory or farm animals were exposed to a combination of mycotoxins, and we determined for each parameter measured the type of interaction that was observed. Most of the published papers concern interactions with aflatoxins and other mycotoxins, especially fumonisins, ochratoxin A and trichothecenes. A few papers also investigated the interaction between ochratoxin A and citrinin, or between different toxins from Fusarium species. Only experiments with a 2×2 factorial design with individual and combined effects of the mycotoxins were selected. Based on the raw published data, we classified the interactions in four different categories: synergistic, additive, less than additive or antagonistic effects. This review highlights the complexity of mycotoxins interactions which varies according to the animal species, the dose of toxins, the length of exposure, but also the parameters measured.
Collapse
Affiliation(s)
- B. Grenier
- INRA, UMR 1331 ToxAlim, 180 chemin de Tournefeuille, BP 93173, 31027 Toulouse Cedex 3, France
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria
| | - I. Oswald
- INRA, UMR 1331 ToxAlim, 180 chemin de Tournefeuille, BP 93173, 31027 Toulouse Cedex 3, France
| |
Collapse
|
50
|
Marin DE, Taranu I, Burlacu R, Manda G, Motiu M, Neagoe I, Dragomir C, Stancu M, Calin L. Effects of zearalenone and its derivatives on porcine immune response. Toxicol In Vitro 2011; 25:1981-8. [PMID: 21763767 DOI: 10.1016/j.tiv.2011.06.022] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 06/27/2011] [Accepted: 06/29/2011] [Indexed: 11/15/2022]
Abstract
Zearalenone (ZEN), a mycotoxin produced by several Fusarium spp., is most commonly found as a contaminant in stored grain and has chronic estrogenic effects on mammals. In this in vitro study, we compared the effects of zearalenone (ZEN) and some of its derivatives: α-zearalenol (α-ZOL), β-zearalenol (β-ZOL), and zearalanone (ZAN) on several peripheral blood mononuclear cell (PBMC) parameters: cytotoxicity, proliferation, as well as antibody and cytokine synthesis. The amounts of toxins necessary to inhibit viability, in a dehydrogenase enzyme activity assay (MTT test), by 50% were: 22.7 μM for ZEN, 29.1 μM for α-ZOL, 17.3 μM for β-ZOL and 26.3 μM for ZAN. The administration of 10 μM toxin induced a decrease in the ConA stimulated proliferation of PBMC by 19.6% for ZAN, 45.4% for ZEN, 43.6% for α-ZOL and 85.2% for β-ZOL, when compared to the control stimulated cells. Also, ZEN and its metabolites at concentrations higher than 5 μM induced a significant decrease of the IgG, IgA or IgM levels. Concentrations of 5 and 10 μM of ZEN and ZAN significantly decreased the TNF-α synthesis in the supernatant of the stimulated cells; 10 μM of ZAN also decreased IL-8 synthesis. In conclusion, our results show that ZEN and ZEN derivatives altered several parameters of the humoral and cellular immune response. Therefore, our results are clinically relevant as ZEN and its metabolites are frequent contaminants of animal feed and we have shown that intoxicated animals are incapable of inducing an adequate immune response.
Collapse
Affiliation(s)
- Daniela E Marin
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, Ilfov 077015, Romania.
| | | | | | | | | | | | | | | | | |
Collapse
|