1
|
Messina M, Barnes S, Setchell KD. Perspective: Isoflavones-Intriguing Molecules but Much Remains to Be Learned about These Soybean Constituents. Adv Nutr 2025; 16:100418. [PMID: 40157603 DOI: 10.1016/j.advnut.2025.100418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/20/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
Isoflavones are naturally occurring compounds found in a wide range of plants, but among commonly consumed foods are especially abundant in soybeans and foods derived from this legume. Much of the substantial amount of research conducted on soy protein and soy foods over the past 30 y is because of their isoflavone content. Research interest in isoflavones increased dramatically beginning in the early 1990s as evidence highlighted their possible role in the prevention of a wide range of cancers, including breast, prostate, and colon cancer. Recognition that isoflavones preferentially bind to estrogen receptor (ER)β in comparison with ERα provided a conceptual basis for classifying these diphenolic molecules as selective ER modulators (SERMs). Isoflavone research soon greatly expanded beyond cancer to include areas such as coronary artery disease, bone health, cognitive function, and vasomotor symptoms of menopause. Nevertheless, safety concerns about isoflavones, based primarily on the results of rodent studies and presumed estrogenic effects, also arose. However, recent work challenges the traditional view of the estrogenicity of isoflavones. Furthermore, safety concerns have largely been refuted by intervention and population studies. On the other hand, investigation of the proposed benefits of isoflavones has produced inconsistent data. The small sample size and short duration common to many intervention trials, combined with marked interindividual differences in isoflavone metabolism, likely contribute to the conflicting findings. Also, many different intervention products have been employed, which vary not only in the total amount, but also in the relative proportion of the 3 soybean isoflavones, and the form in which they are delivered (glycoside compared with aglycone). For those interested in exploring the proposed benefits of isoflavones, studies justify an intake recommendation of ∼50 mg/d, an amount provided by ∼2 servings of traditional Asian soy foods.
Collapse
Affiliation(s)
- Mark Messina
- Nutrition Science and Research, Soy Nutrition Institute Global, Washington, DC, United States.
| | - Stephen Barnes
- Division of Pulmonary, Allergy and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kenneth Dr Setchell
- Clinical Mass Spectrometry, Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
2
|
Kciuk M, Kruczkowska W, Wanke K, Gałęziewska J, Kołat D, Mujwar S, Kontek R. The Role of Genistein in Type 2 Diabetes and Beyond: Mechanisms and Therapeutic Potential. Molecules 2025; 30:1068. [PMID: 40076293 PMCID: PMC11901726 DOI: 10.3390/molecules30051068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
The global prevalence of type 2 diabetes mellitus (T2DM) necessitates the exploration of novel therapeutic approaches to mitigate its complex molecular pathogenesis. This review investigates the potential role of genistein, a prominent isoflavone derived from soybeans, in the management of T2DM. Recognized for its selective estrogen receptor modulator (SERM) activity, genistein exerts a multifaceted influence on key intracellular signaling pathways, which are crucial in regulating cell proliferation, apoptosis, and insulin signaling. Genistein's anti-inflammatory, anti-oxidant, and metabolic regulatory properties position it as a promising candidate for T2DM intervention. This review synthesizes current research spanning preclinical studies and clinical trials, emphasizing genistein's impact on insulin sensitivity, glucose metabolism, and inflammatory markers. Additionally, this review addresses genistein's bioavailability, safety, and potential influence on gut microbiota composition. By consolidating these findings, this review aims to provide a comprehensive understanding of genistein's therapeutic potential in T2DM management, offering valuable insights for future research and clinical practice.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, Univeristy of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (K.W.); (R.K.)
| | - Weronika Kruczkowska
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; (W.K.); (J.G.); (D.K.)
| | - Katarzyna Wanke
- Department of Molecular Biotechnology and Genetics, Univeristy of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (K.W.); (R.K.)
| | - Julia Gałęziewska
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; (W.K.); (J.G.); (D.K.)
| | - Damian Kołat
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; (W.K.); (J.G.); (D.K.)
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India;
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, Univeristy of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (K.W.); (R.K.)
| |
Collapse
|
3
|
Singh H, Kamal YT, Pandohee J, Mishra AK, Biswas A, Mohanto S, Kumar A, Nag S, Mishra A, Singh M, Gupta H, Chopra H. Dietary phytochemicals alleviate the premature skin aging: A comprehensive review. Exp Gerontol 2025; 199:112660. [PMID: 39694450 DOI: 10.1016/j.exger.2024.112660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/27/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
Skin aging, often called as premature skin aging, is the hastened deterioration of the skin resulting from multiple factors, including UV radiation, environmental contaminants, inadequate nutrition, stress, etc. Dietary phytochemicals, present in fruits, vegetables, and other plant-derived meals, have gained interest due to their efficiency to eradicate free radicals and lowering the release of inflammatory mediators which accounts for premature skin aging. Several dietary phytochemicals, i.e., carotenoids, polyphenols, flavonoids, terpenes, alkaloids, phytosterols, etc., exhibited potential anti-oxidant, anti-inflammatory, suppression of UV damage, and promote collagen synthesis. In addition, dietary phytochemicals include sulfur, present in various foods safeguard the skin against oxidative stress and inflammation. Thus, this article delves into the comprehension of various dietary phytochemicals investigated to alleviate the premature skin aging. The article further highlights specific phytochemicals and their sources, bioavailability, mechanisms, etc., in the context of safeguarding the skin against oxidative stress and inflammation. The present manuscript is a systematic comprehension of the available literature on dietary phytochemicals and skin aging in various database, i.e., PubMed, ScienceDirect, Google Scholar using the keywords, i.e., "dietary phytochemicals", "nutraceuticals", "skin aging" etc., via Boolean operator, i.e., "AND". The dietary guidelines presented in the manuscript is a unique summarization for a broad reader to understand the inclusion of various functional foods, nutrients, supplements, etc., to prevent premature skin aging. Thus, the utilization of dietary phytochemicals has shown a promising avenue in preventing skin aging, however, the future perspectives and challenges of such phytochemicals should be comprehended via clinical investigations.
Collapse
Affiliation(s)
- Harpreet Singh
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh 244102, India.
| | - Y T Kamal
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 611441, Saudi Arabia
| | - Jessica Pandohee
- Sydney Mass Spectrometry, University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Arun Kumar Mishra
- SOS School of Pharmacy, IFTM University, Moradabad, Uttar Pradesh 244102, India.
| | - Aritra Biswas
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Rahara Akhil Mukherjee Road, Khardaha, West Bengal 700118, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Arvind Kumar
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh 244102, India
| | - Sagnik Nag
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Amrita Mishra
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Mhaveer Singh
- Pharmacy Academy, IFTM University, Moradabad, Uttar Pradesh 244102, India
| | - Himanshu Gupta
- Department of Chemistry, School of Sciences, IFTM University, Moradabad, Uttar Pradesh, India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| |
Collapse
|
4
|
Schorr J, Jud F, la Cecilia D, Beck B, Longree P, Singer H, Hollender J. Tracing pesticide dynamics: High resolution offers new insights to karst groundwater quality. WATER RESEARCH 2024; 267:122412. [PMID: 39306931 DOI: 10.1016/j.watres.2024.122412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 11/28/2024]
Abstract
Generally, karst aquifers and springs are highly susceptible to contamination due to the high permeability and, therefore, groundwater flow velocities. The often thin soil cover, accompanied by dolines, can lead to fast infiltration of precipitation water loaded with mobilized contaminants such as pesticides and their transformation products. To date, continuous, temporally highly resolved in-situ monitoring to decipher concentration dynamics for a broad range of pesticides is missing. Therefore, a transportable HPLC-HRMS/MS system (MS2field) was positioned at two karst study sites in the Swiss Jura. Water samples were collected and analyzed for pesticides and their transformation products in-situ every 20 min for 6 weeks in 2021 and 8 weeks in 2022. During the spraying season in 2021, six rain events at site 1 and three at site 2 in 2022 were captured. Concurrently, the water quality parameters electrical conductivity, pH, nitrate, turbidity, and water level, were monitored continuously at high temporal resolution. Further, bacterial cell counts were monitored via online flow cytometry. In 2021, several pesticides and pesticide transformation products were detected in peak concentrations after rain events, of which metamitron showed the highest concentration of up to 1000 ng/L. In one rain event, the Swiss federal and EU drinking water limit of 100 ng/L was exceeded for up to 38 h. Compared with highly frequent MS2field samples collected every 20 min, 42-hours composite samples severely underestimated peak concentrations for all compounds, especially for labile ones. Therefore, it was demonstrated that exceedences of the regulatory limit would have been missed if just composite sampling would have been conducted. Peak concentrations of pesticides coincided with peaks in nitrate concentration and bacterial cell counts following rain events. The correlation analysis showed strong correlations between the three analyzed contaminants (pesticides, nitrate and bacteria), and the proxy parameters electrical conductivity, and pH. The investigation of a second spring revealed similar dynamics indicating that these can be expected in other karst aquifers as well.
Collapse
Affiliation(s)
- Johannes Schorr
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, Universitätstrasse 16, ETH Zürich, 8092 Zürich, Switzerland
| | - Franziska Jud
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Daniele la Cecilia
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland; Department of Civil, Environmental and Architectural Engineering, University of Padova, Via Marzolo 9, 35131 Padova, PD, Italy
| | - Birgit Beck
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Philipp Longree
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Heinz Singer
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Juliane Hollender
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, Universitätstrasse 16, ETH Zürich, 8092 Zürich, Switzerland.
| |
Collapse
|
5
|
Huang J, Hou Q, Yang Y. Replacing Hydrolyzed Soybean Meal with Recombinant β-Glucosidase Enhances Resistance to Clostridium perfringens in Broilers Through Immune Modulation. Int J Mol Sci 2024; 25:11700. [PMID: 39519252 PMCID: PMC11547137 DOI: 10.3390/ijms252111700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Aglycone soy isoflavones have notable immune-regulatory bioactivity, while glycosidic forms in soybean meal pose challenges for absorption. β-Glucosidase (EC 3.2.1.21) catalyzes the non-reducing terminal β-d-glucosidic bonds, releasing β-d-glucan and aglycones. This study evaluated the impact of enzymatically hydrolyzed soybean meal (ESM) using recombinant β-glucosidase from Aspergillus niger on the growth performance and intestinal immune function of broilers under Clostridium perfringens infection. Prior to the feeding trial, soybean meal was enzymatically digested with recombinant β-glucosidase, ensuring almost complete conversion of glycosides to aglycones. After a week of pre-feeding, a total 180 healthy AA broilers were randomly assigned to three groups-control, semi-replacement of ESM (50% ESM), and full-replacement of ESM (100% ESM)-with 6 replicates of 10 chickens, and the trial lasted 28 days. On the 36th day, broilers were challenged with 1 mL of 1 × 1010 CFU/mL Clostridium perfringens (Cp) via gavage for 3 days. The results showed that the substitution of ESM had no effect on the body weight gain of broilers but significantly reduced the feed consumption and feed-to-gain ratio (p < 0.01). The study revealed that Cp significantly disrupted jejunal morphology, while ESM significantly mitigated this damage (p < 0.05). Real-time PCR results demonstrated that compared to the Cp group, ESM restored Cp-induced intestinal barrier impairments (e.g., Occludin, Claudin-1, Muc2), normalized aberrant cellular proliferation (PCNA) and apoptosis (Caspase-1 and Caspase-3), and upregulated the expression of anti-inflammatory factor Il-10 while suppressing pro-inflammatory cytokines (Il-1β, Il-6, and Il-8) (p < 0.05). Moreover, flow cytometry analyses demonstrated that ESM promoted Treg cell-derived Il-10, which alleviated macrophage-derived inflammation. Substituting conventional soybean meal with β-glucosidase, enzymatically treated, significantly reduced feed consumption and alleviated the intestinal damage and immune dysfunctions induced by Clostridium perfringens infection in broilers.
Collapse
Affiliation(s)
- Jingxi Huang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China;
| | - Qihang Hou
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China;
| | - Ying Yang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
6
|
Hou Q, Li G, Pan X, Zhong X, Geng X, Yang X, Yang X, Zhang B. Long-term supplementation of genistein improves immune homeostasis in the aged gut and extends the laying cycle of aged laying hens. Poult Sci 2024; 103:103670. [PMID: 38598909 PMCID: PMC11017059 DOI: 10.1016/j.psj.2024.103670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 04/12/2024] Open
Abstract
Aging is associated with alterations in gut function, including intestinal inflammation, leaky gut, and impaired epithelial regeneration. Rejuvenating the aged gut is imperative to extend the laying cycle of aged laying hens. Genistein is known to have beneficial effects on age-related diseases, but its precise role in homeostasis of the aged gut of laying hens remains to be elucidated. In this study, 160 45-wk-old Hyline Brown laying hens were continuously fed a basal diet or a diet supplemented with 40 mg/kg genistein until they reached 100 wk of age. The results revealed that long-term genistein supplementation led to an improvement in the egg production rate and feed conversion ratio, as well as an increase in egg quality. Moreover, the expression levels of senescence markers, such as β-galactosidase, P16, and P21, were decreased in the gut of genistein-treated aged laying hens. Furthermore, genistein ameliorated gut dysfunctions, such as intestinal inflammation, leaky gut, and impaired epithelial regeneration. Treg cell-derived IL-10 plays a crucial role in the genistein-induced regulation of age-related intestinal inflammation. This study demonstrates that long-term consumption of genistein improves homeostasis in the aged gut and extends the laying cycle of aged laying hens. Moreover, the link between genistein and Treg cells provides a rationale for dietary intervention against age-associated gut dysfunction.
Collapse
Affiliation(s)
- Qihang Hou
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Guang Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Xianjie Pan
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Xiang Zhong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangfei Geng
- Beijing Lab Anim Sci Tech Develp Co., LTD, Beijing 100193, China
| | - Xin Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing 100193, China.
| |
Collapse
|
7
|
Konstantinou EK, Gioxari A, Dimitriou M, Panoutsopoulos GI, Panagiotopoulos AA. Molecular Pathways of Genistein Activity in Breast Cancer Cells. Int J Mol Sci 2024; 25:5556. [PMID: 38791595 PMCID: PMC11122029 DOI: 10.3390/ijms25105556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
The most common malignancy in women is breast cancer. During the development of cancer, oncogenic transcription factors facilitate the overproduction of inflammatory cytokines and cell adhesion molecules. Antiapoptotic proteins are markedly upregulated in cancer cells, which promotes tumor development, metastasis, and cell survival. Promising findings have been found in studies on the cell cycle-mediated apoptosis pathway for medication development and treatment. Dietary phytoconstituents have been studied in great detail for their potential to prevent cancer by triggering the body's defense mechanisms. The underlying mechanisms of action may be clarified by considering the role of polyphenols in important cancer signaling pathways. Phenolic acids, flavonoids, tannins, coumarins, lignans, lignins, naphthoquinones, anthraquinones, xanthones, and stilbenes are examples of natural chemicals that are being studied for potential anticancer drugs. These substances are also vital for signaling pathways. This review focuses on innovations in the study of polyphenol genistein's effects on breast cancer cells and presents integrated chemical biology methods to harness mechanisms of action for important therapeutic advances.
Collapse
Affiliation(s)
| | | | | | | | - Athanasios A. Panagiotopoulos
- Department of Nutritional Science and Dietetics, School of Health Sciences, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece; (E.K.K.); (A.G.); (M.D.); (G.I.P.)
| |
Collapse
|
8
|
Gonçalves AC, Rodrigues S, Fonseca R, Silva LR. Potential Role of Dietary Phenolic Compounds in the Prevention and Treatment of Rheumatoid Arthritis: Current Reports. Pharmaceuticals (Basel) 2024; 17:590. [PMID: 38794160 PMCID: PMC11124183 DOI: 10.3390/ph17050590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
Rheumatoid arthritis (RA) is a complex illness with both hereditary and environmental components. Globally, in 2019, 18 million people had RA. RA is characterized by persistent inflammation of the synovial membrane that lines the joints, cartilage loss, and bone erosion. Phenolic molecules are the most prevalent secondary metabolites in plants, with a diverse spectrum of biological actions that benefit functional meals and nutraceuticals. These compounds have received a lot of attention recently because they have antioxidant, anti-inflammatory, immunomodulatory, and anti-rheumatoid activity by modulating tumor necrosis factor, mitogen-activated protein kinase, nuclear factor kappa-light-chain-enhancer of activated B cells, and c-Jun N-terminal kinases, as well as other preventative properties. This article discusses dietary polyphenols, their pharmacological properties, and innovative delivery technologies for the treatment of RA, with a focus on their possible biological activities. Nonetheless, commercialization of polyphenols may be achievable only after confirming their safety profile and completing successful clinical trials.
Collapse
Affiliation(s)
- Ana C. Gonçalves
- CICS-UBI—Health Sciences Research Center, University of Beira Interior, 6201-001 Covilhã, Portugal;
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal
- SPRINT Sport Physical Activity and Health Research & Innovation Center, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal
| | - Sofia Rodrigues
- Health Superior School, Polytechnic Institute of Viseu, 3500-843 Viseu, Portugal;
| | - Rafael Fonseca
- Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal;
| | - Luís R. Silva
- CICS-UBI—Health Sciences Research Center, University of Beira Interior, 6201-001 Covilhã, Portugal;
- SPRINT Sport Physical Activity and Health Research & Innovation Center, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal
- CERES, Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal
| |
Collapse
|
9
|
Grădinaru TC, Vlad A, Gilca M. Bitter Phytochemicals as Novel Candidates for Skin Disease Treatment. Curr Issues Mol Biol 2023; 46:299-326. [PMID: 38248322 PMCID: PMC10814078 DOI: 10.3390/cimb46010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Skin diseases represent a global healthcare challenge due to their rising incidence and substantial socio-economic burden. While biological, immunological, and targeted therapies have brought a revolution in improving quality of life and survival rates for certain dermatological conditions, there remains a stringent demand for new remedies. Nature has long served as an inspiration for drug development. Recent studies have identified bitter taste receptors (TAS2Rs) in both skin cell lines and human skin. Additionally, bitter natural compounds have shown promising benefits in addressing skin aging, wound healing, inflammatory skin conditions, and even skin cancer. Thus, TAS2Rs may represent a promising target in all these processes. In this review, we summarize evidence supporting the presence of TAS2Rs in the skin and emphasize their potential as drug targets for addressing skin aging, wound healing, inflammatory skin conditions, and skin carcinogenesis. To our knowledge, this is a pioneering work in connecting information on TAS2Rs expression in skin and skin cells with the impact of bitter phytochemicals on various beneficial effects related to skin disorders.
Collapse
Affiliation(s)
- Teodora-Cristiana Grădinaru
- Department of Functional Sciences I/Biochemistry, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (T.-C.G.); (M.G.)
| | - Adelina Vlad
- Department of Functional Sciences I/Physiology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Marilena Gilca
- Department of Functional Sciences I/Biochemistry, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (T.-C.G.); (M.G.)
| |
Collapse
|
10
|
Singla RK, Wang X, Gundamaraju R, Joon S, Tsagkaris C, Behzad S, Khan J, Gautam R, Goyal R, Rakmai J, Dubey AK, Simal-Gandara J, Shen B. Natural products derived from medicinal plants and microbes might act as a game-changer in breast cancer: a comprehensive review of preclinical and clinical studies. Crit Rev Food Sci Nutr 2023; 63:11880-11924. [PMID: 35838143 DOI: 10.1080/10408398.2022.2097196] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Breast cancer (BC) is the most prevalent neoplasm among women. Genetic and environmental factors lead to BC development and on this basis, several preventive - screening and therapeutic interventions have been developed. Hormones, both in the form of endogenous hormonal signaling or hormonal contraceptives, play an important role in BC pathogenesis and progression. On top of these, breast microbiota includes both species with an immunomodulatory activity enhancing the host's response against cancer cells and species producing proinflammatory cytokines associated with BC development. Identification of novel multitargeted therapeutic agents with poly-pharmacological potential is a dire need to combat advanced and metastatic BC. A growing body of research has emphasized the potential of natural compounds derived from medicinal plants and microbial species as complementary BC treatment regimens, including dietary supplements and probiotics. In particular, extracts from plants such as Artemisia monosperma Delile, Origanum dayi Post, Urtica membranacea Poir. ex Savigny, Krameria lappacea (Dombey) Burdet & B.B. Simpson and metabolites extracted from microbes such as Deinococcus radiodurans and Streptomycetes strains as well as probiotics like Bacillus coagulans and Lactobacillus brevis MK05 have exhibited antitumor effects in the form of antiproliferative and cytotoxic activity, increase in tumors' chemosensitivity, antioxidant activity and modulation of BC - associated molecular pathways. Further, bioactive compounds like 3,3'-diindolylmethane, epigallocatechin gallate, genistein, rutin, resveratrol, lycopene, sulforaphane, silibinin, rosmarinic acid, and shikonin are of special interest for the researchers and clinicians because these natural agents have multimodal action and act via multiple ways in managing the BC and most of these agents are regularly available in our food and fruit diets. Evidence from clinical trials suggests that such products had major potential in enhancing the effectiveness of conventional antitumor agents and decreasing their side effects. We here provide a comprehensive review of the therapeutic effects and mechanistic underpinnings of medicinal plants and microbial metabolites in BC management. The future perspectives on the translation of these findings to the personalized treatment of BC are provided and discussed.
Collapse
Affiliation(s)
- Rajeev K Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Xiaoyan Wang
- Department of Pathology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Rohit Gundamaraju
- ER Stress and Mucosal Immunology Lab, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, Australia
| | - Shikha Joon
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | | | - Sahar Behzad
- Evidence-based Phytotherapy and Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Majmaah, Saudi Arabia
| | - Rupesh Gautam
- Department of Pharmacology, MM School of Pharmacy, MM University, Sadopur, Haryana, India
| | - Rajat Goyal
- Department of Pharmacology, MM School of Pharmacy, MM University, Sadopur, Haryana, India
| | - Jaruporn Rakmai
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute (KAPI), Kasetsart University, Bangkok, Thailand
| | | | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Saleh MA, Antar SA, Abdo W, Ashour A, Zaki AA. Genistin modulates high-mobility group box protein 1 (HMGB1) and nuclear factor kappa-B (NF-κB) in Ehrlich-ascites-carcinoma-bearing mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:966-978. [PMID: 35907070 DOI: 10.1007/s11356-022-22268-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Cancer is the world's second-largest cause of death. Although there are numerous cancer treatment options, they are typically uncomfortable owing to side effects and ineffectual due to increased resistance to traditional anti-cancer medications or radiation therapy. A key method in cancer treatment is to target delayed/inhibited inflammation and apoptosis, which are very active areas of research. Natural chemicals originating from plants are of particular interest because of their high bioavailability, safety, few side effects, and, most importantly, cost-effectiveness. Flavonoids have become incredibly common as anti-cancer medications, with promising findings as cytotoxic anti-cancer agents that cause cancer cell death. Isolated compound (genistin) was evaluated for in vitro antiproliferative activity against breast cancer cell line (MCF-7 and MDA-MB-231). The compound exhibited good cytotoxic activities against both cell lines. In vivo antiproliferative efficacy was also investigated in Ehrlich's ascites carcinoma (EAC). Compared to the control group, genistin revealed a significant decrease in tumor weight, volume, high-mobility group box1 (HMGB1), and nuclear factor-kappa B (NF-κB) contents. On the other hand, B-cell lymphoma 2 (Bcl-2) contents increase suggesting an anti-inflammatory and anti-apoptotic activity through inhibition of HMGB1 signaling and activating the Bcl-2 pathway.
Collapse
Affiliation(s)
- Mohamed A Saleh
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, UAE.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Samar A Antar
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt
| | - Walied Abdo
- Department of Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| | - Ahmed Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Ahmed A Zaki
- Department of Pharmacognosy, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
12
|
Rismayuddin NAR, Mohd Badri PEA, Ismail AF, Othman N, Bandara HMHN, Arzmi MH. Synbiotic Musa acuminata skin extract and Streptococcus salivarius K12 inhibit candida species biofilm formation. BIOFOULING 2022; 38:614-627. [PMID: 35899682 DOI: 10.1080/08927014.2022.2105142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to determine the effect of synbiotic Musa acuminata skin extract (MASE) and Streptococcus salivarius K12 (K12) on Candida species biofilm formation. Liquid chromatography quadrupole time-of-flight (LC-Q-TOF-MS) was conducted to characterize MASE. To determine the effect of synbiotic on Candida biofilm, 200 µL of RPMI-1640 containing Candida, K12, and MASE were pipetted into the same well and incubated at 37 °C for 72 h. A similar protocol was repeated with K12 or MASE to determine the probiotic and prebiotic effects, respectively. Dimorphism, biofilm biomass, and Candida total cell count (TCC) were determined. A total of 60 compounds were detected in MASE. C. albicans (ALT5) and Candida lusitaniae exhibited the highest reduction in biofilm biomass when co-cultured with prebiotic (77.70 ± 7.67%) and synbiotic (97.73 ± 0.28%), respectively. All Candida spp. had decreased TCC and hyphae when co-cultured with synbiotic. In conclusion, MASE and K12 inhibit Candida biofilm formation.
Collapse
Affiliation(s)
- Nurul Alia Risma Rismayuddin
- Cluster of Cancer Research Initiative IIUM (COCRII), International Islamic University Malaysia, Kuantan, Pahang, Malaysia
- Department of Fundamental Dental and Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Puteri Elysa Alia Mohd Badri
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Ahmad Faisal Ismail
- Department of Paediatric Dentistry and Dental Public Health, Kulliyyah of Dentistry, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Noratikah Othman
- Department of Basic Medical Sciences, Kulliyyah of Nursing, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - H M H N Bandara
- Bristol Dental School, University of Bristol, Bristol, United Kingdom
| | - Mohd Hafiz Arzmi
- Cluster of Cancer Research Initiative IIUM (COCRII), International Islamic University Malaysia, Kuantan, Pahang, Malaysia
- Department of Fundamental Dental and Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| |
Collapse
|
13
|
Genistein, a tool for geroscience. Mech Ageing Dev 2022; 204:111665. [DOI: 10.1016/j.mad.2022.111665] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/04/2022] [Accepted: 03/15/2022] [Indexed: 12/12/2022]
|
14
|
Rasheed S, Rehman K, Shahid M, Suhail S, Akash MSH. Therapeutic potentials of genistein: New insights and perspectives. J Food Biochem 2022; 46:e14228. [PMID: 35579327 DOI: 10.1111/jfbc.14228] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 12/11/2022]
Abstract
Genistein, a polyphenolic isoflavone compound found abundantly in soy or soy-based products, is widely consumed in the Asian population. Genistein has poor bioavailability, to overcome this problem many advanced nano-drug delivery carrier systems are designed to enhance its water solubility and stability. However, further research is required to develop more efficient bioavailability improvement strategies. Genistein is a phytoestrogen which has been associated with reducing the risk of cancer, cardiovascular disorders, and diabetes mellitus. This plant-based bioactive compound possesses numerous biological activities such as anti-oxidant, anti-inflammatory, anti-obesity, anti-cancer, cardioprotective, and anti-diabetic activities to treat various disease states. Genistein has been used as an active therapeutic agent in many medications. Moreover, several clinical trials are in the ongoing stage to develop more efficient treatment therapies, especially for cancer treatment. This article highlights the protective and therapeutic benefits of genistein in the treatment of different ailments, and more specifically elaborates on the anti-cancer potential of genistein regarding various types of cancers. PRACTICAL APPLICATIONS: Genistein possesses versatile biological activities, including anti-diabetic, anti-inflammatory, anti-oxidant, anti-obesity, and anti-angiogenic. The most studied activity is anti-cancer. Currently, a number of pre-clinical and clinical trials are being carried out on anti-neoplastic and cytotoxic activities of genistein to develop novel therapeutic agents with excellent anti-cancer potential for the treatment of various kinds of cancer. Moreover, many bioavailability enhancement strategies have been developed to improve the bioavailability of genistein. Genistein shows significant hypoglycemic effects alone or in combination with other anti-diabetic agents. Genistein in combination with other chemotherapeutic agents is used for the treatment of prostate, bone, colorectal, glioma, breast, and bladder cancer.
Collapse
Affiliation(s)
- Sumbal Rasheed
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, The Women University, Multan, Pakistan
| | - Momina Shahid
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | - Shaleem Suhail
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | | |
Collapse
|
15
|
Kaur R, Sood A, Lang DK, Bhatia S, Al-Harrasi A, Aleya L, Behl T. Potential of flavonoids as anti-Alzheimer's agents: bench to bedside. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:26063-26077. [PMID: 35067880 DOI: 10.1007/s11356-021-18165-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Developing therapies for neurodegenerative diseases are challenging because of the presence of blood-brain barrier and Alzheimer being one of the commonest and uprising neurodegenerative disorders possess the need for developing novel therapies. Alzheimer's is attributed to be the sixth leading cause of death in the USA and the number of cases is estimated to be increased from 58 million in 2021 to 88 million by 2050. Natural drugs have benefits of being cost-effective, widely available, fewer side effects, and immuno-booster can be useful in managing Alzheimer. Flavonoids can slow the neuronal degeneration as they have shown activity in central nervous system and are able to cross the blood-brain barrier. These can be easily extracted from fruits, vegetable, and plants. In Alzheimer disease, flavonoids scavenges the reactive oxygen species and reduces the production of amyloid beta protein. Agents from sub-classes of flavonoids such as flavanones, flavanols, flavones, flavonols, anthocyanins, and isoflavones having pharmacological action in treating Alzheimer disease are discussed in this review.
Collapse
Affiliation(s)
- Rajwinder Kaur
- Chitkara College of Pharmacy, Chitkara University Punjab, Rajpura, India
| | - Ankita Sood
- Chitkara College of Pharmacy, Chitkara University Punjab, Rajpura, India
| | | | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
- School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University Punjab, Rajpura, India.
| |
Collapse
|
16
|
Zhang X, Wu C. In Silico, In Vitro, and In Vivo Evaluation of the Developmental Toxicity, Estrogenic Activity, and Mutagenicity of Four Natural Phenolic Flavonoids at Low Exposure Levels. ACS OMEGA 2022; 7:4757-4768. [PMID: 35187296 PMCID: PMC8851455 DOI: 10.1021/acsomega.1c04239] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Flavonoids are bioactive phenolic compounds widely present in plant food and used in various nutraceutical, pharmaceutical, and cosmetic products. However, recent studies showed rising concerns of endocrine disruptions and developmental toxicities for many flavonoids. To understand the impacts of flavonoid structure on toxicity, we used a new multitiered platform to investigate the toxicities of four common flavonoids, luteolin, apigenin, quercetin, and genistein, from flavone, flavonol, and isoflavone. Weak estrogenic activity was detected for four flavonoids (genistein, apigenin, quercetin, and luteolin) at 10-12 to 10-7 M by the MCF-7 cell proliferation assay, which agreed with the molecular docking results. Consistent with the simulation results of Toxicity Estimation Software Tool, genistein and luteolin showed high developmental toxicity in the chicken embryonic assay (45-477 μg/kg) with mortality rate up to 50%. Luteolin, quercetin, and apigenin showed signs of mutagenicity at 5 × 10-3 pmol/plate. The findings showed nonmonotonic dose responses for the chemicals.
Collapse
|
17
|
Yu L, Rios E, Castro L, Liu J, Yan Y, Dixon D. Genistein: Dual Role in Women's Health. Nutrients 2021; 13:3048. [PMID: 34578926 PMCID: PMC8472782 DOI: 10.3390/nu13093048] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 12/22/2022] Open
Abstract
Advanced research in recent years has revealed the important role of nutrients in the protection of women's health and in the prevention of women's diseases. Genistein is a phytoestrogen that belongs to a class of compounds known as isoflavones, which structurally resemble endogenous estrogen. Genistein is most often consumed by humans via soybeans or soya products and is, as an auxiliary medicinal, used to treat women's diseases. In this review, we focused on analyzing the geographic distribution of soybean and soya product consumption, global serum concentrations of genistein, and its metabolism and bioactivity. We also explored genistein's dual effects in women's health through gathering, evaluating, and summarizing evidence from current in vivo and in vitro studies, clinical observations, and epidemiological surveys. The dose-dependent effects of genistein, especially when considering its metabolites and factors that vary by individuals, indicate that consumption of genistein may contribute to beneficial effects in women's health and disease prevention and treatment. However, consumption and exposure levels are nuanced because adverse effects have been observed at lower concentrations in in vitro models. Therefore, this points to the duplicity of genistein as a possible therapeutic agent in some instances and as an endocrine disruptor in others.
Collapse
Affiliation(s)
| | | | | | | | | | - Darlene Dixon
- Molecular Pathogenesis Group, Mechanistic Toxicology Branch (MTB), Division of the National Toxicology Program (DNTP), National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Research Triangle Park, Durham, NC 27709, USA; (L.Y.); (E.R.); (L.C.); (J.L.); (Y.Y.)
| |
Collapse
|
18
|
Optimization of the Bioactivation of Isoflavones in Soymilk by Lactic Acid Bacteria. Processes (Basel) 2021. [DOI: 10.3390/pr9060963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Soybeans and soy-based products contain isoflavones which can be used for nutraceutical and medical applications. In soybeans and in unfermented soy foods, isoflavones are normally present as glycosides. Isoflavone glycosides can be enzymatically converted to isoflavone aglycones, thus releasing the sugar molecule. The effective absorption of isoflavones in humans requires the bioconversion of isoflavone glycosides to isoflavone aglycones through the activity of the enzyme β-glucosidase. The objective was to assess the capacity of 42 bacterial strains (belonging to Lactobacillus, Streptococcus and Enterococcus) to produce β-glucosidase activity. The strain that showed the highest β-glucosidase activity (Lactobacillus plantarum 128/2) was then used for the optimization of the bioconversion of genistin and daidzin present in commercial soymilk to their aglycone forms genistein and daidzein. The contribution of process parameters (temperature, inoculum size, time) to the efficiency of such bioactivation was tested. Lactobacillus plantarum 128/2 was able to completely bioactivate soymilk isoflavones under the following conditions: 25 °C temperature, 2% inoculum size and 48 h process time. These results confirm the suitability of lactic acid bacteria for the bioactivation of isoflavones present in soymilk and provide an interesting candidate (L. plantarum 182/2) for food industries to perform this transformation.
Collapse
|
19
|
Čoma M, Lachová V, Mitrengová P, Gál P. Molecular Changes Underlying Genistein Treatment of Wound Healing: A Review. Curr Issues Mol Biol 2021; 43:127-141. [PMID: 34067763 PMCID: PMC8929053 DOI: 10.3390/cimb43010011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/12/2021] [Accepted: 05/16/2021] [Indexed: 02/07/2023] Open
Abstract
Estrogen deprivation is one of the major factors responsible for many age-related processes including poor wound healing in postmenopausal women. However, the reported side-effects of estrogen replacement therapy (ERT) have precluded broad clinical administration. Therefore, selective estrogen receptor modulators (SERMs) have been developed to overcome the detrimental side effects of ERT on breast and/or uterine tissues. The use of natural products isolated from plants (e.g., soy) may represent a promising source of biologically active compounds (e.g., genistein) as efficient alternatives to conventional treatment. Genistein as natural SERM has the unique ability to selectively act as agonist or antagonist in a tissue-specific manner, i.e., it improves skin repair and simultaneously exerts anti-cancer and chemopreventive properties. Hence, we present here a wound healing phases-based review of the most studied naturally occurring SERM.
Collapse
Affiliation(s)
- Matúš Čoma
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia;
- Department of Biomedical Research, East-Slovak Institute of Cardiovascular Diseases, Inc., 040 11 Košice, Slovakia
| | - Veronika Lachová
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University, 832 32 Bratislava, Slovakia; (V.L.); (P.M.)
| | - Petra Mitrengová
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University, 832 32 Bratislava, Slovakia; (V.L.); (P.M.)
| | - Peter Gál
- Department of Biomedical Research, East-Slovak Institute of Cardiovascular Diseases, Inc., 040 11 Košice, Slovakia
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University, 832 32 Bratislava, Slovakia; (V.L.); (P.M.)
- Laboratory of Cell Interactions, Faculty of Medicine, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia
- Prague Burn Center, Third Faculty of Medicine, Charles University, 100 34 Prague, Czech Republic
- Correspondence: ; Fax: +421-55-789-1613
| |
Collapse
|
20
|
Endocrine disrupting chemicals in the pathogenesis of hypospadias; developmental and toxicological perspectives. Curr Res Toxicol 2021; 2:179-191. [PMID: 34345859 PMCID: PMC8320613 DOI: 10.1016/j.crtox.2021.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022] Open
Abstract
Penis development is regulated by a tight balance of androgens and estrogens. EDCs that impact androgen/estrogen balance during development cause hypospadias. Cross-disciplinary collaborations are needed to define a mechanistic link.
Hypospadias is a defect in penile urethral closure that occurs in approximately 1/150 live male births in developed nations, making it one of the most common congenital abnormalities worldwide. Alarmingly, the frequency of hypospadias has increased rapidly over recent decades and is continuing to rise. Recent research reviewed herein suggests that the rise in hypospadias rates can be directly linked to our increasing exposure to endocrine disrupting chemicals (EDCs), especially those that affect estrogen and androgen signalling. Understanding the mechanistic links between endocrine disruptors and hypospadias requires toxicologists and developmental biologists to define exposures and biological impacts on penis development. In this review we examine recent insights from toxicological, developmental and epidemiological studies on the hormonal control of normal penis development and describe the rationale and evidence for EDC exposures that impact these pathways to cause hypospadias. Continued collaboration across these fields is imperative to understand the full impact of endocrine disrupting chemicals on the increasing rates of hypospadias.
Collapse
Key Words
- Androgen
- BBP, benzyl butyl phthalate
- BPA, bisphenol A
- DBP, Σdibutyl phthalate
- DDT, dichlorodiphenyltrichloroethane
- DEHP, Σdi-2(ethylhexyl)-phthalate
- DHT, dihydrotestosterone
- EDC, endocrine disrupting chemicals
- EMT, epithelial to mesenchymal transition
- ER, estrogen receptor
- Endocrine disruptors
- Estrogen
- GT, genital tubercle
- Hypospadias
- NOAEL, no observed adverse effect level
- PBB, polybrominated biphenyl
- PBDE, polybrominated diphenyl ether
- PCB, polychlorinated biphenyl
- PCE, tetrachloroethylene
- Penis
Collapse
|
21
|
Messina M, Mejia SB, Cassidy A, Duncan A, Kurzer M, Nagato C, Ronis M, Rowland I, Sievenpiper J, Barnes S. Neither soyfoods nor isoflavones warrant classification as endocrine disruptors: a technical review of the observational and clinical data. Crit Rev Food Sci Nutr 2021; 62:5824-5885. [PMID: 33775173 DOI: 10.1080/10408398.2021.1895054] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Soybeans are a rich source of isoflavones, which are classified as phytoestrogens. Despite numerous proposed benefits, isoflavones are often classified as endocrine disruptors, based primarily on animal studies. However, there are ample human data regarding the health effects of isoflavones. We conducted a technical review, systematically searching Medline, EMBASE, and the Cochrane Library (from inception through January 2021). We included clinical studies, observational studies, and systematic reviews and meta-analyses (SRMA) that examined the relationship between soy and/or isoflavone intake and endocrine-related endpoints. 417 reports (229 observational studies, 157 clinical studies and 32 SRMAs) met our eligibility criteria. The available evidence indicates that isoflavone intake does not adversely affect thyroid function. Adverse effects are also not seen on breast or endometrial tissue or estrogen levels in women, or testosterone or estrogen levels, or sperm or semen parameters in men. Although menstrual cycle length may be slightly increased, ovulation is not prevented. Limited insight could be gained about possible impacts of in utero isoflavone exposure, but the existing data are reassuring. Adverse effects of isoflavone intake were not identified in children, but limited research has been conducted. After extensive review, the evidence does not support classifying isoflavones as endocrine disruptors.
Collapse
Affiliation(s)
- Mark Messina
- Department of Nutrition, Loma Linda University, Loma Linda, California, USA
| | - Sonia Blanco Mejia
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada
| | - Aedin Cassidy
- Nutrition and Preventive Medicine, Queen's University, Belfast, Northern Ireland, UK
| | - Alison Duncan
- College of Biological Sciences, University of Guelph, Guelph, Canada
| | - Mindy Kurzer
- Department of Food Science and Nutrition, University of Minnesota, Minneapolis, Minnesota, USA
| | - Chisato Nagato
- Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Martin Ronis
- Health Sciences Center, Louisiana State University Health Sciences Center, Baton Rouge, New Orleans, USA
| | - Ian Rowland
- Human Nutrition, University of Reading, Reading, England, UK
| | | | - Stephen Barnes
- Department of Pharmacology and Toxicology, University of Alabama, Alabama, USA
| |
Collapse
|
22
|
Jang CH, Oh J, Lim JS, Kim HJ, Kim JS. Fermented Soy Products: Beneficial Potential in Neurodegenerative Diseases. Foods 2021; 10:foods10030636. [PMID: 33803607 PMCID: PMC8003083 DOI: 10.3390/foods10030636] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Fermented soybean products, such as cheonggukjang (Japanese natto), doenjang (soy paste), ganjang (soy sauce), and douchi, are widely consumed in East Asian countries and are major sources of bioactive compounds. The fermentation of cooked soybean with bacteria (Bacillus spp.) and fungi (Aspergillus spp. and Rhizopus spp.) produces a variety of novel compounds, most of which possess health benefits. This review is focused on the preventive and ameliorative potential of fermented soy foods and their components to manage neurodegenerative diseases, including Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
- Chan Ho Jang
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea;
| | - Jisun Oh
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Korea; (J.O.); (J.S.L.)
| | - Ji Sun Lim
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Korea; (J.O.); (J.S.L.)
| | - Hyo Jung Kim
- Department of Korean Medicine Development, National Institute for Korean Medicine Development, Gyeongsan 38540, Korea;
| | - Jong-Sang Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea;
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Korea; (J.O.); (J.S.L.)
- Department of Integrative Biotechnology, Kyungpook National University, Daegu 41566, Korea
- Correspondence: ; Tel.: +82-53-950-5752; Fax: +82-53-950-6750
| |
Collapse
|
23
|
B Arcanjo R, Richardson KA, Yang S, Patel S, Flaws JA, Nowak RA. Effects of Chronic Dietary Exposure to Phytoestrogen Genistein on Uterine Morphology in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1693-1704. [PMID: 33528250 DOI: 10.1021/acs.jafc.0c07456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Genistein is naturally occurring in plants and binds to estrogen receptors. Humans are mainly exposed through diet, but the use of supplements is increasing as genistein is claimed to promote health and alleviate menopausal symptoms. We analyzed diverse uterine features in adult mice chronically fed genistein for different times. The luminal epithelium height was increased in females treated with 500 and 1000 ppm at PND 95, and the width of the outer myometrium was increased in females treated with 1000 ppm at PND 65 compared to that in controls. An increase in proliferation was noted in the inner myometrium layer of animals exposed to 300 ppm genistein at PND 185 compared to that in controls. Luminal hyperplasia was greater in the 1000 ppm group at PND 65, 95, and 185, although not statistically different from control. These results indicate that genistein may exert estrogenic activity in the uterus, without persistent harm to the organ.
Collapse
Affiliation(s)
- Rachel B Arcanjo
- Department of Animal Sciences, University of Illinois, Urbana, Illinois 61801, United States
| | - Kadeem A Richardson
- Department of Animal Sciences, University of Illinois, Urbana, Illinois 61801, United States
| | - Shuhong Yang
- Department of Animal Sciences, University of Illinois, Urbana, Illinois 61801, United States
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Shreya Patel
- Department of Comparative Biosciences, University of Illinois, Urbana, Illinois 61820, United States
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois, Urbana, Illinois 61820, United States
| | - Romana A Nowak
- Department of Animal Sciences, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
24
|
Yuseran H, Hartoyo E, Nurseta T, Kalim H. Genistein inhibits the proliferation of human choriocarcinoma cells via the downregulation of estrogen receptor-α phosphorylation at serine 118. CLINICAL NUTRITION OPEN SCIENCE 2021. [DOI: 10.1016/j.yclnex.2020.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
25
|
Protection of Fatty Liver by the Intake of Fermented Soybean Paste, Miso, and Its Pre-Fermented Mixture. Foods 2021; 10:foods10020291. [PMID: 33535476 PMCID: PMC7912758 DOI: 10.3390/foods10020291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 11/16/2022] Open
Abstract
Soybeans and fermented soy-derived foodstuffs contain many functional components and demonstrate various beneficial effects. In this report, we demonstrate the anti-fatty liver effect of miso, a traditional fermented product made from soybeans and rice molded in Aspergillus oryzae and forming a common part of the Japanese diet. After acclimation for 2 weeks, male and female C57BL/6J mice were fed with a normal diet (ND), a high-fat diet (HFD), a HFD containing 5% miso (HFD+M), or a HFD containing 5% pre-fermented miso (HFD+PFM) for 20 weeks. Although mice in the HFD group developed typical fatty liver, the consumption of miso or PFM significantly ameliorated the progression of fatty liver in female mice. The liver weight and the average nonalcoholic fatty liver disease activity score (NAS) were significantly reduced in the HFD+M and HFD+PFM groups. In addition, leptin and resistin levels in the serum were decreased in the HFD+M and HFD+PFM groups. The progression of fatty liver was also prevented by the consumption of miso or PFM in male mice, although there were no decreases in NAS. Therefore, miso appears to be a potential food to prevent lifestyle-related diseases such as metabolic syndrome.
Collapse
|
26
|
Das G, Paramithiotis S, Sundaram Sivamaruthi B, Wijaya CH, Suharta S, Sanlier N, Shin HS, Patra JK. Traditional fermented foods with anti-aging effect: A concentric review. Food Res Int 2020; 134:109269. [PMID: 32517898 DOI: 10.1016/j.foodres.2020.109269] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 04/08/2020] [Accepted: 04/20/2020] [Indexed: 12/22/2022]
Abstract
Fermentation has been applied since antiquity as a way to preserve foodstuff or as a necessary step in the production of a variety of products. The research was initially focused on accurate description of production procedure and identification of parameters that may affect the composition and dynamics of the developing micro-communities, since the major aim was standardization and commercial exploitation of the products. Soon it was realized that consumption of these products was associated with an array of health benefits, such as anti-hypertensive, anti-inflammatory, anti-diabetic, anti-carcinogenic and anti-allergenic activities. These were credited to the microorganisms present in the fermented products as well as their metabolic activities and the bio-transformations that took place during the fermentation process. Aging has been defined as a gradual decline in the physiological function and concomitantly homeostasis, which is experienced by all living beings over time, leading inevitably to age-associated injuries, diseases, and finally death. Research has focused on effective strategies to delay this process and thus increase both lifespan and well-being. Fermented food products seem to be a promising alternative due to the immunomodulatory effect of microorganisms and elevated amounts of bioactive compounds. Indeed, a series of anti-aging related benefits have been reported, some of which have been attributed to specific compounds such as genistein and daidzein in soybeans, while others are yet to be discovered. The present article aims to collect and critically discuss all available literature regarding the anti-aging properties of fermented food products.
Collapse
Affiliation(s)
- Gitishree Das
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Goyangsi, South Korea
| | - Spiros Paramithiotis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Bhagavathi Sundaram Sivamaruthi
- Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Christofora Hanny Wijaya
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, Bogor Agricultural University, Bogor, Indonesia
| | - Sigit Suharta
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, Bogor Agricultural University, Bogor, Indonesia
| | - Nevin Sanlier
- Ankara Medipol University, School of Health Science, Department of Nutrition and Dietetics, Ankara, Turkey
| | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Goyang, South Korea
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Goyangsi, South Korea.
| |
Collapse
|
27
|
Vo TLT, Yang NC, Yang SE, Chen CL, Wu CH, Song TY. Effects of Cajanus cajan (L.) millsp. roots extracts on the antioxidant and anti-inflammatory activities. CHINESE J PHYSIOL 2020; 63:137-148. [PMID: 32594067 DOI: 10.4103/cjp.cjp_88_19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Cajanus cajan (L.) Millsp., also named pigeon pea, is widely grown in the tropics and the subtropics. C. cajan roots (CR) and ribs stewed in hot water have been used as a traditional medicine in various cultures to treat diabetes. The purpose of this study was to determine the functional components of hot water (WCR) and 50%, 95% ethanol extracts (EECR50 and EECR95) from CR, then evaluating their antioxidant and anti-inflammatory effects. The results indicated that EECR95 had higher polyphenol, especially the isoflavones (e.x. daidzein, genistein, and cajanol) than those of the other extracts, and it also exhibited the most potent anti-oxidative activities by in vitro antioxidant assay. In the lipopolysaccharide-stimulated RAW 264.7 cells, we found that EECR95 significantly decreased intracellular reactive oxygen species and significantly enhanced the activities of superoxide dismutase and catalase. Mechanism studies showed that EECR95 mainly activated nuclear factor (NF) erythroid 2-related factor 2/antioxidant protein heme oxygenase-1 and inhibited nuclear factor kappa B (NF-κB) signaling pathway, and thus exhibited antioxidant and anti-inflammatory effects. Overall, this study suggests that CR may have the potential to be developed as a biomedical material and that genistein, which has relatively high uptakes (3.44% for the pure compound and 1.73% for endogenous genistein of EECR95) at 24 h of incubation with RAW 264.7 cells, could be the main active component of CR.
Collapse
Affiliation(s)
- Thuy-Lan Thi Vo
- Department of Food Science and Biotechnology, College of Biotechnology and Bioresources, Da-Yeh University, Changhua, Taiwan
| | - Nae-Cherng Yang
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - Shu-Er Yang
- Department of Beauty Science and Graduate Institute of Beauty Science Technology, Chienkuo Technology University, Changhua, Taiwan
| | - Chien-Lin Chen
- Department of Beauty Science and Graduate Institute of Beauty Science Technology, Chienkuo Technology University, Changhua, Taiwan
| | - Chi-Hao Wu
- Undergraduate Program of Nutrition Science, School of Life Sciences, National Taiwan Normal University, Taipei, Taiwan, Taiwan
| | - Tuzz-Ying Song
- Department of Food Science and Biotechnology, College of Biotechnology and Bioresources, Da-Yeh University, Changhua, Taiwan
| |
Collapse
|
28
|
Vann K, Techaparin A, Apiraksakorn J. Beans germination as a potential tool for GABA-enriched tofu production. Journal of Food Science and Technology 2020; 57:3947-3954. [PMID: 33071316 DOI: 10.1007/s13197-020-04423-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/25/2020] [Accepted: 04/03/2020] [Indexed: 11/28/2022]
Abstract
Gamma-aminobutyric acid (GABA) is an inhibitory neurotransmitter that can be found in many plants, especially beans. Beans are normally used for producing vegetarian foods, such as bean milks, bean sprouts, and tofu. Thus, the aims of this study were to determine the GABA content in various germinated beans (yellow beans, black beans, green beans, and red beans) as well in tofu products made from different types of germinated beans. The results showed that soaking and germination significantly contributed to an increase in GABA production. The GABA content increased to a maximum value of 0.89, 3.09, 3.93 and 4.78 mg/g in yellow beans, red beans, green beans, and black beans, respectively. Moreover, due to the bean characteristics, green beans, red beans, and black beans were collected at 6 h after germination while yellow beans were collected at 0 h after germination. As a result, only yellow bean sprouts could be used for tofu production since they are composed of a high amount of proteins and a low amount of carbohydrates. The GABA content in tofu was 0.55 mg/g, which was lower than that in soybean milk (0.65 mg/g), likely due to the filtration and pressing processes of tofu production.
Collapse
Affiliation(s)
- Kimroeun Vann
- Graduate School, Khon Kaen University, Khon Kaen, Thailand.,Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, Thailand
| | - Atiya Techaparin
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, Thailand
| | - Jirawan Apiraksakorn
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, Thailand.,Fermentation Research Center for Value Added Agricultural Products (FerVAAP), Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
29
|
Islam A, Islam MS, Uddin MN, Hasan MMI, Akanda MR. The potential health benefits of the isoflavone glycoside genistin. Arch Pharm Res 2020; 43:395-408. [PMID: 32253713 DOI: 10.1007/s12272-020-01233-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 04/03/2020] [Indexed: 12/11/2022]
Abstract
Genistin is a type of isoflavone glycoside and has a broad range of health benefits. It is found in a variety of dietary plants, such as soybean, kudzu (Japanese arrowroot), and other plant-based products. Genistin has been described to have several beneficial health impacts, such as decreasing the risk of osteoporosis and post-menopausal symptoms, as well as anti-cancer, anti-oxidative, cardioprotective, anti-apoptotic, neuroprotective, hepatoprotective, and anti-microbial activities. It may also assist individuals with metabolic syndrome. This review summarizes some of the molecular impacts and prospective roles of genistin in maintaining and treatment of health disorders. The review could help to develop novel genistin medicine with significant health benefits for application in the nutraceutical and pharmaceutical fields.
Collapse
Affiliation(s)
- Anowarul Islam
- College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, South Korea
| | - Md Sadikul Islam
- College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, South Korea
| | - Md Nazim Uddin
- Department of Livestock Production and Management, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Mir Md Iqbal Hasan
- Department of Physiology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Md Rashedunnabi Akanda
- Department of Pharmacology and Toxicology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh.
| |
Collapse
|
30
|
Pejčić T, Tosti T, Džamić Z, Gašić U, Vuksanović A, Dolićanin Z, Tešić Ž. The Polyphenols as Potential Agents in Prevention and Therapy of Prostate Diseases. Molecules 2019; 24:molecules24213982. [PMID: 31689909 PMCID: PMC6864651 DOI: 10.3390/molecules24213982] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 01/28/2023] Open
Abstract
In recent years, the progress of science and medicine greatly has influenced human life span and health. However, lifestyle habits, like physical activity, smoking cessation, moderate alcohol consumption, diet, and maintaining a normal body weight represent measures that greatly reduce the risk of various diseases. The type of diet is very important for disease development. Numerous epidemiological clinical data confirm that longevity is linked to predominantly plant-based diets and it is related to a long life; whereas the western diet, rich in red meat and fats, increases the risk of oxidative stress and thus the risk of developing various diseases and pre-aging. This review is focused on the bioavailability of polyphenols and the use of polyphenols for the prevention of prostate diseases. Special focus in this paper is placed on the isoflavonoids and flavan-3-ols, subgroups of polyphenols, and their protective effects against the development of prostate diseases.
Collapse
Affiliation(s)
- Tomislav Pejčić
- Clinic of Urology, Clinical Centre of Serbia, 11060 Belgrade, Serbia.
- Faculty of Medicine, University of Belgrade; Bulevar Despota Stefana 142, 11060 Belgrade, Serbia.
| | - Tomislav Tosti
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, P.O. Box 51, 11158 Belgrade, Serbia.
| | - Zoran Džamić
- Clinic of Urology, Clinical Centre of Serbia, 11060 Belgrade, Serbia.
- Faculty of Medicine, University of Belgrade; Bulevar Despota Stefana 142, 11060 Belgrade, Serbia.
| | - Uroš Gašić
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
| | - Aleksandar Vuksanović
- Clinic of Urology, Clinical Centre of Serbia, 11060 Belgrade, Serbia.
- Faculty of Medicine, University of Belgrade; Bulevar Despota Stefana 142, 11060 Belgrade, Serbia.
| | - Zana Dolićanin
- Department for Biomedical Sciences, State University at Novi Pazar, 36300 Novi Pazar, Serbia.
| | - Živoslav Tešić
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, P.O. Box 51, 11158 Belgrade, Serbia.
| |
Collapse
|
31
|
Zhang Q, Cao WS, Wang XQ, Zhang M, Lu XM, Chen JQ, Chen Y, Ge MM, Zhong CY, Han HY. Genistein inhibits nasopharyngeal cancer stem cells through sonic hedgehog signaling. Phytother Res 2019; 33:2783-2791. [PMID: 31342620 DOI: 10.1002/ptr.6464] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 07/07/2019] [Accepted: 07/09/2019] [Indexed: 01/03/2025]
Abstract
Genistein, a soy derived isoflavanoid compound, exerts anticancer effects in various cancers. Nasopharyngeal cancer stem cells (NCSCs) are a small subpopulation of cancer cells which are responsible for initiation, progression, metastasis, and recurrence of nasopharyngeal cancer. The present study aimed to investigate the suppressive effects of genistein on NCSCs and its underlying mechanism. NCSCs were enriched from human nasopharyngeal cancer cell lines CNE2 and HONE1 through tumorsphere-forming assay. It was shown that genistein inhibited the tumorsphere formation capacity, decreased the number of EpCAM+ cells, downregulated the expression of NCSCs markers, suppressed cell proliferation, and induced apoptosis of NCSCs. Genistein suppressed the activity of Sonic hedgehog (SHH) signaling, which was important for the maintenance of NCSCs, while activation of SHH signaling by purmorphamine diminished the inhibitory effects of genistein on NCSCs. Our data suggested that genistein inhibited NCSCs through the suppression of SHH signaling. These findings support the use of genistein for targeting NCSCs.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wan-Shuang Cao
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xue-Qi Wang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Min Zhang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xiao-Min Lu
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jia-Qi Chen
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yue Chen
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Miao-Miao Ge
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Cai-Yun Zhong
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hong-Yu Han
- Department of Clinical Nutrition, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
32
|
Genistein upregulates cyclin D1 and CDK4 expression and promotes the proliferation of ovarian cancer OVCAR-5 cells. Clin Chim Acta 2019; 512:100-105. [PMID: 31465770 DOI: 10.1016/j.cca.2019.08.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 01/20/2023]
Abstract
BACKGROUND Ovarian epithelial cancer is the leading cause of deaths associated with gynecologic malignancies. Genistein represents a major type of phytoestrogens widely found in foods and herbal medicines. Although multiple epidemiological studies indicated that the consumption of genistein or other isoflavones is associated with a decreased ovarian cancer risk, the cellular effects and underlying mechanisms are not fully understood. This study focuses on the effect of genistein on the proliferation and cell cycle regulation of ovarian cancer cells. METHODS Ovarian cancer OVCAR-5 cells were treated with genistein in an estrogen-free condition. Cell counting and MTS assays were performed to determine the cell proliferation alterations. Real-time PCR and Western blotting were conducted to examine the expression changes in key cell cycle regulators. RESULTS Genistein significantly promoted the proliferation and the viability of OVCAR-5 cells. Upon genistein treatment, cellular mRNA and protein expression levels of PCNA, Cyclin D1 and CDK4 were increased, but those of p21 and p27 were decreased. CONCLUSION In contrary to results of many previous studies, we observed that genistein was able to upregulate the proliferation and G1-S transition of ovarian cancer OVCAR-5 cells. The discrepancy could be caused by diverged experimental conditions and/or different ER expression patterns of cell lines. The findings may provide basic information for in-depth analysis on the role(s) and mechanisms by which genistein confers its effect on ovarian cancer progression.
Collapse
|
33
|
Dimidi E, Cox SR, Rossi M, Whelan K. Fermented Foods: Definitions and Characteristics, Impact on the Gut Microbiota and Effects on Gastrointestinal Health and Disease. Nutrients 2019; 11:nu11081806. [PMID: 31387262 PMCID: PMC6723656 DOI: 10.3390/nu11081806] [Citation(s) in RCA: 325] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 12/16/2022] Open
Abstract
Fermented foods are defined as foods or beverages produced through controlled microbial growth, and the conversion of food components through enzymatic action. In recent years, fermented foods have undergone a surge in popularity, mainly due to their proposed health benefits. The aim of this review is to define and characterise common fermented foods (kefir, kombucha, sauerkraut, tempeh, natto, miso, kimchi, sourdough bread), their mechanisms of action (including impact on the microbiota), and the evidence for effects on gastrointestinal health and disease in humans. Putative mechanisms for the impact of fermented foods on health include the potential probiotic effect of their constituent microorganisms, the fermentation-derived production of bioactive peptides, biogenic amines, and conversion of phenolic compounds to biologically active compounds, as well as the reduction of anti-nutrients. Fermented foods that have been tested in at least one randomised controlled trial (RCT) for their gastrointestinal effects were kefir, sauerkraut, natto, and sourdough bread. Despite extensive in vitro studies, there are no RCTs investigating the impact of kombucha, miso, kimchi or tempeh in gastrointestinal health. The most widely investigated fermented food is kefir, with evidence from at least one RCT suggesting beneficial effects in both lactose malabsorption and Helicobacter pylori eradication. In summary, there is very limited clinical evidence for the effectiveness of most fermented foods in gastrointestinal health and disease. Given the convincing in vitro findings, clinical high-quality trials investigating the health benefits of fermented foods are warranted.
Collapse
Affiliation(s)
- Eirini Dimidi
- King's College London, Department of Nutritional Sciences, London SE1 9NH, UK
| | - Selina Rose Cox
- King's College London, Department of Nutritional Sciences, London SE1 9NH, UK
| | - Megan Rossi
- King's College London, Department of Nutritional Sciences, London SE1 9NH, UK
| | - Kevin Whelan
- King's College London, Department of Nutritional Sciences, London SE1 9NH, UK.
| |
Collapse
|
34
|
Thambirajah AA, Koide EM, Imbery JJ, Helbing CC. Contaminant and Environmental Influences on Thyroid Hormone Action in Amphibian Metamorphosis. Front Endocrinol (Lausanne) 2019; 10:276. [PMID: 31156547 PMCID: PMC6530347 DOI: 10.3389/fendo.2019.00276] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/16/2019] [Indexed: 12/31/2022] Open
Abstract
Aquatic and terrestrial environments are increasingly contaminated by anthropogenic sources that include pharmaceuticals, personal care products, and industrial and agricultural chemicals (i. e., pesticides). Many of these substances have the potential to disrupt endocrine function, yet their effect on thyroid hormone (TH) action has garnered relatively little attention. Anuran postembryonic metamorphosis is strictly dependent on TH and perturbation of this process can serve as a sensitive barometer for the detection and mechanistic elucidation of TH disrupting activities of chemical contaminants and their complex mixtures. The ecological threats posed by these contaminants are further exacerbated by changing environmental conditions such as temperature, photoperiod, pond drying, food restriction, and ultraviolet radiation. We review the current knowledge of several chemical and environmental factors that disrupt TH-dependent metamorphosis in amphibian tadpoles as assessed by morphological, thyroid histology, behavioral, and molecular endpoints. Although the molecular mechanisms for TH disruption have yet to be determined for many chemical and environmental factors, several affect TH synthesis, transport or metabolism with subsequent downstream effects. As molecular dysfunction typically precedes phenotypic or histological pathologies, sensitive assays that detect changes in transcript, protein, or metabolite abundance are indispensable for the timely detection of TH disruption. The emergence and application of 'omics techniques-genomics, transcriptomics, proteomics, metabolomics, and epigenomics-on metamorphosing tadpoles are powerful emerging assets for the rapid, proxy assessment of toxicant or environmental damage for all vertebrates including humans. Moreover, these highly informative 'omics techniques will complement morphological, behavioral, and histological assessments, thereby providing a comprehensive understanding of how TH-dependent signal disruption is propagated by environmental contaminants and factors.
Collapse
Affiliation(s)
| | | | | | - Caren C. Helbing
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
35
|
Zhao H, Song X, Zhang Y, Sheng X. Molecular interaction between MeOH and genistein during soy extraction. RSC Adv 2019; 9:39170-39179. [PMID: 35540639 PMCID: PMC9076023 DOI: 10.1039/c9ra05976h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/22/2019] [Indexed: 11/23/2022] Open
Abstract
Genistein has received great attention due to its possible anti-oxidant properties. The interaction between genistein and the extraction solvent helps in understanding the extraction efficiency. Hydrogen bonding plays a crucial role in liquid systems. Density functional theory quantum chemical computations in both gas phase and solution were performed to investigate the molecular interaction between genistein and methanol. All the resulting complexes (MeOH : genistein = 1 : 1, 2 : 1, 3 : 1, 6 : 1) were studied using the B3LYP-D3 computational level and the cc-pVTZ basis set. Binding energies demonstrate that more MeOH molecules surrounding genistein could stabilize the system more. Geometry optimizations show that there are strong O–H⋯O interactions between MeOH and genistein. The electron density and the corresponding Laplacian of charge density at bond critical points were also calculated using AIM theory, and the results are in line with the structural and energetic analysis of the studied system. Moreover, energy decomposition analysis shows that the exchange energy term has the largest contribution to the attraction interaction energy as compared with other energy terms. Meanwhile, this study shows that the MeOH–genistein system is more stable under basic conditions. This study could help increase the efficiency of extraction. The interaction between genistein and extraction solvent helps in understanding the extraction efficiency.![]()
Collapse
Affiliation(s)
- Hailiang Zhao
- Province Key Laboratory of Cereal Resource Transformation and Utilization
- Henan University of Technology
- 450001 Zhengzhou
- China
- College of Chemistry, Chemical and Environmental Engineering
| | - Xue Song
- College of Chemistry, Chemical and Environmental Engineering
- Henan University of Technology
- 450001 Zhengzhou
- China
| | - Yingming Zhang
- College of Chemistry, Chemical and Environmental Engineering
- Henan University of Technology
- 450001 Zhengzhou
- China
| | - Xia Sheng
- College of Chemistry, Chemical and Environmental Engineering
- Henan University of Technology
- 450001 Zhengzhou
- China
| |
Collapse
|
36
|
Sahin I, Bilir B, Ali S, Sahin K, Kucuk O. Soy Isoflavones in Integrative Oncology: Increased Efficacy and Decreased Toxicity of Cancer Therapy. Integr Cancer Ther 2019; 18:1534735419835310. [PMID: 30897972 PMCID: PMC6431760 DOI: 10.1177/1534735419835310] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/07/2019] [Indexed: 12/19/2022] Open
Abstract
Soy consumption in human diet has been linked to decreased incidence of a variety of cancers, suggesting a potential role of soy products in cancer prevention and control. Furthermore, a substantial body of evidence in the literature suggests that soy supplementation may improve the efficacy and prevent the adverse effects of cancer chemotherapy and radiation therapy. Isoflavones constitute the predominant anticancer bioactive compounds in soy. Genistein, which is the most abundant and active isoflavone in soy, has a multitude of effects on cancer cells, including inhibition of NF-κB activation and DNA methylation, enhancement of histone acetylation, inhibition of cell growth and metastasis, and antiangiogenic, anti-inflammatory, and anti-oxidant effects. Isoflavones are orally bioavailable, easily metabolized, and usually considered safe. In this article, we review in vitro and in vivo evidence as well as the results of clinical and epidemiological studies on the effects of soy isoflavones, with a focus on sensitization of cancer cells to chemotherapy and radiation while at the same time protecting normal cells from the harmful effects of these treatments.
Collapse
Affiliation(s)
- Ilyas Sahin
- The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Birdal Bilir
- Emory University School of Medicine, Atlanta, GA, USA
- Emory University, Atlanta, GA, USA
| | | | | | - Omer Kucuk
- Emory University School of Medicine, Atlanta, GA, USA
- Emory University, Atlanta, GA, USA
| |
Collapse
|
37
|
Yoshiara LY, Madeira TB, de Camargo AC, Shahidi F, Ida EI. Multistep Optimization of β-Glucosidase Extraction from Germinated Soybeans ( Glycine max L. Merril) and Recovery of Isoflavone Aglycones. Foods 2018; 7:E110. [PMID: 30011817 PMCID: PMC6068559 DOI: 10.3390/foods7070110] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 12/13/2022] Open
Abstract
Epicotyls from germinated soybeans (EGS) have great potential as sources of endogenous β-glucosidase. Furthermore, this enzyme may improve the conversion of isoflavones into their corresponding aglycones. β-Glucosidase may also increase the release of aglycones from the cell wall of the plant materials. Therefore, the aim of this work was to optimize both the extraction of β-glucosidase from EGS and to further examine its application in defatted soybean cotyledon to improve the recovery of aglycones, which were evaluated by ultra-high performance liquid chromatography (UHPLC). A multistep optimization was carried out and the effects of temperature and pH were investigated by applying a central composite design. The linear effect of pH and the quadratic effect of pH and temperature were significant for the extraction of β-glucosidase and recovery aglycones, respectively. Optimum extraction of β-glucosidase from EGS occurred at 30 °C and pH 5.0. Furthermore, the maximum recovery of aglycones (98.7%), which occurred at 35 °C and pH 7.0⁻7.6 during 144 h of germination, increased 8.5 times with respect to the lowest concentration. The higher bioaccessibility of aglycones when compared with their conjugated counterparts is well substantiated. Therefore, the data provided in this contribution may be useful for enhancing the benefits of soybean, their products, and/or their processing by-products.
Collapse
Affiliation(s)
- Luciane Yuri Yoshiara
- Food Science Department, Londrina State University, Rod. Celso Garcia, KM 380, 86051-990 Londrina, PR, Brazil.
| | - Tiago Bervelieri Madeira
- Chemistry Department, Londrina State University, Rod. Celso Garcia, KM 380, 86051-990 Londrina, PR, Brazil.
| | - Adriano Costa de Camargo
- Food Science Department, Londrina State University, Rod. Celso Garcia, KM 380, 86051-990 Londrina, PR, Brazil.
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| | - Elza Iouko Ida
- Food Science Department, Londrina State University, Rod. Celso Garcia, KM 380, 86051-990 Londrina, PR, Brazil.
| |
Collapse
|
38
|
McCubrey JA, Abrams SL, Lertpiriyapong K, Cocco L, Ratti S, Martelli AM, Candido S, Libra M, Murata RM, Rosalen PL, Lombardi P, Montalto G, Cervello M, Gizak A, Rakus D, Steelman LS. Effects of berberine, curcumin, resveratrol alone and in combination with chemotherapeutic drugs and signal transduction inhibitors on cancer cells-Power of nutraceuticals. Adv Biol Regul 2018; 67:190-211. [PMID: 28988970 DOI: 10.1016/j.jbior.2017.09.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 09/29/2017] [Indexed: 06/07/2023]
Abstract
Over the past fifty years, society has become aware of the importance of a healthy diet in terms of human fitness and longevity. More recently, the concept of the beneficial effects of certain components of our diet and other compounds, that are consumed often by different cultures in various parts of the world, has become apparent. These "healthy" components of our diet are often referred to as nutraceuticals and they can prevent/suppress: aging, bacterial, fungal and viral infections, diabetes, inflammation, metabolic disorders and cardiovascular diseases and have other health-enhancing effects. Moreover, they are now often being investigated because of their anti-cancer properties/potentials. Understanding the effects of various natural products on cancer cells may enhance their usage as anti-proliferative agents which may be beneficial for many health problems. In this manuscript, we discuss and demonstrate how certain nutraceuticals may enhance other anti-cancer drugs to suppress proliferation of cancer cells.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA.
| | - Stephen L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine at East Carolina University, USA; Center of Comparative Medicine and Pathology, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medicine and the Hospital for Special Surgery, New York City, New York, USA
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences - Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences - Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Ramiro M Murata
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA; Department of Foundational Sciences, School of Dental Medicine, East Carolina University, USA
| | - Pedro L Rosalen
- Department of Physiological Sciences, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil
| | - Paolo Lombardi
- Naxospharma, Via Giuseppe Di Vittorio 70, Novate Milanese 20026, Italy
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy; Consiglio Nazionale Delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale Delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Agnieszka Gizak
- Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| |
Collapse
|
39
|
Yamaguchi Y, Usuki S, Kanai Y, Yamatoya K, Suzuki N, Katsumata KI, Terashima C, Suzuki T, Fujishima A, Sakai H, Kudo A, Nakata K. Selective Inactivation of Bacteriophage in the Presence of Bacteria by Use of Ground Rh-Doped SrTiO 3 Photocatalyst and Visible Light. ACS APPLIED MATERIALS & INTERFACES 2017; 9:31393-31400. [PMID: 28872820 DOI: 10.1021/acsami.7b07786] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Bacteriophage (denoted as phage) infection in the bacterial fermentation industry is a major problem, leading to the loss of fermented products such as alcohol and lactic acid. Currently, the prevention of phage infection is limited to biological approaches, which are difficult to apply in an industrial setting. Herein, we report an alternative chemical approach using ground Rh-doped SrTiO3 (denoted as g-STO:Rh) as a visible-light-driven photocatalyst. The g-STO:Rh showed selective inactivation of phage without bactericidal activity when irradiated with visible light (λ > 440 nm). After inactivation, the color of g-STO:Rh changed from gray to purple, suggesting that the Rh valence state partially changed from 3+ to 4+ induced by photocatalysis, as confirmed by diffuse reflectance spectroscopy. To study the effect of the Rh4+ ion on phage inactivation under visible-light irradiation, the survival rate of phage for g-STO:Rh was compared to that for ground Rh,Sb-codoped SrTiO3 (denoted as g-STO:Rh,Sb), where the change of Rh valence state from 3+ to 4+ is almost suppressed under visible-light irradiation due to charge compensation by the Sb5+ ion. Only g-STO:Rh effectively inactivated phage, which indicated that Rh4+ ion induced by photocatalysis particularly contributed to phage inactivation under visible-light irradiation. These results suggested that g-STO:Rh has potential as an antiphage material in bacterial fermentation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Akihiko Kudo
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science , 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | | |
Collapse
|
40
|
DNA Methylation Targets Influenced by Bisphenol A and/or Genistein Are Associated with Survival Outcomes in Breast Cancer Patients. Genes (Basel) 2017; 8:genes8050144. [PMID: 28505145 PMCID: PMC5448018 DOI: 10.3390/genes8050144] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/25/2017] [Accepted: 05/09/2017] [Indexed: 12/12/2022] Open
Abstract
Early postnatal exposures to Bisphenol A (BPA) and genistein (GEN) have been reported to predispose for and against mammary cancer, respectively, in adult rats. Since the changes in cancer susceptibility occurs in the absence of the original chemical exposure, we have investigated the potential of epigenetics to account for these changes. DNA methylation studies reveal that prepubertal BPA exposure alters signaling pathways that contribute to carcinogenesis. Prepubertal exposure to GEN and BPA + GEN revealed pathways involved in maintenance of cellular function, indicating that the presence of GEN either reduces or counters some of the alterations caused by the carcinogenic properties of BPA. We subsequently evaluated the potential of epigenetic changes in the rat mammary tissues to predict survival in breast cancer patients via the Cancer Genomic Atlas (TCGA). We identified 12 genes that showed strong predictive values for long-term survival in estrogen receptor positive patients. Importantly, two genes associated with improved long term survival, HPSE and RPS9, were identified to be hypomethylated in mammary glands of rats exposed prepuberally to GEN or to GEN + BPA respectively, reinforcing the suggested cancer suppressive properties of GEN.
Collapse
|
41
|
Singh H, Singh S, Srivastava A, Tandon P, Bharti P, Kumar S, Dev K, Maurya R. Study of hydrogen-bonding, vibrational dynamics and structure-activity relationship of genistein using spectroscopic techniques coupled with DFT. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.10.077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Genistein modulates MMP-26 and estrogen receptor expression in endometrial cancer cells. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2016. [DOI: 10.1016/j.jtcms.2016.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
43
|
Nicolopoulou-Stamati P, Maipas S, Kotampasi C, Stamatis P, Hens L. Chemical Pesticides and Human Health: The Urgent Need for a New Concept in Agriculture. Front Public Health 2016; 4:148. [PMID: 27486573 PMCID: PMC4947579 DOI: 10.3389/fpubh.2016.00148] [Citation(s) in RCA: 561] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 07/04/2016] [Indexed: 11/24/2022] Open
Abstract
The industrialization of the agricultural sector has increased the chemical burden on natural ecosystems. Pesticides are agrochemicals used in agricultural lands, public health programs, and urban green areas in order to protect plants and humans from various diseases. However, due to their known ability to cause a large number of negative health and environmental effects, their side effects can be an important environmental health risk factor. The urgent need for a more sustainable and ecological approach has produced many innovative ideas, among them agriculture reforms and food production implementing sustainable practice evolving to food sovereignty. It is more obvious than ever that the society needs the implementation of a new agricultural concept regarding food production, which is safer for man and the environment, and to this end, steps such as the declaration of Nyéléni have been taken.
Collapse
Affiliation(s)
| | - Sotirios Maipas
- Department of Pathology, School of Medicine, National and Kapodistrian University of Athens , Athens , Greece
| | - Chrysanthi Kotampasi
- Department of Pathology, School of Medicine, National and Kapodistrian University of Athens , Athens , Greece
| | - Panagiotis Stamatis
- Department of Pathology, School of Medicine, National and Kapodistrian University of Athens , Athens , Greece
| | - Luc Hens
- Vlaamse Instelling voor Technologisch Onderzoek (VITO) , Mol , Belgium
| |
Collapse
|
44
|
Microbiological characteristics of fresh tofu produced in small industrial scale and identification of specific spoiling microorganisms (SSO). Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.02.057] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Russo M, Russo GL, Daglia M, Kasi PD, Ravi S, Nabavi SF, Nabavi SM. Understanding genistein in cancer: The "good" and the "bad" effects: A review. Food Chem 2016; 196:589-600. [PMID: 26593532 DOI: 10.1016/j.foodchem.2015.09.085] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/29/2015] [Accepted: 09/23/2015] [Indexed: 02/07/2023]
Abstract
Nowadays, diet and specific dietary supplements are seen as potential adjuvants to prevent different chronic diseases, including cancer, or to ameliorate pharmacological therapies. Soybean is one of the most important food components in Asian diet. A plethora of evidence supports the in vitro and in vivo anticancer effects of genistein, a soybean isoflavone. Major tumors affected by genistein here reviewed are breast, prostate, colon, liver, ovarian, bladder, gastric, brain cancers, neuroblastoma and chronic lymphocytic leukemia. However, it is not always clear if and when genistein is beneficial against tumors (the "good" effects), or the opposite, when the same molecule exerts adverse effects (the "bad" effects), favouring cancer cell proliferation. This review will critically evaluate this concept in the light of the different molecular mechanisms of genistein which occur when the molecule is administered at low doses (chemopreventive effects), or at high doses (pharmacological effects).
Collapse
Affiliation(s)
- Maria Russo
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy.
| | - Gian Luigi Russo
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, 27100 Pavia, Italy
| | - Pandima Devi Kasi
- Department of Biotechnology, Alagappa University, Karaikudi 630 004, Tamil Nadu, India.
| | - Sakthivel Ravi
- Department of Biotechnology, Alagappa University, Karaikudi 630 004, Tamil Nadu, India
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
46
|
TAVARES BO, SILVA EPD, SILVA VSND, SOARES JÚNIOR MS, IDA EI, DAMIANI C. Stability of gluten free sweet biscuit elaborated with rice bran, broken rice and okara. FOOD SCIENCE AND TECHNOLOGY 2016. [DOI: 10.1590/1678-457x.0083] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Role of dietary flavonoids in amelioration of sugar induced cataractogenesis. Arch Biochem Biophys 2016; 593:1-11. [DOI: 10.1016/j.abb.2016.01.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/21/2016] [Accepted: 01/27/2016] [Indexed: 01/28/2023]
|
48
|
Nicolopoulou-Stamati P, Maipas S, Kotampasi C, Stamatis P, Hens L. Chemical Pesticides and Human Health: The Urgent Need for a New Concept in Agriculture. Front Public Health 2016. [PMID: 27486573 DOI: 10.3389/fpubh.2016.00148/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2023] Open
Abstract
The industrialization of the agricultural sector has increased the chemical burden on natural ecosystems. Pesticides are agrochemicals used in agricultural lands, public health programs, and urban green areas in order to protect plants and humans from various diseases. However, due to their known ability to cause a large number of negative health and environmental effects, their side effects can be an important environmental health risk factor. The urgent need for a more sustainable and ecological approach has produced many innovative ideas, among them agriculture reforms and food production implementing sustainable practice evolving to food sovereignty. It is more obvious than ever that the society needs the implementation of a new agricultural concept regarding food production, which is safer for man and the environment, and to this end, steps such as the declaration of Nyéléni have been taken.
Collapse
Affiliation(s)
| | - Sotirios Maipas
- Department of Pathology, School of Medicine, National and Kapodistrian University of Athens , Athens , Greece
| | - Chrysanthi Kotampasi
- Department of Pathology, School of Medicine, National and Kapodistrian University of Athens , Athens , Greece
| | - Panagiotis Stamatis
- Department of Pathology, School of Medicine, National and Kapodistrian University of Athens , Athens , Greece
| | - Luc Hens
- Vlaamse Instelling voor Technologisch Onderzoek (VITO) , Mol , Belgium
| |
Collapse
|
49
|
Tavares RS, Escada-Rebelo S, Correia M, Mota PC, Ramalho-Santos J. The non-genomic effects of endocrine-disrupting chemicals on mammalian sperm. Reproduction 2016; 151:R1-R13. [DOI: 10.1530/rep-15-0355] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exposure to toxicants present in the environment, especially the so-called endocrine-disrupting chemicals (EDCs), has been associated with decreased sperm quality and increased anomalies in male reproductive organs over the past decades. Both human and animal populations are continuously exposed to ubiquitous synthetic and natural-occurring EDCs through diet, dermal contact and/or inhalation, therefore potentially compromising male reproductive health. Although the effects of EDC are likely induced via multiple genomic-based pathways, their non-genomic effects may also be relevant. Furthermore, spermatozoa are transcriptionally inactive cells that can come in direct contact with EDCs in reproductive fluids and secretions and are therefore a good model to address non-genomic effects. This review thus focuses on the non-genomic effects of several important EDCs relevant to mammalian exposure. Notably, EDCs were found to interfere with pre-existing pathways inducing a panoply of deleterious effects to sperm function that included altered intracellular Ca2+oscillations, induction of oxidative stress, mitochondrial dysfunction, increased DNA damage and decreased sperm motility and viability, among others, potentially jeopardizing male fertility. Although many studies have used non-environmentally relevant concentrations of only one compound for mechanistic studies, it is important to remember that mammals are not exposed to one, but rather to a multitude of environmental EDCs, and synergistic effects may occur. Furthermore, some effects have been detected with single compounds at environmentally relevant concentrations.
Collapse
|
50
|
Ganai AA, Farooqi H. Bioactivity of genistein: A review of in vitro and in vivo studies. Biomed Pharmacother 2015; 76:30-8. [PMID: 26653547 DOI: 10.1016/j.biopha.2015.10.026] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 10/20/2015] [Indexed: 01/06/2023] Open
|