1
|
Habbas K, Cakil O, Zámbó B, Tabet R, Riet F, Dembele D, Mandel JL, Hocquemiller M, Laufer R, Piguet F, Moine H. AAV-delivered diacylglycerol kinase DGKk achieves long-term rescue of fragile X syndrome mouse model. EMBO Mol Med 2022; 14:e14649. [PMID: 35373916 PMCID: PMC9081908 DOI: 10.15252/emmm.202114649] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 11/09/2022] Open
Abstract
Fragile X syndrome (FXS) is the most frequent form of familial intellectual disability. FXS results from the lack of the RNA-binding protein FMRP and is associated with the deregulation of signaling pathways downstream of mGluRI receptors and upstream of mRNA translation. We previously found that diacylglycerol kinase kappa (DGKk), a main mRNA target of FMRP in cortical neurons and a master regulator of lipid signaling, is downregulated in the absence of FMRP in the brain of Fmr1-KO mouse model. Here we show that adeno-associated viral vector delivery of a modified and FMRP-independent form of DGKk corrects abnormal cerebral diacylglycerol/phosphatidic acid homeostasis and FXS-relevant behavioral phenotypes in the Fmr1-KO mouse. Our data suggest that DGKk is an important factor in FXS pathogenesis and provide preclinical proof of concept that its replacement could be a viable therapeutic strategy in FXS.
Collapse
Affiliation(s)
- Karima Habbas
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Département de Médecine Translationelle et Neurogénétique, Centre National de la Recherche Scientifique (CNRS UMR7104), Institut National de la Santé et de la Recherche Médicale (INSERM U1258), Université de Strasbourg, Illkirch, France
| | - Oktay Cakil
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Département de Médecine Translationelle et Neurogénétique, Centre National de la Recherche Scientifique (CNRS UMR7104), Institut National de la Santé et de la Recherche Médicale (INSERM U1258), Université de Strasbourg, Illkirch, France
| | - Boglárka Zámbó
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Département de Médecine Translationelle et Neurogénétique, Centre National de la Recherche Scientifique (CNRS UMR7104), Institut National de la Santé et de la Recherche Médicale (INSERM U1258), Université de Strasbourg, Illkirch, France
| | - Ricardos Tabet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Département de Médecine Translationelle et Neurogénétique, Centre National de la Recherche Scientifique (CNRS UMR7104), Institut National de la Santé et de la Recherche Médicale (INSERM U1258), Université de Strasbourg, Illkirch, France
| | - Fabrice Riet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), PHENOMIN-ICS, Centre National de la Recherche Scientifique (CNRS UMR7104), Institut National de la Santé et de la Recherche Médicale (INSERM U1258), Université de Strasbourg, Illkirch, France
| | - Doulaye Dembele
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Département de Médecine Translationelle et Neurogénétique, Centre National de la Recherche Scientifique (CNRS UMR7104), Institut National de la Santé et de la Recherche Médicale (INSERM U1258), Université de Strasbourg, Illkirch, France
| | - Jean-Louis Mandel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Département de Médecine Translationelle et Neurogénétique, Centre National de la Recherche Scientifique (CNRS UMR7104), Institut National de la Santé et de la Recherche Médicale (INSERM U1258), Université de Strasbourg, Illkirch, France
| | | | | | - Françoise Piguet
- NeuroGenCell, INSERM U1127, Paris Brain Institute (ICM), Sorbonne University, CNRS, AP-HP, University Hospital Pitié-Salpêtrière, Paris, France
| | - Hervé Moine
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Département de Médecine Translationelle et Neurogénétique, Centre National de la Recherche Scientifique (CNRS UMR7104), Institut National de la Santé et de la Recherche Médicale (INSERM U1258), Université de Strasbourg, Illkirch, France
| |
Collapse
|
2
|
Robichaud N, Sonenberg N, Ruggero D, Schneider RJ. Translational Control in Cancer. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a032896. [PMID: 29959193 DOI: 10.1101/cshperspect.a032896] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The translation of messenger RNAs (mRNAs) into proteins is a key event in the regulation of gene expression. This is especially true in the cancer setting, as many oncogenes and transforming events are regulated at this level. Cancer-promoting factors that are translationally regulated include cyclins, antiapoptotic factors, proangiogenic factors, regulators of cell metabolism, prometastatic factors, immune modulators, and proteins involved in DNA repair. This review discusses the diverse means by which cancer cells deregulate and reprogram translation, and the resulting oncogenic impacts, providing insights into the complexity of translational control in cancer and its targeting for cancer therapy.
Collapse
Affiliation(s)
- Nathaniel Robichaud
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Nahum Sonenberg
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Davide Ruggero
- Helen Diller Family Comprehensive Cancer Center, and Departments of Urology and of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158
| | - Robert J Schneider
- NYU School of Medicine, Alexandria Center for Life Science, New York, New York 10016
| |
Collapse
|
3
|
Kleiner HE, Krishnan P, Tubbs J, Smith M, Meschonat C, Shi R, Lowery-Nordberg M, Adegboyega P, Unger M, Cardelli J, Chu Q, Mathis JM, Clifford J, De Benedetti A, Li BDL. Tissue microarray analysis of eIF4E and its downstream effector proteins in human breast cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2009; 28:5. [PMID: 19134194 PMCID: PMC2631459 DOI: 10.1186/1756-9966-28-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 01/09/2009] [Indexed: 12/11/2022]
Abstract
Background Eukaryotic initiation factor 4E (eIF4E) is elevated in many cancers and is a prognostic indicator in breast cancer. Many pro-tumorigenic proteins are selectively translated via eIF4E, including c-Myc, cyclin D1, ornithine decarboxylase (ODC), vascular endothelial growth factor (VEGF) and Tousled-like kinase 1B (TLK1B). However, western blot analysis of these factors in human breast cancer has been limited by the availability of fresh frozen tissue and the labor-intensive nature of the multiple assays required. Our goal was to validate whether formalin-fixed, paraffin-embedded tissues arranged in a tissue microarray (TMA) format would be more efficient than the use of fresh-frozen tissue and western blot to test multiple downstream gene products. Results Breast tumor TMAs were stained immunohistochemically and quantitated using the ARIOL imaging system. In the TMAs, eIF4E levels correlated strongly with c-Myc, cyclin D1, TLK1B, VEGF, and ODC. Western blot comparisons of eIF4E vs. TLK1B were consistent with the immunohistochemical results. Consistent with our previous western blot results, eIF4E did not correlate with node status, ER, PR, or HER-2/neu. Conclusion We conclude that the TMA technique yields similar results as the western blot technique and can be more efficient and thorough in the evaluation of several products downstream of eIF4E.
Collapse
Affiliation(s)
- Heather E Kleiner
- Dept, of Pharmacology, Toxicology, and Neuroscience, Breast Cancer Focus Group, Feist-Weiller Cancer Center, Shreveport & LSUHSC-Shreveport, Louisiana, LA 71130, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Seiliez I, Gabillard JC, Skiba-Cassy S, Garcia-Serrana D, Gutiérrez J, Kaushik S, Panserat S, Tesseraud S. An in vivo and in vitro assessment of TOR signaling cascade in rainbow trout (Oncorhynchus mykiss). Am J Physiol Regul Integr Comp Physiol 2008; 295:R329-35. [DOI: 10.1152/ajpregu.00146.2008] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In mammals, feeding promotes protein accretion in skeletal muscle through a stimulation of the insulin- and amino acid- sensitive mammalian target of rapamycin (mTOR) signaling pathway, leading to the induction of mRNA translation. The purpose of the present study was to characterize both in vivo and in vitro the activation of several major kinases involved in the mTOR pathway in the muscle of the carnivorous rainbow trout. Our results showed that meal feeding enhanced the phosphorylation of the target of rapamycin (TOR), PKB, p70 S6 kinase, and eIF4E-binding protein-1, suggesting that the mechanisms involved in the regulation of mRNA translation are well conserved between lower and higher vertebrates. Our in vitro studies on primary culture of trout muscle cells indicate that insulin and amino acids regulate TOR signaling and thus may be involved in meal feeding effect in this species as in mammals. In conclusion, we report here for the first time in a fish species, the existence and the nutritional regulation of several major kinases involved in the TOR pathway, opening a new area of research on the molecular bases of amino acid utilization in teleosts.
Collapse
|
5
|
Tumor-specific RNAi targeting eIF4E suppresses tumor growth, induces apoptosis and enhances cisplatin cytotoxicity in human breast carcinoma cells. Breast Cancer Res Treat 2008; 113:443-56. [DOI: 10.1007/s10549-008-9956-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 02/26/2008] [Indexed: 10/22/2022]
|
6
|
Vary TC, Lynch CJ. Biochemical approaches for nutritional support of skeletal muscle protein metabolism during sepsis. Nutr Res Rev 2007; 17:77-88. [DOI: 10.1079/nrr200376] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Sepsis initiates a unique series of modifications in the homeostasis of N metabolism and profoundly alters the integration of inter-organ cooperatively in the overall N and energy economy of the host. The net effect of these alterations is an overall N catabolic state, which seriously compromises recovery and is semi-refractory to treatment with current therapies. These alterations lead to a functional redistribution of N (amino acids and proteins) and substrate metabolism among injured tissues and major body organs. The redistribution of amino acids and proteins results in a quantitative reordering of the usual pathways of C and N flow within and among regions of the body with a resultant depletion of the required substrates and cofactors in important organs. The metabolic response to sepsis is a highly integrated, complex series of reactions. To understand the regulation of the response to sepsis, a comprehensive, integrated analysis of the fundamental physiological relationships of key metabolic pathways and mechanisms in sepsis is essential. The catabolism of skeletal muscles, which is manifested by an increase in protein degradation and a decrease in synthesis, persists despite state-of-the-art nutritional care. Much effort has focused on the modulation of the overall amount of nutrients given to septic patients in a hope to improve efficiencies in utilisation and N economies, rather than the support of specific end-organ targets. The present review examines current understanding of the processes affected by sepsis and testable means to circumvent the sepsis-induced defects in protein synthesis in skeletal muscle through increasing provision of amino acids (leucine, glutamine, or arginine) that in turn act as nutrient signals to regulate a number of cellular processes.
Collapse
|
7
|
Salehi Z, Mashayekhi F. Eukaryotic translation initiation factor 4E (eIF4E) expression in the brain tissue is induced by infusion of nerve growth factor into the mouse cisterna magnum: an in vivo study. Mol Cell Biochem 2007; 304:249-53. [PMID: 17684707 DOI: 10.1007/s11010-007-9507-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Accepted: 05/03/2007] [Indexed: 01/09/2023]
Abstract
In many cell types translation can be regulated by an expression of the translation initiation factor. Eukaryotic translation initiation factor eIF4E, which binds to the 5' cap structure of mRNA, plays an important role in translation regulation and it has been suggested that it is implicated in increased protein synthesis promoted by growth factors. In this study the effects of nerve growth factor (NGF) infusion into the cerebrospinal fluid (CSF) on eIF4E expression and phosphorylation in mouse brain tissue have been investigated. We investigated NGF as it is one of the most important growth factors and it is an important factor in cerebral cortical development, stimulating neuronal precursor proliferation. eIF4E level is also increased in response to infusion of NGF into the CSF. The present study shows that eIF4E is phosphorylated in the brain tissues treated with NGF. It is concluded that NGF regulates protein synthesis in the nervous tissue by enhancing expression and phosphorylation of eIF4E.
Collapse
Affiliation(s)
- Zivar Salehi
- Department of Biology, Faculty of Science, The University of Guilan, Rasht, Iran.
| | | |
Collapse
|
8
|
Byrnes K, Li BDL, Holm N, Li J, Okadata Y, De Benedetti A, Nedeljkovic-Kurepa A, Mathis M, Chu QD. A novel suicide gene therapy targeting the overexpression of eukaryotic initiation factor 4E improves survival in a rat peritoneal carcinomatosis model. Surgery 2007; 142:270-5. [PMID: 17689695 DOI: 10.1016/j.surg.2007.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2000] [Revised: 04/02/2007] [Accepted: 04/19/2007] [Indexed: 11/23/2022]
Abstract
BACKGROUND Eukaryotic Initiation Factor 4E (eIF4E) is pivotal in translating mRNAs with complex 5' un-translated regions (UTRs). A target-specific gene therapy was developed by splicing a complex 5'UTR upstream of the herpes simplex virus thymidine kinase (TK) gene in an adenovirus vector (Ad-HSV-UTK). Translation of the suicide TK gene is restricted to cells that overexpress eIF4E. We investigated the efficacy of this novel therapy in a rat peritoneal carcinomatosis (PC) model. METHODS A PC model was developed by implanting a syngeneic 0.25 cm(3) tumor into Fisher 344 rats' omentum. Rats were grouped as follow: No surgery (Ø CS), cytoreductive surgery alone (CS), and CS + Ad-HSV-UTK + gancyclovir (GCV). 10(9) Ad-HSV-UTK was injected intraperitoneally (i.p.) and GCV (50 mg/kg) was administered i.p. every other day, beginning on postoperative day 2. The Kaplan-Meier survival method and log-rank test were statistical tests used. RESULTS Treated rats had a significantly longer median and overall survival than the Ø CS and CS groups (P = .012). The median survivals for the treated rats, Ø CS, CS were 18 days, 9 days, and 11 days, respectively. CONCLUSIONS Treatment with a novel suicide gene therapy following cytoreductive surgery prolonged survival in a rat peritoneal carcinomatosis model.
Collapse
MESH Headings
- Adenocarcinoma/surgery
- Adenocarcinoma/therapy
- Adenoviridae/genetics
- Animals
- Antiviral Agents/pharmacology
- Cell Line, Tumor
- Combined Modality Therapy
- Disease Models, Animal
- Eukaryotic Initiation Factor-4E/genetics
- Female
- Ganciclovir/pharmacology
- Gene Expression Regulation, Neoplastic
- Genes, Transgenic, Suicide
- Genetic Therapy/methods
- Mammary Neoplasms, Animal/surgery
- Mammary Neoplasms, Animal/therapy
- Neoplasm Transplantation
- Neoplasm, Residual/surgery
- Neoplasm, Residual/therapy
- Omentum
- Peritoneal Neoplasms/surgery
- Peritoneal Neoplasms/therapy
- Rats
- Rats, Inbred F344
- Survival Rate
Collapse
Affiliation(s)
- Kerry Byrnes
- Department of Surgery, Louisiana State University Health Sciences Center in Shreveport, and Feist-Weiller Cancer Center, Shreveport, Louisiana, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Vary TC, Deiter G, Lynch CJ. Rapamycin limits formation of active eukaryotic initiation factor 4F complex following meal feeding in rat hearts. J Nutr 2007; 137:1857-62. [PMID: 17634255 DOI: 10.1093/jn/137.8.1857] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Feeding promotes protein synthesis in cardiac muscle through a stimulation of the messenger RNA translation initiation phase of protein synthesis by enhancing assembly of active eukaryotic initiation factor (eIF)4F complex. The experiments reported herein examined the potential role for a rapamycin-sensitive signaling pathway in increasing formation of active eIF4G-eIF4E complex during meal feeding. Hearts from male Sprague-Dawley rats fed a meal consisting of rat nonpurified diet were sampled prior to and 3 h following the meal in the presence or absence of treatment with rapamycin, an inhibitor of the mammalian target of rapamycin (mTOR) complex 1. Rapamycin prevented the meal feeding-induced stimulation of myocardial protein synthesis. Inhibition of mTOR with rapamycin decreased the association of rapamycin-associated TOR protein with mTOR and prevented the feeding-induced assembly of eIF4G-eIF4E complex. In contrast, the abundance of eIF4E binding protein-1 (4E-BP1)-eIF4E complex was unaffected by either meal feeding or rapamycin. Pretreatment with rapamycin completely prevented the feeding-induced phosphorylation of eIF4G(Ser(1108)), whereas the inhibitor only partially attenuated meal feeding-induced 70-kDa ribosomal protein S6 kinase1(Thr(389)) phosphorylation and extent of 4E-BP1 in the gamma-form. Meal feeding-induced phosphorylation of protein kinase B on either Ser(473) or Thr(308) was unaffected by rapamycin. These findings suggest the extent of phosphorylation of eIF4G following meal feeding occurs by a rapamycin-sensitive mechanism in cardiac muscle. Furthermore, the rapamycin-sensitive reductions in phosphorylation of eIF4G may also lead to decreased formation of active eIF4G-eIF4E complex.
Collapse
Affiliation(s)
- Thomas C Vary
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | | | | |
Collapse
|
10
|
Vary TC, Lynch CJ. Nutrient signaling components controlling protein synthesis in striated muscle. J Nutr 2007; 137:1835-43. [PMID: 17634251 DOI: 10.1093/jn/137.8.1835] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Accretion of muscle mass is dependent upon faster rates of protein synthesis than degradation. When an animal is deprived of dietary protein, loss of body weight and negative nitrogen balance ensue. Likewise, refeeding accelerates protein synthesis and results in resumption of positive nitrogen balance. Amino acids and anabolic hormones both interact to maximally enhance rates of protein synthesis acutely during refeeding through an acceleration of the messenger RNA (mRNA) translation initiation. The review will illuminate the molecular mechanisms responsible for increasing mRNA translation initiation in striated muscle. The hastening of mRNA translation initiation most likely results from a stimulation of mammalian target of rapamycin (mTOR) acting through its downstream effector proteins eukaryotic initiation factors (eIF)4E binding protein1 and possibly eIF4G to enhance assembly of eIF4G with eIF4E and 70-kDa ribosomal S6 kinase1. Amino acids and leucine in particular are as effective as a complete meal in stimulating mRNA translation initiation by targeting these specific signal transduction systems. The physiologic importance lies in the potential ability of amino acids as specific nutrients designed to counteract the accelerated host protein wasting associated with a number of disease entities, including cancer, HIV infection, sepsis, and diabetes, and to improve nutrition to maintain muscle mass in aging populations and ensure muscle growth in neonatal populations.
Collapse
Affiliation(s)
- Thomas C Vary
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | | |
Collapse
|
11
|
Vary TC, Anthony JC, Jefferson LS, Kimball SR, Lynch CJ. Rapamycin blunts nutrient stimulation of eIF4G, but not PKCepsilon phosphorylation, in skeletal muscle. Am J Physiol Endocrinol Metab 2007; 293:E188-96. [PMID: 17389711 DOI: 10.1152/ajpendo.00037.2007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phosphorylation of eukaryotic initiation factor 4G (eIF4G) is hypothesized to be an important contributor to the stimulation of protein synthesis in skeletal muscle following meal feeding. The experiments reported herein examined the potential role for a rapamycin-sensitive signaling pathway in mediating the meal feeding-induced elevations in phosphorylation of eIF4G. Gastrocnemius from male Sprague-Dawley rats trained to consume a meal consisting of rat chow was sampled prior to and following 3 h of having the meal provided in the presence or absence of treatment with rapamycin, an inhibitor of the mammalian target of rapamycin (mTOR) complex 1 (TORC1). Pretreatment with rapamycin prevented the feeding-induced phosphorylation of mTOR, eIF4G, and S6K1 but only partially attenuated the shift in 4E-BP1 into the gamma-form. In contrast, the feeding-induced increase in phosphorylation of PKCepsilon was not reduced by rapamycin. Rapamycin also prevented the augmented association of eIF4G with eIF4E and the decreased association of eIF4E with 4E-BP1. Similar findings were observed in gastrocnemius from animals after oral administration of leucine. Perfusion of gastrocnemius with medium containing rapamycin partially prevented the leucine-induced increase in phosphorylation of eIF4G. Thus, rapamycin attenuated a feeding- or leucine-induced phosphorylation of eIF4G in skeletal muscle both in vivo and in situ. The latter observation implies that the effects observed with rapamycin were the result of modulation of skeletal muscle signaling mechanisms responsible for eIF4G phosphorylation.
Collapse
Affiliation(s)
- Thomas C Vary
- Department of Cellular and Molecular Physiology, Rm. C4710, Penn State University College of Medicine, H166, 500 University Drive, Hershey, PA 17033, USA.
| | | | | | | | | |
Collapse
|
12
|
Vary TC, Kimball SR, Sumner A. Sex-dependent differences in the regulation of myocardial protein synthesis following long-term ethanol consumption. Am J Physiol Regul Integr Comp Physiol 2006; 292:R778-87. [PMID: 16946086 DOI: 10.1152/ajpregu.00203.2006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chronic heavy alcohol consumption alters cardiac structure and function. Controversies remain as to whether hearts from females respond to the chronic ethanol intake in a manner analogous to males. In particular, sex differences in the myocardial response to chronic alcohol consumption remain unresolved at the molecular level. The purpose of the present set of experiments was to determine whether alterations in cardiac structure and protein metabolism show sexual dimorphism following chronic alcohol consumption for 26 wk. In control animals, hearts from female rats showed lowered heart weights and had thinner ventricular walls compared with males. The smaller heart size was associated with a lower protein content that occurred in part from a reduced rate of protein synthesis. Chronic alcohol consumption in males, but not in females, caused a thinning of the ventricular wall and intraventricular septum, as assessed by echocardiography, correlating with the loss of heart mass. The alterations in cardiac size occurred, in part, through a lowering of the protein content secondary to a diminished rate of protein synthesis. The decreased rate of protein synthesis appeared related to a reduced assembly of active eukaryotic initiation factor (eIF)4G.eIF4E complex secondary to both a diminished phosphorylation of eIF4G and increased formation of inactive 4Ebinding protein (4EBP1).eIF4E complex. The latter effects occurred as a result of decreased phosphorylation of 4EBP1. None of these ethanol-induced alterations in hearts from males were observed in hearts from females. These data suggest that chronic alcohol-induced impairments in myocardial protein synthesis results, in part, from marked decreases in eIF4E.eIF4G complex formation in males. The failure of female rats consuming ethanol to show structural changes appears related to the inability of ethanol to affect the regulation protein synthesis to the same extent as their male counterparts.
Collapse
Affiliation(s)
- Thomas C Vary
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, H166, 500 University Dr., Hershey, PA 17033, USA.
| | | | | |
Collapse
|
13
|
Vary TC, Lynch CJ. Meal feeding enhances formation of eIF4F in skeletal muscle: role of increased eIF4E availability and eIF4G phosphorylation. Am J Physiol Endocrinol Metab 2006; 290:E631-42. [PMID: 16263769 DOI: 10.1152/ajpendo.00460.2005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Feeding promotes protein accretion in skeletal muscle through a stimulation of the mRNA translation initiation phase of protein synthesis either secondarily to nutrient-induced rises in insulin or owing to direct effects of nutrients themselves. The present set of experiments establishes the effects of meal feeding on potential signal transduction pathways that may be important in accelerating mRNA translation initiation. Gastrocnemius muscle from male Sprague-Dawley rats trained to consume a meal consisting of rat chow was sampled before, during, and after the meal. Meal feeding enhanced the assembly of the active eIF4G.eIF4E complex, which returned to basal levels within 3 h of removal of food. The increased assembly of the active eIF4G.eIF4E complex was associated with a marked 10-fold rise in phosphorylation of eIF4G(Ser(1108)) and a decreased assembly of inactive 4E-BP1.eIF4E complex. The reduced assembly of 4E-BP1.eIF4E complex was associated with a 75-fold increase in phosphorylation of 4E-BP1 in the gamma-form during feeding. Phosphorylation of S6K1 on Ser(789) was increased by meal feeding, although the extent of phosphorylation was greater at 0.5 h after feeding than after 1 h. Phosphorylation of mammalian target of rapamycin (mTOR) on Ser(2448) or Ser(2481), an upstream kinase responsible for phosphorylating both S6K1 and 4E-BP1, was increased at all times during meal feeding, although the extent of phosphorylation was greater at 0.5 h after feeding than after 1 h. Phosphorylation of PKB, an upstream kinase responsible for phosphorylating mTOR, was elevated only after 0.5 h of meal feeding for Thr(308), whereas phosphorylation Ser(473) was significantly elevated at only 0.5 and 1 h after initiation of feeding. We conclude from these studies that meal feeding stimulates two signal pathways in skeletal muscle that lead to elevated eIF4G.eIF4E complex assembly through increased phosphorylation of eIF4G and decreased association of 4E-BP1 with eIF4E.
Collapse
Affiliation(s)
- Thomas C Vary
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, USA.
| | | |
Collapse
|
14
|
Vary TC. IGF-I stimulates protein synthesis in skeletal muscle through multiple signaling pathways during sepsis. Am J Physiol Regul Integr Comp Physiol 2005; 290:R313-21. [PMID: 16150839 DOI: 10.1152/ajpregu.00333.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Chronic septic abscess formation causes an inhibition of protein synthesis in gastrocnemius not observed in rats with a sterile abscess. Inhibition is associated with an impaired mRNA translation initiation that can be ameliorated by elevating IGF-I but not insulin. The present study investigated the ability of IGF-I signaling to stimulate protein synthesis in gastrocnemius by accelerating mRNA translation initiation. Experiments were performed in perfused hindlimb preparations from rats 5 days after induction of a septic abscess. Protein synthesis in gastrocnemius from septic rats was accelerated twofold by the addition of IGF-I (10 nM) to perfusate. IGF-I increased the phosphorylation of translation repressor 4E-binding protein-1 (4E-BP1). Hyperphosphorylation of 4E-BP1 in response to IGF-I resulted in its dissociation from the inactive eukaryotic initiation factor (eIF) 4E.4E-BP1 complex. Assembly of the active eIF4F complex (as assessed by the association eIF4G with eIF4E) was increased twofold by IGF-I in the perfusate. In addition, phosphorylation of eIF4G and ribosomal protein S6 kinase-1 (S6K1) was also enhanced by IGF-I. Activation of mammalian target of rapamycin, an upstream kinase implicated in phosphorylating both 4E-BP1 and S6K1, was also observed. Thus the ability of IGF-I to accelerate protein synthesis during sepsis may be related to a stimulation of signaling to multiple steps in translation initiation with an ensuing increased phosphorylation of eIF4G, eIF4E availability, and S6K1 phosphorylation.
Collapse
Affiliation(s)
- Thomas C Vary
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
15
|
Liu Z, Dong Z, Han B, Yang Y, Liu Y, Zhang JT. Regulation of expression by promoters versus internal ribosome entry site in the 5'-untranslated sequence of the human cyclin-dependent kinase inhibitor p27kip1. Nucleic Acids Res 2005; 33:3763-71. [PMID: 16006622 PMCID: PMC1174905 DOI: 10.1093/nar/gki680] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
p27kip1 regulates cell proliferation by binding to and inhibiting the activity of cyclin-dependent kinases and its expression oscillates with cell cycle. Recently, it has been suggested from studies using the traditional dicistronic DNA assay that the expression of p27kip1 is regulated by internal ribosome entry site (IRES)-mediated translation initiation, and several RNA-binding protein factors were thought to play some role in this regulation. Considering the inevitable drawbacks of the dicistronic DNA assay, which could mislead a promoter activity or alternative splicing to IRES as previously demonstrated, we decided to reanalyze the 5′-untranslated region (5′-UTR) sequence of p27kip1 and test whether it contains an IRES element or a promoter using more stringent methods, such as dicistronic RNA and promoterless dicistronic and monocistronic DNA assays. We found that the 5′-UTR sequence of human p27kip1 does not have any significant IRES activity. The previously observed IRES activities are likely generated from the promoter activities present in the 5′-UTR sequences of p27kip1. The findings in this study indicate that transcriptional regulation likely plays an important role in p27kip1 expression, and the mechanism of regulation of p27 expression by RNA-binding factors needs to be re-examined. The findings in this study also further enforce the importance that more stringent studies, such as promoterless dicistronic and monocistronic DNA and dicistronic RNA tests, are required to safeguard any future claims of cellular IRES.
Collapse
Affiliation(s)
| | | | | | | | | | - Jian-Ting Zhang
- To whom correspondence should be addressed. Tel: +1 317 278 4503; Fax: +1 317 274 8046;
| |
Collapse
|
16
|
Abstract
Sepsis induces weight loss and the loss of skeletal muscle proteins, in part through an inhibition of protein synthesis secondary to an inhibition of the key steps controlling mRNA translation in skeletal muscle. We have previously shown that sepsis decreases the phosphorylation of eIF4E. The present study examines the phosphorylation of Erk 1/2 MAPK and p38 MAPK in skeletal muscle of rats with a chronic (5-day) intra-abdominal septic abscess. Mnk1 catalyzes the phosphorylation of eIF4E, and Mnk1 is activated by phosphorylation via Erk1/2 MAPK and p38 MAPK. Sepsis resulted in a significant decrease in the steady-state phosphorylation of Erk 1/2 and p38 MAPKs compared with sterile inflammation. To examine the mediators responsible for decreased phosphorylation of Erk 1/2 and p38 MAPKs, rats were treated with TNF binding protein (TNFbp) or infused for 24 h with TNF. Treatment of septic rats with TNFbp resulted in an increase in the phosphorylation of both Erk 1/2 and p38 MAPKs in skeletal muscle. This was associated with enhanced phosphorylation of eIF4E. In contrast, constant intravenous infusion of TNF-alpha for 24 h resulted in a complete inhibition of p38 MAPK phosphorylation while Erk 1/2 MAPK phosphorylation was increased. The net effect was a modest increase in eIF4E phosphorylation. The results suggest altered regulation of Erk 1/2 and p38 MAPK signal translation pathways by endogenously produced TNF, or some compound dependent on TNF may modulate, in part, the phosphorylation state of eIF4E in skeletal muscle during sepsis.
Collapse
Affiliation(s)
- Thomas C Vary
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA.
| | | | | |
Collapse
|
17
|
Vary T, Lynch C. Nutrient Signaling to Muscle and Adipose Tissue by Leucine. OXIDATIVE STRESS AND DISEASE 2005. [DOI: 10.1201/9781420028362.pt2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
18
|
Abstract
IGF-I acutely stimulates protein synthesis in cardiac muscle through acceleration of mRNA translation. In the present study, we examined the regulatory signaling pathways and translation protein factors that potentially contribute to the myocardial responsiveness of protein synthesis to IGF-I in vivo. IGF-I was injected IV into rats and 20 min later the hearts were excised and homogenized for assay of regulatory proteins. IGF-I increased assembly of the translationally active eukaryotic initiation factor (eIF)4G.eIF4E complex. The increased assembly of eIF4G.eIF4E was associated with an enhanced eIF4G phosphorylation and increased availability of eIF4E. Increased availability of eIF4E occurred as a consequence of diminished abundance of the inactive 4E-BP1.eIF4E complex following IGF-I. The assembly of the 4E-BP1.eIF4E complex appeared to be decreased through an IGF-I-induced phosphorylation of 4E-BP1. IGF-I also caused an increase in the phosphorylation of S6K1. Activation of the potential upstream regulators of 4E-BP1 and S6K1 phosphorylation via PKB and mTOR was also observed. In contrast, there was no effect of IGF-I on phosphorylation of elongation factor (eFE)2. The results suggest the major impact of IGF-I in cardiac muscle occurred via stimulation of translation initiation rather than elongation. Furthermore, the results are consistent with a role for assembly of active eIF4G.eIF4E complex and activation of S6K1 in mediating the stimulation of mRNA translation initiation by IGF-I through a PKB/mTOR signaling pathway.
Collapse
Affiliation(s)
- Thomas C Vary
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Pennsylvania 17033, USA.
| | | |
Collapse
|
19
|
Chapter 2 Regulation of skeletal muscle protein metabolism in growing animals. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s1877-1823(09)70009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
20
|
Vary TC, Deiter G, Goodman SA. Acute alcohol intoxication enhances myocardial eIF4G phosphorylation despite reducing mTOR signaling. Am J Physiol Heart Circ Physiol 2005; 288:H121-8. [PMID: 15388509 DOI: 10.1152/ajpheart.00440.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Acute alcohol intoxication impairs myocardial protein synthesis in rats, secondary to a diminished mRNA translational efficiency. Decreased mRNA translational efficiency occurs through altered regulation of peptide chain initiation. The purpose of the present set of experiments was to determine whether acute alcohol intoxication alters the phosphorylation state of eukaryotic initiation factor (eIF) 4G, eIF4G·eIF4E complex formation, and the mammalian target of rapamycin (mTOR) signaling pathway in the heart. Acute alcohol intoxication was induced by injection of alcohol (75 mmol/kg body wt ip). Control animals received an equal volume of saline. Alcohol administration enhanced phosphorylation of eIF4G (Ser1108) approximately threefold. Alcohol administration lowered formation of the active eIF4G·eIF4E complex by >90%, whereas it increased the abundance of the inactive 4E-binding protein 1 (4E-BP1)·eIF4E complex by ∼160%. Phosphorylation of mTOR on Ser2448and Ser2481was decreased by 50%. Reduced mTOR phosphorylation did not result from decreased phosphorylation of PKB. Phosphorylation of 4E-BP1 and S6 kinase 1 (Thr389), downstream targets of mTOR, were also reduced after acute alcohol administration. These data suggest that acute alcohol-induced impairments in myocardial mRNA translation initiation result, in part, from marked decreases in eIF4G·eIF4E complex formation, which appear to be independent of changes in phosphorylation of eIF4G but dependent on mTOR.
Collapse
Affiliation(s)
- Thomas C Vary
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, H166, 500 Univ. Dr., Hershey, PA 17033, USA.
| | | | | |
Collapse
|
21
|
Joseph P, Lei YX, Ong TM. Up-regulation of expression of translation factors--a novel molecular mechanism for cadmium carcinogenesis. Mol Cell Biochem 2004; 255:93-101. [PMID: 14971650 DOI: 10.1023/b:mcbi.0000007265.38475.f7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The molecular mechanisms potentially responsible for cadmium carcinogenesis were investigated by differential gene expression analysis of Balb/c-3T3 cells morphologically transformed with cadmium chloride. Differential display analysis of gene expression revealed overexpression of mouse Translation Initiation Factor 3 (TIF3; GenBank Accession Number AF 271072) and Translation Elongation Factor-1delta (TEF-1delta; GenBank Accession Number AF 304351) in the transformed cells compared with the control cells. The full length cDNAs for TIF3 and TEF-1delta were cloned and sequenced. Transfection of mammalian cells with an expression vector containing either TIF3 or TEF-1delta cDNA resulted in overexpression of the encoded protein. Overexpression of the cDNA-encoded TIF3 and TEF-1delta proteins in NIH3T3 cells was oncogenic as evidenced by the appearance of transformed foci capable of anchorage-independent growth on soft agar and tumorigenesis in nude mouse. Blocking the translation of TIF3 and TEF-1delta proteins using the corresponding antisense mRNA resulted in a significant reversal of the oncogenic potential of cadmium transformed Balb/c-3T3 cells as evidenced from the suppression of anchorage-independent growth on soft agar and diminished tumorigenesis in nude mouse. These findings demonstrate that the up-regulation of expression of TIF3 and TEF-1delta is a novel molecular mechanism responsible, at least in part, for cadmium carcinogenesis.
Collapse
Affiliation(s)
- Pius Joseph
- Molecular Epidemiology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA.
| | | | | |
Collapse
|
22
|
O'Connor PMJ, Kimball SR, Suryawan A, Bush JA, Nguyen HV, Jefferson LS, Davis TA. Regulation of neonatal liver protein synthesis by insulin and amino acids in pigs. Am J Physiol Endocrinol Metab 2004; 286:E994-E1003. [PMID: 14761876 DOI: 10.1152/ajpendo.00391.2003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The high efficiency of protein deposition during the neonatal period is driven by high rates of protein synthesis, which are maximally stimulated after feeding. Infusion of amino acids, but not insulin, reproduces the feeding-induced stimulation of liver protein synthesis. To determine whether amino acid-stimulated liver protein synthesis is independent of insulin in neonates, and to examine the role of amino acids and insulin in the regulation of translation initiation in neonatal liver, we performed pancreatic glucose-amino acid clamps in overnight-fasted 7-day-old pigs. Pigs (n = 9-12/group) were infused with insulin at 0, 10, 22, and 110 ng.kg(-0.66).min(-1) to achieve 0, 2, 6, and 30 microU/ml insulin, respectively. At each insulin dose, amino acids were maintained at fasting or fed levels or, in conjunction with the highest insulin dose, allowed to fall to below fasting levels. Insulin had no effect on the fractional rate of protein synthesis in liver. Amino acids increased fractional protein synthesis rates in liver at each dose of insulin, including the 0 microU/ml dose. There was a dose-response effect of amino acids on liver protein synthesis. Amino acids and insulin increased protein S6 kinase and 4E-binding protein 1 (4E-BP1) phosphorylation; however, only amino acids decreased formation of the inactive 4E-BPI.eukaryotic initiation factor-4E (eIF4E) complex. The results suggest that amino acids regulate liver protein synthesis in the neonate by modulating the availability of eIF4E for 48S ribosomal complex formation and that this response does not require insulin.
Collapse
Affiliation(s)
- Pamela M J O'Connor
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates St., Suite 9064, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Clemens MJ. Targets and mechanisms for the regulation of translation in malignant transformation. Oncogene 2004; 23:3180-8. [PMID: 15094767 DOI: 10.1038/sj.onc.1207544] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There is increasing evidence that deregulation of gene expression at the level of mRNA translation can contribute to cell transformation and the malignant phenotype. Two steps in the pathway of polypeptide chain initiation, viz. the assembly of the 43S initiation complex catalysed by polypeptide chain initiation factor eIF2 and the binding of eIF4E to eIF4G during the recruitment of mRNA to the ribosome, have been shown to be likely targets for changes associated with tumorigenesis. The activity of eIF2 is controlled by changes in phosphorylation of the alpha subunit of this factor. The availability of eIF4E for binding to eIF4G is regulated by the phosphorylation of a small family of eIF4E-binding proteins (the 4E-BPs). The activities of the protein kinases and/or phosphatases responsible for the (de)phosphorylation of these substrates may in turn be controlled by cellular and viral oncogenes and tumour-suppressor genes. This review will describe recent aspects of the mechanisms involved, with particular emphasis on the regulation of the eIF2 alpha kinase PKR and the control of 4E-BP phosphorylation by viral gene products, growth-inhibitory cytokines and the tumour-suppressor protein p53.
Collapse
Affiliation(s)
- Michael J Clemens
- Translational Control Group, Biochemistry and Immunology, Department of Basic Medical Sciences, St George's Hospital Medical School, Cranmer Terrace, London SW17 0RE, UK.
| |
Collapse
|
24
|
Ishida M, Ishida T, Nakashima H, Miho N, Miyagawa K, Chayama K, Oshima T, Kambe M, Yoshizumi M. Mnk1 is required for angiotensin II-induced protein synthesis in vascular smooth muscle cells. Circ Res 2003; 93:1218-24. [PMID: 14605021 DOI: 10.1161/01.res.0000105570.34585.f2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Angiotensin II (Ang II) stimulates protein synthesis in vascular smooth muscle cells (VSMCs), possibly secondary to regulatory changes at the initiation of mRNA translation. Mitogen-activated protein (MAP) kinase signal-integrating kinase-1 (Mnk1), a substrate of ERK and p38 MAP kinase, phosphorylates eukaryotic initiation factor 4E (eIF4E), an important factor in translation. The goal of the present study was to investigate the role of Mnk1 in Ang II-induced protein synthesis and to characterize the molecular mechanisms by which Mnk1 and eIF4E is activated in rat VSMCs. Ang II treatment resulted in increased Mnk1 activity and eIF4E phosphorylation. Expression of a dominant-negative Mnk1 mutant abolished Ang II-induced eIF4E phosphorylation. PD98059 or introduction of kinase-inactive MEK1/MKK1, but not SB202190 or kinase-inactive p38 MAP kinase, inhibited Ang II-induced Mnk1 activation and eIF4E phosphorylation, suggesting that ERK, but not p38 MAP kinase, is required for Ang II-induced Mnk1-eIF4E activation. Further, dominant-negative constructs for Ras, but not for Rho, Rac, or Cdc42, abolished Ang II-induced Mnk1 activation. Finally, treatment of VSMCs with CGP57380, a novel specific kinase inhibitor of Mnk1, resulted in dose-dependent decreases in Ang II-stimulated phosphorylation of eIF4E, protein synthesis, and VSMC hypertrophy. In summary, these data demonstrated that (1) Ang II-induced Mnk1 activation is mediated by the Ras-ERK cascade in VSMCs, and (2) Mnk1 is involved in Ang II-mediated protein synthesis and hypertrophy, presumably through the activation of translation-initiation. The Mnk1-eIF4E pathway may provide new insights into molecular mechanisms involved in vascular hypertrophy and other Ang II-mediated pathological states.
Collapse
Affiliation(s)
- Mari Ishida
- Department of Human Genetics, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Gutzkow KB, Låhne HU, Naderi S, Torgersen KM, Skålhegg B, Koketsu M, Uehara Y, Blomhoff HK. Cyclic AMP inhibits translation of cyclin D3 in T lymphocytes at the level of elongation by inducing eEF2-phosphorylation. Cell Signal 2003; 15:871-81. [PMID: 12834812 DOI: 10.1016/s0898-6568(03)00038-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The purpose of the present study was to understand the mechanism by which activated protein kinase A (PKA) leads to down-regulation of cyclin D3 in lymphocytes. By using Jurkat cells as a model system, we have been able to demonstrate that cyclin D3 is reduced at the level of translation by inhibition of elongation. One of the important factors involved in translational elongation is the eukaryotic elongation factor 2 (eEF2). eEF2 promotes translation in its unphosphorylated form, and we observed a rapid phosphorylation of the eEF2-protein upon forskolin treatment. When using specific inhibitors of the eEF2-kinase prior to forskolin treatment, we were able to inhibit the increased phosphorylation of eEF2. Furthermore, inhibition of eEF2-kinase prevented the forskolin-mediated down-regulation of cyclin D3. Taken together, it appears that activation of PKA in Jurkat cells reduces the expression of cyclin D3 at the level of translational elongation by increasing the phosphorylation of eEF2 and thereby inhibiting its activity.
Collapse
Affiliation(s)
- Kristine B Gutzkow
- Institute of Medical Biochemistry, University of Oslo, PO Box 1112, Blindern, N-0317, Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
26
|
O'Connor PMJ, Kimball SR, Suryawan A, Bush JA, Nguyen HV, Jefferson LS, Davis TA. Regulation of translation initiation by insulin and amino acids in skeletal muscle of neonatal pigs. Am J Physiol Endocrinol Metab 2003; 285:E40-53. [PMID: 12637260 DOI: 10.1152/ajpendo.00563.2002] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Previous studies have shown that intravenous infusion of insulin and/or amino acids reproduces the feeding-induced stimulation of muscle protein synthesis in neonates and that insulin and amino acids act independently to produce this effect. The goal of the present study was to delineate the regulatory roles of insulin and amino acids on muscle protein synthesis in neonates by examining translational control mechanisms, specifically the eukaryotic translation initiation factors (eIFs), which enable coupling of initiator methionyl-tRNAi and mRNA to the 40S ribosomal subunit. Insulin secretion was blocked by somatostatin in fasted 7-day-old pigs (n = 8-12/group), insulin was infused to achieve plasma levels of approximately 0, 2, 6, and 30 microU/ml, and amino acids were clamped at fasting or fed levels or, at the high insulin dose, below fasting. Both insulin and amino acids increased the phosphorylation of ribosomal protein S6 kinase (S6K1) and the eIF4E-binding protein (4E-BP1), decreased the binding of 4E-BP1 to eIF4E, increased eIF4E binding to eIF4G, and increased fractional protein synthesis rates but did not affect eIF2B activity. In the absence of insulin, amino acids had no effect on these translation initiation factors but increased the protein synthesis rates. Raising insulin from below fasting to fasting levels generally did not alter translation initiation factor activity but raised protein synthesis rates. The phosphorylation of S6K1 and 4E-BP1 and the amount of 4E-BP1 bound to eIF4E and eIF4E bound to eIF4G were correlated with insulin level, amino acid level, and protein synthesis rate. Thus insulin and amino acids regulate muscle protein synthesis in skeletal muscle of neonates by modulating the availability of eIF4E for 48S ribosomal complex assembly, although other processes also must be involved.
Collapse
Affiliation(s)
- Pamela M J O'Connor
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Horrobin DF. A low toxicity maintenance regime, using eicosapentaenoic acid and readily available drugs, for mantle cell lymphoma and other malignancies with excess cyclin D1 levels. Med Hypotheses 2003; 60:615-23. [PMID: 12710892 DOI: 10.1016/s0306-9877(03)00075-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mantle cell lymphoma is a difficult to treat non-Hodgkin's lymphoma (NHL) whose biochemistry is unusually well characterised. Almost all and perhaps all patients overexpress the cyclin D1 protein which is crucial in driving cells from the G1 to the S phase. This overexpression may be responsible for the refractoriness. Despite this understanding, treatments for mantle cell lymphoma are based on standard NHL regimes of cyclophosphamide, doxorubicin, vincristine and prednisone, perhaps supplemented with the monoclonal antibody rituximab. There has never been any attempt to direct treatment to the cyclin D1 mechanism or to angiogenesis which is now known to be important in all lymphomas. Both these targets lend themselves to long-term maintenance regimes of relatively low toxicity which can be used as adjuvants to standard therapy. Agents which have recently been shown to block cyclin D1 translation by regulating calcium levels are the unsaturated essential fatty acid, eicosapentaenoic acid (EPA), the antidiabetic thiazolidinediones, and the antifungal agent, clotrimazole. Two types of agent which have been shown to inhibit angiogenesis are the teratogen, thalidomide, and the selective inhibitors of cyclo-oxygenase 2 (COX-2). Retinoids exert synergistic effects with EPA and have been shown to inhibit both tumour growth and angiogenesis. The mechanisms of action of these various agents are discussed, and specific suggestions are made for low toxicity maintenance therapy of mantle cell lymphoma and of other tumours which overexpress cyclin D1.
Collapse
|
28
|
Bush JA, Kimball SR, O'Connor PMJ, Suryawan A, Orellana RA, Nguyen HV, Jefferson LS, Davis TA. Translational control of protein synthesis in muscle and liver of growth hormone-treated pigs. Endocrinology 2003; 144:1273-83. [PMID: 12639910 DOI: 10.1210/en.2002-220983] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
GH treatment increases protein deposition and the efficiency of dietary protein used for growth. To identify the mechanisms that regulate tissue protein synthesis in response to exogenous GH treatment, fully fed, growing swine were treated with GH for 7 d. Fasted and fed pigs were infused with [1-(13)C]leucine to determine protein synthesis rates, and translation initiation factor activity levels were measured in skeletal muscle and liver. Feeding increased protein synthesis and translational efficiency in both muscle and liver of control and GH-treated pigs, and this was associated with increased 4E-BP1 and S6 kinase 1 phosphorylation, decreased association of eukaryotic initiation factor (eIF) 4E with 4E-BP1, and increased association of eIF4E with eIF4G. GH increased muscle protein synthesis and translational efficiency in fed pigs. GH increased liver protein synthesis of fasted and fed pigs in association with increased ribosome number. In muscle, but not liver, GH increased eIF2B activity and 4E-BP1 phosphorylation in both the fasted and fed state and increased the association of eIF4E with eIF4G in the fed state. We conclude that GH increases muscle protein synthesis in the fed state, in part, via mechanisms that enhance the binding of mRNA and methionyl-tRNA to the 40S ribosomal subunit, whereas GH increases liver protein synthesis in the fasted and fed states by increasing ribosome number. The results further indicate that the GH-induced protein synthetic response is dependent upon nutritional state and is tissue specific.
Collapse
Affiliation(s)
- Jill A Bush
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Sangaralingham SJ, Pak BJ, Tse MY, Angelis E, Adams MA, Smallegange C, Pang SC. Expression of the translational repressor NAT1 in experimental models of cardiac hypertrophy. Mol Cell Biochem 2003; 245:183-90. [PMID: 12708758 DOI: 10.1023/a:1022884515544] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The development of hypertension-induced cardiac hypertrophy is a complex process involving a number of biochemical pathways. In particular, the translation initiation pathway has been postulated to play an important role in controlling cellular growth and proliferation in the cardiovascular system. Recently, a fundamental translational repressor, NAT1 (novel APOBEC target 1), has been identified. We have previously shown that NATI is developmentally-regulated in the heart of neonatal rats and its expression correlates with periods of rapid cardiac growth. The present investigation was designed to determine whether the expression of NAT1 is modified in the left ventricle of spontaneously hypertensive rats and 2-kidney-1-clip (2K1C) hypertensive rats. Northern blot analysis revealed an increase in NAT1 mRNA expression which correlates with the onset of cardiac hypertrophy. Unlike its pattern of mRNA expression, however, NAT1 protein level did not differ significantly from their respective controls throughout the time course. Interestingly, several protein species ranging in size from approximately 40-70 kDa were detected by Western blotting, in addition to the full length 97 kDa NAT1. Since the NAT1 transcript is a known substrate for the enzyme APOBEC-1 and possibly APOBEC-2, we speculate that these proteins may represent truncated fragments of NAT1 resulting from the formation of premature translation termination codons along the NAT1 transcript by APOBEC editing. Together, these results show that the ventricular expression of NAT1 is regulated at the transcriptional level during the early stages of genetic and 2K1C-induced hypertension and may be involved in the onset of left ventricular hypertrophy.
Collapse
|
30
|
Han B, Zhang JT. Regulation of gene expression by internal ribosome entry sites or cryptic promoters: the eIF4G story. Mol Cell Biol 2002; 22:7372-84. [PMID: 12370285 PMCID: PMC135655 DOI: 10.1128/mcb.22.21.7372-7384.2002] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As an alternative to the scanning mechanism of initiation, the direct-internal-initiation mechanism postulates that the translational machinery assembles at the AUG start codon without traversing the entire 5' untranslated region (5'-UTR) of the mRNA. Although the existence of internal ribosome entry sites (IRESs) in viral mRNAs is considered to be well established, the existence of IRESs in cellular mRNAs has recently been challenged, in part because when testing is carried out using a conventional dicistronic vector, Northern blot analyses might not be sensitive enough to detect low levels of monocistronic transcripts derived via a cryptic promoter or splice site. To address this concern, we created a new promoterless dicistronic vector to test the putative IRES derived from the 5'-UTR of an mRNA that encodes the translation initiation factor eIF4G. Our analysis of this 5'-UTR sequence unexpectedly revealed a strong promoter. The activity of the internal promoter relies on the integrity of a polypyrimidine tract (PPT) sequence that had been identified as an essential component of the IRES. The PPT sequence overlaps with a binding site for transcription factor C/EBPbeta. Two other transcription factors, Sp1 and Ets, were also found to bind to and mediate expression from the promoter in the 5'-UTR of eIF4G mRNA. The biological significance of the internal promoter in the eIF4G mRNA might lie in the production of an N-terminally truncated form of the protein. Consistent with the idea that the cryptic promoter we identified underlies the previously reported IRES activity, we found no evidence of IRES function when a dicistronic mRNA containing the eIF4G sequence was translated in vitro or in vivo. Using the promoterless dicistronic vector, we also found promoter activities in the long 5'-UTRs of human Sno and mouse Bad mRNAs although monocistronic transcripts were not detectable on Northern blot analyses. The promoterless dicistronic vector might therefore prove useful in future studies to examine more rigorously the claim that there is IRES activity in cellular mRNAs.
Collapse
Affiliation(s)
- Baoguang Han
- Department of Pharmacology and Toxicology, Walther Oncology Center/Walther Cancer Institute and I.U. Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | |
Collapse
|
31
|
Shen W, Mallon D, Boyle DW, Liechty EA. IGF-I and insulin regulate eIF4F formation by different mechanisms in muscle and liver in the ovine fetus. Am J Physiol Endocrinol Metab 2002; 283:E593-603. [PMID: 12169454 DOI: 10.1152/ajpendo.00570.2001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The mechanisms by which insulin-like growth factor I (IGF-I) and insulin regulate eukaryotic initiation factor (eIF)4F formation were examined in the ovine fetus. Insulin infusion increased phosphorylation of eIF4E-binding protein (4E-BP1) in muscle and liver. IGF-I infusion did not alter 4E-BP1 phosphorylation in liver. In muscle, IGF-I increased 4E-BP1 phosphorylation by 27%; the percentage in the gamma-form in the IGF-I group was significantly lower than that in the insulin group. In liver, only IGF-I increased eIF4G. Both IGF-I and insulin increased eIF4E. eIF4G binding in muscle, but only insulin decreased the amount of 4E-BP1 associated with eIF4E. In liver, only IGF-I increased eIF4E. eIF4G binding. Insulin increased the phosphorylation of p70 S6 kinase (p70(S6k)) in both muscle and liver and protein kinase B (PKB/Akt) in muscle, two indicative signal proteins in the phosphatidylinositol (PI) 3-kinase pathway. IGF-I increased PKB/Akt phosphorylation in muscle but had no effect on p70(S6k) phosphorylation in muscle or liver. We conclude that insulin and IGF-I modulate eIF4F formation; however, the two hormones have different regulatory mechanisms. Insulin increases phosphorylation of 4E-BP1 and eIF4E. eIF4G binding in muscle, whereas IGF-I regulates eIF4F formation by increasing total eIF4G. Insulin, but not IGF-I, decreased 4E-BP1 content associated with eIF4E. Insulin regulates translation initiation via the PI 3-kinase-p70(S6k) pathway, whereas IGF-I does so mainly via mechanisms independent of the PI 3-kinase-p70(S6k) pathway.
Collapse
Affiliation(s)
- Weihua Shen
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | |
Collapse
|
32
|
Schwarz KW, Murray MT, Sylora R, Sohn RL, Dulchavsky SA. Augmentation of wound healing with translation initiation factor eIF4E mRNA. J Surg Res 2002; 103:175-82. [PMID: 11922732 DOI: 10.1006/jsre.2002.6360] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Initiation of translation is the rate-limiting step in protein synthesis; eIF4E increases translational efficiency by facilitating ribosome scanning. eIF4E is present in cells in rate-limiting amounts; chronic overexpression of eIF4E causes cell transformation by upregulating growth-related proteins. Biolistic delivery of epidermal growth factor (EGF) increases wound healing; transiently increasing wound eIF4E levels with biolistic mRNA transmission may further augment wound healing without oncogenesis. PATIENTS AND METHODS Midline fascial wounds were created in rats and biolistically treated with gold particles carrying mRNA encoding for hEGF with or without eIF4E prior to suture closure; control animals received blank bullets. The animals were sacrificed at 7 or 14 days for determination of peak wound bursting strength on a tensiometer. Results are expressed as means +/- standard deviation; statistics were via analysis of variance. RESULTS [Table: see text]. CONCLUSIONS Simultaneous biolistic delivery of EGF mRNA with eIF4E mRNA significantly increases wound breaking strength compared to that in control animals or treatment with EGF mRNA alone without risk of cellular transformation. Further studies of translational activation to augment wound healing are warranted.
Collapse
Affiliation(s)
- Karl W Schwarz
- Department of Surgery and the Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | |
Collapse
|
33
|
Morley SJ. The regulation of eIF4F during cell growth and cell death. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2002; 27:1-37. [PMID: 11575157 DOI: 10.1007/978-3-662-09889-9_1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- S J Morley
- Biochemistry Laboratory, School of Biological Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| |
Collapse
|
34
|
|
35
|
Vary TC, Lynch CJ, Lang CH. Effects of chronic alcohol consumption on regulation of myocardial protein synthesis. Am J Physiol Heart Circ Physiol 2001; 281:H1242-51. [PMID: 11514293 DOI: 10.1152/ajpheart.2001.281.3.h1242] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heart disease represents an important etiology of mortality in chronic alcoholics. The purpose of the present study was to examine potential mechanisms for the inhibitory effect of chronic alcohol exposure (16 wk) on the regulation of myocardial protein metabolism. Chronic alcohol feeding resulted in a lower heart weight and 25% loss of cardiac protein per heart compared with pair-fed controls. The loss of protein mass resulted in part from a diminished (30%) rate of protein synthesis. Ethanol exerted its inhibition of protein synthesis through diminished translational efficiency rather than lower RNA content. Chronic ethanol administration decreased the abundance of eukaryotic initiation factor (eIF)4G associated with eIF4E in the myocardium by 36% and increased the abundance of the translation response protein (4E-BP1) associated with eIF4E. In addition, chronic alcohol feeding significantly reduced the extent of p70S6 kinase (p70(S6K)) phosphorylation. The decreases in the phosphorylation of 4E-BP1 and p70(S6K) did not result from a reduced abundance of mammalian target of rapamycin (mTOR). These data suggest that a chronic alcohol-induced impairment in myocardial protein synthesis results in part from inhibition in peptide chain initiation secondary to marked changes in eIF4E availability and p70(S6K) phosphorylation.
Collapse
Affiliation(s)
- T C Vary
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA.
| | | | | |
Collapse
|
36
|
Pincheira R, Chen Q, Huang Z, Zhang JT. Two subcellular localizations of eIF3 p170 and its interaction with membrane-bound microfilaments: implications for alternative functions of p170. Eur J Cell Biol 2001; 80:410-8. [PMID: 11484932 DOI: 10.1078/0171-9335-00176] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We previously identified a 170-kDa protein (p170) highly expressed in lung cancers as the major subunit of the eukaryotic translation initiation factor 3 (eIF3). p170 was recently cloned and little is known concerning its characteristics and subcellular localization. In this paper, we report our surprising findings that about 20% of p170 is associated with membranes while the remaining portion is located in the cytoplasm presumably in the eIF3 complex. We also find that p170 interacts with both endoplasmic reticulum and plasma membranes. The binding of p170 to membranes is through actin filaments, consistent with the fact that p170 contains a spectrin repeat motif that may be involved in actin binding. Furthermore, the cytoplasmic p170 is phosphorylated at serine and threonine residues and the phosphorylation is stimulated by serum. However, the membrane-actin-bound p170 is not phosphorylated. The results obtained in this study suggest that p170 may have other functions in addition to participating in translation initiation. Phosphorylation may play an important regulatory role in the function of p170 in translation initiation and other alternative functions.
Collapse
Affiliation(s)
- R Pincheira
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis 46202, USA
| | | | | | | |
Collapse
|
37
|
Lang CH, Kimball SR, Frost RA, Vary TC. Alcohol myopathy: impairment of protein synthesis and translation initiation. Int J Biochem Cell Biol 2001; 33:457-73. [PMID: 11331201 DOI: 10.1016/s1357-2725(00)00081-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Alcohol consumption leads to numerous morphological, biochemical and functional changes in skeletal and cardiac muscle. One such change observed in both tissues after either acute alcohol intoxication or chronic alcohol consumption is a characteristic decrease in the rate of protein synthesis. A decrease in translation efficiency appears to be responsible for at least part of the reduction. This review highlights advances in determining the molecular mechanisms by which alcohol impairs protein synthesis and places these observations in context of earlier studies on alcoholic myopathy. Both acute and chronic alcohol administration impairs translational control by modulating various aspects of peptide-chain initiation. Moreover, this alcohol-induced impairment in initiation is associated with a decreased availability of eukaryotic initiation factor (eIF) 4E in striated muscle, as evidenced by an increase in the amount of the inactive eIF4E.4E-BP1 complex and decrease in the active eIF4E.eIF4G complex. In contrast, alcohol does not produce consistent alterations in the control of translation initiation by the eIF2 system. The etiology of these changes remain unresolved. However, defects in the availability or effectiveness of various anabolic hormones, particularly insulin-like growth factor-I, are consistent with the alcohol-induced decrease in protein synthesis and translation initiation.
Collapse
Affiliation(s)
- C H Lang
- Department of Cellular and Molecular Physiology (H166), Penn State College of Medicine, Hershey, PA 17033, USA.
| | | | | | | |
Collapse
|
38
|
Yoshizawa F, Kido T, Nagasawa T. Rapid dephosphorylation of eIF4E by dietary protein in the skeletal muscle and liver of food-deprived rats. Biosci Biotechnol Biochem 2001; 65:958-61. [PMID: 11388481 DOI: 10.1271/bbb.65.958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The effect of dietary protein on eIF4E phosphorylation was examined in rats starved for 18 h and then fed on either a 20% casein diet (20C) or a protein-free diet (0C). Refeeding with the 20C diet, but not the 0C diet, resulted in partial dephosphorylation of eIF4E in both the skeletal muscle and liver. The results suggest that the dephosphorylation of eIF4E in response to food intake was regulated by the increase in plasma amino acid concentration that occurred after feeding with the 20C diet.
Collapse
Affiliation(s)
- F Yoshizawa
- Department of Animal Science, Utsunomiya University, Tochigi, Japan.
| | | | | |
Collapse
|
39
|
Lawrence JC, Fadden P, Haystead TA, Lin TA. PHAS proteins as mediators of the actions of insulin, growth factors and cAMP on protein synthesis and cell proliferation. ADVANCES IN ENZYME REGULATION 2001; 37:239-67. [PMID: 9381973 DOI: 10.1016/s0065-2571(96)00016-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PHAS-I and PHAS-II are members of a newly discovered family of proteins that regulate translation initiation. PHAS-I is expressed in a wide variety of cell types, but it is highest in adipocytes, where protein synthesis is markedly increased by insulin. PHAS-II is highest in liver and kidney, where very little PHAS-I is found. PHAS proteins bind to eIF-4E, the mRNA cap-binding protein, and inhibit translation of capped mRNA in vitro and in cells. In rat adipocytes PHAS-I is phosphorylated in at least five sites, all of which conform to the consensus, (Ser/Thr)-Pro. Both PHAS proteins are phosphorylated in response to insulin or growth factors, such as EGF, PDGF and IGF-1. Phosphorylation in the appropriate site(s) promotes dissociation of PHAS/eIF-4E complexes. This allows eIF-4E to bind to eIF-4G (p220), thereby increasing the amount of the eIF-4F complex and the rate of translation initiation. Increasing cAMP promotes PHAS-I dephosphorylation and increases binding to eIF-4E. Unlike PHAS-I, PHAS-II is readily phosphorylated by PKA in vitro, suggesting that regulation of the two proteins differs. However, increasing cAMP in cells also promotes dephosphorylation of PHAS-II. Thus, PHAS proteins appear to be key mediators not only of the stimulatory effects of insulin and growth factors on protein synthesis, but also of the inhibitory effects of cAMP. Moreover, by controlling eIF-4E PHAS proteins may be involved in the control of cell proliferation, as increasing eIF-4E is mitogenic and can even cause malignant transformation of cells. MAP kinase readily phosphorylates both PHAS-I and PHAS-II in vitro, but inhibiting activation of MAP kinase does not attenuate the effects of insulin on increasing phosphorylation of the PHAS proteins in adipocytes or skeletal muscle. MAP kinase phosphorylates neither PHAS-I nor PHAS-II at a significant rate when the proteins are bound to eIF-4E. Therefore, the role of MAP kinase in promoting the dissociation of PHAS/eIF-4E complexes is not clear. Of several protein kinases tested, only casein kinase-II phosphorylated PHAS-I when it was bound eIF-4E. Indeed, the bound form of PHAS-I was phosphorylated more rapidly than the free form. However, it is unlikely that casein kinase II regulates either PHAS protein, as the major site (Ser111) in PHAS-I phosphorylated by casein kinase II in vitro is not phosphorylated in adipocytes, and PHAS-II is not a substrate for casein kinase-II. Pharmacological and genetic evidence indicates that the mTOR/p70S6K pathway is involved in the control of PHAS-I and -II. Thus, PHAS proteins may be mediators of the effects of this pathway on protein synthesis and cell proliferation.
Collapse
Affiliation(s)
- J C Lawrence
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville 22908, USA
| | | | | | | |
Collapse
|
40
|
Davis TA, Nguyen HV, Suryawan A, Bush JA, Jefferson LS, Kimball SR. Developmental changes in the feeding-induced stimulation of translation initiation in muscle of neonatal pigs. Am J Physiol Endocrinol Metab 2000; 279:E1226-34. [PMID: 11093908 DOI: 10.1152/ajpendo.2000.279.6.e1226] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The rapid gain in skeletal muscle mass in the neonate is associated with a marked elevation in skeletal muscle protein synthesis in response to feeding. The feeding-induced response decreases with development. To determine whether the response to feeding is regulated at the level of translation initiation, the expression, phosphorylation, and function of a number of eukaryotic initiation factors (eIF) were examined. Pigs at 7 and 26 days of age were either fasted overnight or fed porcine milk after an overnight fast. In muscle of 7-day-old pigs, the hyperphosphorylated form of the eIF4E repressor protein, 4E-binding protein 1 (4E-BP1), was undetectable in the fasting state but rose to 60% of total 4E-BP1 after feeding; eIF4E phosphorylation was unaffected by feeding status. The amount of eIF4E in the inactive 4E-BP1. eIF4E complex was reduced by 80%, and the amount of eIF4E in the active eIF4E. eIF4G complex was increased 14-fold in muscle of 7-day-old pigs after feeding. The amount of 70-kDa ribosomal protein S6 (p70(S6)) kinase in the hyperphosphorylated form rose 2.5-fold in muscle of 7-day-old pigs after feeding. Each of these feeding-induced responses was blunted in muscle of 26-day-old pigs. eIF2B activity in muscle was unaffected by feeding status but decreased with development. Feeding produced similar changes in eIF characteristics in liver and muscle; however, the developmental changes in liver were not as apparent as in skeletal muscle. Thus the results demonstrate that the developmental change in the acute stimulation of skeletal muscle protein synthesis by feeding is regulated by the availability of eIF4E for 48S ribosomal complex formation. The results further suggest that the overall developmental decline in skeletal muscle protein synthesis involves regulation by eIF2B.
Collapse
Affiliation(s)
- T A Davis
- Department of Pediatrics, United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Lang CH, Frost RA, Kumar V, Vary TC. Impaired myocardial protein synthesis induced by acute alcohol intoxication is associated with changes in eIF4F. Am J Physiol Endocrinol Metab 2000; 279:E1029-38. [PMID: 11052957 DOI: 10.1152/ajpendo.2000.279.5.e1029] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The purpose of the present study was to examine potential mechanisms for the known inhibitory effect of acute alcohol exposure on myocardial protein synthesis. Rats were injected intraperitoneally with either ethanol (75 mmol/kg) or saline, and protein synthesis was measured in vivo 2.5 h thereafter by use of the flooding-dose L-[(3)H]phenylalanine technique. Rates of myocardial protein synthesis and translational efficiency in alcohol-treated rats were decreased compared with control values. Free (nonpolysome bound) 40S and 60S ribosomal subunits were increased 50% after alcohol treatment, indicating an impaired peptide-chain initiation. To identify mechanisms responsible for this impairment, several eukaryotic initiation factors (eIF) were analyzed. Acute alcohol intoxication did not significantly alter the myocardial content of eIF2 alpha or eIF2B epsilon, the extent of eIF2 alpha phosphorylation, or the activity of eIF2B. Acute alcohol exposure increased the binding of 4E-binding protein 1 (4E-BP1) to eIF4E (55%), diminished the amount of eIF4E bound to eIF4G (70%), reduced the amount of 4E-BP1 in the phosphorylated gamma-form (40%), and decreased the phosphorylation of p70S6 kinase and the ribosomal protein S6. There was no significant difference in either the plasma insulin-like growth factor (IGF) I concentration (total or free) or expression of IGF-I or IGF-II mRNA in heart between the two groups. These data suggest that the acute alcohol-induced impairment in myocardial protein synthesis results, in part, from an inhibition in peptide-chain initiation, which is associated with marked changes in eIF4E availability and p70S6 kinase phosphorylation but is independent of changes in the eIF2/2B system and IGFs.
Collapse
Affiliation(s)
- C H Lang
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA.
| | | | | | | |
Collapse
|
42
|
Abstract
Chronic septic abscess formation causes an inhibition of protein synthesis in gastrocnemius that is not observed in rats with a sterile abscess. The inhibition is associated with an impaired translation initiation. The present study was designed to investigate the effects of sepsis on phosphorylation and availability of eukaryotic initiation factor (eIF)4E in gastrocnemius 5 days after induction of a sterile or septic abscess. Neither sepsis nor sterile inflammation altered the extent of eIF4E phosphorylation. Moreover, no changes in the amount of the binding protein 4E-BP1 associated with eIF4E or in the phosphorylation of 4E-BP1 were observed during sepsis or sterile inflammation. In contrast, sepsis and sterile inflammation caused a reduction in the relative amount of eIF4G bound to eIF4E compared with controls. The diminished amount of eIF4G bound to eIF4E was not the result of a reduced abundance of eIF4E. Sepsis, but not sterile inflammation, caused an increase in the cellular abundance of eIF4E. The results provide evidence that alterations in the eIF4E system are probably not rate controlling for the synthesis of total, mixed proteins in gastrocnemius during sepsis. Instead, on the basis of our previous studies, changes in eIF2B appear to be responsible for limiting protein synthesis in skeletal muscle during sepsis.
Collapse
Affiliation(s)
- T C Vary
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033,
| | | |
Collapse
|
43
|
Dyer JR, Sossin WS. Regulation of eukaryotic initiation factor 4E phosphorylation in the nervous system of Aplysia californica. J Neurochem 2000; 75:872-81. [PMID: 10899966 DOI: 10.1046/j.1471-4159.2000.0750872.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have used an antibody that specifically recognizes eukaryotic initiation factor 4E (eIF4E) when it is phosphorylated at Ser(207) to characterize eIF4E phosphorylation in the nervous system of APLYSIA: The level of phosphorylated eIF4E, but not the level of total eIF4E, was significantly correlated with the basal rate of translation measured from different animals. Serotonin (5-HT), a transmitter that regulates the rate of translation in APLYSIA: neurons, had mixed effects on eIF4E phosphorylation. 5-HT decreased eIF4E phosphorylation in sensory cell clusters through activation of protein kinase C. 5-HT increased eIF4E phosphorylation in the whole pleural ganglia. In the APLYSIA: nervous system, eIF4E phosphorylation correlated with phosphorylation of the p38 MAP kinase, but not the p42 MAP kinase (ERK). Furthermore, an inhibitor of the p38 MAP kinase significantly decreased basal eIF4E phosphorylation, but an inhibitor of the MAP or ERK kinase (MEK) did not. Despite the correlation of eIF4E phosphorylation with the basal rate of translation, inhibition of eIF4E phosphorylation by an inhibitor of the p38 MAP kinase did not significantly decrease the rate of translation.
Collapse
Affiliation(s)
- J R Dyer
- Department of Neurology and Neurosurgery, McGill University, Montreal Neurological Institute, Montreal, Quebec, Canada
| | | |
Collapse
|
44
|
Abstract
As obligate intracellular parasites, viruses rely exclusively on the translational machinery of the host cell for the synthesis of viral proteins. This relationship has imposed numerous challenges on both the infecting virus and the host cell. Importantly, viruses must compete with the endogenous transcripts of the host cell for the translation of viral mRNA. Eukaryotic viruses have thus evolved diverse mechanisms to ensure translational efficiency of viral mRNA above and beyond that of cellular mRNA. Mechanisms that facilitate the efficient and selective translation of viral mRNA may be inherent in the structure of the viral nucleic acid itself and can involve the recruitment and/or modification of specific host factors. These processes serve to redirect the translation apparatus to favor viral transcripts, and they often come at the expense of the host cell. Accordingly, eukaryotic cells have developed antiviral countermeasures to target the translational machinery and disrupt protein synthesis during the course of virus infection. Not to be outdone, many viruses have answered these countermeasures with their own mechanisms to disrupt cellular antiviral pathways, thereby ensuring the uncompromised translation of virion proteins. Here we review the varied and complex translational programs employed by eukaryotic viruses. We discuss how these translational strategies have been incorporated into the virus life cycle and examine how such programming contributes to the pathogenesis of the host cell.
Collapse
Affiliation(s)
- M Gale
- University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| | | | | |
Collapse
|
45
|
Lamb J, Wheatley DN. Single amino acid (arginine) deprivation induces G1 arrest associated with inhibition of cdk4 expression in cultured human diploid fibroblasts. Exp Cell Res 2000; 255:238-49. [PMID: 10694439 DOI: 10.1006/excr.1999.4779] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Withdrawal of a single amino acid (arginine) from freely cycling early passage primary human fibroblasts caused a halt to proliferation, characterized by an accumulation of cells in the G1 phase of the cell cycle. This arrest was accompanied by the suppression of cyclin D1- and cyclin E-associated kinase activities and the appearance of hypophosphorylated retinoblastoma protein. Arginine-deprived cells remained viable for in excess of 4 days and could be made to synchronously reenter the cell cycle by restoration of the amino acid, with kinetics characteristic of exit from a quiescent state. Stimulation of cells arrested by serum withdrawal did not result in S-phase entry when arginine was omitted from the culture medium. Although cyclin D1 accumulated on normal schedule, cdk4, which increased following restimulation in amino acid-replete medium, was not induced when arginine was absent. These results suggest that arginine deprivation-in common with other "suboptimal" conditions-inhibits the passage of normal human cells through the restriction point and implicate cdk4 as the key regulatory element in amino acid-sensitive cell cycle control.
Collapse
Affiliation(s)
- J Lamb
- Department of Cell Pathology, University of Aberdeen, MacRobert Building, 581 King Street, Aberdeen, AB24 5UA, Scotland, United Kingdom
| | | |
Collapse
|
46
|
Vary TC, Jefferson LS, Kimball SR. Role of eIF4E in stimulation of protein synthesis by IGF-I in perfused rat skeletal muscle. Am J Physiol Endocrinol Metab 2000; 278:E58-64. [PMID: 10644537 DOI: 10.1152/ajpendo.2000.278.1.e58] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insulin-like growth factor I (IGF-I) promotes anabolism by stimulating protein synthesis in skeletal muscle. In the present study, we have examined mechanisms by which IGF-I stimulates protein synthesis in skeletal muscle with a perfused rat hindlimb preparation. IGF-I (10 nM) stimulated protein synthesis over 2.7-fold. Total RNA content was unaffected, but translational efficiency was increased by IGF-I. We next examined the effect of IGF-I on eukaryotic initiation factor (eIF) 4E as a mechanism regulating translation initiation. IGF-I did not alter either the amount of eIF4E associated with the eIF4E binding protein 4E-BP1 or the phosphorylation state of 4E-BP1. Likewise, the phosphorylation state of eIF4E was unaltered by IGF-I. In contrast, the amount of eIF4E bound to eIF4G was increased threefold by IGF-I. We conclude that IGF-I regulates protein synthesis in skeletal muscle by enhancing formation of the active eIF4E x eIF4G complex.
Collapse
Affiliation(s)
- T C Vary
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA.
| | | | | |
Collapse
|
47
|
Vary TC, Jefferson LS, Kimball SR. Amino acid-induced stimulation of translation initiation in rat skeletal muscle. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:E1077-86. [PMID: 10600798 DOI: 10.1152/ajpendo.1999.277.6.e1077] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Amino acids stimulate protein synthesis in skeletal muscle by accelerating translation initiation. In the two studies described herein, we examined mechanisms by which amino acids regulate translation initiation in perfused skeletal muscle hindlimb preparation of rats. In the first study, the effects of supraphysiological amino acid concentrations on eukaryotic initiation factors (eIF) 2B and 4E were compared with physiological concentrations of amino acids. Amino acid supplementation stimulated protein synthesis twofold. No changes were observed in eIF2B activity, in the amount of eIF4E associated with the eIF4E-binding protein (4E-BP1), or in the phosphorylation of 4E-BP1. The abundance of eIF4E bound to eIF4G and the extent of phosphorylation of eIF4E were increased by 800 and 20%, respectively. In the second study, we examined the effect of removing leucine on translation initiation when all other amino acids were maintained at supraphysiological concentrations. Removal of leucine from the perfusate decreased the rate of protein synthesis by 40%. The inhibition of protein synthesis was associated with a 40% decrease in eIF2B activity and an 80% fall in the abundance of eIF4E. eIF4G complex. The fall in eIF4G binding to eIF4E was associated with increased 4E-BP1 bound to eIF4E and a reduced phosphorylation of 4E-BP1. In contrast, the extent of phosphorylation of eIF4E was unaffected. We conclude that formation of the active eIF4E. eIF4G complex controls protein synthesis in skeletal muscle when the amino acid concentration is above the physiological range, whereas removal of leucine reduces protein synthesis through changes in both eIF2B and eIF4E.
Collapse
Affiliation(s)
- T C Vary
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA.
| | | | | |
Collapse
|
48
|
Lang CH, Wu D, Frost RA, Jefferson LS, Vary TC, Kimball SR. Chronic alcohol feeding impairs hepatic translation initiation by modulating eIF2 and eIF4E. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:E805-14. [PMID: 10567006 DOI: 10.1152/ajpendo.1999.277.5.e805] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study examined potential cellular mechanisms responsible for the inhibition of protein synthesis in liver after chronic alcohol consumption. Rats were maintained on an alcohol-containing diet for 14 wk; control animals were fed isocalorically. Hepatic ATP content was not different in alcohol-fed and control animals. No alcohol-induced reduction in total hepatic RNA content (an estimate of ribosomal RNA) was detected, suggesting that alcohol decreased translational efficiency. Alcohol feeding increased the proportion of 40S and 60S ribosomal subunits in the nonpolysome-associated fraction by 30%. To identify mechanisms responsible for the impairment in initiation, several eukaryotic initiation factors (eIF) were analyzed. Alcohol feeding decreased hepatic eIF2B activity by 36%. This reduction was associated with a 20% decrease in eIF2Bepsilon content and a 90% increase in eIF2alpha phosphorylation. Alcohol also dramatically influenced the distribution of eIF4E. Compared with pair-fed control values, alcohol feeding increased the amount of eIF4E present in the inactive 4E-binding protein 1 (4E-BP1). eIF4E complex by 80% and decreased binding of eIF4G to eIF4E by 70%. However, the phosphorylation status of 4E-BP1 and eIF4E was not altered by alcohol. Although the plasma concentrations of threonine, proline, and citrulline were mildly decreased, the circulating amount of total amino acids was not altered by alcohol feeding. In summary, these data suggest that chronic alcohol consumption impairs translation initiation in liver by altering eIF2B activity as well as eIF4F function via changes in eIF4E availability.
Collapse
Affiliation(s)
- C H Lang
- Department of Cellular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Elgadi MM, Smiley JR. Picornavirus internal ribosome entry site elements target RNA cleavage events induced by the herpes simplex virus virion host shutoff protein. J Virol 1999; 73:9222-31. [PMID: 10516030 PMCID: PMC112956 DOI: 10.1128/jvi.73.11.9222-9231.1999] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The herpes simplex virus (HSV) virion host shutoff (vhs) protein (UL41 gene product) is a component of the HSV virion tegument that triggers shutoff of host protein synthesis and accelerated mRNA degradation during the early stages of HSV infection. vhs displays weak amino acid sequence similarity to the fen-1 family of nucleases and suffices to induce accelerated RNA turnover through endoribonucleolytic cleavage events when it is expressed as the only HSV protein in a rabbit reticulocyte in vitro translation system. Although vhs selectively targets mRNAs in vivo, the basis for this selectivity remains obscure, since in vitro activity is not influenced by the presence of a 5' cap or 3' poly(A) tail. Here we show that vhs activity is greatly altered by placing an internal ribosome entry site (IRES) from encephalomyocarditis virus or poliovirus in the RNA substrate. Transcripts bearing the IRES were preferentially cleaved by the vhs-dependent endoribonuclease at multiple sites clustered in a narrow zone located immediately downstream of the element in a reaction that did not require ribosomes. Targeting was observed when the IRES was located at the 5' end or placed at internal sites in the substrate, indicating that it is independent of position or sequence context. These data indicate that the vhs-dependent nuclease can be selectively targeted by specific cis-acting elements in the RNA substrate, possibly through secondary structure or a component of the translational machinery.
Collapse
Affiliation(s)
- M M Elgadi
- Department of Biology, McMaster University, Hamilton, Ontario L8N 3Z5
| | | |
Collapse
|
50
|
Pak BJ, Pang SC. Developmental regulation of the translational repressor NAT1 during cardiac development. J Mol Cell Cardiol 1999; 31:1717-24. [PMID: 10471355 DOI: 10.1006/jmcc.1999.1008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The process of translation initiation has been postulated to play an important role in the regulation of cellular growth and proliferation. Here, we report the identification and differential expression of a fundamental translational repressor NAT1, during early postnatal cardiac development. Differential display analysis of RNA obtained from 3-day and 4-week-old rat hearts resulted in the cloning and identification of a 396 bp cDNA fragment (DRCF-6) which corresponded to the 3' terminal portion of NAT1. Northern blot analysis revealed that the mRNA expression of NAT1 was markedly elevated during the first 2 weeks of postnatal life, with an apparent peak level of expression occurring at 1 week. NAT1 mRNA levels then steadily decreased to 4 weeks of age. The NAT1 transcript has previously been shown to be extensively edited by the enzyme APOBEC-1, which deaminates specific cytidine bases to uridine; cytidine deamination at a glutamine codon (CAA) results in the formation of a stop codon (UAA) and consequently, premature termination of translation. Accordingly, Western blot analysis detected the presence of several smaller proteins in addition to the full length NAT1 protein (97 kDa), each exhibiting a distinct pattern of expression during cardiac development. APOBEC-1 editing of NAT1 during cardiac development was further supported by primer extension analysis of cytidine 1699, which was found to be predominantly edited to uridine. Immunohistochemical staining showed that NAT1 is expressed predominantly in atrial and ventricular myocytes, although staining was also detected in vascular smooth muscle cells and in the endocardium. These results suggest that NAT1 may play a role in the postnatal development of the heart and demonstrate that APOBEC-1 editing may possibly be a novel mechanism by which translation is regulated during cardiac development.
Collapse
Affiliation(s)
- B J Pak
- Department of Anatomy and Cell Biology, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | | |
Collapse
|