1
|
Leithead AB, Tasker JG, Harony‐Nicolas H. The interplay between glutamatergic circuits and oxytocin neurons in the hypothalamus and its relevance to neurodevelopmental disorders. J Neuroendocrinol 2021; 33:e13061. [PMID: 34786775 PMCID: PMC8951898 DOI: 10.1111/jne.13061] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/14/2021] [Accepted: 10/30/2021] [Indexed: 11/27/2022]
Abstract
Oxytocin (OXT) neurons of the hypothalamus are at the center of several physiological functions, including milk ejection, uterus contraction, and maternal and social behavior. In lactating females, OXT neurons show a pattern of burst firing and inter-neuron synchronization during suckling that leads to pulsatile release of surges of OXT into the bloodstream to stimulate milk ejection. This pattern of firing and population synchronization may be facilitated in part by hypothalamic glutamatergic circuits, as has been observed in vitro using brain slices obtained from male rats and neonates. However, it remains unknown how hypothalamic glutamatergic circuits influence OXT cell activity outside the context of lactation. In this review, we summarize the in vivo and in vitro studies that describe the synchronized burst firing pattern of OXT neurons and the implication of hypothalamic glutamate in this pattern of firing. We also make note of the few studies that have traced glutamatergic afferents to the hypothalamic paraventricular and supraoptic nuclei. Finally, we discuss the genetic findings implicating several glutamatergic genes in neurodevelopmental disorders, including autism spectrum disorder, thus underscoring the need for future studies to investigate the impact of these mutations on hypothalamic glutamatergic circuits and the OXT system.
Collapse
Affiliation(s)
- Amanda B. Leithead
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Seaver Autism Center for Research and TreatmentNew YorkNYUSA
- Department of NeuroscienceIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Friedman Brain Institute at the Icahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Jeffrey G. Tasker
- Neurobiology DivisionDepartment of Cell and Molecular BiologyTulane UniversityNew OrleansLAUSA
| | - Hala Harony‐Nicolas
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Seaver Autism Center for Research and TreatmentNew YorkNYUSA
- Department of NeuroscienceIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Friedman Brain Institute at the Icahn School of Medicine at Mount SinaiNew YorkNYUSA
- Mindich Child Health and Development Institute at the Icahn School of Medicine at Mount SinaiNew YorkNYUSA
| |
Collapse
|
2
|
Thirouin ZS, Bourque CW. Mechanism and function of phasic firing in vasopressin-releasing magnocellular neurosecretory cells. J Neuroendocrinol 2021; 33:e13048. [PMID: 34672042 DOI: 10.1111/jne.13048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 11/29/2022]
Abstract
Magnocellular neurosecretory cells that release vasopressin (MNCVP ) from axon terminals in the neurohypophysis display a unique pattern of action potential firing termed phasic firing. Under basal conditions, only a small proportion of MNCVP display spontaneous phasic firing. However, acute and chronic conditions that stimulate vasopressin release, such as hemorrhage and dehydration, greatly enhance the number of MNCVP that fire phasically. Phasic firing optimizes VP neurosecretion at axon terminals by allowing action potential broadening to promote calcium-dependent frequency-facilitation, at the same time as preventing the secretory fatigue caused by spike inactivation that occurs during prolonged continuous stimulation. This review provides an update on our mechanistic understanding of these processes and highlights important gaps in our knowledge that must be addressed in future experiments.
Collapse
Affiliation(s)
- Zahra S Thirouin
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Charles W Bourque
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
3
|
Park O, Bang JK, Ryu K, Hwang E, Hong KS, Byun Y, Cheong C, Jeon YH. Structure of neuroendocrine regulatory peptide‐2 in membrane‐mimicking environments. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- One‐Sung Park
- College of Pharmacy Korea University Sejong Campus Sejong South Korea
- Division of Bioconvergence Analysis Korea Basic Science Institute Cheongju South Korea
| | - Jeong Kyu Bang
- Division of Bioconvergence Analysis Korea Basic Science Institute Cheongju South Korea
| | - Kyoung‐Seok Ryu
- Division of Bioconvergence Analysis Korea Basic Science Institute Cheongju South Korea
| | - Eunha Hwang
- Division of Bioconvergence Analysis Korea Basic Science Institute Cheongju South Korea
| | - Kwan Soo Hong
- Division of Bioconvergence Analysis Korea Basic Science Institute Cheongju South Korea
| | - Youngjoo Byun
- College of Pharmacy Korea University Sejong Campus Sejong South Korea
| | - Chaejoon Cheong
- Division of Bioconvergence Analysis Korea Basic Science Institute Cheongju South Korea
| | - Young Ho Jeon
- College of Pharmacy Korea University Sejong Campus Sejong South Korea
| |
Collapse
|
4
|
Armstrong WE, Foehring RC, Kirchner MK, Sladek CD. Electrophysiological properties of identified oxytocin and vasopressin neurones. J Neuroendocrinol 2019; 31:e12666. [PMID: 30521104 PMCID: PMC7251933 DOI: 10.1111/jne.12666] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/26/2018] [Accepted: 11/29/2018] [Indexed: 12/18/2022]
Abstract
To understand the contribution of intrinsic membrane properties to the different in vivo firing patterns of oxytocin (OT) and vasopressin (VP) neurones, in vitro studies are needed, where stable intracellular recordings can be made. Combining immunochemistry for OT and VP and intracellular dye injections allows characterisation of identified OT and VP neurones, and several differences between the two cell types have emerged. These include a greater transient K+ current that delays spiking to stimulus onset, and a higher Na+ current density leading to greater spike amplitude and a more stable spike threshold, in VP neurones. VP neurones also show a greater incidence of both fast and slow Ca2+ -dependent depolarising afterpotentials, the latter of which summate to plateau potentials and contribute to phasic bursting. By contrast, OT neurones exhibit a sustained outwardly rectifying potential (SOR), as well as a consequent depolarising rebound potential, not found in VP neurones. The SOR makes OT neurones more susceptible to spontaneous inhibitory synaptic inputs and correlates with a longer period of spike frequency adaptation in these neurones. Although both types exhibit prominent Ca2+ -dependent afterhyperpolarising potentials (AHPs) that limit firing rate and contribute to bursting patterns, Ca2+ -dependent AHPs in OT neurones selectively show significant increases during pregnancy and lactation. In OT neurones, but not VP neurones, AHPs are highly dependent on the constitutive presence of the second messenger, phosphatidylinositol 4,5-bisphosphate, which permissively gates N-type channels that contribute the Ca2+ during spike trains that activates the AHP. By contrast to the intrinsic properties supporting phasic bursting in VP neurones, the synchronous bursting of OT neurones has only been demonstrated in vitro in cultured hypothalamic explants and is completely dependent on synaptic transmission. Additional differences in Ca2+ channel expression between the two neurosecretory terminal types suggests these channels are also critical players in the differential release of OT and VP during repetitive spiking, in addition to their importance to the potentials controlling firing patterns.
Collapse
Affiliation(s)
- William E Armstrong
- Department of Anatomy & Neurobiology and Neuroscience Institute, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Robert C Foehring
- Department of Anatomy & Neurobiology and Neuroscience Institute, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Matthew K Kirchner
- Department of Anatomy & Neurobiology and Neuroscience Institute, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Celia D Sladek
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
5
|
Yokoyama T, Terawaki K, Minami K, Miyano K, Nonaka M, Uzu M, Kashiwase Y, Yanagihara K, Ueta Y, Uezono Y. Modulation of synaptic inputs in magnocellular neurones in a rat model of cancer cachexia. J Neuroendocrinol 2018; 30:e12630. [PMID: 29944778 DOI: 10.1111/jne.12630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/24/2018] [Indexed: 11/29/2022]
Abstract
In cancer cachexia, abnormal metabolism and neuroendocrine dysfunction cause anorexia, tissue damage and atrophy, which can in turn alter body fluid balance. Arginine vasopressin, which regulates fluid homeostasis, is secreted by magnocellular neurosecretory cells (MNCs) of the hypothalamic supraoptic nucleus. Arginine vasopressin secretion by MNCs is regulated by both excitatory and inhibitory synaptic activity, alterations in plasma osmolarity and various peptides, including angiotensin II. In the present study, we used whole-cell patch-clamp recordings of brain slices to determine whether hyperosmotic stimulation and/or angiotensin II potentiate excitatory synaptic input in a rat model of cancer cachexia, similar to their effects in normal (control) rats. Hyperosmotic (15 and 60 mmol L-1 mannitol) stimulation and angiotensin II (0.1 μmol L-1 ) increased the frequency, but not the amplitude, of miniature excitatory postsynaptic currents in normal rats; in model rats, both effects were significantly attenuated. These results suggest that cancer cachexia alters supraoptic MNC sensitivity to osmotic and angiotensin II stimulation.
Collapse
Affiliation(s)
- Toru Yokoyama
- Cancer Pathophysiology Division, National Cancer Center Research Institute, Tokyo, Japan
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
- Department of Anesthesiology and Critical Care Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Kiyoshi Terawaki
- Cancer Pathophysiology Division, National Cancer Center Research Institute, Tokyo, Japan
- Tsumura Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Kouichiro Minami
- Cancer Pathophysiology Division, National Cancer Center Research Institute, Tokyo, Japan
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
- Department of Anesthesiology and Critical Care Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Kanako Miyano
- Cancer Pathophysiology Division, National Cancer Center Research Institute, Tokyo, Japan
| | - Miki Nonaka
- Cancer Pathophysiology Division, National Cancer Center Research Institute, Tokyo, Japan
| | - Miaki Uzu
- Cancer Pathophysiology Division, National Cancer Center Research Institute, Tokyo, Japan
| | - Yohei Kashiwase
- Cancer Pathophysiology Division, National Cancer Center Research Institute, Tokyo, Japan
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Kazuyoshi Yanagihara
- Division of Biomarker Discovery, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yasuhito Uezono
- Cancer Pathophysiology Division, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
6
|
Kim YB, Kim WB, Jung WW, Jin X, Kim YS, Kim B, Han HC, Block GD, Colwell CS, Kim YI. Excitatory GABAergic Action and Increased Vasopressin Synthesis in Hypothalamic Magnocellular Neurosecretory Cells Underlie the High Plasma Level of Vasopressin in Diabetic Rats. Diabetes 2018; 67:486-495. [PMID: 29212780 DOI: 10.2337/db17-1042] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/20/2017] [Indexed: 11/13/2022]
Abstract
Diabetes mellitus (DM) is associated with increased plasma levels of arginine-vasopressin (AVP), which may aggravate hyperglycemia and nephropathy. However, the mechanisms by which DM may cause the increased AVP levels are not known. Electrophysiological recordings in supraoptic nucleus (SON) slices from streptozotocin (STZ)-induced DM rats and vehicle-treated control rats revealed that γ-aminobutyric acid (GABA) functions generally as an excitatory neurotransmitter in the AVP neurons of STZ rats, whereas it usually evokes inhibitory responses in the cells of control animals. Furthermore, Western blotting analyses of Cl- transporters in the SON tissues indicated that Na+-K+-2Cl- cotransporter isotype 1 (a Cl- importer) was upregulated and K+-Cl- cotransporter isotype 2 (KCC2; a Cl- extruder) was downregulated in STZ rats. Treatment with CLP290 (a KCC2 activator) significantly lowered blood AVP and glucose levels in STZ rats. Last, investigation that used rats expressing an AVP-enhanced green fluorescent protein fusion gene showed that AVP synthesis in AVP neurons was much more intense in STZ rats than in control rats. We conclude that altered Cl- homeostasis that makes GABA excitatory and enhanced AVP synthesis are important changes in AVP neurons that would increase AVP secretion in DM. Our data suggest that Cl- transporters in AVP neurons are potential targets of antidiabetes treatments.
Collapse
Affiliation(s)
- Young-Beom Kim
- Department of Physiology, Korea University College of Medicine, Seoul, Republic of Korea
- Neuroscience Research Institute, Korea University College of Medicine, Seoul, Republic of Korea
| | - Woong Bin Kim
- Department of Physiology, Korea University College of Medicine, Seoul, Republic of Korea
- Neuroscience Research Institute, Korea University College of Medicine, Seoul, Republic of Korea
| | - Won Woo Jung
- Department of Physiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Xiangyan Jin
- Department of Physiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yoon Sik Kim
- Department of Physiology, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA
| | - Byoungjae Kim
- Department of Physiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hee Chul Han
- Department of Physiology, Korea University College of Medicine, Seoul, Republic of Korea
- Neuroscience Research Institute, Korea University College of Medicine, Seoul, Republic of Korea
| | - Gene D Block
- Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA
| | - Christopher S Colwell
- Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA
| | - Yang In Kim
- Department of Physiology, Korea University College of Medicine, Seoul, Republic of Korea
- Neuroscience Research Institute, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
7
|
Abstract
Importance of the neuroendocrine brain for health and happiness has become clear since the 1960s. Foundations laid 100 years ago culminated in Geoffrey W Harris's model of control by the brain of secretion of anterior and posterior pituitary gland hormones through, respectively, releasing factors secreted into the hypothalamic-hypophysial portal system, and directly from axon terminals into the systemic circulation. Confirmation, expansion and deepening of knowledge and understanding have followed increasingly sophisticated technology. This allowed chemical characterisation of the posterior pituitary hormones, oxytocin and vasopressin, the releasing factors, their receptors and genes, location of the neurosecretory neurons in the hypothalamus, and how their activity is controlled, including by neural and hormonal feedback, and how hormone rhythms are generated. Wider roles of these neurons and their peptides in the brain are now recognised: in reproductive and social behaviours, emotions and appetite. Plasticity and epigenetic programming of neuroendocrine systems have emerged as important features.
Collapse
Affiliation(s)
- John A. Russell
- Professor Emeritus, Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, UK
| |
Collapse
|
8
|
da Silva MP, Merino RM, Mecawi AS, Moraes DJ, Varanda WA. In vitro differentiation between oxytocin- and vasopressin-secreting magnocellular neurons requires more than one experimental criterion. Mol Cell Endocrinol 2015; 400:102-11. [PMID: 25451978 DOI: 10.1016/j.mce.2014.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/04/2014] [Accepted: 11/04/2014] [Indexed: 11/28/2022]
Abstract
The phenotypic differentiation between oxytocin (OT)- and vasopressin (VP)-secreting magnocellular neurosecretory cells (MNCs) from the supraoptic nucleus is relevant to understanding how several physiological and pharmacological challenges affect their electrical activity. Although the firing patterns of OT and VP neurons, both in vivo and in vitro, may appear different from each other, much is assumed about their characteristics. These assumptions make it practically impossible to obtain a confident phenotypic differentiation based exclusively on the firing patterns. The presence of a sustained outward rectifying potassium current (SOR) and/or an inward rectifying hyperpolarization-activated current (IR), which are presumably present in OT neurons and absent in VP neurons, has been used to distinguish between the two types of MNCs in the past. In this study, we aimed to analyze the accuracy of the phenotypic discrimination of MNCs based on the presence of rectifying currents using comparisons with the molecular phenotype of the cells, as determined by single-cell RT-qPCR and immunohistochemistry. Our results demonstrated that the phenotypes classified according to the electrophysiological protocol in brain slices do not match their molecular counterparts because vasopressinergic and intermediate neurons also exhibit both outward and inward rectifying currents. In addition, we also show that MNCs can change the relative proportion of each cell phenotype when the system is challenged by chronic hypertonicity (70% water restriction for 7 days). We conclude that for in vitro preparations, the combination of mRNA detection and immunohistochemistry seems to be preferable when trying to characterize a single MNC phenotype.
Collapse
Affiliation(s)
- M P da Silva
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | - R M Merino
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | - A S Mecawi
- Department of Physiology, Faculty of Medicine, University of Malaysia, Malaysia
| | - D J Moraes
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | - W A Varanda
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
9
|
Yokoyama T, Minami K, Terawaki K, Miyano K, Ogata J, Maruyama T, Takeuchi M, Uezono Y, Ueta Y. Kisspeptin-10 potentiates miniature excitatory postsynaptic currents in the rat supraoptic nucleus. Brain Res 2014; 1583:45-54. [PMID: 25130664 DOI: 10.1016/j.brainres.2014.08.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 08/06/2014] [Accepted: 08/08/2014] [Indexed: 02/04/2023]
Abstract
Kisspeptin is the natural ligand of the G protein-coupled receptor -54 and plays a major role in gonadotropin-releasing hormone secretion in the hypothalamus. Kisspeptin-10 is an endogenous derivative of kisspeptin and has 10 -amino acids. Previous studies have demonstrated that central administration of kisspeptin-10 stimulates the secretion of arginine vasopressin (AVP) in male rats. We examined the effects of kisspeptin-10 on- excitatory synaptic inputs to magnocellular neurosecretory cells (MNCs) including AVP neurons in the supraoptic nucleus (SON) by obtaining in vitro whole-cell patch-clamp recordings from slice preparations of the rat brain. The application of kisspeptin-10 (100 nM-1 μM) significantly increased the frequency of miniature excitatory postsynaptic currents (mEPSCs) in a dose-related manner without affecting the amplitude. The kisspeptin-10-induced potentiation of the mEPSCs was significantly attenuated by previous exposure to the kisspeptin receptor antagonist kisspeptin-234 (100 nM) and to the protein kinase C inhibitor bisindolylmaleimide I (20 nM). These results suggest that kisspeptin-10 participates in the regulation of synaptic inputs to the MNCs in the SON by interacting with the kisspeptin receptor.
Collapse
Affiliation(s)
- Toru Yokoyama
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan; Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Department of Anesthesiology and Critical Care Medicine, Jichi Medical University, 3311-1 Yakishiji, Shimotsuke, Tochigi 329-0483, Japan
| | - Kouichiro Minami
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan; Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Department of Anesthesiology and Critical Care Medicine, Jichi Medical University, 3311-1 Yakishiji, Shimotsuke, Tochigi 329-0483, Japan
| | - Kiyoshi Terawaki
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Tsumura Research Laboratories, Tsumura and Company, 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan
| | - Kanako Miyano
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Junichi Ogata
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Department of Anesthesiology and Critical Care Medicine, Jichi Medical University, 3311-1 Yakishiji, Shimotsuke, Tochigi 329-0483, Japan
| | - Takashi Maruyama
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Mamoru Takeuchi
- Department of Anesthesiology and Critical Care Medicine, Jichi Medical University, 3311-1 Yakishiji, Shimotsuke, Tochigi 329-0483, Japan
| | - Yasuhito Uezono
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan.
| |
Collapse
|
10
|
Allyl isothiocyanates and cinnamaldehyde potentiate miniature excitatory postsynaptic inputs in the supraoptic nucleus in rats. Eur J Pharmacol 2011; 655:31-7. [DOI: 10.1016/j.ejphar.2011.01.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 01/11/2011] [Accepted: 01/12/2011] [Indexed: 01/16/2023]
|
11
|
Armstrong WE, Wang L, Li C, Teruyama R. Performance, properties and plasticity of identified oxytocin and vasopressin neurones in vitro. J Neuroendocrinol 2010; 22:330-42. [PMID: 20210845 PMCID: PMC2910405 DOI: 10.1111/j.1365-2826.2010.01989.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The neurohypophysial hormones oxytocin (OT) and vasopressin (VP) originate from hypothalamic neurosecretory cells in the paraventricular and supraoptic (SON) nuclei. The firing rate and pattern of action potentials arising from these neurones determine the timing and quantity of peripheral hormone release. We have used immunochemical identification of biocytin-filled SON neurones in hypothalamic slices in vitro to uncover differences between OT and VP neurones in membrane and synaptic properties, firing patterns, and plasticity during pregnancy and lactation. In this review, we summarise some recent findings from this approach: (i) VP neuronal excitability is influenced by slow (sDAP) and fast (fDAP) depolarising afterpotentials that underlie phasic bursting activity. The fDAP may relate to a transient receptor potential (TRP) channel, type melastatin (TRPM4 and/or TRPM5), both of which are immunochemically localised more to VP neurones, and especially, to their dendrites. Both TRPM4 and TRPM5 mRNAs are found in the SON, but single cell reverse transcriptase-polymerisation suggests that TRPM4 might be the more prominent channel. Phasic bursting in VP neurones is little influenced by spontaneous synaptic activity in slices, being shaped largely by intrinsic currents. (ii) The firing pattern of OT neurones ranges from irregular to continuous, with the coefficient of variation determined by randomly distributed, spontaneous GABAergic, inhibitory synaptic currents (sIPSCs). These sIPSCs are four- to five-fold more frequent in OT versus VP neurones, and much more frequent than spontaneous excitatory synaptic currents. (iii) Both cell types express Ca(2+)-dependent afterhyperpolarisations (AHPs), including an apamin-sensitive, medium duration AHP and a slower, apamin-insensitive AHP (sAHP). In OT neurones, both AHPs are enhanced during pregnancy and lactation. During pregnancy, the plasticity of the sAHP is blocked by antagonism of central OT receptors. AHP enhancement is mimicked by exposing slices from day 19 pregnant rats to OT and oestradiol, suggesting that central OT and sex steroids programme this plasticity during pregnancy by direct hypothalamic actions. In conclusion, the differences in VP and OT neuronal function are underlain by differences in both membrane and synaptic properties, and differentially modulated by reproductive state.
Collapse
Affiliation(s)
- W E Armstrong
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | | | | | | |
Collapse
|
12
|
TRPV1 gene deficiency attenuates miniature EPSC potentiation induced by mannitol and angiotensin II in supraoptic magnocellular neurons. J Neurosci 2010; 30:876-84. [PMID: 20089896 DOI: 10.1523/jneurosci.2986-09.2010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The release of arginine vasopressin (AVP) from the magnocellular neurosecretory cells (MNCs) in the supraoptic nucleus (SON) is crucial for body fluid homeostasis. The MNC activity is modulated by synaptic inputs and humoral factors. A recent study demonstrated that an N-terminal splice variant of the transient receptor potential vanilloid type 1 (TRPV1) is essential for osmosensory transduction in the SON. In the present study, we examined the effects of mannitol and angiotensin II on miniature EPSCs (mEPSCs) in the supraoptic MNCs using whole-cell patch-clamp recording in in vitro slice preparation. Mannitol (60 mm) and angiotensin II (0.1 microm) increased the frequency of mEPSCs without affecting the amplitude. These effects were attenuated by pre-exposure to a nonspecific TRPV channel blocker, ruthenium red (10 microm) and enhanced by pre-exposure to cannabinoid type1 receptor antagonist, AM251 (2 microm). Mannitol-induced potentiation of mEPSCs was not attenuated by angiotensin II receptor antagonist, losartan (10 microm), indicating independent pathways of mannitol and angiotensin II to the TRPV channels. The potentiation of mEPSCs by mannitol was not mimicked by a TRPV1 agonist, capsaicin, and also not attenuated by TRPV1 blockers, capsazepine (10 microm). PKC was involved in angiotensin II-induced potentiation of mEPSCs. The effects of mannitol and angiotensin II on the supraoptic MNCs in trpv1 knock-out mice were significantly attenuated compared with those in wild-type mice counterparts. The results suggest that hyperosmotic stimulation and angiotensin II independently modulate mEPSCs through capsaicin-insensitive TRPV1 channel in the presynaptic terminals of the SON.
Collapse
|
13
|
Yokoyama T, Saito T, Ohbuchi T, Suzuki H, Otsubo H, Okamoto T, Fujihara H, Nagatomo T, Ueta Y. Ghrelin potentiates miniature excitatory postsynaptic currents in supraoptic magnocellular neurones. J Neuroendocrinol 2009; 21:910-20. [PMID: 19732292 DOI: 10.1111/j.1365-2826.2009.01911.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ghrelin is an orexigenic peptide discovered in the stomach as a ligand of the orphan G-protein coupled receptor, and participates in the regulation of growth hormone (GH) release. Previous studies have demonstrated that ghrelin suppressed water intake and stimulated the secretion of arginine vasopressin in rats. We examined the effect of ghrelin on the excitatory synaptic inputs to the magnocellular neurosecretory cells (MNCs) in the supraoptic nucleus (SON) using whole-cell patch-clamp recordings in in vitro rat and mouse brain slice preparations. The application of ghrelin (10(-7) approximately 10(-6) m) caused a significant increase in the frequency of the miniature excitatory postsynaptic currents (mEPSCs) in a dose-related manner without affecting the amplitude. The increased frequency of the spontaneous EPSCs persisted in the presence of tetrodotoxin (1 microM). Des-n-octanoyl ghrelin (10(-6) m) did not have a significant effect on the mEPSCs. The ghrelin-induced potentiation of the mEPSCs was significantly suppressed by previous exposure to the transient receptor potential vanilloid (TRPV) blocker, ruthenium red (10 microM) and GH secretagougue type 1a receptor selective antagonist, BIM28163 (10 microM). The effects of ghrelin on the supraoptic MNCs in trpv1 knockout mice were significantly attenuated compared to those in wild-type mice counterparts. These results suggest that ghrelin participates in the regulation of synaptic inputs to the MNCs in the SON via interaction with the GH secretagogue type 1a receptor, and that the TRPV1 channel may be involved in ghrelin-induced potentiation of mEPSCs to the MNCs in the SON.
Collapse
Affiliation(s)
- T Yokoyama
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ueta Y, Fujihara H, Dayanithi G, Kawata M, Murphy D. Specific expression of optically active reporter gene in arginine vasopressin-secreting neurosecretory cells in the hypothalamic-neurohypophyseal system. J Neuroendocrinol 2008; 20:660-4. [PMID: 18601686 DOI: 10.1111/j.1365-2826.2008.01706.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The anti-diuretic hormone arginine vasopressin (AVP) is synthesised in the magnocellular neurosecretory cells (MNCs) in the paraventricular nucleus (PVN) and the supraoptic nucleus (SON) of the hypothalamus. AVP-containing MNCs that project their axon terminals to the posterior pituitary can be identified using immunohistochemical techniques with specific antibodies recognising AVP and neurophysin II, and by virtue of their electrophysiological properties. Recently, we generated transgenic rats expressing an AVP-enhanced green fluorescent protein (eGFP) fusion gene in AVP-containing MNCs. In this transgenic rat, eGFP mRNA was observed in the PVN and the SON, and eGFP fluorescence was seen in the PVN and the SON, and also in the posterior pituitary, indicating transport of transgene protein down MNC axons to storage in nerve terminals. The expression of the AVP-eGFP transgene and eGFP fluorescence in the PVN and the SON was markedly increased after dehydration and chronic salt-loading. On the other hand, AVP-containing parvocellular neurosecretory cells in the PVN that are involved in the activation of the hypothalamic-pituitary adrenal axis exhibit robust AVP-eGFP fluorescence after bilateral adrenalectomy and intraperitoneal administration of lipopolysaccharide. In the median eminence, the internal and external layer showed strong fluorescence for eGFP after osmotic stimuli and stressful conditions, respectively, again indicating appropriate transport of transgene traslation products. Brain slices and acutely-dissociated MNCs and axon terminals also exhibited strong fluorescence, as observed under fluorescence microscopy. The AVP-eGFP transgenic animals are thus unique and provide a useful tool to study AVP-secreting cells in vivo for electrophysiology, imaging analysis such as intracellular Ca(2+) imaging, organ culture and in vivo monitoring of dynamic change in AVP secretion.
Collapse
Affiliation(s)
- Y Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.
| | | | | | | | | |
Collapse
|
15
|
Ueta Y, Fujihara H, Serino R, Dayanithi G, Ozawa H, Matsuda KI, Kawata M, Yamada J, Ueno S, Fukuda A, Murphy D. Transgenic expression of enhanced green fluorescent protein enables direct visualization for physiological studies of vasopressin neurons and isolated nerve terminals of the rat. Endocrinology 2005; 146:406-13. [PMID: 15375027 DOI: 10.1210/en.2004-0830] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have generated transgenic rats expressing an arginine vasopressin (AVP)-enhanced green fluorescent protein (eGFP) fusion gene. The expression of the eGFP gene and strong fluorescence were observed in the supraoptic nucleus (SON), the paraventricular nucleus (PVN), and the suprachiasmatic nucleus (SCN) in transgenic rats. The hypothalamo-neurohypophyseal tract, isolated SON neurons, and isolated axon terminals in the neurohypophysis also showed robust eGFP fluorescence. Water deprivation for 2 d increased the fluorescence of the eGFP in the SON and the PVN but not the SCN. The whole-cell patch-clamp technique was then used to record the electrical activities specifically identifying eGFP-expressing SON, PVN, and SCN AVP neurons in in vitro brain slice preparations. The AVP-eGFP transgenic rats are a unique new tool with which to study the physiological role of AVP-secreting neurons in the central nervous system and the dynamics of the regulation of AVP secretion in the living neurons and their axon terminals.
Collapse
Affiliation(s)
- Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Stern JE, Zhang W. Cellular sources, targets and actions of constitutive nitric oxide in the magnocellular neurosecretory system of the rat. J Physiol 2004; 562:725-44. [PMID: 15550458 PMCID: PMC1665550 DOI: 10.1113/jphysiol.2004.077735] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nitric oxide (NO) is a key activity-dependent modulator of the magnocellular neurosecretory system (MNS) during conditions of high hormonal demand. In addition, recent studies support the presence of a functional constitutive NO tone. The aim of this study was to identify the cellular sources, targets, signalling mechanisms and functional relevance of constitutive NO production within the supraoptic nucleus (SON). Direct visualization of intracellular NO, along with neuronal nitric oxide synthase (nNOS) and cGMP immunohistochemistry, was used to study the cellular sources and targets of NO within the SON, respectively. Our results support the presence of a strong NO basal tone within the SON, and indicate that vasopressin (VP) neurones constitute the major neuronal source and target of basal NO. NO induced-fluorescence and cGMP immunoreactivity (cGMPir) were also found in the glia and microvasculature of the SON, suggesting that they contribute as sources/targets of NO within the SON. cGMPir was also found in association with glutamic acid decarboxylase 67 (GAD67)- and vesicular glutamate transporter 2 (VGLUT2)-positive terminals. Glutamate, acting on NMDA and possibly AMPA receptors, was found to be an important neurotransmitter driving basal NO production within the SON. Finally, electrophysiological recordings obtained from SON neurones in a slice preparation indicated that constitutive NO efficiently restrains ongoing firing activity of these neurones. Furthermore, phasically active (putative VP) and continuously firing neurones appeared to be influenced by NO originating from different sources. The potential roles for basal NO as an autocrine signalling molecule, and one that bridges neuronal-glial-vascular interactions within the MNS are discussed.
Collapse
Affiliation(s)
- Javier E Stern
- Department of Psychiatry, Genome Research Insitute, University of Cincinnati, 2170 E. Galbraith Road, Cincinnati, OH 45237, USA.
| | | |
Collapse
|
17
|
Ozaki Y, Soya A, Nakamura J, Matsumoto T, Ueta Y. Potentiation by angiotensin II of spontaneous excitatory postsynaptic currents in rat supraoptic magnocellular neurones. J Neuroendocrinol 2004; 16:871-9. [PMID: 15584928 DOI: 10.1111/j.1365-2826.2004.01244.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The physiological actions of angiotensin II in the supraoptic (SON) and paraventricular nuclei have been widely demonstrated, including the modulation of firing rate and release of arginine vasopressin and oxytocin. Here, we investigated whether angiotensin II modulates synaptic inputs into the SON. To do this, we measured spontaneous excitatory and inhibitory postsynaptic currents (EPSCs and IPSCs) from rat SON neurones in thin slice preparations using the whole-cell patch-clamp technique. Angiotensin II reversibly increased the frequency of spontaneous EPSCs in a dose-related manner without affecting the amplitude, indicating that angiotensin II potentiated EPSCs via a presynaptic mechanism. Angiotensin II-induced potentiation of EPSCs was unaffected in the presence of tetrodotoxin. On the other hand, angiotensin II did not cause significant effects on IPSCs. The potentiation of EPSCs by angiotensin II was potently suppressed by previous exposure to the angiotensin type 1 (AT1) receptor antagonist, losartan. Our results suggest that angiotensin II potentiates the excitatory synaptic inputs into SON neurones, via the AT1 receptors.
Collapse
Affiliation(s)
- Y Ozaki
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | | | | | | |
Collapse
|
18
|
Sabatier N, Brown CH, Ludwig M, Leng G. Phasic spike patterning in rat supraoptic neurones in vivo and in vitro. J Physiol 2004; 558:161-80. [PMID: 15146047 PMCID: PMC1664911 DOI: 10.1113/jphysiol.2004.063982] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In vivo, most vasopressin cells of the hypothalamic supraoptic nucleus fire action potentials in a 'phasic' pattern when the systemic osmotic pressure is elevated, while most oxytocin cells fire continuously. The phasic firing pattern is believed to arise as a consequence of intrinsic activity-dependent changes in membrane potential, and these have been extensively studied in vitro. Here we analysed the discharge patterning of supraoptic nucleus neurones in vivo, to infer the characteristics of the post-spike sequence of hyperpolarization and depolarization from the observed spike patterning. We then compared patterning in phasic cells in vivo and in vitro, and we found systematic differences in the interspike interval distributions, and in other statistical parameters that characterized activity patterns within bursts. Analysis of hazard functions (probability of spike initiation as a function of time since the preceding spike) revealed that phasic firing in vitro appears consistent with a regenerative process arising from a relatively slow, late depolarizing afterpotential that approaches or exceeds spike threshold. By contrast, in vivo activity appears to be dominated by stochastic rather than deterministic mechanisms, and appears consistent with a relatively early and fast depolarizing afterpotential that modulates the probability that random synaptic input exceeds spike threshold. Despite superficial similarities in the phasic firing patterns observed in vivo and in vitro, there are thus fundamental differences in the underlying mechanisms.
Collapse
Affiliation(s)
- Nancy Sabatier
- School of Biomedical and Clinical Laboratory Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | | | | | | |
Collapse
|
19
|
Thomas Cunningham J, Bruno SB, Grindstaff RR, Grindstaff RJ, Higgs KH, Mazzella D, Sullivan MJ. Chapter 20 Cardiovascular regulation of supraoptic vasopressin neurons. PROGRESS IN BRAIN RESEARCH 2002. [DOI: 10.1016/s0079-6123(02)39022-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
HONDA K, HIGUCHI T. Role of Midbrain Parabrachial Nucleus in Controlling Electrical Activity of Oxytocin and Vasopressin Secreting Neurones in the Hypothalamic Supraoptic Nucleus. J Reprod Dev 2001. [DOI: 10.1262/jrd.47.259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
21
|
|
22
|
Ueta Y, Serino R, Shibuya I, Kitamura K, Kangawa K, Russell JA, Yamashita H. A physiological role for adrenomedullin in rats; a potent hypotensive peptide in the hypothalamo-neurohypophysial system. Exp Physiol 2000; 85 Spec No:163S-169S. [PMID: 10795919 DOI: 10.1111/j.1469-445x.2000.tb00020.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adrenomedullin, a potent hypotensive peptide, was originally isolated from human phaeochromocytoma. Adrenomedullin immunoreactivity and gene expression are found not only in peripheral organs but also in the central nervous system. Adrenomedullin labelled cells were localised in the hypothalamus, including in the paraventricular and supraoptic nuclei, in rats. Abundant adrenomedullin-immunoreactive fibres and varicosities were found in the hypothalamo-neurohypophysial tract and the internal zone of the median eminence in colchicine-treated and hypophysectomized rats, whereas in control rats few adrenomedullin-labelled fibres were observed. We examined the effects of intracerebroventricular administration of adrenomedullin on neurosecretory cells in the paraventricular and supraoptic nuclei of rats, using immunohistochemistry for Fos protein and in situ hybridisation histochemistry for c-fos mRNA. Intracerebroventricular administration of adrenomedullin caused a marked induction of Fos-like immunoreactivity in the paraventricular nucleus and the dorsal part of the supraoptic nucleus. In the paraventricular and supraoptic nuclei, nuclear Fos-like immunoreactivity was predominantly in oxytocin-immunoreactive cells rather than vasopressin-immunoreactive cells. The induction of c-fos mRNA in the paraventricular and supraoptic nuclei was increased in a dose-related manner 30 min after intracerebroventricular administration of adrenomedullin. This induction was reduced by pre-treatment with the adrenomedullin receptor antagonist, human adrenomedullin-(22-52)-NH2. Intracerebroventricular administration of adrenomedullin also caused a marked increase in the plasma concentration of oxytocin. Extracellular recordings from magnocellular neurosecretory cells in the paraventricular nucleus revealed that putative oxytocin-secreting cells were activated by intracerebroventricular administration of adrenomedullin. These results suggest that central adrenomedullin preferentially stimulates the secretion of oxytocin by activating hypothalamic oxytocin-secreting cells and may have an important role in salt appetite and body fluid homeostasis in rats.
Collapse
Affiliation(s)
- Y Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.
| | | | | | | | | | | | | |
Collapse
|
23
|
Ueta Y, Kannan H, Higuchi T, Negoro H, Yamaguchi K, Yamashita H. Activation of gastric afferents increases noradrenaline release in the paraventricular nucleus and plasma oxytocin level. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 2000; 78:69-76. [PMID: 10789684 DOI: 10.1016/s0165-1838(99)00049-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Effects of electrical stimulation of the gastric vagal nerves on plasma levels of oxytocin (OXT) and arginine vasopressin (AVP) were examined in rats anesthetized with urethane. Electrical stimulation of the gastric vagal nerves increased the plasma levels of OXT, but not AVP. The concentrations of extracellular noradrenaline (NA) in the paraventricular nucleus (PVN) were measured by in vivo microdialysis in rats anesthetized with urethane. Electrical stimulation of the gastric vagal nerves evoked an increase followed by a slight decrease in the concentrations of NA. The responses of spontaneous firing magnocellular neurosecretory neurons in the PVN to both electrical stimulation of the gastric vagal nerves and intravenous (i.v.) administration of CCK-8 were examined. Most of the putative OXT-secreting cells recorded were excited by both electrical stimulation of gastric vagal nerves and i.v. administration of CCK-8. These results suggest that gastric vagal afferents activate the central noradrenergic system from the brainstem to the PVN and secretion of OXT.
Collapse
Affiliation(s)
- Y Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.
| | | | | | | | | | | |
Collapse
|
24
|
Phasic bursting activity of paraventricular neurons is modulated by temperature and angiotensin II. J Therm Biol 1999. [DOI: 10.1016/s0306-4565(99)00045-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Senatorov VV, Renaud LP. Projections of medullary and pontine noradrenergic neurons to the horizontal limb of the nucleus of diagonal band in the rat. Neuroscience 1999; 88:939-47. [PMID: 10363829 DOI: 10.1016/s0306-4522(98)00268-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Recent investigations in the rat have implicated a noradrenergic innervation to the horizontal nucleus of the diagonal band of Broca as a critical link in a neural circuit that conveys baroreceptor information centrally to inhibit the firing of vasopressin-secreting neurons in the hypothalamic supraoptic nucleus. In this study we used small intra-diagonal band injections of a retrograde tracer, rhodamine latex microspheres, in combination with tyrosine hydroxylase histochemistry to identify brainstem noradrenergic cells contributing to this innervation. In three cases where tracer injections were limited to the horizontal limb of the diagonal band, we observed 20-50 double-labelled neurons ipsilaterally in the dorsal part of the locus coeruleus (A6) and the caudal nucleus tractus solitarius (A2), and bilaterally in the caudal ventrolateral medulla (A1). Double-labelled neurons were also noted in the ventral tegmental area (dopaminergic A10 cell group). Although all major brainstem noradrenergic cell groups contribute fibers to the horizontal limb of the nucleus of diagonal band, data from physiological studies suggest that the noradrenergic A2 neurons in the nucleus tractus solitarius are the most likely pathway through which it receives this baroreceptor information.
Collapse
Affiliation(s)
- V V Senatorov
- Neurosciences, Loeb Research Institute, Ottawa Civic Hospital and University of Ottawa, Ontario, Canada
| | | |
Collapse
|
26
|
Armstrong WE, Stern JE. Phenotypic and state-dependent expression of the electrical and morphological properties of oxytocin and vasopressin neurones. PROGRESS IN BRAIN RESEARCH 1999; 119:101-13. [PMID: 10074783 DOI: 10.1016/s0079-6123(08)61564-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Oxytocin and vasopressin secreting neurones of the hypothalamic supraoptic nucleus share many membrane characteristics and a roughly similar morphology. However, these two neurone types differ in the relative expression of some intrinsic and synaptic currents, and in the extent of their respective dendritic arbors. Spike depolarizing afterpotentials are present in both types, but more frequently give rise to prolonged burst discharges in vasopressin neurones. Oxytocin, but not vasopressin neurones, are characterized by a depolarization-activated, sustained outward rectifier which turns on near spike threshold, and which can produce prolonged spike frequency adaptation. When this sustained current is deactivated by small hyperpolarizing pulses, a rebound depolarization sufficient to evoke short spike trains follows the offset of these pulses. Both oxytocin and vasopressin neurones exhibit a transient outward rectification underlain by an Ia-type current. This transient rectifier delays spiking to depolarizing stimuli from a relatively hyperpolarized baseline, and is more prominent in vasopressin neurones. As a result, oxytocin neurones may be more reactive to depolarizing inputs. Both cell types receive glutamatergic, excitatory synaptic inputs and both possess R,S- alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptor subtypes. The AMPA receptor channel on both cell types is characterized by a relatively high calcium permeability and voltage-dependent rectification, characteristic of a diminished presence of the GluR2 AMPA subunit. However, AMPA-mediated synaptic transients are larger, and decay faster, in oxytocin compared with vasopressin neurones, suggesting a potential difference for synaptic integration. The characteristics of NMDA-mediated synaptic transients are similar in oxytocin and vasopressin neurones, but some data suggest NMDA receptors may be less involved in the glutamatergic activation of oxytocin neurones. In both cell types, synaptic release of glutamate often coactivates AMPA and NMDA receptors. The dendritic morphology of oxytocin and vasopressin neurones in female rats differs from one another and exhibits considerable plasticity as a function of endocrine state. In virgin rats, oxytocin neurones have more dendritic branches and a greater total dendritic length compared with lactation, when the arbor is much less extensive. A complementary change occurs in vasopressin dendrites, which are more extensive during lactation. This reorganization suggests that oxytocin neurones may be more electronically compact during lactation. In addition, such dramatic shifts in overall dendritic length imply that significant gains and losses in either the total number of synapses, or in synaptic density, are incurred by both cell types as a function of reproductive state.
Collapse
Affiliation(s)
- W E Armstrong
- Department of Anatomy and Neurobiology, University of Tennessee, Memphis, College of Medicine 38163, USA.
| | | |
Collapse
|
27
|
Armstrong WE, Stern JE. Electrophysiological distinctions between oxytocin and vasopressin neurons in the supraoptic nucleus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 449:67-77. [PMID: 10026787 DOI: 10.1007/978-1-4615-4871-3_7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Oxytocin and vasopressin neurons can be differentiated from one another, and from neurons in the immediately adjacent perinuclear zone, by their electrophysiological properties. In both sexes, oxytocin and vasopressin neurons are characterized by a prominent transient outward rectification which is conspicuously lacking in most perinuclear neurons. In addition, perinuclear neurons, some of which project to the supraoptic nucleus, exhibit a transient depolarization which underlies short bursts of spikes. Oxytocin neurons are characterized by: 1) the presence of a sustained outward rectifier above -50 mV, active below spike threshold; 2) a rebound depolarization following deactivation of the sustained rectification which can sustain short spike trains; and 3) a smaller transient outward rectification, probably associated with the potassium current, Ia. Vasopressin neurons show little of the sustained outward rectification and rebound depolarization, but have a stronger transient outward rectification. Although both cell types exhibit depolarizing afterpotentials, in vasopressin neurons these lead to plateau potentials underlying prolonged discharges. In oxytocin neurons, the depolarizing potential usually sustains a short spike discharge, but less often leads to prolonged bursts. These data suggest that the intrinsic properties of oxytocin and vasopressin neurons lead to quantitatively different forms of burst discharges, both of which may facilitate hormone release.
Collapse
Affiliation(s)
- W E Armstrong
- Department of Anatomy and Neurobiology, University of Tennessee, Memphis College of Medicine 38163, USA.
| | | |
Collapse
|
28
|
Ibrahim N, Shibuya I, Kabashima N, Setiadji VS, Ueta Y, Yamashita H. GABAB receptor-mediated inhibition of spontaneous action potential discharge in rat supraoptic neurons in vitro. Brain Res 1998; 813:88-96. [PMID: 9824676 DOI: 10.1016/s0006-8993(98)01009-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To elucidate the role of GABAB receptors in the regulation of the electrical activity of magnocellular neurons of the supraoptic nucleus (SON), the effects of GABAB agonist and antagonist on the firing rate of spontaneous action potentials were studied in SON slice preparations of rats by extracellular recordings. In the presence of the gamma-amino butyric acid (GABA)-gated chloride channel blocker, picrotoxin, the selective GABAB agonist, baclofen, reduced the firing rate of action potentials in both phasic and non-phasic neurons in a dose-dependent manner. The reduction in the firing rate induced by baclofen was reversed by the selective GABAB antagonist, 2-hydroxy saclofen (2OH-saclofen), also in a dose-dependent manner. In non-phasic neurons, 2OH-saclofen significantly increased the firing rate and the effect was additive to the effect of picrotoxin. In phasic neurons, 2OH-saclofen alone did not increase the firing rate, but it reversed suppression of the firing induced by increasing extracellular Ca2+ concentration to 2.1 mM. Baclofen also reduced the firing rate of non-phasic neurons of virgin and lactating female rats, indicating that the GABAB receptor-mediated inhibition is not confined to SON neurons of male rats. The evidence indicates that activation of GABAB receptors inhibits electrical activity of SON neurons of both male and female rats and that GABAB receptors may play an important role in the inhibitory regulation of the electrical activity of SON neurons by GABA.
Collapse
Affiliation(s)
- N Ibrahim
- Department of Physiology, University of Occupational and Environmental Health School of Medicine, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Misgeld U, Zeilhofer HU, Swandulla D. Synaptic modulation of oscillatory activity of hypothalamic neuronal networks in vitro. Cell Mol Neurobiol 1998; 18:29-43. [PMID: 9524728 DOI: 10.1023/a:1022571025830] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
1. Rhythmic bursts of action potentials in neurosecretory cells are a key factor in hypothalamic neurosecretion. Rhythmicity and synchronization may be accomplished by pacemaker cells synaptically driving follower cells or by a network oscillator. 2. In this review we describe a hypothalamic cell culture which may serve as a model for a hypothalamic network oscillator. An overview is given of neurochemical phenotypes, synaptic mechanisms and their development, properties of receptors for fast synaptic transmission, and membrane properties of cells in dissociated rat embryonic hypothalamic culture. 3. Rhythmic activity spreads in the cultured network through synapses that release glutamate, activating a heteromultimeric AMPA-type receptor containing a GluR2 subunit which is associated with a high-conductance channel for Na+ and K+. Rhythmic activity is controlled by synapses that release GABA to activate GABAA receptors. The presumed function of the two receptor types is facilitated by their respective location, GABAA receptors predominating near the soma and AMPA receptors being abundant in dendrites. 4. Network oscillators may be more reliable for the presumed function than single-cell oscillators. They are controlled through synaptic modulation, which may prove to represent a process important for the release of hormones.
Collapse
Affiliation(s)
- U Misgeld
- I. Physiologisches Institut, Universität Heidelberg, Germany
| | | | | |
Collapse
|
30
|
Hatton GI, Li Z. Intrinsic controls of intracellular calcium and intercellular communication in the regulation of neuroendocrine cell activity. Cell Mol Neurobiol 1998; 18:13-28. [PMID: 9524727 DOI: 10.1023/a:1022519008991] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
1. The magnocellular hypothalamoneurohypophysial system, consisting chiefly of the supraoptic and paraventricular nuclei and their axonal projections to the pituitary neural lobe, has become a model for the study of neuroendocrine cell morphology, function, and plasticity. 2. Decades of research have produced a wealth of knowledge about the physiological conditions that activate this system, the peripheral target tissues affected by its outputs, and its capacity to undergo use-dependent, reversible reorganization. 3. Earlier research on the neural control of this system concentrated largely on the synaptic inputs that influence the activity of these magnocellular neurons and, while that task is still far from completed, methods have now been developed that permit insights to be gained into the control exercised by intrinsic cellular and molecular mechanisms. 4. This article reviews the current state of knowledge of roles played by these intrinsic mechanisms, including influences of intracellular calcium buffering, calcium release from internal stores and intercellular communication through gap junctions, in the control of neuroendocrine cell activity.
Collapse
Affiliation(s)
- G I Hatton
- Department of Neuroscience, University of California, Riverside 92521, USA
| | | |
Collapse
|
31
|
Murai Y, Nakashima T, Miyata S, Kiyohara T. Different effect of oxytocin on membrane potential of supraoptic oxytocin neurons in virgin female and male rats in vitro. Neurosci Res 1998; 30:35-41. [PMID: 9572578 DOI: 10.1016/s0168-0102(97)00117-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The effects of oxytocin on membrane potential were investigated in the supraoptic nucleus (SON) neurons of rats using whole-cell patch-clamp technique. SON neurons were electrophysiologically identified as oxytocin (OT) or vasopressin (VP) neurons. Application of OT (1 x 10[-7] M) hyperpolarized membrane potentials of OT neurons in virgin female rats but depolarized membrane potentials of putative OT neurons in male rats. The membrane conductance of SON neurons were increased by treatment of OT in both sexes, suggesting that OT increased the opening of channels on SON neurons. The reversal potential of OT neurons in virgin female rats and putative OT neurons in male rats under OT effective conditions were -66 +/- 1 mV (n = 4) and -46 +/- 2 mV (n = 5), respectively. These data suggest that OT released within the SON suppresses the activity of OT neurons in virgin female rats while it excites putative OT neurons in male rats.
Collapse
Affiliation(s)
- Y Murai
- Department of Applied Biology, Kyoto Institute of Technology, Japan
| | | | | | | |
Collapse
|
32
|
Schrader LA, Tasker JG. Modulation of multiple potassium currents by metabotropic glutamate receptors in neurons of the hypothalamic supraoptic nucleus. J Neurophysiol 1997; 78:3428-37. [PMID: 9405556 DOI: 10.1152/jn.1997.78.6.3428] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We studied the effects of activation of the metabotropic glutamate receptors on intrinsic currents of magnocellular n urons of the supraoptic nucleus (SON) with whole cell patch-clamp and conventional intracellular recordings in coronal slices (400 micron) of the rat hypothalamus. Trans-(+/-)-1-amino-1,3-cyclopentane dicarboxylic acid (trans-ACPD, 10-100 microM), a broad-spectrum metabotropic glutamate receptor agonist, evoked an inward current (18.7 +/- 3.45 pA) or a slow depolarization (7.35 +/- 4.73 mV) and a 10-30% decrease in whole cell conductance in approximately 50% of the magnocellular neurons recorded at resting membrane potential. The decrease in conductance and the inward current were caused largely by the attenuation of a resting potassium conductance because they were reduced by the replacement of intracellular potassium with an equimolar concentration of cesium or by the addition of potassium channel blockers to the extracellular medium. In some cells, trans-ACPD still elicited a small inward current after blockade of potassium currents, which was abolished by the calcium channel blocker, CdCl2. Trans-ACPD also reduced voltage-gated and Ca2+-activated K+ currents in these cells. Trans-ACPD reduced the transient outward current (IA) by 20-70% and/or the IA-mediated delay to spike generation in approximately 60% of magnocellular neurons tested. The cells that showed a reduction of IA generally also showed a 20-60% reduction in a voltage-gated, sustained outward current. Finally, trans-ACPD attenuated the Ca2+-dependent outward current responsible for the afterhyperpolarization (IAHP) in approximately 60% of cells tested. This often revealed an underlying inward current thought to be responsible for the depolarizing afterpotential seen in some magnocellular neurons. (RS)-3,5-dihydroxyphenylglycine, a group I receptor-selective agonist, mimicked the effects of trans-ACPD on the resting and voltage-gated K+ currents. (RS)-alpha-methyl-4-carboxyphenylglycine, a group I/II metabotropic glutamate receptor antagonist, blocked these effects. A group II receptor agonist, 2S,1'S,2'S-2carboxycyclopropylglycine and a group III receptor agonist, (+)-2-amino-4-phosphonobutyric acid, had no effect on the resting or voltage-gated K+ currents, indicating that the reduction of K+ currents was mediated by group I receptors. About 80% of the SON cells that were labeled immunohistochemically for vasopressin responded to metabotropic glutamate receptor activation, whereas only 33% of labeled oxytocin cells responded, suggesting that metabotropic receptors are expressed preferentially in vasopressinergic neurons. These data indicate that activation of the group I metabotropic glutamate receptors leads to an increase in the postsynaptic excitability of magnocellular neurons by blocking resting K+ currents as well as by reducing voltage-gated and Ca2+-activated K+ currents.
Collapse
Affiliation(s)
- L A Schrader
- Neuroscience Training Program and Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana 70118, USA
| | | |
Collapse
|
33
|
Cui LN, Saeb-Parsy K, Dyball RE. Neurones in the supraoptic nucleus of the rat are regulated by a projection from the suprachiasmatic nucleus. J Physiol 1997; 502 ( Pt 1):149-59. [PMID: 9234203 PMCID: PMC1159578 DOI: 10.1111/j.1469-7793.1997.149bl.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
1. In the rat, projections from the suprachiasmatic nucleus (SCN) to the supraoptic nucleus (SON) of the hypothalamus were characterized in vivo using extracellular recordings and in slice preparations using both extracellular and whole-cell patch clamp recording. 2. Of 117 magnocellular neurones recorded in the SON in vivo, fifteen (13%) displayed a short latency excitation, sixty-eight (58%) a short latency inhibition, six (5%) were unresponsive and twenty-eight (24%) gave long latency responses following SCN stimulation. 3. The responses of putative vasopressin cells in the SON to SCN stimulation in vivo (4 out of 61 cells, 7% excited; 49 out of 61 cells, 80% inhibited) were significantly different from those of putative oxytocin cells (10 out of 50 cells, 20% excited and 16 out of 50 cells, 32% inhibited; P < 0.02, test for differences between proportions). 4. Recordings in vitro using patch technology in whole-cell mode showed both inward and outward currents in SON cells at holding potentials near resting membrane potential following stimulation of the SCN region. The outward currents could be blocked by bicuculline (10 microM; n = 7) and the inward currents were blocked by the non-NMDA antagonist 6-nitro-7-sulphamoylbenzo(f)quinoxaline-2,3-dione (5 microM; n = 4). 5. We conclude that there is a strong projection from the SCN to the SON with both inhibitory (GABAergic) and excitatory (glutamatergic) components which may regulate the daily changes in neurohypophysial hormone secretion.
Collapse
Affiliation(s)
- L N Cui
- Department of Anatomy, University of Cambridge, UK.
| | | | | |
Collapse
|
34
|
Decavel C, Curras MC. Increased expression of the N-methyl-D-aspartate receptor subunit, NR1, in immunohistochemically identified magnocellular hypothalamic neurons during dehydration. Neuroscience 1997; 78:191-202. [PMID: 9135100 DOI: 10.1016/s0306-4522(96)00544-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
N-Methyl-D-aspartate receptors are thought to be involved in synaptic signaling within the hypothalamo-neurohypophysial system, but the extent and nature of their involvement has not been determined. In this study, in the rat, we evaluated the effect of hyperosmotic stimulation on the N-methyl-D-aspartate receptor subunit, NR1, which confers function to N-methyl-D-aspartate receptor heteromers. Co-localization of immunoreactivity for NR1 and vasopressin- or oxytocin-associated neurophysin in magnocellular neurons of the supraoptic and paraventricular hypothalamic nuclei was accomplished using double-label immunohistochemistry. Our results show that vasopressin- and oxytocin-neurophysin-positive populations contained detectable levels of NR1 labeling. Using NR1 labeling as a measure of N-methyl-D-aspartate receptor density, we examined the effect of dehydration in these nuclei. Using computer-assisted densitometry, we found significantly greater NR1 labeling densities in the magnocellular regions of both the supraoptic and paraventricular nuclei of saline-treated rats than of control rats. This increase was not due to methodological factors, since no changes in NR1 labeling density were found in a nearby nucleus, the nucleus reuniens. Western blot analysis showed similar selective increases in NR1 labeling in homogenates from the supraoptic nucleus, paraventricular nucleus and in some cases from the anterior hypothalamic area. In both immunohistochemical and western blotting experiments we did not observe a dehydration-induced increase in NR1 in other brain areas examined. Our results showing an up-regulation of NR1-containing N-methyl-D-aspartate receptors during dehydration suggest that these receptors are involved in the regulation of body water and may represent an adaptive physiological response following activation of the hypothalamo-neurohypophysial axis. In addition, these results suggest that the functional expression of N-methyl-D-aspartate receptors is dynamic and may be modified according to the physiological state of the animal.
Collapse
Affiliation(s)
- C Decavel
- Department of Neuroscience, University of California at Riverside, 92521, U.S.A
| | | |
Collapse
|
35
|
Liu QS, Jia YS, Ju G. Nitric oxide inhibits neuronal activity in the supraoptic nucleus of the rat hypothalamic slices. Brain Res Bull 1997; 43:121-5. [PMID: 9222524 DOI: 10.1016/s0361-9230(96)00209-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The presence of abundant nitric oxide synthase (NOS) in magnocellular neurons of the rat hypothalamus suggests that nitric oxide (NO) may be involved in controlling the release of oxytocin and vasopressin. To test this possibility, we examined the effect of NO-related drugs on extracellular discharges of 124 supraoptic nucleus (SON) neurons from slices of rat hypothalamus in vitro. Twenty-three (43%) of 53 neurons were inhibited by sodium nitroprusside (SNP), a spontaneous releaser of NO, at 1-3 mM. This inhibition was prevented by preincubation of the slices with 1 microM hemoglobin, an inactivator of NO (n = 14), whereas hemoglobin alone enhanced neuronal activity in seven (35%) of 20 neurons. L-Arginine (1 mM), a precursor of NO, inhibited neuronal activity in five (36%) of 14 neurons, while D-arginine (1 mM), the inactive counterpart of L-arginine, was ineffective (n = 12). N-omega-nitro-L-arginine methyl ester (L-NAME, 10 microM), an inhibitor of NOS, also enhanced neuronal activity in five (29%) of 17 neurons, while N-omega-nitro-D-arginine methyl ester (DNAME, 10 microM), the inactive enantiomer of L-NAME, was without effect (n = 11). Together, our data show that NO exerts predominantly an inhibitory effect on SON neurons and may serve as a negative feedback loop in controlling release of oxytocin and vasopressin.
Collapse
Affiliation(s)
- Q S Liu
- Institute of Neuroscience, Fourth Military Medical University, People's Republic of China
| | | | | |
Collapse
|
36
|
Yamamoto S, Inenaga K, Eto S, Yamashita H. Cardiovascular-related peptides influence hypothalamic neurons involved in control of body water homeostasis. OBESITY RESEARCH 1995; 3 Suppl 5:789S-794S. [PMID: 8653564 DOI: 10.1002/j.1550-8528.1995.tb00501.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The cardiovascular-related peptides, atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and endothelin (ET) were originally isolated from the atrium, brain and endothelial cells, respectively. ANP and BNP have hypotensive, natriuretic, diuretic and vasodilator effects. ET has strong vasoconstrictor effects. Centrally applied ANP and BNP attenuate pressure and drinking responses and vasopressin secretion induced by angiotensin II. Similar application of ET increases blood pressure in vivo and vasopressin secretion in vitro. To clarify direct effects of these peptides on neurons in the regions involved in body water homeostasis, extracellular recordings were made from neurons in the supraoptic nucleus (SON) and regions of anteroventral third ventricle (AV3V) of rat hypothalamic slice preparations. ANP and BNP inhibited AV3V neurons, suggesting direct actions of the peptides on drinking. In the SON, these peptides inhibited selectively putative vasopressin neurons but not putative oxytocin neurons, suggesting direct actions of the peptides on vasopressin secretion. We demonstrated that the inhibitory response by ANP and BNP is mediated through a second messenger cGMP system but not cAMP. Contrary to natriuretic peptides, ET excited AV3V neurons but inhibited SON neurons. Roles of ANP, BNP and ET on the central regulatory systems of body water homeostasis, acting as neurotransmitters or neuromodulators, will be discussed.
Collapse
Affiliation(s)
- S Yamamoto
- First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | | | | |
Collapse
|
37
|
Armstrong WE. Morphological and electrophysiological classification of hypothalamic supraoptic neurons. Prog Neurobiol 1995. [DOI: 10.1016/0301-0082(95)80005-s] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
38
|
Stern JE, Armstrong WE. Electrophysiological differences between oxytocin and vasopressin neurones recorded from female rats in vitro. J Physiol 1995; 488 ( Pt 3):701-8. [PMID: 8576859 PMCID: PMC1156735 DOI: 10.1113/jphysiol.1995.sp021001] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
1. Intracellular recordings in vitro from immunochemically identified oxytocin (OT) and vasopressin (VP) neurones in the supraoptic nucleus (SON) of virgin or lactating female rats revealed no differences between neurone types in membrane potential (Vm), input resistance and current-voltage relationships (I-V), when taken at resting membrane potentials. 2. When OT (94%), but not VP, neurones (93%) were current clamped at depolarized voltages (above -50 mV), small hyperpolarizing pulses revealed a time- and voltage-dependent outward rectification that was present above -75 mV and that decreased in amplitude as Vm approached the equilibrium potential for potassium (EK). The rectification was more pronounced when the neurones were held at a more depolarized membrane potential, and was larger the longer the neurone was held depolarized, reaching a maximum at 0.6-0.9 s. 3. A rebound depolarization followed the offset of hyperpolarizing pulses that were associated with the rectification. The peak amplitude of the rebound showed a time and a voltage dependence. It followed a bell-shaped curve as the hyperpolarizing commands were made larger, attaining a peak at -65 +/- 1.5 mV. The rebound amplitude increased with pulse duration, achieving a half-maximal amplitude at 0.5 +/- 0.1 s. 4. The expression of the sustained outward rectification and the rebound in OT neurones was similar in virgin and lactating female rats. 5. These results indicate the presence of significant differences in the intrinsic membrane properties, probably K+ currents, between OT and VP neurones in both lactating and virgin female rats.
Collapse
Affiliation(s)
- J E Stern
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee, Memphis 38163, USA
| | | |
Collapse
|
39
|
Yang QZ, Smithson KG, Hatton GI. NMDA and non-NMDA receptors on rat supraoptic nucleus neurons activated monosynaptically by olfactory afferents. Brain Res 1995; 680:207-16. [PMID: 7663978 DOI: 10.1016/0006-8993(95)00153-h] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The recently discovered efferent projections from the main and accessory olfactory bulbs to the supraoptic nucleus (SON) were further investigated. Intracellular electrophysiological methods were used to determine (a) if these projections are monosynaptic, (b) which excitatory amino acid (EAA) receptor subtypes mediate responses to activation of these pathways and (c) whether the same receptor subtypes mediate responses of phasically firing (vasopressin) and continuously firing (putative oxytocin) neurons. Recordings were made from SON neurons in large explants and 500 microns thick horizontal slices, containing 2-6 mm of the piriform cortex and lateral olfactory tract (LOT). This allowed recording of synaptic responses to selective stimulation of the LOT. EPSPs in SON neurons faithfully followed stimulus frequencies of 50-100 Hz, indicating that these inputs were monosynaptic. Stimulus-evoked EPSPs were blocked by the non-specific EAA antagonist, kynurenate. Perifusion of the slice with Mg(2+)-free medium revealed the presence of NMDA receptors in addition to the non-NMDA receptors on both phasically and continuously firing cells, indeed, on all cells tested. Partial blockade of these EPSPs in Mg(2+)-free medium could be achieved with either the NMDA antagonist, AP5, or the non-NMDA antagonist, CNQX or NBQX. Full blockade of the stimulus-evoked EPSPs was effected by adding both types of antagonists to the medium, although spontaneous EPSPs were still observed in several cells. These results are consistent with prior studies showing both receptor subtypes in the SON. This is the first demonstration that afferent stimulation activates both subtypes in the same SON neuron regardless of its peptide content.
Collapse
Affiliation(s)
- Q Z Yang
- Department of Neuroscience-135, University of California, Riverside 92521-0146, USA
| | | | | |
Collapse
|
40
|
Nagatomo T, Inenaga K, Yamashita H. Transient outward current in adult rat supraoptic neurones with slice patch-clamp technique: inhibition by angiotensin II. J Physiol 1995; 485 ( Pt 1):87-96. [PMID: 7658385 PMCID: PMC1157974 DOI: 10.1113/jphysiol.1995.sp020714] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
1. Outward potassium currents were recorded from microscopically identified supraoptic neurones of adult Wistar male rats using the whole-cell patch-clamp technique in thin-slice preparations. The basic characteristics of transient outward current (IA or A-current) and the effects of angiotensin II (AII) on the currents were studied. 2. IA was isolated by subtracting outward currents elicited by stepping from two different holding potentials to a test potential or by applying 4-aminopyridine (4-AP) at 5 mM. The isolated IA had a threshold for activation between -55 and -65 mV and was characterized by fast activation and inactivation. Values of the time to peak and the inactivation time constants for current decay at different test potentials were voltage dependent. 3. Normalized currents for activation and steady-state inactivation of IA were fitted to the Boltzmann function. The mid-points and the slope factors were, respectively, -35.0 and -14.3 +/- 0.40 mV (n = 5) for the activation curve, and -72.0 and 7.0 +/- 0.68 mV (n = 5) for the inactivation curve. 4. The time course of recovery from inactivation was best fitted to a single exponential function with the time constant of 37.8 +/- 6.6 ms (n = 6). 5. The effects of AII on IA and delayed rectifier current (IK) were investigated. According to their responses to AII, cells were classified into two groups, sensitive and low-sensitive. Bolus injection of AII (10 microM, 100 microliters) decreased the IA amplitude by 25.1 +/- 2.4% in seven (53.8%) of the thirteen neurones tested (sensitive group), whereas the other six neurones (low-sensitive group) changed by only 2.2 +/- 0.8%. Perfusion of AII (0.1 microM) decreased the IA amplitude by 21.3 +/- 3.1% in six (54.5%) of eleven neurones tested (sensitive group), whereas the other five neurones (low-sensitive group) changed only by 1.7 +/- 0.8%. Bolus injection of AII (10 microM, 100 microliters) decreased the IK amplitude 9.6 +/-1.6% mV in five (45.5%) of the eleven neurones tested (sensitive group), whereas the other six neurones (low-sensitive group) changed only by 0.46 +/- 0.27%. In the sensitive groups, the reduction of IA by AII was significantly larger than that of IK (P < 0.05). 6. Application of saralasin at 1 microM, an AII antagonist, blocked the effects of AII on IA. 7. These results suggest that the excitatory action of AII on supraoptic neurosecretory cells is mediated at least in part through suppression of IA.
Collapse
Affiliation(s)
- T Nagatomo
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | | |
Collapse
|
41
|
Moos FC, Ingram CD. Electrical recordings of magnocellular supraoptic and paraventricular neurons displaying both oxytocin- and vasopressin-related activity. Brain Res 1995; 669:309-14. [PMID: 7712187 DOI: 10.1016/0006-8993(94)01296-t] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In suckled rats, some magnocellular neurons displayed both vasopressin-related phasic activity and oxytocin-related milk ejection bursts. Characteristics of basal activity and interspike intervals resembled those of vasopressin neurons. Bursts were coincident with those of oxytocin neurons and were facilitated by centrally injected oxytocin, but had lower maximum instantaneous frequency and often no after-inhibition. These data provide evidence of magnocellular neurones of mixed electrophysiological phenotype and complement reports of peptide coexistence.
Collapse
Affiliation(s)
- F C Moos
- Laboratoire de Neurobiologie Endocrinologique, CNRS URA 1197, Université de Montpellier II, France
| | | |
Collapse
|
42
|
Yang QZ, Hatton GI. Histamine mediates fast synaptic inhibition of rat supraoptic oxytocin neurons via chloride conductance activation. Neuroscience 1994; 61:955-64. [PMID: 7838389 DOI: 10.1016/0306-4522(94)90415-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Axons from the histaminergic neurons of the tuberomammillary nucleus project to both the anterior and tuberal portions of the supraoptic nucleus. Histamine is known to activate vasopressin neurons via a histamine receptor subtype 1 and to increase release of vasopressin, but effects on oxytocin neurons have been previously unexplored. Here we investigated the effects of tuberomammillary nucleus electrical stimulation as well as of histamine antagonists on supraoptic nucleus oxytocin and vasopressin neurons in slices of rat hypothalamus. Electrical stimulation evoked short constant latency (approximately 5 ms), fast (4-6 ms onset to peak) inhibitory postsynaptic potentials in oxytocin neurons and, as shown previously, fast excitatory postsynaptic potentials in vasopressin neurons. These synaptic responses followed paired-pulse stimulus frequencies up to 100 Hz and were, thus, probably reflecting monosynaptic connections. Inhibitory postsynaptic potentials were selectively blocked by histamine receptor subtype 2 antagonists (either cimetidine or famotidine) and by picrotoxin but not by histamine receptor subtype 1 antagonists or bicuculline. Similar synaptic responses to tuberomammillary nucleus stimulation were found in 16 of 16 neurons immunocytochemically identified as oxytocinergic and in seven putative oxytocin neurons. Perifusion of the slice with low chloride medium (4.8 mM) reversed stimulus-evoked inhibitory postsynaptic potentials. We conclude that histaminergic neurons monosynaptically contact both oxytocin and vasopressin cells of the supraoptic nucleus and inhibit the former via activation of chloride channels which can be blocked by the histamine receptor subtype 2 antagonists, famotidine and cimetidine.
Collapse
Affiliation(s)
- Q Z Yang
- Department of Neuroscience, University of California, Riverside 92521
| | | |
Collapse
|
43
|
Nissen R, Hu B, Renaud LP. N-methyl-D-aspartate receptor antagonist ketamine selectively attenuates spontaneous phasic activity of supraoptic vasopressin neurons in vivo. Neuroscience 1994; 59:115-20. [PMID: 7514767 DOI: 10.1016/0306-4522(94)90103-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Supraoptic neurosecretory neurons express a prominent N-methyl-D-aspartate receptor system. Recent in vitro evidence reveals that N-methyl-D-aspartate receptor activation dramatically alters the spontaneous discharge patterns of supraoptic neurons. In this study we evaluate whether N-methyl-D-aspartate receptors in vivo contribute to the development of characteristic phasic discharge patterns displayed by vasopressin-secreting neurons. Intravenous administration of ketamine hydrochloride, a non-competitive N-methyl-D-aspartate receptor antagonist, was used to examine whether N-methyl-D-aspartate receptor blockade influences patterned spontaneous discharge observed in supraoptic neurosecretory neurons. Extracellular recordings were obtained from identified hypothalamic supraoptic neurons in pentobarbital-anaesthetized Long-Evans rats. Systemic administration of ketamine (< or = 1.5 mg/kg) potently suppressed spontaneous phasic discharge in 16/19 putative vasopressin-secreting cells. The ketamine-induced blockade was dose dependent, fully reversible and was associated with the complete blockade of activity evoked by local pressure application of N-methyl-D-aspartate, but not the activity evoked by alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionate receptor agonists (6/6 cells). Ketamine had no detectable effect on threshold or shape of antidromic action potentials. By comparison, the activity in 9/10 continuously active neurons (putative oxytocin-secreting) was unaffected by administration of identical doses of ketamine. These data suggest that N-methyl-D-aspartate receptors play an important role in regulating the onset and maintenance of spontaneous phasic activity patterns displayed by rat supraoptic vasopressin neurons in vivo.
Collapse
Affiliation(s)
- R Nissen
- Neuroscience Unit, Loeb Research Institute, Ottawa Civic Hospital, Ontario, Canada
| | | | | |
Collapse
|
44
|
Armstrong WE, Smith BN, Tian M. Electrophysiological characteristics of immunochemically identified rat oxytocin and vasopressin neurones in vitro. J Physiol 1994; 475:115-28. [PMID: 8189384 PMCID: PMC1160359 DOI: 10.1113/jphysiol.1994.sp020053] [Citation(s) in RCA: 144] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
1. Intracellular recordings were made from supraoptic neurones in vitro from hypothalamic explants prepared from adult male rats. Neurones were injected with biotinylated markers, and of thirty-nine labelled neurones, nineteen were identified immunocytochemically as containing oxytocin-neurophysin and twenty as containing vasopressin-neurophysin. 2. Vasopressin and oxytocin neurones did not differ in their resting membrane potential, input resistance, membrane time constant, action potential height from threshold, action potential width at half-amplitude, and spike hyperpolarizing after-potential amplitude. Both cell types exhibited spike broadening during brief, evoked spike trains (6-8 spikes), but the degree of broadening was slightly greater for vasopressin neurones. When hyperpolarized below -75 mV, all but one neurone exhibited a transient outward rectification to depolarizing pulses, which delayed the occurrence of the first spike. 3. Both cell types exhibited a long after-hyperpolarizing potential (AHP) following brief spike trains evoked either with a square wave pulse or using 5 ms pulses in a train. There were no significant differences between cell types in the size of the AHP evoked with nine spikes, or in the time constant of its decay. The maximal AHP evoked by a 180 ms pulse was elicited by an average of twelve to thirteen spikes, and neither the size of this maximal AHP nor its time constant of decay were different for the two cell types. 4. In most oxytocin and vasopressin neurones the AHP, and concomitantly spike frequency adaptation, were markedly reduced by the bee venom apamin and by d-tubocurarine, known blockers of a Ca(2+)-mediated K+ conductance. However, a minority of neurones, of both cell types, were relatively resistant to both agents. 5. In untreated neurones, 55% of vasopressin neurones and 32% of oxytocin neurones exhibited a depolarizing after-potential (DAP) after individual spikes or, more commonly, after brief trains of spikes evoked with current pulses. For each neurone with a DAP, bursts of spikes could be evoked if the membrane potential was sufficiently depolarized such that the DAP reached spike threshold. In four out of five vasopressin neurones a DAP became evident only after pharmacological blockade of the AHP, whereas in six oxytocin neurones tested no such masking was found. 6. The firing patterns of neurones were examined at rest and after varying the membrane potential with continuous current injection. No identifying pattern was strictly associated with either cell type, and a substantial number of neurones were silent at rest.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- W E Armstrong
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee, Memphis 38163
| | | | | |
Collapse
|
45
|
Abstract
A new stochastic model for bursting of neuronal firing is proposed. It is based on stochastic diffusion and related to the first passage time problem. However, the model is not of renewal type. Its form and parameters are physiologically interpretable. Parametric and non-parametric inferential issues are discussed.
Collapse
Affiliation(s)
- A Frigessi
- Laboratorio di Statistica, Universitá di Venezia, Ca' Foscari, Venezia, Italy
| | | | | |
Collapse
|
46
|
Nissen R, Cunningham JT, Renaud LP. Lateral hypothalamic lesions alter baroreceptor-evoked inhibition of rat supraoptic vasopressin neurones. J Physiol 1993; 470:751-66. [PMID: 8308754 PMCID: PMC1143945 DOI: 10.1113/jphysiol.1993.sp019886] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
1. Previous electrophysiological studies on rat hypothalamic supraoptic nucleus neurones have demonstrated that both the activation of peripheral baroreceptors (induced by a brief rise in arterial pressure consequent to an intravenous injection of an alpha-adrenergic agonist, metaraminol) and electrical stimulation in the diagonal band of Broca evokes a GABA-mediated postsynaptic inhibition which selectively involves the phasic-firing (putative vasopressin-secreting) neuronal population. Although baroreceptor-triggered inhibitions are abolished after diagonal band lesions, anatomical data support the hypothesis that the GABAergic neurones mediating both the baroreflex and electrically induced inhibitions are not located in the diagonal band, but rather in the lateral hypothalamus adjacent to the supraoptic nucleus. To determine the validity of this hypothesis, excitotoxic lesions were placed in the lateral hypothalamus and their effects on both baroreceptor- and diagonal band-evoked inhibitions were evaluated. 2. Male Long-Evans rats were initially anaesthetized with intraperitoneal pentobarbitone, stereotaxically injected with an excitotoxin (ibotenic acid) or vehicle into the lateral hypothalamus on the left side and allowed to recover. Three or more days later, animals were again anaesthetized with pentobarbitone and the ventral surface of their hypothalamus was exposed for electrophysiological recording of neurones in the left supraoptic nucleus. In all injected animals, extracellular recordings from antidromically identified, phasically firing supraoptic neurones were evaluated for their response to activation of peripheral baroreceptors and to electrical stimulation in the diagonal band. 3. Increases in arterial pressure sufficient to activate peripheral baroreceptors were achieved by intravenous bolus infusions of metaraminol (10 micrograms/10 microliters). In vehicle control animals (n = 6), the activity of 34/39 neurones was inhibited by baroreceptor activation. In lesion control animals (n = 13) similar inhibitions were observed from 60/65 neurones. In the lateral hypothalamic lesioned group (n = 7), the activity of only 12/34 neurones were inhibited by similar elevations in blood pressure. 4. Ibotenic acid lesions in the lateral hypothalamus also disrupted the responsiveness of supraoptic neurones to electrical stimulation in the diagonal band. Whereas diagonal band stimulation in vehicle control and lesion control rats reduced the excitability in 7/9 cells and 15/19 cells respectively, only 1/7 cells responded in the lesioned animals. 5. Lesions having a significant effect on the responsiveness of vasopressin-secreting neurones to baroreceptor activation extended laterally towards the nucleus of the lateral olfactory tract, dorsally into the striatum and medially to the fornix.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- R Nissen
- Loeb Research Institute, Ottawa Civic Hospital, Ontario, Canada
| | | | | |
Collapse
|
47
|
Akamatsu N, Inenaga K, Yamashita H. Inhibitory effects of natriuretic peptides on vasopressin neurons mediated through cGMP and cGMP-dependent protein kinase in vitro. J Neuroendocrinol 1993; 5:517-22. [PMID: 8680419 DOI: 10.1111/j.1365-2826.1993.tb00516.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The effects of natriuretic peptides on electrical activity and cellular cGMP levels were studied in neurons of the supraoptic nucleus (SON) of rat hypothalamic slice preparations. Intracellular and extracellular recordings showed that bath application of A type natriuretic peptide (ANP) at 100 nM or B type natriuretic peptide (BNP) at 100 to 300 nM decreased the firing rate and hyperpolarized the membrane potential in phasically firing (putative vasopressin) neurons. Non-phasically firing (putative oxytocin) neurons did not respond to these natriuretic peptides in firing rate or membrane potential. The membrane-permeable cGMP analogue 8-bromo cGMP at 0.5 mM and the phosphodiesterase inhibitor 3/isobutyl-1-methylxanthine (IBMX) at 50 microM mimicked the inhibitory effects of ANP and BNP. The specific inhibitor of cGMP phosphodiesterase 1-(3-chloroanilino)-4-phenylphthalazine+ ++ (MY5445) at 30 microM also decreased the firing rate of SON neurons. The cGMP-dependent protein kinase inhibitor N-(2-(methylamino)ethyl)-5-isoquinoline-sulfonamide dihydrochloride (H8) at 1 microM abolished the inhibition by natriuretic peptides. We measured cGMP and cAMP contents in discrete SON regions and compared the change of contents before and after application of ANP and BNP. The increases in cellular cGMP accumulation were 430% for ANP and 120% for BNP, although they did not cause significant change of cAMP accumulation. The results suggest that the inhibitory effects of natriuretic peptides on putative vasopressin neurons are mediated through cGMP and cGMP-dependent protein kinase.
Collapse
Affiliation(s)
- N Akamatsu
- Department of Physiology, University of Occupational and Environmental Health, School of Medicine, Kitakyushu, Japan
| | | | | |
Collapse
|
48
|
Yamamoto S, Inenaga K, Kannan H, Eto S, Yamashita H. The actions of endothelin on single cells in the anteroventral third ventricular region and supraoptic nucleus in rat hypothalamic slices. J Neuroendocrinol 1993; 5:427-34. [PMID: 8401566 DOI: 10.1111/j.1365-2826.1993.tb00504.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Endothelin (ET), a peptide consisting of 21 amino-acid residues was recently isolated from the culture supernatant of porcine aortic endothelial cells. ET has been reported to be a more potent vasoconstrictor than angiotensin II. Other studies suggest that ET is involved in central control of the autonomic nervous system and body water regulation. Extracellular recordings were made from neurons in the anteroventral third ventricle (AV3V) and supraoptic nucleus (SON) in rat hypothalamic slice preparations. ET-3 was applied at concentrations of 10(-10) M to 3 x 10(-7) M. Of 226 AV3V neurons tested, 48 (21%) were excited, 8 (4%) were inhibited, and 170 (75%) were unaffected by ET-3 at 10(-7) M. The threshold concentration to evoke the responses was approximately 10(-9) M. Of 144 SON neurons tested, 64 had a phasic firing pattern and 80 had a non-phasic firing pattern. Of 64 phasic neurons tested, 39 (61%) were inhibited by ET-3 at 10(-7) M, 25 (39%) were non-responsive and none was excited. Of 80 non-phasic neurons tested, 14 (17.5%) were inhibited by ET-3 at 10(-7) M, 66 (82.5%) were non-responsive and none was excited. The effects of ET-1 were compared with those of ET-3. The number of neurons responding to ET-1 and their responsiveness were almost the same as for ET-3. To investigate whether the ET responses are dependent on Ca2+ influx, a Ca2+ free medium and the Ca2+ antagonist, nicardipine, were used. The excitatory responses of AV3V neurons to ET were maintained in the Ca2+ free medium.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S Yamamoto
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | | | | | | |
Collapse
|
49
|
Yamashita H, Li Z, Inenaga K. Effects of interleukin-1 beta on membrane potentials of hypothalamic supraoptic neurons in rats in vitro. Ann N Y Acad Sci 1993; 689:689-92. [PMID: 8373080 DOI: 10.1111/j.1749-6632.1993.tb55630.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- H Yamashita
- Department of Physiology, University of Occupational & Environmental Health, School of Medicine, Kitakyushu, Japan
| | | | | |
Collapse
|
50
|
Li Z, Ferguson AV. Angiotensin II responsiveness of rat paraventricular and subfornical organ neurons in vitro. Neuroscience 1993; 55:197-207. [PMID: 8394518 DOI: 10.1016/0306-4522(93)90466-s] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The responsiveness of neurons in the hypothalamic paraventricular nucleus to angiotensin II was investigated using extracellular single unit recording techniques in rat brain slices. Bath application of angiotensin II at a concentration of 3 x 10(-7) M for 2-5 min resulted in excitatory responses in 50.4% of 141 paraventricular cells tested. The mean increase in firing rate was 2.12 +/- 0.20 (mean +/- S.E.M.) spikes/s, which represents a mean increase in activity of 149.8 +/- 16.5%. Angiotensin II-sensitive neurons usually displayed irregular, phasic, or very slow spontaneous activity, with the majority of these neurons located in the magnocellular region. Under physiological blockade of synaptic transmission with low Ca2+/high Mg2+ medium, neuronal responses to this peptide remained in 12 (92.3%) of 13 cells tested. Application of three successive doses of angiotensin II ranging from 3 x 10(-9)-3 x 10(-7) M showed that neuronal responses were dose-dependent with an estimated threshold of 10(-8) M. In comparison with angiotensin III, angiotensin II not only stimulated more paraventricular cells, but usually induced larger excitatory responses. Angiotensin II subtype 1 receptor antagonist losartan completely blocked angiotensin II responsiveness in each of 14 paraventricular cells tested whereas PD 123319, an angiotensin II subtype 2 receptor antagonist, exhibited a partial inhibitory effect in about one half of another 13 cells. In addition, single unit in vitro subfornical organ recordings demonstrate that angiotensin II evokes greater excitatory responses than in the paraventricular nucleus and that these effects are abolished by losartan application. These results support the hypothesis that within both the paraventricular nucleus and subfornical organ angiotensin II is a bioactive peptide which modulates neuronal activity and thus may exert significant control over neuroendocrine and autonomic functions.
Collapse
Affiliation(s)
- Z Li
- Department of Physiology, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|