1
|
Lucke K, MacGillivray AO, Halvorsen MB, Ainslie MA, Zeddies DG, Sisneros JA. Recommendations on bioacoustical metrics relevant for regulating exposure to anthropogenic underwater sounda). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 156:2508-2526. [PMID: 39400268 DOI: 10.1121/10.0028586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/22/2024] [Indexed: 10/15/2024]
Abstract
Metrics to be used in noise impact assessment must integrate the physical acoustic characteristics of the sound field with relevant biology of animals. Several metrics have been established to determine and regulate underwater noise exposure to aquatic fauna. However, recent advances in understanding cause-effect relationships indicate that additional metrics are needed to fully describe and quantify the impact of sound fields on aquatic fauna. Existing regulations have primarily focused on marine mammals and are based on the dichotomy of sound types as being either impulsive or non-impulsive. This classification of sound types, however, is overly simplistic and insufficient for adequate impact assessments of sound on animals. It is recommended that the definition of impulsiveness be refined by incorporating kurtosis as an additional parameter and applying an appropriate conversion factor. Auditory frequency weighting functions, which scale the importance of particular sound frequencies to account for an animal's sensitivity to those frequencies, should be applied. Minimum phase filters are recommended for calculating weighted sound pressure. Temporal observation windows should be reported as signal duration influences its detectability by animals. Acknowledging that auditory integration time differs across species and is frequency dependent, standardized temporal integration windows are proposed for various signal types.
Collapse
Affiliation(s)
- Klaus Lucke
- JASCO Applied Sciences, Droxford, SO32 3PW, United Kingdom
- German Environment Agency, Dessau-Roßlau, 06844, Germany
| | | | | | | | | | - Joseph A Sisneros
- Department of Psychology, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
2
|
Nieder C, Rapson J, Montgomery JC, Radford CA. Comparison of auditory evoked potential thresholds in three shark species. J Exp Biol 2023; 226:jeb245973. [PMID: 37439272 DOI: 10.1242/jeb.245973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/04/2023] [Indexed: 07/14/2023]
Abstract
Auditory sensitivity measurements have been published for only 12 of the more than 1150 extant species of elasmobranchs (sharks, skates and rays). Thus, there is a need to further understand sound perception in more species from different ecological niches. In this study, the auditory evoked potential (AEP) technique was used to compare hearing abilities of the bottom-dwelling New Zealand carpet shark (Cephaloscyllium isabellum) and two benthopelagic houndsharks (Triakidae), the rig (Mustelus lenticulatus) and the school shark (Galeorhinus galeus). AEPs were measured in response to tone bursts (frequencies: 80, 100, 150, 200, 300, 450, 600, 800 and 1200 Hz) from an underwater speaker positioned 55 cm in front of the shark in an experimental tank. AEP detection thresholds were derived visually and statistically, with statistical measures slightly more sensitive (∼4 dB) than visual methodology. Hearing abilities differed between species, mainly with respect to bandwidth rather than sensitivity. Hearing was least developed in the benthic C. isabellum [upper limit: 300 Hz, highest sensitivity: 100 Hz (82.3±1.5 dB re. 1 µm s-2)] and had a wider range in the benthopelagic rig and school sharks [upper limit: 800 Hz; highest sensitivity: 100 Hz (79.2±1.6 dB re. 1 µm s-2) for G. galeus and 150 Hz (74.8±1.8 dB re. 1 µm s-2) for M. lenticulatus]. The data are consistent with those known for 'hearing non-specialist' teleost fishes that detect only particle motion, not pressure. Furthermore, our results provide evidence that benthopelagic sharks exploit higher frequencies (max. 800 Hz) than some of the bottom-dwelling sharks (max. 300 Hz). Further behavioural and morphological studies are needed to identify what ecological factors drive differences in upper frequency limits of hearing in elasmobranchs.
Collapse
Affiliation(s)
- Carolin Nieder
- Institute of Marine Science, University of Auckland, Leigh Marine Research Laboratory, Leigh, Auckland 0985, New Zealand
| | - Jimmy Rapson
- Institute of Marine Science, University of Auckland, Leigh Marine Research Laboratory, Leigh, Auckland 0985, New Zealand
| | - John C Montgomery
- Institute of Marine Science, University of Auckland, Leigh Marine Research Laboratory, Leigh, Auckland 0985, New Zealand
| | - Craig A Radford
- Institute of Marine Science, University of Auckland, Leigh Marine Research Laboratory, Leigh, Auckland 0985, New Zealand
| |
Collapse
|
3
|
Sand O. A journey through the field of fish hearinga). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:2677. [PMID: 37130205 DOI: 10.1121/10.0017833] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/27/2023] [Indexed: 05/04/2023]
Abstract
My interest in fish bioacoustics was ignited more than 50 years ago and resulted in a zigzag time travel between various interesting problems that were unsettled at the time. The present paper gives a brief overview of the main topics I have worked on in the field of fish hearing, i.e., auditory function of the swim bladder, directional hearing, function of the lateral line system, and infrasound sensitivity. Rather than being a comprehensive review of these issues, the paper is autobiographical and limited. The aim is to show young scientists that experimental science can be exciting, diverse, and rewarding-and open doors to a rich collegial network, collaboration, and friendships.
Collapse
Affiliation(s)
- Olav Sand
- Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
4
|
Sigray P, Linné M, Andersson MH, Nöjd A, Persson LKG, Gill AB, Thomsen F. Particle motion observed during offshore wind turbine piling operation. MARINE POLLUTION BULLETIN 2022; 180:113734. [PMID: 35635876 DOI: 10.1016/j.marpolbul.2022.113734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Measurement of particle motion from an offshore piling event in the North was conducted to determine noise levels. For this purpose, a bespoken sensor was developed that was both autonomous and sensitive up to 2 kHz. The measurement was undertaken both for unmitigated and mitigated piling. Three different types of mitigation techniques were employed. The acceleration zero-to-peak values and the acceleration exposure levels were determined. The results show that inferred mitigation techniques reduce the levels significantly as well as decreases the power content of higher frequencies. These results suggest that mitigation has an effect and will reduce the effect ranges of impact on marine species.
Collapse
Affiliation(s)
- Peter Sigray
- Royal Institute of Technology, Department of Engineering Mechanics, S-100 44 Stockholm, Sweden.
| | - Markus Linné
- Swedish Defence Research Agency, S-164 90 Stockholm, Sweden
| | | | - Andreas Nöjd
- Swedish Defence Research Agency, S-164 90 Stockholm, Sweden
| | | | - Andrew B Gill
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Lowestoft, Suffolk NR33 0HT, UK
| | | |
Collapse
|
5
|
Popper AN, Sisneros JA. The Sound World of Zebrafish: A Critical Review of Hearing Assessment. Zebrafish 2022; 19:37-48. [PMID: 35439045 DOI: 10.1089/zeb.2021.0063] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Zebrafish, like all fish species, use sound to learn about their environment. Thus, human-generated (anthropogenic) sound added to the environment has the potential to disrupt the detection of biologically relevant sounds, alter behavior, impact fitness, and produce stress and other effects that can alter the well-being of animals. This review considers the bioacoustics of zebrafish in the laboratory with two goals. First, we discuss zebrafish hearing and the problems and issues that must be considered in any studies to get a clear understanding of hearing capabilities. Second, we focus on the potential effects of sounds in the tank environment and its impact on zebrafish physiology and health. To do this, we discuss underwater acoustics and the very specialized acoustics of fish tanks, in which zebrafish live and are studied. We consider what is known about zebrafish hearing and what is known about the potential impacts of tank acoustics on zebrafish and their well-being. We conclude with suggestions regarding the major gaps in what is known about zebrafish hearing as well as questions that must be explored to better understand how well zebrafish tolerate and deal with the acoustic world they live in within laboratories.
Collapse
Affiliation(s)
- Arthur N Popper
- Department of Biology, University of Maryland, College Park, Maryland, USA
| | - Joseph A Sisneros
- Department of Psychology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
6
|
Popper AN, Hawkins AD, Sisneros JA. Fish hearing "specialization" - A re-valuation. Hear Res 2021; 425:108393. [PMID: 34823877 DOI: 10.1016/j.heares.2021.108393] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/15/2021] [Accepted: 11/03/2021] [Indexed: 11/17/2022]
Abstract
Investigators working with fish bioacoustics used to refer to fishes that have a narrow hearing bandwidth and poor sensitivity as "hearing generalists" (or "non-specialists"), while fishes that could detect a wider hearing bandwidth and had greater sensitivity were referred to as specialists. However, as more was learned about fish hearing mechanism and capacities, these terms became hard to apply since it was clear there were gradations in hearing capabilities. Popper and Fay, in a paper in Hearing Research in 2011, proposed that these terms be dropped because of the gradation. While this was widely accepted by investigators, it is now apparent that the lack of relatively concise terminology for fish hearing capabilities makes it hard to discuss fish hearing. Thus, in this paper we resurrect the terms specialist and non-specialist but use them with modifiers to express the specific structure of function that is considered a specialization. Moreover, this resurrection recognizes that hearing specializations in fishes may not only be related to increased bandwidth and/or sensitivity, but to other, perhaps more important, aspects of hearing such as sound source localization, discrimination between sounds, and detection of sounds in the presence of masking signals.
Collapse
Affiliation(s)
- Arthur N Popper
- Department of Biology, University of Maryland, College Park, MD USA; Environmental BioAcoustics, LLC, Silver Spring, MD USA.
| | - Anthony D Hawkins
- Environmental BioAcoustics, LLC, Silver Spring, MD USA; Loughine Ltd, Aberdeen, UK
| | | |
Collapse
|
7
|
From the Reef to the Ocean: Revealing the Acoustic Range of the Biophony of a Coral Reef (Moorea Island, French Polynesia). JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9040420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The ability of different marine species to use acoustic cues to locate reefs is known, but the maximal propagation distance of coral reef sounds is still unknown. Using drifting antennas (made of a floater and an autonomous recorder connected to a hydrophone), six transects were realized from the reef crest up to 10 km in the open ocean on Moorea island (French Polynesia). Benthic invertebrates were the major contributors to the ambient noise, producing acoustic mass phenomena (3.5–5.5 kHz) that could propagate at more than 90 km under flat/calm sea conditions and more than 50 km with an average wind regime of 6 knots. However, fish choruses, with frequencies mainly between 200 and 500 Hz would not propagate at distances greater than 2 km. These distances decreased with increasing wind or ship traffic. Using audiograms of different taxa, we estimated that fish post-larvae and invertebrates likely hear the reef at distances up to 0.5 km and some cetaceans would be able to detect reefs up to more than 17 km. These results are an empirically based validation from an example reef and are essential to understanding the effect of soundscape degradation on different zoological groups.
Collapse
|
8
|
Hawkins AD, Hazelwood RA, Popper AN, Macey PC. Substrate vibrations and their potential effects upon fishes and invertebrates. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 149:2782. [PMID: 33940912 DOI: 10.1121/10.0004773] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
This paper reviews the nature of substrate vibration within aquatic environments where seismic interface waves may travel along the surface of the substrate, generating high levels of particle motion. There are, however, few data on the ambient levels of particle motion close to the seabed and within the substrates of lakes and rivers. Nor is there information on the levels and the characteristics of the particle motion generated by anthropogenic sources in and on the substrate, which may have major effects upon fishes and invertebrates, all of which primarily detect particle motion. We therefore consider how to monitor substrate vibration and describe the information gained from modeling it. Unlike most acoustic modeling, we treat the substrate as a solid. Furthermore, we use a model where the substrate stiffness increases with depth but makes use of a wave that propagates with little or no dispersion. This shows the presence of higher levels of particle motion than those predicted from the acoustic pressures, and we consider the possible effects of substrate vibration upon fishes and invertebrates. We suggest that research is needed to examine the actual nature of substrate vibration and its effects upon aquatic animals.
Collapse
Affiliation(s)
| | | | - Arthur N Popper
- Department of Biology, University of Maryland, College Park, Maryland 20742, USA
| | - Patrick C Macey
- PACSYS Ltd., Strelley Hall, Nottingham NG8 6PE, United Kingdom
| |
Collapse
|
9
|
Popper AN, Hawkins AD, Sand O, Sisneros JA. Examining the hearing abilities of fishes. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:948. [PMID: 31472537 PMCID: PMC7051002 DOI: 10.1121/1.5120185] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/04/2019] [Accepted: 07/11/2019] [Indexed: 05/29/2023]
Affiliation(s)
- Arthur N Popper
- Department of Biology, University of Maryland, College Park, Maryland 20742, USA
| | - Anthony D Hawkins
- Aquatic Noise Trust, Kincraig, Blairs, Aberdeen AB12 5YT, United Kingdom
| | - Olav Sand
- Department of Biosciences, University of Oslo, NO-0316 Oslo, Norway
| | - Joseph A Sisneros
- Department of Psychology, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
10
|
Curthoys IS, Grant JW, Pastras CJ, Brown DJ, Burgess AM, Brichta AM, Lim R. A review of mechanical and synaptic processes in otolith transduction of sound and vibration for clinical VEMP testing. J Neurophysiol 2019; 122:259-276. [DOI: 10.1152/jn.00031.2019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Older studies of mammalian otolith physiology have focused mainly on sustained responses to low-frequency (<50 Hz) or maintained linear acceleration. So the otoliths have been regarded as accelerometers. Thus evidence of otolithic activation and high-precision phase locking to high-frequency sound and vibration appears to be very unusual. However, those results are exactly in accord with a substantial body of knowledge of otolith function in fish and frogs. It is likely that phase locking of otolith afferents to vibration is a general property of all vertebrates. This review examines the literature about the activation and phase locking of single otolithic neurons to air-conducted sound and bone-conducted vibration, in particular the high precision of phase locking shown by mammalian irregular afferents that synapse on striolar type I hair cells by calyx endings. Potassium in the synaptic cleft between the type I hair cell receptor and the calyx afferent ending may be responsible for the tight phase locking of these afferents even at very high discharge rates. Since frogs and fish do not possess full calyx endings, it is unlikely that they show phase locking with such high precision and to such high frequencies as has been found in mammals. The high-frequency responses have been modeled as the otoliths operating in a seismometer mode rather than an accelerometer mode. These high-frequency otolithic responses constitute the neural basis for clinical vestibular-evoked myogenic potential tests of otolith function.
Collapse
Affiliation(s)
- Ian S. Curthoys
- Vestibular Research Laboratory, School of Psychology, the University of Sydney, New South Wales, Australia
| | - J. Wally Grant
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia
| | - Christopher J. Pastras
- The Meniere’s Laboratory, Sydney Medical School, University of Sydney, New South Wales, Australia
| | - Daniel J. Brown
- The Meniere’s Laboratory, Sydney Medical School, University of Sydney, New South Wales, Australia
| | - Ann M. Burgess
- Vestibular Research Laboratory, School of Psychology, the University of Sydney, New South Wales, Australia
| | - Alan M. Brichta
- School of Biomedical Sciences and Pharmacy, The University of Newcastle and Hunter Medical Research Institute. Newcastle, New South Wales, Australia
| | - Rebecca Lim
- School of Biomedical Sciences and Pharmacy, The University of Newcastle and Hunter Medical Research Institute. Newcastle, New South Wales, Australia
| |
Collapse
|
11
|
Popper AN, Hawkins AD. An overview of fish bioacoustics and the impacts of anthropogenic sounds on fishes. JOURNAL OF FISH BIOLOGY 2019; 94:692-713. [PMID: 30864159 PMCID: PMC6849755 DOI: 10.1111/jfb.13948] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 03/07/2019] [Indexed: 05/06/2023]
Abstract
Fishes use a variety of sensory systems to learn about their environments and to communicate. Of the various senses, hearing plays a particularly important role for fishes in providing information, often from great distances, from all around these animals. This information is in all three spatial dimensions, often overcoming the limitations of other senses such as vision, touch, taste and smell. Sound is used for communication between fishes, mating behaviour, the detection of prey and predators, orientation and migration and habitat selection. Thus, anything that interferes with the ability of a fish to detect and respond to biologically relevant sounds can decrease survival and fitness of individuals and populations. Since the onset of the Industrial Revolution, there has been a growing increase in the noise that humans put into the water. These anthropogenic sounds are from a wide range of sources that include shipping, sonars, construction activities (e.g., wind farms, harbours), trawling, dredging and exploration for oil and gas. Anthropogenic sounds may be sufficiently intense to result in death or mortal injury. However, anthropogenic sounds at lower levels may result in temporary hearing impairment, physiological changes including stress effects, changes in behaviour or the masking of biologically important sounds. The intent of this paper is to review the potential effects of anthropogenic sounds upon fishes, the potential consequences for populations and ecosystems and the need to develop sound exposure criteria and relevant regulations. However, assuming that many readers may not have a background in fish bioacoustics, the paper first provides information on underwater acoustics, with a focus on introducing the very important concept of particle motion, the primary acoustic stimulus for all fishes, including elasmobranchs. The paper then provides background material on fish hearing, sound production and acoustic behaviour. This is followed by an overview of what is known about effects of anthropogenic sounds on fishes and considers the current guidelines and criteria being used world-wide to assess potential effects on fishes. Most importantly, the paper provides the most complete summary of the effects of anthropogenic noise on fishes to date. It is also made clear that there are currently so many information gaps that it is almost impossible to reach clear conclusions on the nature and levels of anthropogenic sounds that have potential to cause changes in animal behaviour, or even result in physical harm. Further research is required on the responses of a range of fish species to different sound sources, under different conditions. There is a need both to examine the immediate effects of sound exposure and the longer-term effects, in terms of fitness and likely impacts upon populations.
Collapse
Affiliation(s)
- Arthur N. Popper
- Department of BiologyUniversity of MarylandCollege ParkMarylandUSA
| | | |
Collapse
|
12
|
Hawkins AD, Chapman C, Fay RR, Horner K, Popper AN, Sand O. The pioneering contributions of Per Stockfleth Enger to fish bioacoustics. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 145:1596. [PMID: 31067956 DOI: 10.1121/1.5095405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Affiliation(s)
- Anthony D Hawkins
- Aquatic Noise Trust, Kincraig, Blairs, Aberdeen AB12 5YT, United Kingdom
| | - Colin Chapman
- Scott Garden, Kingsbarns, St. Andrews, Fife KY16 8TL, United Kingdom
| | | | | | - Arthur N Popper
- Department of Biology, University of Maryland, College Park, Maryland 20742, USA
| | - Olav Sand
- Department of Biosciences, University of Oslo, NO-0316 Oslo, Norway
| |
Collapse
|
13
|
Popper AN, Hawkins AD. The importance of particle motion to fishes and invertebrates. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 143:470. [PMID: 29390747 DOI: 10.1121/1.5021594] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
This paper considers the importance of particle motion to fishes and invertebrates and the steps that need to be taken to improve knowledge of its effects. It is aimed at scientists investigating the impacts of sounds on fishes and invertebrates but it is also relevant to regulators, those preparing environmental impact assessments, and to industries creating underwater sounds. The overall aim of this paper is to ensure that proper attention is paid to particle motion as a stimulus when evaluating the effects of sound upon aquatic life. Directions are suggested for future research and planning that, if implemented, will provide a better scientific basis for dealing with the impact of underwater sounds on marine ecosystems and for regulating those human activities that generate such sounds. The paper includes background material on underwater acoustics, focusing on particle motion; the importance of particle motion to fishes and invertebrates; and sound propagation through both water and the substrate. Consideration is then given to the data gaps that must be filled in order to better understand the interactions between particle motion and aquatic animals. Finally, suggestions are provided on how to increase the understanding of particle motion and its relevance to aquatic animals.
Collapse
Affiliation(s)
- Arthur N Popper
- Department of Biology, University of Maryland, College Park, Maryland 20742, USA
| | | |
Collapse
|
14
|
Roberts L, Elliott M. Good or bad vibrations? Impacts of anthropogenic vibration on the marine epibenthos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 595:255-268. [PMID: 28384581 DOI: 10.1016/j.scitotenv.2017.03.117] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/10/2017] [Accepted: 03/11/2017] [Indexed: 06/07/2023]
Abstract
Anthropogenic activities directly contacting the seabed, such as drilling and pile-driving, produce a significant vibration likely to impact benthic invertebrates. As with terrestrial organisms, vibration may be used by marine species for the detection of biotic and abiotic cues, yet the significance of this and the sensitivities to vibration are previously undocumented for many marine species. Exposure to additional vibration may elicit behavioral or physiological change, or even physical damage at high amplitudes or particular frequencies, although this is poorly studied in underwater noise research. Here we review studies regarding the sensitivities and responses of marine invertebrates to substrate-borne vibration. This includes information related to vibrations produced by those construction activities directly impacting the seabed, such as pile-driving. This shows the extent to which species are able to detect vibration and respond to anthropogenically-produced vibrations, although the short and long-term implications of this are not known. As such it is especially important that the sensitivities of these species are further understood, given that noise and energy-generating human impacts on the marine environment are only likely to increase and that there are now legal instruments requiring such effects to be monitored and controlled.
Collapse
Affiliation(s)
- Louise Roberts
- Institute of Estuarine and Coastal Studies (IECS), University of Hull, Cottingham Road, Hull HU6 7RX, United Kingdom.
| | - Michael Elliott
- Institute of Estuarine and Coastal Studies (IECS), University of Hull, Cottingham Road, Hull HU6 7RX, United Kingdom
| |
Collapse
|
15
|
Seasonal plasticity of auditory saccular sensitivity in “sneaker” type II male plainfin midshipman fish, Porichthys notatus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:211-222. [DOI: 10.1007/s00359-017-1157-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 10/20/2022]
|
16
|
Christensen CB, Lauridsen H, Christensen-Dalsgaard J, Pedersen M, Madsen PT. Better than fish on land? Hearing across metamorphosis in salamanders. Proc Biol Sci 2016; 282:rspb.2014.1943. [PMID: 25652830 DOI: 10.1098/rspb.2014.1943] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Early tetrapods faced an auditory challenge from the impedance mismatch between air and tissue in the transition from aquatic to terrestrial lifestyles during the Early Carboniferous (350 Ma). Consequently, tetrapods may have been deaf to airborne sounds for up to 100 Myr until tympanic middle ears evolved during the Triassic. The middle ear morphology of recent urodeles is similar to that of early 'lepospondyl' microsaur tetrapods, and experimental studies on their hearing capabilities are therefore useful to understand the evolutionary and functional drivers behind the shift from aquatic to aerial hearing in early tetrapods. Here, we combine imaging techniques with neurophysiological measurements to resolve how the change from aquatic larvae to terrestrial adult affects the ear morphology and sensory capabilities of salamanders. We show that air-induced pressure detection enhances underwater hearing sensitivity of salamanders at frequencies above 120 Hz, and that both terrestrial adults and fully aquatic juvenile salamanders can detect airborne sound. Collectively, these findings suggest that early atympanic tetrapods may have been pre-equipped to aerial hearing and are able to hear airborne sound better than fish on land. When selected for, this rudimentary hearing could have led to the evolution of tympanic middle ears.
Collapse
Affiliation(s)
- Christian Bech Christensen
- Zoophysiology, Department of Bioscience, Aarhus University, Building 1131, C. F. Moellers Allé 3, Aarhus C 8000, Denmark
| | - Henrik Lauridsen
- Comparative Medicine Lab, Aarhus University Hospital Skejby, Aarhus N 8200, Denmark
| | | | - Michael Pedersen
- Comparative Medicine Lab, Aarhus University Hospital Skejby, Aarhus N 8200, Denmark
| | - Peter Teglberg Madsen
- Zoophysiology, Department of Bioscience, Aarhus University, Building 1131, C. F. Moellers Allé 3, Aarhus C 8000, Denmark
| |
Collapse
|
17
|
Higgs DM, Radford CA. The Potential Overlapping Roles of the Ear and Lateral Line in Driving “Acoustic” Responses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 877:255-70. [DOI: 10.1007/978-3-319-21059-9_12] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
18
|
Sisneros JA, Rogers PH. Directional Hearing and Sound Source Localization in Fishes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 877:121-55. [DOI: 10.1007/978-3-319-21059-9_7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
19
|
Measurements of Operational Wind Turbine Noise in UK Waters. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 875:153-60. [PMID: 26610955 DOI: 10.1007/978-1-4939-2981-8_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The effects of wind farm operational noise have not been addressed to the same extent as their construction methods such as piling and drilling of the foundations despite their long operational lifetimes compared with weeks of construction. The results of five postconstruction underwater sound-monitoring surveys on wind farms located throughout the waters of the British Isles are discussed. These wind farms consist of differing turbine power outputs, from 3 to 3.6 MW, and differing numbers of turbines. This work presents an overview of the results obtained and discusses both the levels and frequency components of the sound in several metrics.
Collapse
|
20
|
Dale JJ, Gray MD, Popper AN, Rogers PH, Block BA. Hearing thresholds of swimming Pacific bluefin tuna Thunnus orientalis. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:441-54. [DOI: 10.1007/s00359-015-0991-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/17/2015] [Accepted: 02/18/2015] [Indexed: 10/23/2022]
|
21
|
Christensen CB, Christensen-Dalsgaard J, Madsen PT. Hearing of the African lungfish (Protopterus annectens) suggests underwater pressure detection and rudimentary aerial hearing in early tetrapods. J Exp Biol 2015; 218:381-7. [DOI: 10.1242/jeb.116012] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the transition from an aquatic to a terrestrial lifestyle, vertebrate auditory systems have undergone major changes while adapting to aerial hearing. Lungfish are the closest living relatives of tetrapods and their auditory system may therefore be a suitable model of the auditory systems of early tetrapods such as Acanthostega. Therefore, experimental studies on the hearing capabilities of lungfish may shed light on the possible hearing capabilities of early tetrapods and broaden our understanding of hearing across the water-to-land transition. Here, we tested the hypotheses that (i) lungfish are sensitive to underwater pressure using their lungs as pressure-to-particle motion transducers and (ii) lungfish can detect airborne sound. To do so, we used neurophysiological recordings to estimate the vibration and pressure sensitivity of African lungfish (Protopterus annectens) in both water and air. We show that lungfish detect underwater sound pressure via pressure-to-particle motion transduction by air volumes in their lungs. The morphology of lungfish shows no specialized connection between these air volumes and the inner ears, and so our results imply that air breathing may have enabled rudimentary pressure detection as early as the Devonian era. Additionally, we demonstrate that lungfish in spite of their atympanic middle ear can detect airborne sound through detection of sound-induced head vibrations. This strongly suggests that even vertebrates with no middle ear adaptations for aerial hearing, such as the first tetrapods, had rudimentary aerial hearing that may have led to the evolution of tympanic middle ears in recent tetrapods.
Collapse
Affiliation(s)
- Christian Bech Christensen
- Zoophysiology, Department of Bioscience, Aarhus University, Building 1131, C. F. Moellers Alle 3, DK-8000 Aarhus C, Denmark
| | | | - Peter Teglberg Madsen
- Zoophysiology, Department of Bioscience, Aarhus University, Building 1131, C. F. Moellers Alle 3, DK-8000 Aarhus C, Denmark
- Murdoch University Cetacean Research Unit, School of Veterinary and Life Sciences, Murdoch University, South Street, Murdoch, WA 6150, Australia
| |
Collapse
|
22
|
Tricas TC, Boyle KS. Sound pressure enhances the hearing sensitivity of Chaetodon butterflyfishes on noisy coral reefs. J Exp Biol 2015; 218:1585-95. [DOI: 10.1242/jeb.114264] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 02/20/2015] [Indexed: 11/20/2022]
Abstract
Butterflyfishes are conspicuous members of coral reefs that communicate with acoustic signals during social interactions with mates and other conspecifics. Members of the genus Chaetodon have a laterophysic connection (LC), a unique association of anterior swim bladder horns and the cranial lateral line, but the action of the LC system on auditory sensitivity was previously unexplored. Baseline auditory evoked potential threshold experiments show that Forcipiger flavissimus (which lacks swim bladder horns and LC) is sensitive to sound tones from 100 Hz up to 1000 Hz, and that thresholds for three species of Chaetodon were 10-15 dB lower with extended hearing ranges up to 1700-2000 Hz. The relatively high thresholds to sound pressure and low pass response near 500 Hz for all four species is consistent with a primary sensitivity to hydrodynamic particle acceleration rather than sound pressure. Deflation of the swim bladder in Forcipiger had no measurable effect on auditory sensitivity. In contrast, displacement of gas from the swim bladder horns in C. multicinctus and C. auriga increased thresholds (decreased sensitivity) by approximately 10 dB with the greatest effect at 600 Hz. The evolution of swim bladder horns associated with the LC system in Chaetodon has increased hearing sensitivity through sound pressure transduction in the frequency bands used for social acoustic communication. The close affiliative behaviors that are common in Chaetodon and other butterflyfish species facilitate sound perception and acoustic communication at close distances relative to the high background noise levels found in their natural reef environment.
Collapse
Affiliation(s)
- Timothy C. Tricas
- Department of Biology, University of Hawaii, 2538 The Mall, Honolulu, Hawaii 96822 USA
- Hawaii Institute of Marine Biology, 46-007 Lilipuna Road, Kaneohe, Hawaii 96744 USA
| | - Kelly S. Boyle
- Department of Biology, University of Hawaii, 2538 The Mall, Honolulu, Hawaii 96822 USA
- Hawaii Institute of Marine Biology, 46-007 Lilipuna Road, Kaneohe, Hawaii 96744 USA
| |
Collapse
|
23
|
Examining Fish in the Sea: A European Perspective on Fish Hearing Experiments. PERSPECTIVES ON AUDITORY RESEARCH 2014. [DOI: 10.1007/978-1-4614-9102-6_14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
24
|
Functional Overlap and Nonoverlap Between Lateral Line and Auditory Systems. SPRINGER HANDBOOK OF AUDITORY RESEARCH 2013. [DOI: 10.1007/2506_2013_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
25
|
Higgs DM, Radford CA. The contribution of the lateral line to 'hearing' in fish. ACTA ACUST UNITED AC 2012; 216:1484-90. [PMID: 23264489 DOI: 10.1242/jeb.078816] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the underwater environment, sound propagates both as a pressure wave and as particle displacement, with particle displacement dominating close to the source (the nearfield). At the receptor level, both the fish ear and the neuromast hair cells act as displacement detectors and both are potentially stimulated by the particle motion component of sound sources, especially in the nearfield. A now common way to test 'hearing' in fish involves auditory evoked potentials (AEPs), with recordings made from electrodes implanted near the auditory brainstem. These AEP recordings are typically conducted in enclosed acoustic environments with the fish well within the nearfield, especially for lower frequencies. We tested the contribution of neuromast hair cells to AEP by first testing intact goldfish (Carassius auratus), then ablating their neuromasts with streptomycin sulphate--disabling superficial and canal neuromasts--and retesting the same goldfish. We performed a similar experiment where only the superficial neuromasts were physically ablated. At 100 and 200 Hz, there was a 10-15 dB increase in threshold after streptomycin treatment but no significant difference at higher frequencies. There was no difference in threshold in control fish or in fish that only had superficial neuromasts removed, indicating that the differential responses were driven by canal neuromasts. Taken together, these results indicate that AEP results at lower frequencies should be interpreted as multimodal responses, rather than as 'hearing'. The results also suggest that in natural situations both the ear and lateral line likely play an integrative role in detecting and localising many types of 'acoustic' stimuli.
Collapse
Affiliation(s)
- D M Higgs
- Department of Biological Sciences, University of Windsor, Windsor, ON, Canada N9B 3P4.
| | | |
Collapse
|
26
|
Strobel SM, Mooney TA. Detection of low-frequency tones and whale predator sounds by the American sand lance Ammodytes americanus. JOURNAL OF FISH BIOLOGY 2012; 81:1646-1664. [PMID: 23020566 DOI: 10.1111/j.1095-8649.2012.03423.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Auditory evoked potentials (AEP) were used to measure the hearing range and auditory sensitivity of the American sand lance Ammodytes americanus. Responses to amplitude-modulated tone pips indicated that the hearing range extended from 50 to 400 Hz. Sound pressure thresholds were lowest between 200 and 400 Hz. Particle acceleration thresholds showed an improved sensitivity notch at 200 Hz but not substantial differences between frequencies and only a slight improvement in hearing abilities at lower frequencies. The hearing range was similar to Pacific sand lance Ammodytes personatus and variations between species may be due to differences in threshold evaluation methods. AEPs were also recorded in response to pulsed sounds simulating humpback whale Megaptera novaeangliae foraging vocalizations termed megapclicks. Responses were generated with pulses containing significant energy below 400 Hz. No responses were recorded using pulses with peak energy above 400 Hz. These results show that A. americanus can detect the particle motion component of low-frequency tones and pulse sounds, including those similar to the low-frequency components of megapclicks. Ammodytes americanus hearing may be used to detect environmental cues and the pulsed signals of mysticete predators.
Collapse
Affiliation(s)
- S M Strobel
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|
27
|
Aquatic acoustic metrics interface utility for underwater sound monitoring and analysis. SENSORS 2012; 12:7438-50. [PMID: 22969353 PMCID: PMC3435982 DOI: 10.3390/s120607438] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 05/23/2012] [Accepted: 05/24/2012] [Indexed: 11/23/2022]
Abstract
Fishes and marine mammals may suffer a range of potential effects from exposure to intense underwater sound generated by anthropogenic activities such as pile driving, shipping, sonars, and underwater blasting. Several underwater sound recording (USR) devices have been built to acquire samples of the underwater sound generated by anthropogenic activities. Software becomes indispensable for processing and analyzing the audio files recorded by these USRs. In this paper, we provide a detailed description of a new software package, the Aquatic Acoustic Metrics Interface (AAMI), specifically designed for analysis of underwater sound recordings to provide data in metrics that facilitate evaluation of the potential impacts of the sound on aquatic animals. In addition to the basic functions, such as loading and editing audio files recorded by USRs and batch processing of sound files, the software utilizes recording system calibration data to compute important parameters in physical units. The software also facilitates comparison of the noise sound sample metrics with biological measures such as audiograms of the sensitivity of aquatic animals to the sound, integrating various components into a single analytical frame. The features of the AAMI software are discussed, and several case studies are presented to illustrate its functionality.
Collapse
|
28
|
Krysl P, Hawkins AD, Schilt C, Cranford TW. Angular oscillation of solid scatterers in response to progressive planar acoustic waves: do fish otoliths rock? PLoS One 2012; 7:e42591. [PMID: 22912710 PMCID: PMC3415422 DOI: 10.1371/journal.pone.0042591] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Accepted: 07/10/2012] [Indexed: 12/04/2022] Open
Abstract
Fish can sense a wide variety of sounds by means of the otolith organs of the inner ear. Among the incompletely understood components of this process are the patterns of movement of the otoliths vis-à-vis fish head or whole-body movement. How complex are the motions? How does the otolith organ respond to sounds from different directions and frequencies? In the present work we examine the responses of a dense rigid scatterer (representing the otolith) suspended in an acoustic fluid to low-frequency planar progressive acoustic waves. A simple mechanical model, which predicts both translational and angular oscillation, is formulated. The responses of simple shapes (sphere and hemisphere) are analyzed with an acoustic finite element model. The hemispherical scatterer is found to oscillate both in the direction of the propagation of the progressive waves and also in the plane of the wavefront as a result of angular motion. The models predict that this characteristic will be shared by other irregularly-shaped scatterers, including fish otoliths, which could provide the fish hearing mechanisms with an additional component of oscillation and therefore one more source of acoustical cues.
Collapse
Affiliation(s)
- Petr Krysl
- University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| | | | - Carl Schilt
- Bigleaf Science Services, North Bonneville, Washington, United States of America
| | - Ted W. Cranford
- Quantitative Morphology Consulting, Inc., San Diego, California, United States of America
| |
Collapse
|
29
|
Gill AB, Bartlett M, Thomsen F. Potential interactions between diadromous fishes of U.K. conservation importance and the electromagnetic fields and subsea noise from marine renewable energy developments. JOURNAL OF FISH BIOLOGY 2012; 81:664-95. [PMID: 22803729 DOI: 10.1111/j.1095-8649.2012.03374.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The considerable extent of construction and operation of marine renewable energy developments (MRED) within U.K. and adjacent waters will lead, among other things, to the emission of electromagnetic fields (EMF) and subsea sounds into the marine environment. Migratory fishes that respond to natural environmental cues, such as the Earth's geomagnetic field or underwater sounds, move through the same waters that the MRED occupy, thereby raising the question of whether there are any effects of MRED on migratory fishes. Diadromous species, such as the Salmonidae and Anguillidae, which undertake large-scale migrations through coastal and offshore waters, are already significantly affected by other human activities leading to national and international conservation efforts to manage any existing threats and to minimize future concerns, including the potential effect of MRED. Here, the current state of knowledge with regard to the potential for diadromous fishes of U.K. conservation importance to be affected by MRED is reviewed. The information on which to base the review was found to be limited with respect to all aspects of these fishes' migratory behaviour and activity, especially with regards to MRED deployment, making it difficult to establish cause and effect relationships. The main findings, however, were that diadromous species can use the Earth's magnetic field for orientation and direction finding during migrations. Juveniles of anadromous brown trout (sea trout) Salmo trutta and close relatives of S. trutta respond to both the Earth's magnetic field and artificial magnetic fields. Current knowledge suggests that EMFs from subsea cables may interact with migrating Anguilla sp. (and possibly other diadromous fishes) if their movement routes take them over the cables, particularly in shallow water (<20 m). The only known effect is a temporary change in swimming direction. Whether this will represent a biologically significant effect, for example delayed migration, cannot yet be determined. Diadromous fishes are likely to encounter EMFs from subsea cables either during the adult movement phases of life or their early life stages during migration within shallow, coastal waters adjacent to natal rivers. The underwater sound from MRED devices has not been fully characterized to determine its acoustic properties and propagation through the coastal waters. MRED that require pile driving during construction appear to be the most relevant to consider. In the absence of a clear understanding of their response to underwater sound, the specific effects on migratory species of conservation concern remain very difficult to determine in relation to MRED. Based on the studies reviewed, it is suggested that fishes that receive high intensity sound in close proximity to construction may be physiologically affected to some degree, whereas those at farther distances, potentially up to several km, may exhibit behaviour responses; the effect of which is unknown and will be dependent on the properties of the received sound and receptor characteristics and condition. Whether there are behavioural effects on the fishes during operation is unknown but any change to the environment and subsequent response by the fishes would need to be considered over the lifetime of the MRED. It is not yet possible to determine if effects relating to sound exposure are biologically significant. The current assumptions of limited effects are built on an incomplete understanding of how the species move around their environment and interact with natural and anthropogenic EMFs and subsea sound. A number of important knowledge gaps exist, principally whether migratory fish species on the whole respond to the EMF and the sound associated with MRED. Future research should address the principal gaps before assuming that any effect on diadromous species results in a biological effect.
Collapse
Affiliation(s)
- A B Gill
- Environmental Science and Technology Department, School of Applied Sciences, Cranfield University, Cranfield, UK.
| | | | | |
Collapse
|
30
|
Radford CA, Montgomery JC, Caiger P, Higgs DM. Pressure and particle motion detection thresholds in fish: a re-examination of salient auditory cues in teleosts. ACTA ACUST UNITED AC 2012; 215:3429-35. [PMID: 22693030 DOI: 10.1242/jeb.073320] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The auditory evoked potential technique has been used for the past 30 years to evaluate the hearing ability of fish. The resulting audiograms are typically presented in terms of sound pressure (dB re. 1 μPa) with the particle motion (dB re. 1 m s(-2)) component largely ignored until recently. When audiograms have been presented in terms of particle acceleration, one of two approaches has been used for stimulus characterisation: measuring the pressure gradient between two hydrophones or using accelerometers. With rare exceptions these values are presented from experiments using a speaker as the stimulus, thus making it impossible to truly separate the contribution of direct particle motion and pressure detection in the response. Here, we compared the particle acceleration and pressure auditory thresholds of three species of fish with differing hearing specialisations, goldfish (Carassius auratus, weberian ossicles), bigeye (Pempheris adspersus, ligamentous hearing specialisation) and a third species with no swim bladder, the common triplefin (Forstergyian lappillum), using three different methods of determining particle acceleration. In terms of particle acceleration, all three fish species have similar hearing thresholds, but when expressed as pressure thresholds goldfish are the most sensitive, followed by bigeye, with triplefin the least sensitive. It is suggested here that all fish have a similar ability to detect the particle motion component of the sound field and it is their ability to transduce the pressure component of the sound field to the inner ear via ancillary hearing structures that provides the differences in hearing ability. Therefore, care is needed in stimuli presentation and measurement when determining hearing ability of fish and when interpreting comparative hearing abilities between species.
Collapse
Affiliation(s)
- Craig A Radford
- Leigh Marine Laboratory, University of Auckland, Warkworth 0941, New Zealand.
| | | | | | | |
Collapse
|
31
|
Doksæter L, Handegard NO, Godø OR, Kvadsheim PH, Nordlund N. Behavior of captive herring exposed to naval sonar transmissions (1.0-1.6 kHz) throughout a yearly cycle. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2012; 131:1632-1642. [PMID: 22352533 DOI: 10.1121/1.3675944] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Atlantic herring, Clupea harengus, is a hearing specialist, and several studies have demonstrated strong responses to man-made noise, for example, from an approaching vessel. To avoid negative impacts from naval sonar operations, a set of studies of reaction patters of herring to low-frequency (1.0-1.5 kHz) naval sonar signals has been undertaken. This paper presents herring reactions to sonar signals and other stimuli when kept in captivity under detailed acoustic and video monitoring. Throughout the experiment, spanning three seasons of a year, the fish did not react significantly to sonar signals from a passing frigate, at received root-mean-square sound-pressure level (SPL) up to 168 dB re 1 μPa. In contrast, the fish did exhibit a significant diving reaction when exposed to other sounds, with a much lower SPL, e.g., from a two-stroke engine. This shows that the experimental setup is sensitive to herring reactions when occurring. The lack of herring reaction to sonar signals is consistent with earlier in situ behavioral studies. The complexity of the behavioral reactions in captivity underline the need for better understanding of the causal relationship between stimuli and reaction patterns of fish.
Collapse
Affiliation(s)
- Lise Doksæter
- Institute of Marine Research (IMR), P.O. Box 1870 Nordnes, NO-5817 Bergen, Norway.
| | | | | | | | | |
Collapse
|
32
|
Christensen CB, Christensen-Dalsgaard J, Brandt C, Madsen PT. Hearing with an atympanic ear: good vibration and poor sound-pressure detection in the royal python, Python regius. J Exp Biol 2012; 215:331-42. [DOI: 10.1242/jeb.062539] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Snakes lack both an outer ear and a tympanic middle ear, which in most tetrapods provide impedance matching between the air and inner ear fluids and hence improve pressure hearing in air. Snakes would therefore be expected to have very poor pressure hearing and generally be insensitive to airborne sound, whereas the connection of the middle ear bone to the jaw bones in snakes should confer acute sensitivity to substrate vibrations. Some studies have nevertheless claimed that snakes are quite sensitive to both vibration and sound pressure. Here we test the two hypotheses that: (1) snakes are sensitive to sound pressure and (2) snakes are sensitive to vibrations, but cannot hear the sound pressure per se. Vibration and sound-pressure sensitivities were quantified by measuring brainstem evoked potentials in 11 royal pythons, Python regius. Vibrograms and audiograms showed greatest sensitivity at low frequencies of 80–160 Hz, with sensitivities of –54 dB re. 1 m s–2 and 78 dB re. 20 μPa, respectively. To investigate whether pythons detect sound pressure or sound-induced head vibrations, we measured the sound-induced head vibrations in three dimensions when snakes were exposed to sound pressure at threshold levels. In general, head vibrations induced by threshold-level sound pressure were equal to or greater than those induced by threshold-level vibrations, and therefore sound-pressure sensitivity can be explained by sound-induced head vibration. From this we conclude that pythons, and possibly all snakes, lost effective pressure hearing with the complete reduction of a functional outer and middle ear, but have an acute vibration sensitivity that may be used for communication and detection of predators and prey.
Collapse
Affiliation(s)
| | | | - Christian Brandt
- Institute of Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Peter Teglberg Madsen
- Zoophysiology, Department of Bioscience, Aarhus University, Build 1131, 8000 Aarhus C, Denmark
| |
Collapse
|
33
|
Kotas CW, Rogers PH, Yoda M. Acoustically induced streaming flows near a model cod otolith and their potential implications for fish hearing. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2011; 130:1049-1059. [PMID: 21877817 DOI: 10.1121/1.3605295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The ears of fishes are remarkable sensors for the small acoustic disturbances associated with underwater sound. For example, each ear of the Atlantic cod (Gadus morhua) has three dense bony bodies (otoliths) surrounded by fluid and tissue, and detects sounds at frequencies from 30 to 500 Hz. Atlantic cod have also been shown to localize sounds. However, how their ears perform these functions is not fully understood. Steady streaming, or time-independent, flows near a 350% scale model Atlantic cod otolith immersed in a viscous fluid were studied to determine if these fluid flows contain acoustically relevant information that could be detected by the ear's sensory hair cells. The otolith was oscillated sinusoidally at various orientations at frequencies of 8-24 Hz, corresponding to an actual frequency range of 280-830 Hz. Phase-locked particle pathline visualizations of the resulting flows give velocity, vorticity, and rate of strain fields over a single plane of this mainly two-dimensional flow. Although the streaming flows contain acoustically relevant information, the displacements due to these flows are likely too small to explain Atlantic cod hearing abilities near threshold. The results, however, may suggest a possible mechanism for detection of ultrasound in some fish species.
Collapse
Affiliation(s)
- Charlotte W Kotas
- The Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405, USA.
| | | | | |
Collapse
|
34
|
Sigray P, Andersson MH. Particle motion measured at an operational wind turbine in relation to hearing sensitivity in fish. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2011; 130:200-207. [PMID: 21786890 DOI: 10.1121/1.3596464] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The effect of sound pressure on the hearing of fish has been extensively investigated in laboratory studies as well as in field trials in contrast to particle motion where few studies have been carried out. To improve this dearth of knowledge, an instrument for measuring particle motion was developed and used in a field trial. The particle motion is measured using a neutrally buoyant sphere, which co-oscillates with the fluid motion. The unit was deployed in close vicinity to a wind turbine foundation at Utgrunden wind farm in the Baltic Sea. Measurements of particle motion were undertaken at different distances from the turbine as well as at varying wind speeds. Levels of particle motion were compared to audiograms for cod (Gadus morhua L.) and plaice (Pleuronectes platessa L.).
Collapse
Affiliation(s)
- Peter Sigray
- Department of Meteorology, Stockholm University, S-106 91 Stockholm, Sweden.
| | | |
Collapse
|
35
|
Popper AN, Fay RR. Rethinking sound detection by fishes. Hear Res 2011; 273:25-36. [PMID: 20034550 DOI: 10.1016/j.heares.2009.12.023] [Citation(s) in RCA: 198] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 12/09/2009] [Accepted: 12/16/2009] [Indexed: 11/26/2022]
|
36
|
Mooney TA, Hanlon RT, Christensen-Dalsgaard J, Madsen PT, Ketten DR, Nachtigall PE. Sound detection by the longfin squid (Loligo pealeii) studied with auditory evoked potentials: sensitivity to low-frequency particle motion and not pressure. J Exp Biol 2010; 213:3748-59. [DOI: 10.1242/jeb.048348] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Although hearing has been described for many underwater species, there is much debate regarding if and how cephalopods detect sound. Here we quantify the acoustic sensitivity of the longfin squid (Loligo pealeii) using near-field acoustic and shaker-generated acceleration stimuli. Sound field pressure and particle motion components were measured from 30 to 10,000 Hz and acceleration stimuli were measured from 20 to 1000 Hz. Responses were determined using auditory evoked potentials (AEPs) with electrodes placed near the statocysts. Evoked potentials were generated by both stimuli and consisted of two wave types: (1) rapid stimulus-following waves, and (2) slower, high-amplitude waves, similar to some fish AEPs. Responses were obtained between 30 and 500 Hz with lowest thresholds between 100 and 200 Hz. At the best frequencies, AEP amplitudes were often >20 μV. Evoked potentials were extinguished at all frequencies if (1) water temperatures were less than 8°C, (2) statocysts were ablated, or (3) recording electrodes were placed in locations other than near the statocysts. Both the AEP response characteristics and the range of responses suggest that squid detect sound similarly to most fish, with the statocyst acting as an accelerometer through which squid detect the particle motion component of a sound field. The modality and frequency range indicate that squid probably detect acoustic particle motion stimuli from both predators and prey as well as low-frequency environmental sound signatures that may aid navigation.
Collapse
Affiliation(s)
- T. Aran Mooney
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
- Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | | | | | - Peter T. Madsen
- Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
- Zoophysiology, Department of Biological Sciences, Aarhus University, 8000 Aarhus C, Denmark
| | - Darlene R. Ketten
- Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
- Harvard Medical School, Boston, MA 02114, USA
| | - Paul E. Nachtigall
- Hawaii Institute of Marine Biology, University of Hawaii, Kailua, HI 96744, USA
| |
Collapse
|
37
|
Christensen-Dalsgaard J, Brandt C, Wilson M, Wahlberg M, Madsen PT. Hearing in the African lungfish (Protopterus annectens): pre-adaptation to pressure hearing in tetrapods? Biol Lett 2010; 7:139-41. [PMID: 20826468 DOI: 10.1098/rsbl.2010.0636] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Lungfishes are the closest living relatives of the tetrapods, and the ear of recent lungfishes resembles the tetrapod ear more than the ear of ray-finned fishes and is therefore of interest for understanding the evolution of hearing in the early tetrapods. The water-to-land transition resulted in major changes in the tetrapod ear associated with the detection of air-borne sound pressure, as evidenced by the late and independent origins of tympanic ears in all of the major tetrapod groups. To investigate lungfish pressure and vibration detection, we measured the sensitivity and frequency responses of five West African lungfish (Protopterus annectens) using brainstem potentials evoked by calibrated sound and vibration stimuli in air and water. We find that the lungfish ear has good low-frequency vibration sensitivity, like recent amphibians, but poor sensitivity to air-borne sound. The skull shows measurable vibrations above 100 Hz when stimulated by air-borne sound, but the ear is apparently insensitive at these frequencies, suggesting that the lungfish ear is neither adapted nor pre-adapted for aerial hearing. Thus, if the lungfish ear is a model of the ear of early tetrapods, their auditory sensitivity was limited to very low frequencies on land, mostly mediated by substrate-borne vibrations.
Collapse
Affiliation(s)
- Jakob Christensen-Dalsgaard
- Center for Sound Communication, Institute of Biology, University of Southern Denmark, DK-5230 Odense M, Denmark.
| | | | | | | | | |
Collapse
|
38
|
Kikuchi R. Risk formulation for the sonic effects of offshore wind farms on fish in the EU region. MARINE POLLUTION BULLETIN 2010; 60:172-177. [PMID: 19857880 DOI: 10.1016/j.marpolbul.2009.09.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 09/05/2009] [Accepted: 09/21/2009] [Indexed: 05/28/2023]
Abstract
In 2007, European leaders agreed to source 20% of their energy needs from renewable energy; since that time, offshore wind farms have been receiving attention in the European Union (EU). In 2008, the European Community submitted a proposal to the United Nations Environment Program (UNEP) in order to combat marine noise pollution. In consideration of these facts, the present paper aims to deduce a preliminary hypothesis and its formulation for the effect of offshore wind farm noise on fish. The following general picture is drawn: the short-term potential impact during pre-construction; the short-term intensive impact during construction; and the physiological and/or masking effects that may occur over a long period while the wind farm is in operation. The EU's proposal to UNEP includes noise databases that list the origins of man-made sounds; it is advisable that offshore wind farms should be listed in the noise databases in order to promote rational environment management.
Collapse
Affiliation(s)
- Ryunosuke Kikuchi
- Departamento de Ciências Exactas e do Ambiente (CERNAS), ESAC - Instituto Politécnico de Coimbra, Bencanta, 3040-316 Coimbra, Portugal
| |
Collapse
|
39
|
Wysocki LE, Codarin A, Ladich F, Picciulin M. Sound pressure and particle acceleration audiograms in three marine fish species from the Adriatic Sea. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2009; 126:2100-7. [PMID: 19813819 DOI: 10.1121/1.3203562] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Fishes show great variability in hearing sensitivity, bandwidth, and the appropriate stimulus component for the inner ear (particle motion or pressure). Here, hearing sensitivities in three vocal marine species belonging to different families were described in terms of sound pressure and particle acceleration. In particular, hearing sensitivity to tone bursts of varying frequencies were measured in the red-mouthed goby Gobius cruentatus, the Mediterranean damselfish Chromis chromis, and the brown meagre Sciaena umbra using the non-invasive auditory evoked potential-recording technique. Hearing thresholds were measured in terms of sound pressure level and particle acceleration level in the three Cartesian directions using a newly developed miniature pressure-acceleration sensor. The brown meagre showed the broadest hearing range (up to 3000 Hz) and the best hearing sensitivity, both in terms of sound pressure and particle acceleration. The red-mouthed goby and the damselfish were less sensitive, with upper frequency limits of 700 and 600 Hz, respectively. The low auditory thresholds and the large hearing bandwidth of S. umbra indicate that sound pressure may play a role in S. umbra's hearing, even though pronounced connections between the swim bladder and the inner ears are lacking.
Collapse
Affiliation(s)
- Lidia Eva Wysocki
- Department of Behavioural Biology, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria.
| | | | | | | |
Collapse
|
40
|
Sand O, Karlsen HE, Knudsen FR. Comment on "silent research vessels are not quiet" [J. Acoust. Soc. Am. 121, EL145-EL150]. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2008; 123:1831-1833. [PMID: 18396987 DOI: 10.1121/1.2839134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The recent paper by Ona et al. [J. Acoust. Soc. Am. 121, EL145-EL150] compared avoidance reactions by herring (Clupea harengus) to a traditional and a "silent" research vessel. Surprisingly, the latter evoked the strongest avoidance, leading to the conclusion that "candidate stimuli for vessel avoidance remain obscure." In this Comment, it is emphasized that the otolith organs in fish are linear acceleration detectors with extreme sensitivity to infrasonic particle acceleration. Near-field particle motions generated by a moving hull are mainly in the infrasonic range, and infrasound is particularly potent in evoking directional avoidance responses in several species of fish. The stimuli initiating vessel avoidance may thus include infrasonic particle acceleration.
Collapse
Affiliation(s)
- Olav Sand
- Department of Molecular Biosciences, University of Oslo, PO Box 1041 Blindern, NO-0316 Oslo, Norway.
| | | | | |
Collapse
|
41
|
Lovell JM, Findlay MM, Nedwell JR, Pegg MA. The hearing abilities of the silver carp (Hypopthalmichthys molitrix) and bighead carp (Aristichthys nobilis). Comp Biochem Physiol A Mol Integr Physiol 2006; 143:286-91. [PMID: 16458557 DOI: 10.1016/j.cbpa.2005.11.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2005] [Revised: 11/17/2005] [Accepted: 11/20/2005] [Indexed: 10/25/2022]
Abstract
Concern regarding the spread of silver carp (Hypopthalmichthys molitrix) and bighead carp (Aristichthys nobilis) through the Illinois River has prompted the development of a Bio-acoustic Fish Fence (BAFF) to act as an acoustic fish deterrent. The application of this technology has resulted in a need to understand the auditory physiology of the target species, in order to maximise the effect of the barrier in preventing the migration of the non-indigenous carp species into Lake Michigan, whilst minimising the effect on indigenous fish populations. Therefore, the hearing thresholds of 12 H. molitrix and 12 A. nobilis were defined using the Auditory Brainstem Response (ABR) technique, in a pressure-dominated sound field generated by submerged transducers of the type used in the construction of the BAFF system. The results clearly show that these fish are most sensitive to sounds in a frequency bandwidth of between 750 Hz and 1500 Hz, with higher thresholds below 300 Hz and above 2000 Hz.
Collapse
Affiliation(s)
- J M Lovell
- School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom.
| | | | | | | |
Collapse
|
42
|
Montgomery JC, Jeffs A, Simpson SD, Meekan M, Tindle C. Sound as an orientation cue for the pelagic larvae of reef fishes and decapod crustaceans. ADVANCES IN MARINE BIOLOGY 2006; 51:143-96. [PMID: 16905427 DOI: 10.1016/s0065-2881(06)51003-x] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The pelagic life history phase of reef fishes and decapod crustaceans is complex, and the evolutionary drivers and ecological consequences of this life history strategy remain largely speculative. There is no doubt, however, that this life history phase is very significant in the demographics of reef populations. Here, we initially discuss the ecology and evolution of the pelagic life histories as a context to our review of the role of acoustics in the latter part of the pelagic phase as the larvae transit back onto a reef. Evidence is reviewed showing that larvae are actively involved in this transition. They are capable swimmers and can locate reefs from hundreds of metres if not kilometres away. Evidence also shows that sound is available as an orientation cue, and that fishes and crustaceans hear sound and orient to sound in a manner that is consistent with their use of sound to guide settlement onto reefs. Comparing particle motion sound strengths in the field (8 x 10(-11) m at 5 km from a reef) with the measured behavioural and electrophysiological threshold of fishes of (3 x 10(-11) m and 10 x 10(-11), respectively) provides evidence that sound may be a useful orientation cue at a range of kilometres rather than hundreds of metres. These threshold levels are for adult fishes and we conclude that better data are needed for larval fishes and crustaceans at the time of settlement. Measurements of field strengths in the region of reefs and threshold levels are suitable for showing that sound could be used; however, field experiments are the only effective tool to demonstrate the actual use of underwater sound for orientation purposes. A diverse series of field experiments including light-trap catches enhanced by replayed reef sound, in situ observations of behaviour and sound-enhanced settlement rate on patch reefs collectively provide a compelling case that sound is used as an orientation and settlement cue for these late larval stages.
Collapse
Affiliation(s)
- John C Montgomery
- Leigh Marine Laboratory and School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | | | | | | |
Collapse
|
43
|
Lychakov DV, Rebane YT. Fish otolith mass asymmetry: morphometry and influence on acoustic functionality. Hear Res 2005; 201:55-69. [PMID: 15721561 DOI: 10.1016/j.heares.2004.08.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Accepted: 08/22/2004] [Indexed: 10/26/2022]
Abstract
The role of the fish otolith mass asymmetry in acoustic functionality is studied. The saccular, lagenar and utricular otoliths are weighted in two species of the Black Sea rays, 15 species of the Black Sea teleost fish and guppy fish. The dimensionless otolith mass asymmetry chi is calculated as ratio of the difference between masses of the right and left paired otoliths to average otolith mass. In the most fish studied the otolith mass asymmetry is within the range of -0.2 < chi < +0.2 (< 20%). We do not find specific fish species with extremely large or extremely small otolith asymmetry. The large otoliths do not belong solely to any particular side, left or right. The heavier otoliths of different otolithic organs can be located in different labyrinths. No relationship has been found between the magnitude of the otolith mass asymmetry and the length (mass, age) of the animal. The suggested fluctuation model of the otolith growth can interpret these results. The model supposes that the otolith growth rate varies slightly hither and thither during lifetime of the individual fish. Therefore, the sign of the relative otolith mass asymmetry can change several times in the process of the individual fish growth but within the range outlined above. Mathematical modeling shows that acoustic functionality (sensitivity, temporal processing, sound localization) of the fish can be disturbed by the otolith mass asymmetry. But this is valid only for the fish with largest otolith masses, characteristic of the bottom and littoral fish, and with highest otolith asymmetry. For most fish the values of otolith mass asymmetry is well below critical values. Thus, the most fish get around the troubles related to the otolith mass asymmetry. We suggest that a specific physicochemical mechanism of the paired otolith growth that maintains the otolith mass asymmetry at the lowest possible level should exist. However, the principle and details of this mechanism are still far from being understood.
Collapse
Affiliation(s)
- D V Lychakov
- Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, Thorez pr. 44, St. Petersburg 194223, Russia.
| | | |
Collapse
|
44
|
Abstract
Sound communication is not unique to humans but rather is a trait shared with most non-mammalian vertebrates. A practical way to address questions of vocal signal encoding has been to identify mechanisms in non-mammalian model systems that use acoustic communication signals in their social behavior. Teleost fishes, the largest group of living vertebrates, include both vocal and non-vocal species that exploit a wide range of acoustic niches. Here, we focus on those vocal species where combined behavioral and neurobiological studies have recently begun to elucidate a suite of adaptations for both the production and the perception of acoustic signals essential to their reproductive success and survival. Studies of these model systems show that teleost fish have the vocal-acoustic behaviors and neural systems both necessary and sufficient to solve acoustic problems common to all vertebrates. In particular, behavioral studies demonstrate that temporal features within a call, including pulse duration, rate and number, can all be important to a call's communicative value. Neurobiological studies have begun to show how these features are produced by a vocal motor system extending from forebrain to hindbrain levels and are encoded by peripheral and central auditory neurons. The abundance and variety of vocal fish present unique opportunities for parallel investigations of neural encoding, perception, and communication across a diversity of natural, acoustic habitats. As such, investigations in teleosts contribute to our delineating the evolution of the vocal and auditory systems of both non-mammalian and mammalian species, including humans.
Collapse
Affiliation(s)
- Andrew H Bass
- Department of Neurobiology and Behavior, Cornell University, Seeley G. Mudd Hall, Ithaca, NY 14853, USA.
| | | |
Collapse
|
45
|
|
46
|
Sand O, Karlsen HE. Detection of infrasound and linear acceleration in fishes. Philos Trans R Soc Lond B Biol Sci 2000; 355:1295-8. [PMID: 11079418 PMCID: PMC1692823 DOI: 10.1098/rstb.2000.0687] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Fishes have an acute sensitivity to extremely low-frequency linear acceleration, or infrasound, even down to below 1 Hz. The otolith organs are the sensory system responsible for this ability. The hydrodynamic noise generated by swimming fishes is mainly in the infrasound range, and may be important in courtship and prey predator interactions. Intense infrasound has a deterring effect on some species, and has a potential in acoustic barriers. We hypothesize that the pattern of ambient infrasound in the oceans may be used for orientation in migratory fishes, and that pelagic fishes may detect changes in the surface wave pattern associated with altered water depth and distant land formations. We suggest that the acute sensitivity to linear acceleration could be used for inertial guidance, and to detect the relative velocity of layered ocean currents. Sensitivity to infrasound may be a widespread ability among aquatic organisms, and has also been reported in cephalopods and crustaceans.
Collapse
Affiliation(s)
- O Sand
- Department of Biology, The University of Oslo, Norway.
| | | |
Collapse
|
47
|
|
48
|
Abstract
The frequency response of primary saccular afferents of toadfish (Opsanus tau) was studied in the time and frequency domains using the reverse correlation (revcor) method. Stimuli were noise bands with flat acceleration spectra delivered as whole-body motion. The recorded acceleration waveform was averaged over epochs preceding and following each spike. This average, termed the revcor, is an estimate of the response of an equivalent linear filter intervening between body motion and spike initiation. The spectrum of the revcor estimates the shape of the equivalent linear filter. Revcor responses were brief, damped oscillations indicative of relatively broadly tuned filters. Filter shapes were generally band-pass and differed in bandwidth, band edge slope, and characteristic frequency (74 Hz to 140 Hz). Filter shapes tend to be independent of stimulus level. Afferents can be placed into two groups with respect to characteristic frequency (74-88 Hz and 140 Hz). Some high-frequency afferents share a secondary peak at the characteristic frequency of low-frequency afferents, suggesting that an afferent may receive differently tuned peripheral inputs. For some afferents having similar filter shapes, revcor responses often differ only in polarity, probably reflecting inputs from hair cells oriented in opposite directions. The origin of frequency selectivity and its diversity among saccular afferents may arise from a combination of hair cell resonance and micromechanical processes. The resulting frequency analysis is the simplest yet observed among vertebrate animals. During courtship, male toadfish produce the 'boatwhistle' call, a periodic vocalization having several harmonics of a 130 Hz fundamental frequency. The saccule encodes the waveform of acoustic particle acceleration between < 50 and about 250 Hz. Thus, the fundamental frequency component of the boatwhistle is well encoded, but the successive higher harmonics are filtered out. The boatwhistle is thus encoded as a time-domain representation of its fundamental frequency or pulse repetition rate.
Collapse
Affiliation(s)
- R R Fay
- Parmly Hearing Institute and Department of Psychology, Loyola University Chicago, IL 60626, USA.
| | | |
Collapse
|
49
|
Abstract
The displacement sensitivity, frequency response, and directional response properties of primary saccular afferents of toadfish (Opsanus tau) were studied in response to a simulation of acoustic particle motion for which displacement magnitudes and directions were manipulated in azimuth and elevation. Stimuli were 50, 100, and 200 Hz sinusoidal, translatory oscillations of the animal at various axes in the horizontal and midsagittal planes. Thresholds in these planes defined a cell's characteristic axis (the axis having the lowest threshold) in spherical coordinates. Recordings were made from afferents in rostral, middle, and caudal bundles of the saccular nerve. The most sensitive saccular afferents responded with a phase-locked response to displacements as small as 0.1 nm. This sensitivity rivals that of the mammalian cochlea and is probably common to the sacculi and other otolith organs of most fishes. Most afferents showed lower thresholds at 100 Hz than at 50 or 200 Hz. Eighty percent of afferents have three-dimensional directional properties that would be expected if they innervated a group of hair cells having the same directional orientation on the saccular epithelium. Of the afferents that are not perfectly directional, most appear to innervate just two groups of hair cells having different orientations. The directional characteristics of afferents are qualitatively correlated with anatomically defined patterns of hair cell orientation on the saccule. In general, azimuths of best sensitivity tend to lie parallel to the plane of the otolith and sensory epithelium. Elevations of best sensitivity correspond well with hair cell orientation patterns in different regions of the saccular epithelium. Directional hearing in the horizontal plane probably depends upon the processing of interaural differences in overall response magnitude. These response differences arise from the gross orientations of the sacculi and are represented, in part, as time differences among nonspontaneous afferents that show level-dependent phase angles of synchronization. Directional hearing in the vertical plane may be derived from the processing of across-afferent profiles of activity within each saccule. Fishes were probably the first vertebrates to solve problems in sound source localization, and we suggest that their solutions formed a model for those of their terrestrial inheritors.
Collapse
Affiliation(s)
- R R Fay
- Parmly Hearing Institute and Department of Psychology, Loyola University Chicago, IL 60626, USA.
| | | |
Collapse
|
50
|
Stimulation of the acoustico-lateralis system of clupeid fish by external sources and their own movements. Philos Trans R Soc Lond B Biol Sci 1997. [DOI: 10.1098/rstb.1993.0096] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
1. The receptor organs of the acoustico-lateralis system in fish respond in various ways to pressures and pressure gradients and provide the fish with information about external sources of vibration. 2. A fish’s movements will set up pressures and pressure gradients and this poses three questions, (i) Can a fish obtain useful information from self-generated pressures and pressure gradients? (ii) To what extent do self-generated pressures mask signals from external sources? (iii) Can interactions between external and self-generated pressures and gradients in the acoustico-lateralis system give patterns of activity from the receptor organs which have special significance? 3. In herring (
Clupea harengus L.
) and sprat (
Spratus sprattus
(L.)) measurements have been made of dimensions of various parts of the acoustico-lateralis system particularly of the subcerebral perilymph canal which crosses the head between the lateral lines. 4. Self-generated pressures produced by lateral movements of the head are antisymmetric, i.e. equal and opposite in sign on the left and right sides of the head. They oppose the accelerations of the head that produce them. In contrast, external sources give pressures that are largely symmetric. Any pressure gradients they give will accelerate the fish and the surrounding water together and any net pressure gradients will be small and so will any flows through the subcerebral perilymph canal. 5. Flows of liquid between the lateral lines across the lateral-recess membranes have been measured at various frequencies for pressure gradients applied across the head. Between 5 and 200 Hz the velocity of flow per unit pressure does not vary by more than than a factor of 2. At low frequencies the absolute values of flow are very much larger (more than 50 times) than those found for equally large symmetrically applied pressures (as from an external source) due to flow into the elastic gas containing bullae. 6. It is calculated that a net pressure difference (at optimum frequency) across the head of only 0.008 Pa will reach threshold for the lateral line neuromast nearest the lateral recess and one of 0.02 Pa for that under the eye. The responses of these neuromasts are expected to saturate and provide little information when the pressure differences across the head exceed 6 to 18 Pa. The pressures given by the swimming fish are discussed in the light of a theory advanced by Lighthill in the paper that follows this paper. With such antisymmetric pressures the direction of flow in the lateral-line canals will be towards the lateral recess on one side of the fish and away on the other and so differ from the situation found with an external source when flow at any instant will be either towards or away from the lateral recess on both sides of the head. 7. Antisymmetric pressures can produce large flows past the utricular maculae. However, at low frequencies flows across the maculae, on which their stimulation depends, will be small. We do not know the direction of these latter flows though they will be in opposite sense on the two sides of the head, again unlike the situation with an external source. 8. Calculations of impedances below 30 Hz show that the observed flows across the head are consistent with the dimensions and properties of the known structures. 9. There are major and systematic differences in the patterns of receptor organ stimulation between those expected from external sources and from a fish’s own movements. 10. Experiments on the red mullet (
Mullus surmuletus
L.) showed that it too has a transverse channel connecting the right and left lateral-line systems. At low frequencies its properties resemble those of the subcerebral perilymph canal of the clupeid.
Collapse
|