1
|
Harris J. Involvement of spinal α2 -adrenoceptors in prolonged modulation of hind limb withdrawal reflexes following acute noxious stimulation in the anaesthetized rabbit. Eur J Neurosci 2016; 43:834-45. [PMID: 26804327 PMCID: PMC4949523 DOI: 10.1111/ejn.13185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 01/11/2016] [Accepted: 01/18/2016] [Indexed: 01/05/2023]
Abstract
The role of spinal α2‐adrenoceptors in mediating long‐lasting modulation of hind limb withdrawal reflexes following acute noxious chemical stimulation of distant heterotopic and local homotopic locations has been investigated in pentobarbitone‐anaesthetized rabbits. Reflexes evoked in the ankle extensor muscle medial gastrocnemius (MG) by electrical stimulation of the ipsilateral heel, and reflexes elicited in the ankle flexor tibialis anterior and the knee flexor semitendinosus by stimulation at the base of the ipsilateral toes, could be inhibited for over 1 h after mustard oil (20%) was applied to either the snout or into the contralateral MG. The heel–MG response was also inhibited after applying mustard oil across the plantar metatarsophalangeal joints of the ipsilateral foot, whereas this homotopic stimulus facilitated both flexor responses. Mustard oil also caused a significant pressor effect when applied to any of the three test sites. The selective α2‐adrenoceptor antagonist, RX 821002 (100–300 μg, intrathecally), had no effect on reflexes per se, but did cause a decrease in mean arterial blood pressure. In the presence of the α2‐blocker, inhibitory and facilitatory effects of mustard oil on reflexes were completely abolished. These data imply that long‐lasting inhibition of spinal reflexes following acute noxious stimulation of distant locations involves activation of supraspinal noradrenergic pathways, the effects of which are dependent on an intact α2‐adrenoceptor system at the spinal level. These pathways and receptors also appear to be involved in facilitation (sensitization) as well as inhibition of reflexes following a noxious stimulus applied to the same limb.
Collapse
Affiliation(s)
- John Harris
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| |
Collapse
|
2
|
Leslie RA. Neuroactive substances in the dorsal vagal complex of the medulla oblongata: nucleus of the tractus solitarius, area postrema, and dorsal motor nucleus of the vagus. Neurochem Int 2012; 7:191-211. [PMID: 20492915 DOI: 10.1016/0197-0186(85)90106-8] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The distributions of classical and putative neurotransmitters within somata and fibres of the dorsal vagal complex are reviewed. The occurrence within the dorsal medulla oblongata of receptors specific for some of these substances is examined, and possible functional correlations of the specific neurochemicals with respect to their distribution within the dorsal vagal complex are discussed. Many of the known transmitters and putative transmitters are represented in the dorsal vagal complex, particularly within various subnuclei of the nucleus of the solitary tract, the main vagal afferent nucleus. In a few cases, some of these have been examined in detail, particularly with respect to their possible mediation of cardiovascular or gastrointestinal functions. For example, the catecholamines, substance P and angiotensin II in the nucleus of the solitary tract have all been strongly implicated as playing a role in the central control of cardiovascular function. Other neurotransmitters or putative transmitters may be involved as well, but probably to a lesser extent. Similarly, the roles in the dorsal vagal complex of dopamine, the endorphins and cholecystokinin in control of the gut have been studied in some detail. Future investigations of the distributions of and electrophysiological parameters of neurotransmitters at the cellular level should provide much needed clues to advance our knowledge of the correlations between anatomical distributions of specific neurochemicals and physiological functions mediated by them.
Collapse
Affiliation(s)
- R A Leslie
- Nuffield Laboratory of Ophthalmology, Oxford University, Walton Street, Oxford OX2 6AW, U.K
| |
Collapse
|
3
|
Vertes RP, Linley SB. Comparison of projections of the dorsal and median raphe nuclei, with some functional considerations. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.ics.2007.07.046] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
4
|
Chan CKS, Burke SL, Zhu H, Piletz JE, Head GA. Imidazoline receptors associated with noradrenergic terminals in the rostral ventrolateral medulla mediate the hypotensive responses of moxonidine but not clonidine. Neuroscience 2005; 132:991-1007. [PMID: 15857704 DOI: 10.1016/j.neuroscience.2005.01.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Revised: 01/13/2005] [Accepted: 01/26/2005] [Indexed: 11/19/2022]
Abstract
We determined whether the cardiovascular actions of central anti-hypertensive agents clonidine and moxonidine are dependent on noradrenergic or serotonergic innervation of the rostral ventrolateral medulla (RVLM) in conscious rabbits. 6-Hydroxydopamine (6-OHDA) or 5,6-dihydroxytriptamine (5,6-DHT) was injected into the RVLM to deplete noradrenergic and serotonergic terminals respectively. One, 2 and 4 weeks later, responses to fourth ventricular (4V) clonidine (0.65 microg/kg) and moxonidine (0.44 microg/kg) were examined. Destruction of noradrenergic pathways in the RVLM by 6-OHDA reduced the hypotensive response to 4V moxonidine to 62%, 47% and 60% of that observed in vehicle treated rabbits at weeks 1, 2 and 4 respectively. The moxonidine induced bradycardia was similarly attenuated (to 46% of vehicle). Conversely, 6-OHDA had no effect on the hypotensive or bradycardic effects of 4V clonidine. Efaroxan (I(1)-imidazoline receptor/alpha(2)-adrenoceptor antagonist; 3.5, 11, 35 microg/kg) and 2-methoxyidazoxan (alpha(2)-adrenoceptor antagonist; 0.3, 0.9, 3 microg/kg) equally reversed the hypotension to 4V clonidine, suggesting a mainly alpha(2)-adrenoceptor mechanism. Efaroxan preferentially reversed responses to moxonidine in both vehicle and 5,6-DHT groups and in the 1st week after 6-OHDA, suggesting a mechanism involving mainly I(1)-imidazoline receptors. This selectivity was subsequently lost in the 2nd and 4th weeks when the remaining hypotension was mainly mediated by alpha(2)-adrenoceptors. Depletion of serotonergic terminals did not alter the responses to either agonist nor did it change the relative effectiveness of the antagonists. Western blots of RVLM tissues probed with imidazoline and alpha(2)-adrenoceptor antisera showed a pattern of bands close to that reported in other species. The main effect of 6-OHDA was an 18% lower level of the 42 kDa imidazoline protein (P<0.05). We conclude that the hypotensive and bradycardic actions of moxonidine but not clonidine are mediated through imidazoline receptors and are dependent on intact noradrenergic pathways within the RVLM. Furthermore, the noradrenergic innervation may be associated with a 42 kDa imidazoline receptor protein.
Collapse
Affiliation(s)
- C K S Chan
- Neuropharmacology Laboratory, Baker Heart Research Institute, Melbourne, Victoria, Australia
| | | | | | | | | |
Collapse
|
5
|
Athanassiadis T, Olsson KA, Kolta A, Westberg KG. Identification of c-Fos immunoreactive brainstem neurons activated during fictive mastication in the rabbit. Exp Brain Res 2005; 165:478-89. [PMID: 15887006 DOI: 10.1007/s00221-005-2319-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Accepted: 02/16/2005] [Indexed: 10/25/2022]
Abstract
In the present study we used the expression of the c-Fos-like protein as a "functional marker" to map populations of brainstem neurons involved in the generation of mastication. Experiments were conducted on urethane-anesthetized and paralyzed rabbits. In five animals (experimental group), rhythmical bouts of fictive masticatory-like motoneuron activity (cumulative duration 60-130 min) were induced by electrical stimulation of the left cortical "masticatory area" and recorded from the right digastric motoneuron pool. A control group of five animals (non-masticatory) were treated in the same way as the experimental animals with regard to surgical procedures, anesthesia, paralysis, and survival time. To detect the c-Fos-like protein, the animals were perfused, and the brainstems were cryosectioned and processed immunocytochemically. In the experimental group, the number of c-Fos-like immunoreactive neurons increased significantly in several brainstem areas. In rostral and lateral areas, increments occurred bilaterally in the borderzones surrounding the trigeminal motor nucleus (Regio h); the rostrodorsomedial half of the trigeminal main sensory nucleus; subnucleus oralis-gamma of the spinal trigeminal tract; nuclei reticularis parvocellularis pars alpha and nucleus reticularis pontis caudalis (RPc) pars alpha. Further caudally-enhanced labeling occurred bilaterally in nucleus reticularis parvocellularis and nucleus reticularis gigantocellularis (Rgc) including its pars-alpha. Our results provide a detailed anatomical record of neuronal populations that are correlated with the generation of the masticatory motor behavior.
Collapse
Affiliation(s)
- T Athanassiadis
- Department of Integrative Medical Biology, Section for Physiology, Umeå University, 901 87, Umeå, Sweden
| | | | | | | |
Collapse
|
6
|
Ootsuka Y, Blessing WW. Activation of slowly conducting medullary raphé-spinal neurons, including serotonergic neurons, increases cutaneous sympathetic vasomotor discharge in rabbit. Am J Physiol Regul Integr Comp Physiol 2005; 288:R909-18. [PMID: 15550616 DOI: 10.1152/ajpregu.00564.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neurons in the rostral medullary raphé/parapyramidal region regulate cutaneous sympathetic nerve discharge. Using focal electrical stimulation at different dorsoventral raphé/parapyramidal sites in anesthetized rabbits, we have now demonstrated that increases in ear pinna cutaneous sympathetic nerve discharge can be elicited only from sites within 1 mm of the ventral surface of the medulla. By comparing the latency to sympathetic discharge following stimulation at the ventral raphé site with the corresponding latency following stimulation of the spinal cord [third thoracic (T3) dorsolateral funiculus] we determined that the axonal conduction velocity of raphé-spinal neurons exciting ear pinna sympathetic vasomotor nerves is 0.8 ± 0.1 m/s ( n = 6, range 0.6–1.1 m/s). Applications of the 5-hydroxytryptamine (HT)2A antagonist trans-4-((3 Z)3-[(2-dimethylaminoethyl)oxyimino]-3-(2-fluorophenyl)propen-1-yl)-phenol, hemifumarate (SR-46349B, 80 μg/kg in 0.8 ml) to the cerebrospinal fluid above thoracic spinal cord (T1-T7), but not the lumbar spinal cord (L2-L4), reduced raphé-evoked increases in ear pinna sympathetic vasomotor discharge from 43 ± 9 to 16 ± 6% ( P < 0.01, n = 8). Subsequent application of the excitatory amino acid (EAA) antagonist kynurenic acid (25 μmol in 0.5 ml) substantially reduced the remaining evoked discharge (22 ± 8 to 6 ± 6%, P < 0.05, n = 5). Our conduction velocity data demonstrate that only slowly conducting raphé-spinal axons, in the unmyelinated range, contribute to sympathetic cutaneous vasomotor discharge evoked by electrical stimulation of the medullary raphé/parapyramidal region. Our pharmacological data provide evidence that raphé-spinal neurons using 5-HT as a neurotransmitter contribute to excitation of sympathetic preganglionic neurons regulating cutaneous vasomotor discharge. Raphé-spinal neurons using an EAA, perhaps glutamate, make a substantial contribution to the ear sympathetic nerve discharge evoked by raphé stimulation.
Collapse
Affiliation(s)
- Youichirou Ootsuka
- Department of Human Physiology, School of Medicine, Flinders University., Bedford Park, South Australia 5042, Australia.
| | | |
Collapse
|
7
|
Niblock MM, Kinney HC, Luce CJ, Belliveau RA, Filiano JJ. The development of the medullary serotonergic system in the piglet. Auton Neurosci 2004; 110:65-80. [PMID: 15046730 DOI: 10.1016/j.autneu.2003.10.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2003] [Accepted: 10/28/2003] [Indexed: 11/19/2022]
Abstract
The anatomy of the 5-HT system in the medulla oblongata is well defined in several vertebrate species, but not in the piglet. A detailed map and developmental profile of this system is particularly important in the piglet because this species increasingly is used as a model for physiological studies of medullary homeostatic control and its disorders in human infancy, especially the sudden infant death syndrome. Tryptophan hydroxylase immunohistochemistry was used to identify 5-HT cells and map their distribution in the medullae of piglets between postnatal days 4 and 30, the putative comparable period to early human infancy. Tritiated (3H)-lysergic acid diethylamide (LSD) binding to 5-HT1A-D and 5-HT2 receptors and 3H-8-hydroxy-2-[di-N-propylamine]tetralin (8-OH-DPAT) binding to 5-HT1A receptors were used to quantify and map the distribution of these serotonin receptors between 4 and 60 postnatal days. The distribution of 5-HT cells was similar to that observed in other vertebrate species, with cell bodies in and lateral to the caudal raphé. Tritiated-LSD and 3H-8-OH-DPAT binding both showed significant age-related changes in select raphé and extra-raphé subnuclei. Taken together, these findings suggest that while the medullary 5-HT cells are topographically in place at birth in the piglet, changes in 5-HT neurotransmission take place during the first 30 days of life, as reflected by changes in patterns of receptor binding. Therefore, the first 30 days of life represent a critical period in the development of the 5-HT system and the homeostatic functions it mediates.
Collapse
Affiliation(s)
- Mary M Niblock
- Department of Physiology, Dartmouth Medical School, 1 Medical Center Drive, Lebanon, NH 03753, USA.
| | | | | | | | | |
Collapse
|
8
|
Blessing WW, Nalivaiko E. Regional blood flow and nociceptive stimuli in rabbits: patterning by medullary raphe, not ventrolateral medulla. J Physiol 2000; 524 Pt 1:279-92. [PMID: 10747198 PMCID: PMC2269856 DOI: 10.1111/j.1469-7793.2000.t01-2-00279.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
1. Regional blood flow was measured with Doppler ultrasonic probes in anaesthetized rabbits. We used focal microinjections of pharmacological agents to investigate medullary pathways mediating ear pinna vasoconstriction elicited by electrical stimulation of the spinal tract of the trigeminal nerve or by pinching the lip, and pathways mediating mesenteric vasoconstriction elicited by electrical stimulation of the afferent abdominal vagus nerve. 2. Bilateral injection of kynurenate into the rostral ventrolateral medulla reduced arterial pressure and prevented the mesenteric vasoconstriction and the rise in arterial pressure elicited by abdominal vagal stimulation. However, kynurenate did not prevent ear pinna vasoconstriction or the fall in pressure elicited by trigeminal tract stimulation. Similar injections of muscimol also failed to prevent the trigeminally elicited cardiovascular changes. 3. Injections of kynurenate into the raphe-parapyramidal area did not diminish trigeminally elicited ear vasoconstriction or the depressor response. However, injections of muscimol substantially reduced or abolished the trigeminally elicited ear vasoconstriction, without affecting the depressor response. Raphe-parapyramidal muscimol injections also entirely abolished ear vasoconstriction elicited by pinching the rabbit's lip. 4. The trigeminal depressor response does not depend on either the rostral ventrolateral medulla or the raphe-parapyramidal region. 5. Mesenteric vasoconstriction elicited by stimulation of the afferent abdominal vagus nerve is mediated via the rostral ventrolateral medulla, but ear vasoconstriction elicited by lip pinch or by stimulation of the trigeminal tract is mediated by the raphe-parapyramidal region. Our study is the first to suggest a brainstem pathway mediating cutaneous vasoconstriction elicited by nociceptive stimulation.
Collapse
Affiliation(s)
- W W Blessing
- Departments of Physiology and Medicine, Centre for Neuroscience, Flinders University, Adelaide, Australia.
| | | |
Collapse
|
9
|
Blessing WW, Yu YH, Nalivaiko E. Raphe pallidus and parapyramidal neurons regulate ear pinna vascular conductance in the rabbit. Neurosci Lett 1999; 270:33-6. [PMID: 10454139 DOI: 10.1016/s0304-3940(99)00459-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We have determined whether alteration of neuronal function in raphe pallidus and the parapyramidal region alters ear blood flow, measured by an implanted Doppler ultrasonic probe, in anesthetized rabbits. Injection of GABA (5 nmol in 50 nl) increased ear flow from 6.0 +/- 1.0 to 31 +/- 10 kHz, without changing arterial pressure or heart rate. Focal electrical stimulation of raphe pallidus at low current amplitude caused ear pinna blood flow to fall from 41 +/- 6 to 9 +/- 3 kHz, again with little or no change in arterial pressure. These excitatory and inhibitory stimuli did not affect superior mesenteric blood flow. The fall in ear flow in response to electrical stimulation of raphe pallidus was not prevented by tetrodotoxin-mediated inhibition of the rostral ventrolateral medulla. Thus raphe pallidus and parapyramidal region may regulate ear pinna vascular conductance via a direct spinal projection.
Collapse
Affiliation(s)
- W W Blessing
- Department of Physiology, Centre for Neuroscience, Flinders University, Bedford Park, SA, Australia.
| | | | | |
Collapse
|
10
|
Bjarkam CR, S�rensen JC, Geneser FA. Distribution and morphology of serotonin-immunoreactive neurons in the brainstem of the New Zealand white rabbit. J Comp Neurol 1997. [DOI: 10.1002/(sici)1096-9861(19970421)380:4<507::aid-cne7>3.0.co;2-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Vertes RP, Crane AM. Distribution, quantification, and morphological characteristics of serotonin-immunoreactive cells of the supralemniscal nucleus (B9) and pontomesencephalic reticular formation in the rat. J Comp Neurol 1997; 378:411-24. [PMID: 9034900 DOI: 10.1002/(sici)1096-9861(19970217)378:3<411::aid-cne8>3.0.co;2-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In their initial report on the rat, Dahlstrom and Fuxe ([1964] Acta Physiol. Scand. 62:1-55) identified nine brainstem serotonin-containing cell groups, which they termed B1-B9. B9 has received considerably less attention than other serotonergic nuclei (B1-B8) due in part to the fact that its precise location and extent have not been well documented in subprimates. B9 (supralemniscal nucleus; SLN) has been viewed as a minor serotonergic cell group. In addition, 5-hydroxytryptamine (5-HT)-containing cells have been shown to be only sparsely distributed throughout the pontomesencephalic reticular formation (PMRF). By using 5-HT immunohistochemical techniques, we examined the distribution and morphological characteristics of SLN and PMRF 5-HT neurons of the pontomesencephalic tegmentum. We showed that 5-HT cells of both SLN and the PMRF extend rostrocaudally from the rostral midbrain to the midpons. 5-HT SLN cells are located within or dorsal to the medial lemniscus (ML); those of the PMRF are widely distributed throughout the PMRF. The mean numbers of 5-HT containing cells in the SLN, PMRF, dorsal raphe, and median raphe nuclei were 4,571, 1,948, 15,191, and 4,114, respectively. The SLN (B9) contains more 5-HT neurons than any serotonergic group other than the dorsal raphe nucleus. The dendrites of both SLN and PMRF 5-HT cells are primarily oriented mediolaterally and generally extend for long distances (75-300 microns), running perpendicular to the fibers of the ML (SLN) or, to those coursing through the brainstem (PMRF). The present anatomical delineation of SLN and PMRF shows that they are major 5-HT-containing cell groups in the rat and provides the foundation for the further examination of their properties and functions.
Collapse
Affiliation(s)
- R P Vertes
- Center for Complex Systems, Florida Atlantic University, Boca Raton 33431, USA
| | | |
Collapse
|
12
|
Sykes RM, Spyer KM, Izzo PN. Central distribution of substance P, calcitonin gene-related peptide and 5-hydroxytryptamine in vagal sensory afferents in the rat dorsal medulla. Neuroscience 1994; 59:195-210. [PMID: 7514769 DOI: 10.1016/0306-4522(94)90110-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The central distribution of vagal afferents in the medulla containing either substance P, calcitonin gene-related peptide or 5-hydroxytryptamine was examined using a double-labelling technique and laser scanning confocal microscopy. Areas of the nucleus tractus solitarii, dorsal motonucleus of the vagus nerve and area postrema were scanned for double-labelled axon profiles. Analysis of this material revealed that all three neurochemicals were contained within the central terminals of vagal nerve sensory neurons. However, the distribution of vagal nerve afferents containing each of these putative transmitters differed. Afferents containing 5-hydroxytryptamine were detected mainly in the areas postrema and the adjacent nucleus tractus solitarii, with a smaller number in the ventral subnuclei of the solitary tract. In contrast afferents containing calcitonin gene-related peptide were found primarily in the medial and commissural regions of the nucleus tractus solitarii. Afferents containing substance P-immunoreactivity were surprisingly few in number and did not appear to be associated with any particular region. These results establish the presence of 5-hydroxytryptamine, substance P and calcitonin gene-related peptide in the central axons of vagal sensory afferents. Furthermore, the differential distribution of afferents immunoreactive for these neurochemicals seen in this study, together with previous demonstrations of the viscerotopic organization of vagal sensory afferents suggests a possible "chemical coding" for individual end organs.
Collapse
Affiliation(s)
- R M Sykes
- Department of Physiology, Royal Free Hospital School of Medicine, London, U.K
| | | | | |
Collapse
|
13
|
Baker KG, Halliday GM, Halasz P, Hornung JP, Geffen LB, Cotton RG, Törk I. Cytoarchitecture of serotonin-synthesizing neurons in the pontine tegmentum of the human brain. Synapse 1991; 7:301-20. [PMID: 2042112 DOI: 10.1002/syn.890070407] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have employed immunohistochemical and morphometric procedures to study serotonin-synthesizing (PH8-immunoreactive) neurons in the pontine reticular formation of the adult human. PH8-immunoreactive neurons were found in three cytoarchitectural regions: the median raphe nucleus (MnR), oral pontine reticular nucleus (PnO), and supralemniscal region (group B9). On the basis of cell size, morphology, and position, it was possible to distinguish distinct subgroups within the MnR (dorsal, midline, and paramedian cell clusters) and within the PnO (dorsal and central cell clusters), whereas within the B9 there were no distinct cell clusters. We have estimated that there are approximately 125,000 PH8-immunoreactive neurons in the human pontine tegmentum; 64,400 in the MnR, 30,700 in PnO and 29,000 in B9. The large numbers of serotonin-synthesizing neurons in the human pontine tegmentum contrasts with their relative paucity in nonprimate species such as rats and cats. Nonhuman primates also have large numbers of pontine serotonergic neurons but the morphology of these neurons and their spatial arrangement is significantly different in humans. These results are discussed with respect to the possible projections and functions of these neurons in humans.
Collapse
Affiliation(s)
- K G Baker
- School of Anatomy, University of New South Wales, Kensington, Sydney, Australia
| | | | | | | | | | | | | |
Collapse
|
14
|
Manaker S, Verderame HM. Organization of serotonin 1A and 1B receptors in the nucleus of the solitary tract. J Comp Neurol 1990; 301:535-53. [PMID: 2148752 DOI: 10.1002/cne.903010405] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We utilized 3H-8-hydroxy-N,N-dipropyl-2-aminotetralin (3H-DPAT) and 125I-iodocyanopindolol (125I-CYP) to label serotonin (5HT) 1A and 5HT1B receptors, respectively, in sections of the rat brain after characterizing the pharmacologic specificity of these agents. We then used quantitative autoradiography to measure the concentrations of 5HT1A and 5HT1B receptors in individual subnuclei of the nucleus of the solitary tract (NTS) and adjacent structures of the dorsal vagal complex. The highest 5HT1A receptor concentrations were observed within the central and intermediate subnuclei of the NTS, with low quantities of 3H-DPAT binding sites observed in the hypoglossal nucleus and dorsal motor nucleus of the vagus. In contrast, the density of 5HT1B receptors was relatively homogeneous through all NTS subnuclei, with the highest concentrations localized within the ventrolateral subnucleus. The hypoglossal and dorsal motor nuclei had slightly higher 5HT1B receptor densities than the NTS subnuclei, whereas the area postrema had a very low density. These data suggest that 5HT1A receptors are organized in a manner consistent with the cytoarchitectural and hodological parcellation of the NTS into individual subnuclei. The high concentrations of 5HT1A receptors in the central and intermediate subnuclei suggest a role for these receptors in medullary reflex pathways subserving deglutition. The relatively high density of 5HT1B receptors in the ventrolateral subnucleus suggests that these receptors modulate respiratory neurons, whereas the diffuse organization of 5HT1B receptors in the remaining subnuclei suggests that they are associated with central 5HT afferent pathways to the NTS. Further studies will be required to understand the physiologic role of 5HT1 receptors within the NTS.
Collapse
Affiliation(s)
- S Manaker
- Department of Medicine, University of Pennsylvania, Philadelphia 19104
| | | |
Collapse
|
15
|
Abstract
Serial 50 microns Nissl-stained sections through the midbrain and pontine central gray of four adult humans (mean age 56 years, mean postmortem delay 3 hours) were analysed and the subnuclei of the dorsal raphe nucleus (DR) delineated on the basis of neuronal morphology and density. Five subnuclei were apparent: the interfascicular, ventral, ventrolateral, dorsal, and caudal. The area of each subnucleus was measured in sections selected at regular intervals throughout the length of the DR. The number of neurons was counted and their density within each subnucleus calculated. The dorsal subnucleus was the largest and contained the majority of neurons but had the lowest neuronal density. The ventrolateral subnucleus had the highest density of neurons. A total of 235,000 +/- 15,000 neurons (average of 1,200 +/- 200 neurons per section) were found within a volume of 71.3 +/- 4.5 mm3 of DR with a mean neuronal density of 3,300 +/- 200 neurons/mm3. Morphometric and morphological analysis of DR neurons revealed four distinct neuron types: round, ovoid, fusiform, and triangular. These types of neurons characterized particular subnuclei. The location and boundaries of the subnuclei of the human dorsal raphe are presented in the form of an atlas. The subdivisions described are similar to that described in other mammals. On the basis of this information the location of particular projection neurons within the human dorsal raphe can be predicted and the effects of disease on this nucleus may be forecast.
Collapse
Affiliation(s)
- K G Baker
- School of Anatomy, University of New South Wales, Kensington, Australia
| | | | | |
Collapse
|
16
|
Halliday GM, Li YW, Joh TH, Cotton RG, Howe PR, Geffen LB, Blessing WW. Distribution of monoamine-synthesizing neurons in the human medulla oblongata. J Comp Neurol 1988; 273:301-17. [PMID: 2905364 DOI: 10.1002/cne.902730303] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We have employed immunohistochemical and morphometric procedures to study the distribution of monoamine-synthesizing neurons in the medulla oblongata of the adult human, utilizing antibodies to tyrosine hydroxylase (TH), phenylethanolamine N-methyltransferase (PNMT), and phenylalanine hydroxylase (PH8). In the human brain, the antigen with which PH8 reacts occurs within neurons that presumably synthesize serotonin (Haan et al., '87). Neurons containing these antigens were mapped and counted in successive coronal sections with the aid of a computer-assisted procedure. The results indicate that monoamine-synthesizing neurons are distributed in the human brain in patterns broadly similar to those described for other species. TH-immunoreactive cells extended caudorostrally for approximately 32 mm commencing at the spinomedullary junction and ending 8 mm caudal to the pontomedullary junction. In coronal sections these TH-immunoreactive neurons were seen in the lateral medulla dorsal to the inferior olive extending in a continuous band to the dorsomedial medulla. Above the obex the majority of these cells apparently synthesize adrenaline since many PNMT-immunoreactive cells were also found in this region. There were few or no PNMT-immunoreactive cells caudal to the obex, indicating that the TH-immunoreactive cells in this region synthesize either noradrenaline or dopamine. Approximately 65% of these TH-immunoreactive neurons contained melanin pigment, whereas few or no PNMT-immunoreactive cells contained melanin pigment. PH8-immunoreactive cells extended throughout the rostrocaudal extent of the medulla oblongata (approximately 40 mm). In coronal sections the majority were found in the medullary raphe nuclei. However, many cells throughout the rostrocaudal extent of the medulla were found laterally intermingled with catecholamine-synthesizing neurons. Occasional neurons in the lateral medulla appeared to contain both PH8- and TH-immunoreactivity.
Collapse
Affiliation(s)
- G M Halliday
- Centre for Neuroscience, Flinders University of South Australia, Bedford Park
| | | | | | | | | | | | | |
Collapse
|
17
|
Ciriello J, Caverson MM, Calaresu FR, Krukoff TL. Neuropeptide and serotonin immunoreactive neurons in the cat ventrolateral medulla. Brain Res 1988; 440:53-66. [PMID: 2451979 DOI: 10.1016/0006-8993(88)91158-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The distribution of cell bodies containing serotonin (5-HT)-, substance-P (SP)-, neurotensin (NT)-, and somatostatin (SS)-like immunoreactivity (IR) in ventrolateral medulla (VLM) of the cat was studied immunohistochemically after administration of colchicine into the cisterna magna. Perikarya containing 5-HT-, SP-, NT- or SS-IR were found throughout the rostrocaudal extent of the VLM. Although neurons containing the different neuroactive substances appeared to have an overlapping distribution in VLM, some distinct differences were observed. In the caudal VLM most of the immunoreactive cell bodies observed contained 5-HT-IR. These neurons were found primarily in the region medial to lateral reticular nucleus (LRN) around the exiting intramedullary rootlets of the hypoglossal nerve (12N). In the intermediate region of VLM, perikarya containing 5-HT- and SP-IR were observed primarily near the ventrolateral surface of the medulla in the region around the exiting rootlets of the 12N. In contrast, most of the cells containing NT- and SS-IR were consistently observed to occupy a region in the medullary reticular formation immediately dorsal to that where 5-HT- and SP-IR perikarya were found. Finally, most of the immunoreactive perikarya were found in the rostral VLM; perikarya containing 5-HT- and SP-IR were observed throughout the nucleus paragigantocellularis lateralis (PGL) near the ventrolateral surface of the medulla. These data indicate that neurons immunoreactive to either 5-HT or several different neuropeptides were located in regions of VLM which have previously been implicated in the control of arterial pressure. As regions of VLM containing these neuroactive substances in neuronal perikarya have been shown to have direct connections with spinal sympathetic areas it is likely that these VLM cells are components of neuronal circuits involved in homeostatic mechanisms controlling the circulation.
Collapse
Affiliation(s)
- J Ciriello
- Department of Physiology, University of Western Ontario, London, Canada
| | | | | | | |
Collapse
|
18
|
Thor KB, Helke CJ. Serotonin- and substance P-containing projections to the nucleus tractus solitarii of the rat. J Comp Neurol 1987; 265:275-93. [PMID: 2447131 DOI: 10.1002/cne.902650210] [Citation(s) in RCA: 150] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The objective of the present study was to determine the location of the neurons that give rise to serotonin- and substance P-containing terminals in the nucleus tractus solitarii. This was done by injecting rhodamine-filled latex microspheres into the nucleus tractus solitarii of rats to retrogradely label neuronal cell bodies and by processing sections from the brains of these animals to determine whether the labelled neurons contained serotonin or substance P immunoreactivity. Serotonin-immunoreactive neurons that projected to the nucleus tractus solitarii were found in the nucleus raphe magnus, nucleus raphe obscurus, nucleus raphe pallidus, and in the ventral medulla, lateral to the pyramidal tract. Substance P-immunoreactive neurons that projected to the nucleus tractus solitarii were found in similar areas but were proportionately less numerous in the nucleus raphe magnus and proportionately more numerous in the nucleus raphe pallidus. It is concluded that neurons in the medullary raphe nuclei, some of which presumably utilize serotonin or substance P as a neurotransmitter, could regulate autonomic function via direct projections to the nucleus tractus solitarii.
Collapse
Affiliation(s)
- K B Thor
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | | |
Collapse
|
19
|
Bishop GA, Ho RH. Cell bodies of origin of serotonin-immunoreactive afferents to the inferior olivary complex of the rat. Brain Res 1986; 399:369-73. [PMID: 3828771 DOI: 10.1016/0006-8993(86)91530-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Previous studies have used immunohistochemistry to localize serotonin to distinct olivary nuclei in several mammalian species. However, the location of the cell bodies of origin for the serotoninergic projection to the inferior olive in any of these species was unknown. In the present study, a paradigm which combines transport of horseradish peroxidase (HRP) and serotonin immunohistochemistry (PAP) was used to identify the cell bodies of origin of this afferent system to the inferior olivary complex of the rat. Cells which contain both retrogradely transported HRP and brown cytoplasmic staining indicating that they are serotoninergic cells that project to the inferior olivary complex are found exclusively in an area dorsal to the rostrolateral dorsal accessory olive within the nucleus reticularis paragigantocellularis. Neurons within this nucleus were also found to be a source of serotoninergic afferents to the cerebellum and spinal cord of the rat. This raises the possibility that individual serotonin-immunoreactive neurons within this nucleus may project to all 3 areas. Future studies will be designed to address this possibility. No double-labeled cells were observed within any of the raphe nuclei.
Collapse
|
20
|
Ciriello J, Caverson MM, Polosa C. Function of the ventrolateral medulla in the control of the circulation. Brain Res 1986; 396:359-91. [PMID: 3542115 DOI: 10.1016/0165-0173(86)90005-6] [Citation(s) in RCA: 296] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The CNS control of the cardiovascular system involves the coordination of a series of complex neural mechanisms which integrate afferent information from a variety of peripheral receptors and produce control signals to effector organs for appropriate physiological responses. Although it is generally thought that these control signals are generated by a network of neural circuits that are widely distributed in the CNS, over the last two decades a considerable body of experimental evidence has accumulated suggesting that several of these circuits involve neurons found on or near the ventral surface of the medulla oblongata. Neurons in the VLM have been shown to be involved in the maintenance of vasomotor tone, in baroreceptor and chemoreceptor (central and peripheral) reflex mechanisms, in mediating the CIR and somatosympathetic reflexes and in the control of the secretion of vasopressin. These physiological functions of VLM neurons have been supported by neuroanatomical and electrophysiological studies demonstrating direct connections with a number of central structures previously implicated in the control of the circulation, including the IML, the site of origin of sympathetic preganglionic axons, and the SON and PVH, the site of origin of neurohypophyseal projecting axons containing AVP. Considerable suggestive evidence has also been obtained regarding the chemical messengers involved in transmitting information from VLM neurons to other central structures. There have been developments suggesting a role for monoamines and neuropeptides in mediating the neural and humoral control of SAP by neurons in the VLM. This review presents a synthesis of the literature suggesting a main role for VLM neurons in the control of the circulation.
Collapse
|
21
|
Blessing WW, Howe PR, Joh TH, Oliver JR, Willoughby JO. Distribution of tyrosine hydroxylase and neuropeptide Y-like immunoreactive neurons in rabbit medulla oblongata, with attention to colocalization studies, presumptive adrenaline-synthesizing perikarya, and vagal preganglionic cells. J Comp Neurol 1986; 248:285-300. [PMID: 2424947 DOI: 10.1002/cne.902480211] [Citation(s) in RCA: 177] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We studied the distribution, within the rabbit medulla oblongata, of neuronal cell bodies containing either tyrosine hydroxylase or neuropeptide Y-like immunoreactivity. Both avidin-biotin and immunofluorescence procedures were used. Because the two primary antibodies were raised in different species it was possible to perform simultaneous colocalization studies with the immunofluorescence procedure. Tyrosine hydroxylase-containing neurons in the rostral medulla were demonstrated to contain a catecholamine by the colchicine-enhanced FAGLU (formaldehyde-glutaraldehyde) fluorescence histochemical procedure. These neurons are presumably adrenergic, corresponding to the C1 and C2 groups described in the rat. No C3 group was found in the rabbit. The distribution of tyrosine hydroxylase-containing neurons in the caudal medulla was in accordance with previous descriptions of the A1 and A2 groups based on the unenhanced FAGLU procedure. Neuropeptide Y-like immunoreactivity was observed in cell groups corresponding to those already described in the rat, but additional groups were discovered in the rabbit. Some neurons containing neuropeptide Y-like immunoreactivity were observed in nucleus raphe pallidus and these also contained serotonin (5-HT). In the nearby nucleus reticularis gigantocellularis there were occasional neurons that contained neuropeptide Y-like immunoreactivity without any colocalized 5-HT. Neuropeptide Y-like immunoreactivity was also observed in the dorsal motor nucleus of the vagus, rostral to the obex, and these neurons were demonstrated to be true vagal preganglionic cells by colocalization of neuropeptide Y-like immunoreactivity and Fast Blue retrogradely transported from the cervical vagus. We found that neuropeptide Y-like immunoreactivity was colocalized in approximately 75% of the tyrosine hydroxylase-containing neurons in the rostral medulla (C1 and C2 cells). A smaller proportion of the A1 cells also contained this peptide but it was absent from both the most caudal A1 cells and from the A2 cells. Some tyrosine hydroxylase-containing neurons occur in direct apposition to vagal preganglionic cells in both the dorsal motor nucleus of the vagus and the nucleus ambiguous. However, colocalization studies revealed that none of these neurons contained Fast Blue when this dye was retrogradely transported from the cervical vagus. Medullary catecholamine-synthesizing neurons apparently do not contribute axons to the vagus nerve. This finding is consistent with our own studies in the rat but is in contrast to studies in this species published by other workers.
Collapse
|
22
|
Daszuta A, Portalier P. Distribution and quantification of 5-HT nerve cell bodies in the nucleus raphe dorsalis area of C57BL and BALBc mice. Relationship between anatomy and biochemistry. Brain Res 1985; 360:58-64. [PMID: 3000536 DOI: 10.1016/0006-8993(85)91220-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BALBc and C57BL mice have been shown to have a different 5-HT metabolism. The present study compares the number and the distribution of 5-HT cell bodies in the nucleus raphe dorsalis area (B7 + B6) of these strains. By using 5-HT immunohistochemistry, we found a higher number of 5-HT neurons in the most caudal part of NRD (B6) of BALBc mice compared to C57BL. This difference may be correlated with a higher level of endogenous 5-HT, a higher uptake capacity toward exogenous [3H]5-HT, and a lower release of the amine in this same area of BALBc mice compared to C57BL. It could also imply a significant participation of the nerve cell bodies in the regulation of 5-HT transmission inside 5-HT nuclei.
Collapse
|
23
|
Dampney RA, Goodchild AK, Tan E. Vasopressor neurons in the rostral ventrolateral medulla of the rabbit. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1985; 14:239-54. [PMID: 4067185 DOI: 10.1016/0165-1838(85)90113-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Neurons within the rostral ventrolateral medulla oblongata project directly to the intermediolateral column in the thoracolumbar spinal cord. This paper reviews evidence obtained from experiments in the rabbit regarding the anatomical connections and physiological, pharmacological and histochemical properties of these cells. The following hypotheses are discussed: an increase in the firing rate of these neurons leads to a rise in arterial pressure due to sympathetic vasoconstriction, but does not affect respiratory or other somatomotor activity; the bulbospinal pathway originating from these neurons is an essential component of the central pathways mediating baroreceptor and other cardiovascular reflexes; these neurons receive tonic GABAergic inhibitory inputs, which are not all of baroreceptor origin; many of these bulbospinal neurons synthesize adrenalize. The possible role of adrenaline in the function of these neurons is considered.
Collapse
|
24
|
Yamada H, Sano Y. The biotinylation of the rabbit serotonin antibody and its application to immunohistochemical studies using the two-step ABC method. HISTOCHEMISTRY 1985; 83:285-9. [PMID: 2415494 DOI: 10.1007/bf00684372] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A newly modified and improved immunohistochemical method was devised for the demonstration of the serotonin neuron system in the central nervous system of the rabbit using serotonin antibody obtained by the immunization of rabbits, i.e., the biotinylation of serotonin antibodies, and the application of the two-step avidin-biotin-peroxidase complex (ABC) method. Using this technique, high background staining and nonspecific reactions were avoided, and extremely clear preparations were produced. The serotonin neurons of rabbit brain, which have a Golgi-like appearance, were followed to the fine terminals. This technique were also applied for electron microscopy, and satisfactory results concerning the submicroscopical distribution of serotonin were obtained.
Collapse
|
25
|
Newton BW, Maley B, Traurig H. The distribution of substance P, enkephalin, and serotonin immunoreactivities in the area postrema of the rat and cat. J Comp Neurol 1985; 234:87-104. [PMID: 2579986 DOI: 10.1002/cne.902340107] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
With the use of the peroxidase-antiperoxidase technique the distribution of substance P (SP), enkephalin (ENK), and serotonin (5HT) immunoreactivities were described in the area postrema of the rat and cat. In both species, immunoreactivity in the area postrema was differentially distributed as either fibers only, or cell bodies and fibers. In the rat and cat, ENK had the greatest accumulation of immunoreactive fibers, followed by 5HT and SP. In the area postrema of the rat the majority of SP-, ENK-, and 5HT-immunoreactive fibers were along the ventral and ventrolateral borders, with fewer immunostained fibers at the dorsal surface. The area postrema of the cat had the majority of SP-, ENK-, and 5HT-immunoreactive fibers at the ventral and lateral borders, with fewer immunostained fibers at the dorsal and medial borders. In both species, the area postrema's central region contained the fewest immunostained fibers. In general, for each putative neurotransmitter examined, immunostained fibers in both species progressively decreased in number rostrocaudally. Serotonin- and ENK-immunoreactive cell bodies were found in the rat area postrema; in the cat area postrema only ENK-immunoreactive cell bodies were present. The area postrema of both species lacked SP-immunoreactive cell bodies. The heterogeneous distribution of immunoreactive fibers and cell bodies within the area postrema of the rat and cat may reflect the different functions of the area postrema in both species.
Collapse
|
26
|
Howe PR. Blood pressure control by neurotransmitters in the medulla oblongata and spinal cord. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1985; 12:95-115. [PMID: 2860149 DOI: 10.1016/0165-1838(85)90054-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The roles of putative central neurotransmitters in the control of blood pressure have been reviewed with respect to the cardiovascular functions of individual nerve pathways in the medulla oblongata and spinal cord. Vasomotor activity of sympathetic preganglionic neurones originates from spinally-projecting neurones in the ventrolateral medulla which may include adrenaline neurones of the C1 group and serotonin neurones in the lateral B1 and B3 groups. Other bulbospinal monoamine nerves may modulate vasomotor activity at the spinal level, but the mechanism of this modulation is controversial. Evidence for two descending sympatho-inhibitory pathways has emerged: a noradrenergic projection from the A5 cell group and a serotonergic projection from the medullary raphe (medial B1 and B2 groups). The vasomotor influence of other bulbospinal pathways is unclear. Baroreflex control of blood pressure is mediated through the solitary tract nucleus (NTS). L-Glutamate and substance P are considered as candidates for transmitters in baroreceptor afferents to the NTS. Transmitters in efferent nerves relaying baroreflex activity from the NTS to cardiovagal motoneurones, medullary vasomotor neurones or sympathetic preganglionic neurones have not been identified but the monoamine transmitters present in the NTS appear to modulate baroreflexes. Noradrenaline and serotonin nerve endings may facilitate the vasodepressor component of the baroreflex while adrenaline nerves possibly inhibit the cardiovagal mechanism. Enkephalins and vasopressin act in the NTS to raise blood pressure and nerves containing these neuropeptides may constitute important links in reciprocal cardiovascular pathways between the lower brainstem and hypothalamus.
Collapse
|
27
|
Goodchild AK, Moon EA, Dampney RA, Howe PR. Evidence that adrenaline neurons in the rostral ventrolateral medulla have a vasopressor function. Neurosci Lett 1984; 45:267-72. [PMID: 6328377 DOI: 10.1016/0304-3940(84)90237-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Focal electrical or chemical stimulation in the rostral ventrolateral medulla of the rat and rabbit evoked large increases in arterial pressure when the stimulus sites were in the region containing a high density of adrenaline synthesizing neurons, but much smaller or no responses when the sites were outside this region. The adrenaline neurons were identified in the rat by an immunohistochemical procedure, and in the rabbit by a modification of the FAGLU catecholamine fluorescence method. By combining the fluorescence procedure with the method of retrograde transport of horseradish peroxidase, many of the adrenaline synthesizing neurons in the rabbit were shown to project to the spinal cord.
Collapse
|
28
|
Dampney RA, Goodchild AK, Tan E. Identification of cardiovascular cell groups in the brain stem. CLINICAL AND EXPERIMENTAL HYPERTENSION. PART A, THEORY AND PRACTICE 1984; 6:205-20. [PMID: 6365367 DOI: 10.3109/10641968409062561] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
There is now good evidence that there are several distinct groups of cells in the brain stem that are capable of inducing marked changes in cardiovascular function. This paper briefly reviews the results of recent experiments which have identified cardiovascular cell groups in the rostral ventrolateral and dorsomedial medulla, and in the periaqueductal grey and ventral tegmentum of the midbrain. Results of our experiments as well as those of others suggest that excitation of cardiovascular cell groups in the lower brain stem leads to an undifferentiated generalized increase or decrease in sympathetic activity, whereas excitation of certain midbrain cell groups can evoke a highly co-ordinated pattern of autonomic and respiratory changes that closely resembles the pattern associated with certain behaviours in the conscious animal.
Collapse
|