1
|
Blaustein MP, Hamlyn JM. Sensational site: the sodium pump ouabain-binding site and its ligands. Am J Physiol Cell Physiol 2024; 326:C1120-C1177. [PMID: 38223926 PMCID: PMC11193536 DOI: 10.1152/ajpcell.00273.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/22/2023] [Accepted: 01/10/2024] [Indexed: 01/16/2024]
Abstract
Cardiotonic steroids (CTS), used by certain insects, toads, and rats for protection from predators, became, thanks to Withering's trailblazing 1785 monograph, the mainstay of heart failure (HF) therapy. In the 1950s and 1960s, we learned that the CTS receptor was part of the sodium pump (NKA) and that the Na+/Ca2+ exchanger was critical for the acute cardiotonic effect of digoxin- and ouabain-related CTS. This "settled" view was upended by seven revolutionary observations. First, subnanomolar ouabain sometimes stimulates NKA while higher concentrations are invariably inhibitory. Second, endogenous ouabain (EO) was discovered in the human circulation. Third, in the DIG clinical trial, digoxin only marginally improved outcomes in patients with HF. Fourth, cloning of NKA in 1985 revealed multiple NKA α and β subunit isoforms that, in the rodent, differ in their sensitivities to CTS. Fifth, the NKA is a cation pump and a hormone receptor/signal transducer. EO binding to NKA activates, in a ligand- and cell-specific manner, several protein kinase and Ca2+-dependent signaling cascades that have widespread physiological effects and can contribute to hypertension and HF pathogenesis. Sixth, all CTS are not equivalent, e.g., ouabain induces hypertension in rodents while digoxin is antihypertensinogenic ("biased signaling"). Seventh, most common rodent hypertension models require a highly ouabain-sensitive α2 NKA and the elevated blood pressure is alleviated by EO immunoneutralization. These numerous phenomena are enabled by NKA's intricate structure. We have just begun to understand the endocrine role of the endogenous ligands and the broad impact of the ouabain-binding site on physiology and pathophysiology.
Collapse
Affiliation(s)
- Mordecai P Blaustein
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - John M Hamlyn
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
2
|
Leenen FHH, Wang HW, Hamlyn JM. Sodium pumps, ouabain and aldosterone in the brain: A neuromodulatory pathway underlying salt-sensitive hypertension and heart failure. Cell Calcium 2019; 86:102151. [PMID: 31954234 DOI: 10.1016/j.ceca.2019.102151] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 12/15/2019] [Indexed: 02/08/2023]
Abstract
Accumulating evidence obtained over the last three decades has revealed a neuroendocrine system in the brain that mediates long term increases in blood pressure. The system involves distinct ion transport pathways including the alpha-2 isoform of the Na,K pump and epithelial sodium channels, as well as critical hormone elements such as angiotensin II, aldosterone, mineralocorticoid receptors and endogenous ouabain. Activation of this system either by circulating or central sodium ions and/or angiotensin II leads to a cascading sequence of events that begins in the hypothalamus and involves the participation of several brain nuclei including the subfornical organ, supraoptic and paraventricular nuclei and the rostral ventral medulla. Key events include heightened aldosterone synthesis and mineralocorticoid receptor activation, upregulation of epithelial sodium channels, augmented synthesis and secretion of endogenous ouabain from hypothalamic magnocellular neurons, and sustained increases in sympathetic outflow. The latter step depends upon increased production of angiotensin II and the primary amplification of angiotensin II type I receptor signaling from the paraventricular nucleus to the rostral ventral lateral medulla. The transmission of sympathetic traffic is secondarily amplified in the periphery by increased short- and long-term potentiation in sympathetic ganglia and by sustained actions of endogenous ouabain in the vascular wall that augment expression of sodium calcium exchange, increase cytosolic Ca2+ and heighten myogenic tone and contractility. Upregulation of this multi-amplifier system participates in forms of hypertension where salt, angiotensin and/or aldosterone are elevated and contributes to adverse outcomes in heart failure.
Collapse
Affiliation(s)
- Frans H H Leenen
- Brain and Heart Research Group, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Hong-Wei Wang
- Brain and Heart Research Group, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - John M Hamlyn
- Department of Physiology, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
3
|
Leenen FHH. Actions of circulating angiotensin II and aldosterone in the brain contributing to hypertension. Am J Hypertens 2014; 27:1024-32. [PMID: 24742639 DOI: 10.1093/ajh/hpu066] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In the past 1-2 decades, it has become apparent that the brain renin-angiotensin-aldosterone system (RAAS) plays a crucial role in the regulation of blood pressure (BP) by the circulating RAAS. In the brain, angiotensinergic sympatho-excitatory pathways do not contribute to acute, second-to-second regulation but play a major role in the more chronic regulation of the setpoint for sympathetic tone and BP. Increases in plasma angiotensin II (Ang II) or aldosterone and in cerebrospinal fluid [Na(+)] can directly activate these pathways and chronically further activate/maintain enhanced activity by a slow neuromodulatory pathway involving local aldosterone, mineralocorticoid receptors (MRs), epithelial sodium channels, and endogenous ouabain. Blockade of any step in this slow pathway prevents Ang II-, aldosterone-, or salt and renal injury-induced forms of hypertension. It appears that the renal and arterial actions of circulating aldosterone and Ang II act as amplifiers but are not sufficient to cause chronic hypertension if their central actions are prevented, except perhaps at high concentrations. From a clinical perspective, oral treatment with an angiotensin type 1 (AT1)-receptor blocker at high doses can cause central AT1-receptor blockade and, in humans, lower sympathetic nerve activity. Low doses of the MR blocker spironolactone appear sufficient to cause central MR blockade and a decrease in sympathetic nerve activity. Integrating the brain actions of the circulating RAAS with its direct renal and arterial actions provides a better framework to understand the role of the circulating RAAS in the pathophysiology of hypertension and heart failure and to direct therapeutic strategies.
Collapse
Affiliation(s)
- Frans H H Leenen
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Ontario, Canada.
| |
Collapse
|
4
|
Regulation of central Na+ detection requires the cooperative action of the NaX channel and α1 Isoform of Na+/K+-ATPase in the Na+-sensor neuronal population. J Neurosci 2013; 33:3067-78. [PMID: 23407962 DOI: 10.1523/jneurosci.4801-12.2013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The median preoptic nucleus (MnPO) holds a strategic position in the hypothalamus. It is adjacent to the third ventricle; hence, it can directly access the ionic composition of the CSF. MnPO neurons play a critical role in hydromineral homeostasis regulation by acting as central sensors of extracellular Na(+) concentration ([Na(+)](ext)). The mechanism underlying Na(+) sensing involves the atypical Na(+) channel, Na(X). Here we sought to determine whether Na(+) influx in Na(+) sensors is actively regulated via interaction with other membrane proteins involved in cellular Na(+) homeostasis, such as Na(+)/K(+)-ATPase. The Na(+)/K(+)-ATPase role was investigated using patch-clamp recordings in rat MnPO dissociated neurons. Na(+) current evoked with hypernatriuric solution was diminished in the absence of ATP/GTP, indicating that Na(+)/K(+)-ATPase play a central role in [Na(+)](ext) detection. Specific blockers of α1 and α3 isoforms of Na(+)/K(+)-ATPase, ouabain or strophanthidin, inhibited this Na(+) current. However, strophanthidin, which selectively blocks the α1 isoform, was more effective in blocking Na(+) current, suggesting that the Na(+)/K(+)-ATPase-α1 isoform is specifically involved in [Na(+)](ext) detection. Although strophanthidin did not alter either the membrane resistance or the Na(+) reversal potential, the conductance and the permeability of the Na(X) channel decreased significantly. Our results suggest that Na(+)/K(+)-ATPase interacts with the Na(X) channel and regulates the high [Na(+)](ext)-evoked Na(+) current via influencing the Na(+) influx rate. This study describes a novel intracellular regulatory pathway of [Na(+)](ext) detection in MnPO neurons. The α1 isoform of Na(+)/K(+)-ATPase acts as a direct regulatory partner of the Na(X) channel and influences Na(+) influx via controlling the Na(+) permeability of the channel.
Collapse
|
5
|
Upregulation of the Renin-Angiotensin-aldosterone-ouabain system in the brain is the core mechanism in the genesis of all types of hypertension. Int J Hypertens 2012; 2012:242786. [PMID: 23316343 PMCID: PMC3534212 DOI: 10.1155/2012/242786] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 11/23/2012] [Indexed: 01/19/2023] Open
Abstract
Basic research using animal models points to a causal role of the central nervous system in essential hypertension; however, since clinical research is technically difficult to perform, this connection has not been confirmed in humans. Recently, renal nerve ablation in humans proved to continuously decrease blood pressure in resistant hypertension. Furthermore, when electrical stimulation was continuously applied to the carotid baroreceptor nerve of human adults, their blood pressure lowered. These findings promoted the concept that the central nervous system may actually be involved in the pathogenesis of essential hypertension, which is closely associated with excess sodium intake. We have demonstrated that endogenous digitalis plays a key role in hypertension associated with excess sodium intake via sympathetic activation in rats. Increased sodium concentration inside the brain activates epithelial sodium channels and the renin-angiotensin-aldosterone system in the brain. Aldosterone releases ouabain from neurons in the paraventricular nucleus in the hypothalamus. Angiotensin II and aldosterone of peripheral origin reach the brain to augment sympathetic outflow. Collectively essential hypertension associated with excess sodium intake and obesity, renovascular hypertension, and primary aldosteronism and pseudoaldosteronism all seem to have a common cause originating from the central nervous system.
Collapse
|
6
|
Gabor A, Leenen FHH. Central neuromodulatory pathways regulating sympathetic activity in hypertension. J Appl Physiol (1985) 2012; 113:1294-303. [PMID: 22773773 DOI: 10.1152/japplphysiol.00553.2012] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The classical neurotransmitters, glutamate and GABA, mediate fast (milliseconds) synaptic transmission and modulate its effectiveness through slow (seconds to minutes) signaling processes. Angiotensinergic pathways, from the lamina terminalis to the paraventricular nucleus (PVN)/supraoptic nucleus and rostral ventrolateral medulla (RVLM), are activated by stimuli such as circulating angiotensin type II (Ang II), cerebrospinal fluid (CSF) sodium ion concentration ([Na(+)]), and possibly plasma aldosterone, leading to sympathoexcitation, largely by decreasing GABA and increasing glutamate release. The aldosterone-endogenous ouabain (EO) pathway is a much slower neuromodulatory pathway. Aldosterone enhances EO release, and the latter increases chronic activity in angiotensinergic pathways by, e.g., increasing expression for Ang I receptor (AT(1)R) and NADPH oxidase subunits in the PVN. Blockade of this pathway does not affect the initial sympathoexcitatory and pressor responses but to a large extent, prevents chronic responses to CSF [Na(+)] or Ang II. Recruitment of these two neuromodulatory pathways allows the central nervous system (CNS) to shift gears to rapidly cause and sustain sympathetic hyperactivity in an efficient manner. Decreased GABA release, increased glutamate release, and enhanced AT(1)R activation in, e.g., the PVN and RVLM contribute to the elevated blood pressure in a number of hypertension models. In Dahl S rats and spontaneous hypertensive rats, high salt activates the CNS aldosterone-EO pathway, and the salt-induced hypertension can be prevented/reversed by specific CNS blockade of any of the steps in the cascade from aldosterone synthase to AT(1)R. Further studies are needed to advance our understanding of how and where in the brain these rapid, slow, and very slow CNS pathways are activated and interact in models of hypertension and other disease states associated with chronic sympathetic hyperactivity.
Collapse
Affiliation(s)
- Alexander Gabor
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | | |
Collapse
|
7
|
Takahashi H, Yoshika M, Komiyama Y, Nishimura M. The central mechanism underlying hypertension: a review of the roles of sodium ions, epithelial sodium channels, the renin-angiotensin-aldosterone system, oxidative stress and endogenous digitalis in the brain. Hypertens Res 2011; 34:1147-60. [PMID: 21814209 PMCID: PMC3324327 DOI: 10.1038/hr.2011.105] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 05/08/2011] [Accepted: 05/15/2011] [Indexed: 02/07/2023]
Abstract
The central nervous system has a key role in regulating the circulatory system by modulating the sympathetic and parasympathetic nervous systems, pituitary hormone release, and the baroreceptor reflex. Digoxin- and ouabain-like immunoreactive materials were found >20 years ago in the hypothalamic nuclei. These factors appeared to localize to the paraventricular and supraoptic nuclei and the nerve fibers at the circumventricular organs and supposed to affect electrolyte balance and blood pressure. The turnover rate of these materials increases with increasing sodium intake. As intracerebroventricular injection of ouabain increases blood pressure via sympathetic activation, an endogenous digitalis-like factor (EDLF) was thought to regulate cardiovascular system-related functions in the brain, particularly after sodium loading. Experiments conducted mainly in rats revealed that the mechanism of action of ouabain in the brain involves sodium ions, epithelial sodium channels (ENaCs) and the renin-angiotensin-aldosterone system (RAAS), all of which are affected by sodium loading. Rats fed a high-sodium diet develop elevated sodium levels in their cerebrospinal fluid, which activates ENaCs. Activated ENaCs and/or increased intracellular sodium in neurons activate the RAAS; this releases EDLF in the brain, activating the sympathetic nervous system. The RAAS promotes oxidative stress in the brain, further activating the RAAS and augmenting sympathetic outflow. Angiotensin II and aldosterone of peripheral origin act in the brain to activate this cascade, increasing sympathetic outflow and leading to hypertension. Thus, the brain Na(+)-ENaC-RAAS-EDLF axis activates sympathetic outflow and has a crucial role in essential and secondary hypertension. This report provides an overview of the central mechanism underlying hypertension and discusses the use of antihypertensive agents.
Collapse
Affiliation(s)
- Hakuo Takahashi
- Department of Clinical Sciences and Laboratory Medicine, Kansai Medical University, Hirakata City, Osaka, Japan.
| | | | | | | |
Collapse
|
8
|
Yoshika M, Komiyama Y, Takahashi H. Isolation of marinobufotoxin from the supernatant of cultured PC12 cells. Clin Exp Pharmacol Physiol 2011; 38:334-7. [PMID: 21401694 DOI: 10.1111/j.1440-1681.2011.05512.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. Digitalis-like factors (DLFs) are believed to be involved in sodium metabolism via inhibition of Na(+) /K(+) -ATPase and may cause hypertension. Yet, the source and regulation of secretion of DLFs remain unknown. Recently, marinobufagenin (MBG) was isolated in mammals and implicated in renal sodium and water metabolism. More recently, we isolated marinobufotoxin (MBT), a suberoyl arginine ester of MBG, in Y-1 cells. We have developed an ELISA to measure MBG-like immunoreactivity (MBG-IR) and have characterized MBG-IR using chromatography. We have also identified a ouabain-like factor in cultured PC12 cells from a phaeochromocytoma cell line. In the present study, we examined whether MBT was produced in the adrenal medulla. 2. PC12 cells were cultured in serum-free medium and culture supernatants were collected over a period of 24 h. The supernatants were analysed by ELISA and HPLC to determine MBG-IR content. The HPLC fraction containing the main peak of MBG-IR was characterized by LC/MS. 3. Compared with samples collected at 0.5 h, the concentration of MBG-IR in culture supernatants increased significantly after 2 h and continued to increase until 24 h. The fraction with the highest ELISA peak for MBG-IR had the same HPLC elution time as authentic MBT. Furthermore, tandem mass spectrometry indicated that each fraction of MBT and MBG had the correct specific daughter ions. 4. The results indicate that MBT and MBG are produced and/or secreted by adrenomedullary cells.
Collapse
Affiliation(s)
- Masamichi Yoshika
- Department of Clinical Sciences and Laboratory Medicine, Kansai Medical University, Osaka, Japan
| | | | | |
Collapse
|
9
|
Huang BS, Zheng H, Tan J, Patel KP, Leenen FHH. Regulation of hypothalamic renin-angiotensin system and oxidative stress by aldosterone. Exp Physiol 2011; 96:1028-38. [PMID: 21824999 DOI: 10.1113/expphysiol.2011.059840] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In rats with salt-induced hypertension or postmyocardial infarction, angiotensin II type 1 receptor (AT(1)R) densities and oxidative stress increase and neuronal NO synthase (nNOS) levels decrease in the paraventricular nucleus (PVN). The present study was designed to determine whether these changes may depend on activation of the aldosterone -'ouabain' neuromodulatory pathway. After intracerebroventricular (i.c.v.) infusion of aldosterone (20 ng h(-1)) for 14 days, blood pressure (BP) and heart rate (HR) were recorded in conscious Wistar rats, and mRNA and protein for nNOS, endothelial NO synthase (eNOS), AT(1)R and NADPH oxidase subunits were assessed in brain tissue. Blood pressure and HR were significantly increased by aldosterone. Aldosterone significantly increased mRNA and protein of AT(1)R, P22phox, P47phox, P67phox and Nox2, and decreased nNOS but not eNOS mRNA and protein in the PVN, as well as increased the angiotensin-converting enzyme and AT(1)R binding densities in the PVN and supraoptic nucleus. The increases in BP and HR, as well as the changes in mRNA, proteins and angiotensin-converting enzyme and AT(1)R binding densities were all largely prevented by concomitant i.c.v. infusion of Digibind (to bind 'ouabain') or benzamil (to block presumed epithelial sodium channels). These data indicate that aldosterone, via 'ouabain', increases in the PVN angiotensin-converting enzyme, AT(1)R and oxidative stress, but decreases nNOS, and suggest that endogenous aldosterone may cause the similar pattern of changes observed in salt-sensitive hypertension and heart failure postmyocardial infarction.
Collapse
Affiliation(s)
- Bing S Huang
- University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario, Canada K1Y 4W7
| | | | | | | | | |
Collapse
|
10
|
Yoshika M, Komiyama Y, Takahashi H. An ouabain-like factor is secreted from immortalized hypothalamic cells in an aldosterone-dependent manner. Neurochem Int 2011; 59:104-8. [PMID: 21672582 DOI: 10.1016/j.neuint.2011.04.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 04/19/2011] [Accepted: 04/21/2011] [Indexed: 10/18/2022]
Abstract
Ouabain-like factor (OLF) modulates blood pressure via sodium pump inhibition in the central nervous system and in the peripheral circulation. Ouabain-like factor (OLF) is thought to be produced in the adrenal gland and hypothalamus, and it may relate locally to the renin-angiotensin-aldosterone system. However, the evidence for the latter was obtained from in vivo experiments using animals. In the present study, we investigated ouabain production in the immortalized hypothalamic cell line N1. First, cell culture supernatant was collected from the immortalized hypothalamic cell line N1 at 0.5, 4, 8, and 24 h. A newly developed enzyme-linked immunosorbent assay (ELISA) that used anti-ouabain antibody showed that immunoreactivity in the supernatant was increased significantly at 24 vs. 0.5 h (0.01±0.004 vs. 0.16±0.033 pmol/mg protein, p<0.01). A combination of HPLC and ELISA was used to characterize N1 cell-derived OLI, showing that the highest peak of OLI had the same retention time as authentic ouabain. Thereafter, N1 cells were cultured with (1-10 μM) aldosterone, and supernatant was collected after 24 h of culture. In addition, N1 cells were cultured with 5 μM eplerenone, a mineralocorticoid receptor blocker, plus aldosterone. OLI was significantly increased in the supernatant of the cells cultured with 10 μM aldosterone (0.40±0.078 pmol/mg protein), and this increase was abolished by the addition of the aldosterone antagonist eplerenone (0.12±0.030 pmol/mg protein). These data suggest that the immortalized hypothalamic N1 cells secrete OLF and that aldosterone stimulates its secretion via mineralocorticoid receptors.
Collapse
Affiliation(s)
- Masamichi Yoshika
- Department of Clinical Sciences and Laboratory Medicine, Kansai Medical University, Moriguchi, Osaka, Japan
| | | | | |
Collapse
|
11
|
Huang BS, Leenen FHH. Mineralocorticoid Actions in the Brain and Hypertension. Curr Hypertens Rep 2011; 13:214-20. [DOI: 10.1007/s11906-011-0192-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Leenen FH. The central role of the brain aldosterone–“ouabain” pathway in salt-sensitive hypertension. Biochim Biophys Acta Mol Basis Dis 2010; 1802:1132-9. [DOI: 10.1016/j.bbadis.2010.03.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 03/02/2010] [Accepted: 03/07/2010] [Indexed: 11/29/2022]
|
13
|
Gabor A, Leenen FHH. Mechanisms in the PVN mediating local and central sodium-induced hypertension in Wistar rats. Am J Physiol Regul Integr Comp Physiol 2008; 296:R618-30. [PMID: 19109373 DOI: 10.1152/ajpregu.90417.2008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sympathoexcitatory and hypertensive responses to central infusion of Na(+)-rich artificial cerebrospinal fluid (aCSF) are enhanced by aldosterone and mediated by mineralocorticoid receptors (MRs) and benzamil-blockable Na(+) influx, leading to "ouabain" release and ANG II type 1 (AT(1)) receptor stimulation. The present study evaluated the functional role of these mechanisms in the paraventricular nucleus (PVN). In conscious Wistar rats, Na(+)-rich aCSF was infused either directly into the PVN or intracerebroventricularly preceded by aldosterone and blockers. Infusion of Na(+)-rich aCSF in the PVN caused gradual increases in blood pressure (BP) and heart rate (HR). Aldosterone and a subpressor dose of ouabain in the PVN alone did not affect BP and HR but enhanced responses to Na(+). Eplerenone, benzamil, and "ouabain"-binding Fab fragments only blocked the enhancement by aldosterone, whereas losartan blocked all responses to Na(+)-rich aCSF in the PVN. Increases in BP and HR by intracerebroventricular infusion of Na(+)-rich aCSF were enhanced by aldosterone infused intracerebroventricularly, but not in the PVN. Telmisartan in the PVN again blocked all responses. In contrast, both eplerenone and benzamil in the PVN did not change the pressor responses to intracerebroventricular infusion of aldosterone and Na(+)-rich aCSF. These findings indicate that AT(1) receptors in the PVN mediate the responses to Na(+)-rich aCSF and their enhancement by aldosterone, both locally in the PVN or in the general CSF. MRs, benzamil-blockable Na(+) channels or transporters, and "ouabain" can be functionally active in the PVN, but in Wistar rats appear not to contribute to the pressor responses to short-term increases in CSF [Na(+)].
Collapse
|
14
|
Van Huysse JW. Endogenous brain Na pumps, brain ouabain-like substance and the alpha2 isoform in salt-dependent hypertension. ACTA ACUST UNITED AC 2007; 14:213-20. [PMID: 17980562 DOI: 10.1016/j.pathophys.2007.09.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 08/09/2007] [Accepted: 08/25/2007] [Indexed: 11/24/2022]
Abstract
An endogenous ouabain-like substance (OLS) plays a critical role in the etiology of experimental models of human hypertension induced by a high salt diet. Early on, evidence for a role of this Na, K-ATPase inhibitor in blood pressure regulation was provided mainly by correlations of blood pressure with the levels of circulating Na, K-ATPase inhibitor. However, over the past decade, numerous studies have shown that endogenous Na pump inhibitors in the brain mediate salt-dependent hypertension in a variety of experimental models, including Dahl salt-sensitive (Dahl-S) and spontaneously hypertensive (SHR) rats on a high-salt diet. Other forms of hypertension that are known to be mediated by endogenous ouabain-like substances include steroid/salt- (e.g., DOCA-salt) and ACTH-induced hypertension. Even when exogenous ouabain is peripherally administered and/or the plasma ouabain/OLS level is increased in rats, the resulting hypertension is of CNS origin. After peripheral ouabain administration, ouabain levels increase in the plasma and the inhibitor subsequently accumulates in the brain. The ensuing hypertension is abolished by the intracerebroventricular (icv) administration of an anti-ouabain antibody (but not by the same antibody dose given iv), by discrete excitotoxic lesions in the brain or by ganglionic blockade, demonstrating that the response is neurally mediated. The pressor response to stimuli that increase the brain OLS (high salt diet, icv sodium) or to icv ouabain is abolished by icv losartan, demonstrating that the brain OLS activates the brain renin-angiotensin system (RAS) downstream. There are three isoforms of the catalytic alpha subunit of the Na, K-ATPase in the brain and cardiovascular system (alpha1, alpha2 and alpha3), but it is not known which brain isoform(s) mediate the hypertensive effects of circulating/CNS ouabain. Preliminary studies in gene-targeted mice suggest that the alpha2 isoform plays a critical role.
Collapse
Affiliation(s)
- James W Van Huysse
- University of Ottawa Heart Institute and Departments of Medicine and Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada K1Y 4W7
| |
Collapse
|
15
|
Abstract
High salt consumption contributes to the development of hypertension and is considered an independent risk factor for vascular remodeling, cardiac hypertrophy, and stroke incidence. In this review, we discuss the molecular origins of primary sensors involved in the phenomenon of salt sensitivity. Based on the analysis of literature data, we conclude that the kidneys and central nervous system (CNS) are two major sites for salt sensing via several distinct mechanisms: 1) [Cl(-)] sensing in renal tubular fluids, primarily by Na(+)-K(+)-Cl(-) cotransporter (NKCC) isoforms NKCC2B and NKCC2A, whose expression is mainly limited to macula densa cells; 2) [Na(+)] sensing in cerebrospinal fluid (CSF) by a novel isoform of Na(+) channels, Na(x), expressed in subfornical organs; 3) sensing of CSF osmolality by mechanosensitive, nonselective cation channels (transient receptor potential vanilloid type 1 channels), expressed in neuronal cells of supraoptic and paraventricular nuclei; and 4) osmolarity sensing by volume-regulated anion channels in glial cells of supraoptic and paraventricular nuclei. Such multiplicity of salt-sensing mechanisms likely explains the differential effects of Na(+) and Cl(-) loading on the long-term maintenance of elevated blood pressure that is documented in experimental models of salt-sensitive hypertension.
Collapse
Affiliation(s)
- Sergei N Orlov
- Department of Medicine and Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.
| | | |
Collapse
|
16
|
Skoumal R, Szokodi I, Aro J, Földes G, Göoz M, Seres L, Sármán B, Lakó-Futó Z, Papp L, Vuolteenaho O, Leppäluoto J, DeChâtel R, Ruskoaho H, Tóth M. Involvement of endogenous ouabain-like compound in the cardiac hypertrophic process in vivo. Life Sci 2007; 80:1303-10. [PMID: 17266992 DOI: 10.1016/j.lfs.2006.12.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Revised: 12/09/2006] [Accepted: 12/15/2006] [Indexed: 11/18/2022]
Abstract
The Na(+)/K(+)-ATPase inhibitor ouabain has been shown to trigger hypertrophic growth of cultured cardiomyocytes; however, the significance of endogenous ouabain-like compound (OLC) in the hypertrophic process in vivo is unknown. Here we characterized the involvement of OLC in left ventricular (LV) hypertrophy induced by norepinephrine (NE) and angiotensin II (Ang II) infusions in rats. Administration of NE (300 microg/kg/h) via subcutanously implanted osmotic minipumps for 72 h resulted in a significant increase in left ventricular weight to body weight (LVW/BW) ratio (P<0.001) and a substantial up-regulation of atrial natriuretic peptide (ANP) gene expression (13.2-fold, P<0.001). NE infusion induced a transient increase in plasma OLC levels at 12 h (P<0.05), which returned to control levels by 72 h. Adrenalectomy markedly reduced both basal and NE-induced increase in plasma OLC levels. LVW/BW ratio was not modulated by adrenalectomy; however, ANP gene expression was blunted by 44% (P<0.01) and 47% (P<0.05) at 12 and 72 h, respectively. In agreement, adrenalectomy reduced up-regulation of ANP without affecting LV mass in rats infused with Ang II (33 microg/kg/h). Administration of exogenous ouabain (1 nM to 100 microM) for 24 h had no effect on ANP gene expression in cultured neonatal rat ventricular myocytes. However, the up-regulation of ANP mRNA levels induced by the alpha-adrenergic agonist phenylephrine (1 microM) was markedly enhanced by ouabain (100 microM) (5.6-fold vs. 9.6-fold, P<0.01). These data show that OLC as an adrenal-derived factor may be required for the induction LV ANP gene expression during the hypertrophic process.
Collapse
MESH Headings
- Adrenalectomy
- Angiotensin II/pharmacology
- Animals
- Atrial Natriuretic Factor/genetics
- Blotting, Northern
- Cardenolides/blood
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Gene Expression/drug effects
- Hypertrophy, Left Ventricular/blood
- Hypertrophy, Left Ventricular/chemically induced
- Hypertrophy, Left Ventricular/genetics
- Male
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Norepinephrine/pharmacology
- Organ Size/drug effects
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Saponins/blood
- Up-Regulation/drug effects
- Vasoconstrictor Agents/pharmacology
Collapse
Affiliation(s)
- Réka Skoumal
- 1st Department of Medicine, Semmelweis University, Budapest H-1083, Hungary; Szentágothai János Knowledge Center, Semmelweis University, Budapest H-1085, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kajimura S, Seale AP, Hirano T, Cooke IM, Grau EG. Physiological concentrations of ouabain rapidly inhibit prolactin release from the tilapia pituitary. Gen Comp Endocrinol 2005; 143:240-50. [PMID: 15922343 DOI: 10.1016/j.ygcen.2005.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2004] [Revised: 04/02/2005] [Accepted: 04/03/2005] [Indexed: 11/24/2022]
Abstract
Ouabain, a cardiac glycoside and inhibitor of Na(+), K(+)-ATPase, is now believed to be a steroid hormone in mammals. We have recently identified ouabain immunoreactivity in the plasma of the tilapia, a euryhaline teleost. Changes in plasma concentrations of immunoreactive ouabain (20-40 pM) in response to salinity change were well correlated with the changes in plasma osmolality and cortisol. Our previous studies have shown that cortisol rapidly inhibits prolactin (PRL) release from the tilapia pituitary by suppressing intracellular Ca(2+) ([Ca(2+)]i) and cAMP. In the present study, low doses of ouabain (10-1000 pM) inhibited PRL release dose-dependently during 2-24 h of incubation. There was no effect on growth hormone (GH) release, except for a significant increase at 1000 pM during 8-24 h of incubation. Significant dose-related increases in PRL release were observed at higher doses of ouabain (100-1000 nM), whereas significant inhibition was seen in GH release at 1000 nM during 2-24h of incubation. Ouabain at 1-100 pM had no effect on Na(+), K(+)-ATPase activity of the pituitary homogenate. The enzyme activity was inhibited by higher concentrations of ouabain, 10% at 1 nM, 15% at 10 nM, 28% at 100 nM, and 45% at 1000 nM. Ouabain also attenuated stimulation of PRL release by the Ca(2+) ionophore, A23187, and by a combination of dibutyryl cAMP and a phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthin. Intracellular Ca(2+) concentrations were monitored in the dispersed PRL cells with the Ca(2+)-sensitive dye, fura-2. Ouabain at 1 nM reversibly reduced [Ca(2+)]i within seconds, whereas 1 microM ouabain increased [Ca(2+)]i. A rapid reduction in [Ca(2+)]i was also observed when PRL cells were exposed to 1 microM cortisol, whereas there was no consistent effect at 1 nM. These results suggest that ouabain at physiological concentrations rapidly inhibits PRL release from the tilapia pituitary by suppressing intracellular Ca(2+) and cAMP metabolism. The stimulation of PRL release by high concentrations of ouabain (100-1000 nM) may result from an increase in [Ca(2+)]i, and subsequent depolarization due to the inhibition of Na(+), K(+)-ATPase activity.
Collapse
Affiliation(s)
- Shingo Kajimura
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA
| | | | | | | | | |
Collapse
|
18
|
Wang H, Huang BS, Leenen FHH. Brain sodium channels and ouabainlike compounds mediate central aldosterone-induced hypertension. Am J Physiol Heart Circ Physiol 2003; 285:H2516-23. [PMID: 12933342 DOI: 10.1152/ajpheart.00299.2003] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Central nervous system (CNS) effects of mineralocorticoids participate in the development of salt-sensitive hypertension. In the brain, mineralocorticoids activate amiloride-sensitive sodium channels, and we hypothesized that this would lead to increased release of ouabainlike compounds (OLC) and thereby sympathetic hyperactivity and hypertension. In conscious Wistar rats, intracerebroventricular infusion of aldosterone at 300 or 900 ng/h in artificial cerebrospinal fluid (aCSF) with 0.145 M Na+ for 2 h did not change baseline mean arterial pressure (MAP), renal sympathetic nerve activity (RSNA), or heart rate (HR). Intracerebroventricular infusion of aCSF containing 0.16 M Na+ (versus 0.145 M Na+ in regular aCSF) did not change MAP or RSNA, but significant increases in MAP, RSNA, and HR were observed after intracerebroventricular infusion of aldosterone at 300 ng/h for 2 h. Intracerebroventricular infusion of aCSF containing 0.3 M Na+ increased MAP, RSNA, and HR significantly more after intracerebroventricular infusion of aldosterone versus vehicle. After intracerebroventricular infusion of aldosterone, the MAP, RSNA, and HR responses to intracerebroventricular infusion of aCSF containing 0.16 M Na+ were blocked by blockade of brain OLC with intracerebroventricular infusion of Fab fragments or of brain sodium channels with intracerebroventricular benzamil. Chronic intracerebroventricular infusion of aldosterone at 25 ng/h in aCSF with 0.15 M Na+ for 2 wk increased MAP by 15-20 mmHg and increased hypothalamic OLC by 30% and pituitary OLC by 60%. Benzamil blocked all these responses to aldosterone. These findings indicate that in the brain, mineralocorticoids activate brain sodium channels, with small increases in CSF Na+ leading to increases in brain OLC, sympathetic outflow, and blood pressure.
Collapse
Affiliation(s)
- Hao Wang
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Ontario, Canada K1Y 4W7
| | | | | |
Collapse
|
19
|
Wang H, White R, Leenen FHH. Stimulation of brain Na+ channels by FMRFamide in Dahl SS and SR rats. Am J Physiol Heart Circ Physiol 2003; 285:H2013-8. [PMID: 12855427 DOI: 10.1152/ajpheart.00453.2003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Stimulation of brain Na+ channels by Phe-Met-Arg-Phe-NH2 (FMRFamide) increases sympathetic nerve activity and blood pressure (BP) in Wistar rats. Blockade of brain ouabain-like compounds (OLC) by specific antibody Fab fragments prevents these responses to intracerebroventricular FMRFamide. In the present study, we evaluated the effects of high-salt intake on brain FMRFamide levels and the responses of BP and brain OLC to intracerebroventricular infusion of FMRFamide in Dahl salt-sensitive (SS) and salt-resistant (SR) rats. FMRFamide and OLC content was measured with the use of RIA and ELISA, respectively. A high-salt diet (1,370 micromol Na+/g) for 2 wk significantly increased BP in Dahl SS but not in SR rats. On a regular salt diet, Dahl SS and SR rats showed similar FMRFamide levels in the whole hypothalamus, pons and medulla, and spinal cord. A high-salt diet for 2 wk did not affect FMRFamide levels in these tissues in both Dahl SS and SR rats. In Dahl SS but not in SR rats, chronic intracerebroventricular infusion of FMRFamide (200 nmol. kg(-1).day(-1)) for 2 wk significantly increased BP (mean arterial pressure: 116 +/- 5 vs. 100 +/- 2 mmHg; P < 0.01). Chronic intracerebroventricular infusion of FMRFamide significantly increased hypothalamic and pituitary OLC in Dahl SS but not SR rats. These results indicate that Dahl SS rats exhibit enhanced central responses to FMRFamide. In Dahl SS but not in SR rats on a high-salt diet, enhanced Na+ entry through FMRFamide-activated brain Na+ channels may increase brain OLC release, thereby leading to hypertension.
Collapse
Affiliation(s)
- Hao Wang
- Hypertension Unit, University of Ottawa Heart Institute, H360, 40 Ruskin Street, Ottawa, Ontario, Canada K1Y 4W7
| | | | | |
Collapse
|
20
|
Wang H, Leenen FHH. Brain sodium channels and central sodium-induced increases in brain ouabain-like compound and blood pressure. J Hypertens 2003; 21:1519-24. [PMID: 12872046 DOI: 10.1097/00004872-200308000-00016] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To assess the role of benzamil-sensitive sodium channels in the increases in brain ouabain-like compounds (OLC) and in blood pressure by cerebrospinal fluid (CSF) Na+. METHODS Artificial CSF (aCSF) or Na+-rich (0.8 mol/l Na+) aCSF, either alone or combined with benzamil (at 1.2 and 4.0 microg/kg per h), were infused intracerebroventricularly (i.c.v.) at 5 microl/h to Wistar rats for 14 days and the effects on the brain and peripheral OLC and blood pressure were studied. OLC content was measured by enzyme-linked immunosorbent assay. RESULTS In Wistar rats infused i.c.v. with aCSF, benzamil did not affect blood pressure or brain and peripheral OLC concentrations. I.c.v. infusion of Na+-rich aCSF increased systolic blood pressure (140 +/- 4 mmHg compared with 119 +/- 3 mmHg; P < 0.05). Benzamil fully blocked this increase. Na+-rich aCSF increased hypothalamic (23 +/- 3 ng/g tissue compared with 10 +/- 1 ng/g tissue; P < 0.05) and pituitary (233 +/- 35 ng/g tissue compared with 62 +/- 7 ng/g tissue; P < 0.05) contents of OLC. In contrast, Na+-rich aCSF decreased OLC in the adrenal gland (7 +/- 1 ng/g tissue compared with 21 +/- 3 ng/g tissue; P < 0.05) and plasma (0.5 +/- 0.04 ng/ml compared with 0.7 +/- 0.08 ng/ml; P < 0.05). Benzamil inhibited these responses of OLC to CSF sodium in a dose-related manner. CONCLUSIONS These findings suggest that benzamil-sensitive brain sodium channels mediate the increase in brain OLC and the subsequent hypertension induced by increased CSF Na+.
Collapse
Affiliation(s)
- Hao Wang
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | | |
Collapse
|
21
|
Chow MK, Shao Q, Ren B, Leenen FHH, Van Huysse JW. Changes in brain Na, K-ATPase isoform expression and enzymatic activity after aortic constriction. Brain Res 2002; 944:124-34. [PMID: 12106672 DOI: 10.1016/s0006-8993(02)02725-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The objective of the present study was to test the hypothesis that brain Na, K-ATPase expression and/or activity is altered following an increase in blood pressure produced by constriction of the abdominal aorta just proximal to the renal arteries. A suprarenal constriction (SRC) was made to conform to the diameter of a 19-gauge (19-G) or 20-gauge (20-G) needle, while in a sham-operated group (Sham) the aorta was exposed surgically but not constricted. Within 1 week of SRC, mean arterial pressure was increased and remained elevated at 4 weeks post surgery. At 1 week, whole-brain Na, K-ATPase mRNA levels were depressed for all isoforms (alpha1 approximately beta1>alpha2>alpha3). No changes were observed in the hypothalamus. At 4 weeks, the mRNA levels of all alpha isoforms were significantly increased in the whole brain and these changes were paralleled by an increase of alpha2 and alpha3 transcript in the hypothalamus. beta1 mRNA expression was increased in the hypothalamus only. The alpha-isoform protein expression generally changed in the same direction as mRNA changes at both 1 and 4 weeks, as did alpha1 enzyme activity at 1 week and the combined alpha2/alpha3 enzyme activities at 4 weeks. Since inhibition of brain Na, K-ATPase increases sympathetic nervous system (SNS) activity and blood pressure, the decreases in brain Na, K-ATPase expression and activity at 1 week post SRC may contribute to the hypertension during its developmental phase, while the increase in the alpha2/alpha3 brain expression and activity at 4 weeks may be a compensatory response to established hypertension.
Collapse
Affiliation(s)
- Michael K Chow
- Hypertension Unit, University of Ottawa Heart Institute, Ontario, Canada
| | | | | | | | | |
Collapse
|
22
|
Bagrov AY, Bagrov YY, Fedorova OV, Kashkin VA, Patkina NA, Zvartau EE. Endogenous digitalis-like ligands of the sodium pump: possible involvement in mood control and ethanol addiction. Eur Neuropsychopharmacol 2002; 12:1-12. [PMID: 11788235 DOI: 10.1016/s0924-977x(01)00127-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
This review addresses possible involvement of endogenous digitalis-like sodium pump ligands (SPL) in the mood control and ethanol addiction. Endogenous SPL include cardenolide and bufadienolide classes. Multiple SPL and multiple isoforms of the Na/K-ATPase, one of the key membrane enzymes, comprise a complex regulatory system. In the nervous system, pattern of expression of Na/K-ATPase is based on multiple alpha/beta isoform combinations. Clinical studies demonstrate changes in the activity of Na/K-ATPase in patients with bipolar and unipolar mood disorders. The effects of ethanol on the Na/K-ATPase are concentration-dependent and are associated with both inhibition and activation of enzyme activity. Reinforcing effect of ethanol as well as its voluntary consumption may be affected by digitalis glycosides and endogenous SPL.
Collapse
Affiliation(s)
- Alexei Y Bagrov
- Laboratories of Membrane Barrier Functions and Pharmacology, Sechenov Institute of Evolutionary Physiology and Biochemistry, St. Petersburg, 194223, Russia
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
Most forms of hypertension are associated with a wide variety of functional changes in the hypothalamus. Alterations in the following substances are discussed: catecholamines, acetylcholine, angiotensin II, natriuretic peptides, vasopressin, nitric oxide, serotonin, GABA, ouabain, neuropeptide Y, opioids, bradykinin, thyrotropin-releasing factor, vasoactive intestinal polypeptide, tachykinins, histamine, and corticotropin-releasing factor. Functional changes in these substances occur throughout the hypothalamus but are particularly prominent rostrally; most lead to an increase in sympathetic nervous activity which is responsible for the rise in arterial pressure. A few appear to be depressor compensatory changes. The majority of the hypothalamic changes begin as the pressure rises and are particularly prominent in the young rat; subsequently they tend to fluctuate and overall to diminish with age. It is proposed that, with the possible exception of the Dahl salt-sensitive rat, the hypothalamic changes associated with hypertension are caused by renal and intrathoracic cardiopulmonary afferent stimulation. Renal afferent stimulation occurs as a result of renal ischemia and trauma as in the reduced renal mass rat. It is suggested that afferents from the chest arise, at least in part, from the observed increase in left auricular pressure which, it is submitted, is due to the associated documented impaired ability to excrete sodium. It is proposed, therefore, that the hypothalamic changes in hypertension are a link in an integrated compensatory natriuretic response to the kidney's impaired ability to excrete sodium.
Collapse
Affiliation(s)
- H E de Wardener
- Department of Clinical Chemistry, Imperial College School of Medicine, Charing Cross Campus, London, United Kingdom.
| |
Collapse
|
24
|
Abstract
Oxidative metabolism is very active in brain, where large amounts of chemical energy as ATP molecules are consumed, mostly required to maintain cellular Na+/K+ gradients through the participation of the sodium pump (Na+,K+-ATPase), whose activity is selectively and potently inhibited by the alkaloid ouabain. Na+/K+ gradients are involved in nerve impulse propagation, in neurotransmitter release and cation homeostasis in the nervous system. Likewise, enzyme activity modulation is crucial for maintaining normal blood pressure and cardiovascular contractility as well as renal sodium excretion. The present article reviews the progress in disclosing putative ouabain-like substances, examines their denomination according to different research teams, tissue or biological fluid sources, extraction and purification, assays, biological properties and chemical and biophysical features. When data is available, comparison with ouabain itself is mentioned. Likewise, their potential action in normal physiology as well as in experimental and human pathology is summarized.
Collapse
Affiliation(s)
- G Rodríguez de Lores Arnaiz
- Instituto de Biología Celular y Neurociencias Prof. Eduardo De Robertis, PROBICENE-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Paraguay, Buenos Aires, Argentina.
| |
Collapse
|
25
|
Veerasingham SJ, Vahid-Ansari F, Leenen FH. Neuronal Fos-like immunoreactivity in ouabain-induced hypertension. Brain Res 2000; 876:17-21. [PMID: 10973588 DOI: 10.1016/s0006-8993(00)02591-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In normotensive Wistar rats, systemic administration of exogenous ouabain for 10 days or more induces hypertension, presumably through central mechanisms. To identify which neuronal populations may be involved, we assessed Fos-like immunoreactivity (FLI) using an antibody that recognizes the protein products of the fos family comprising Fos, Fos B, Fra 1 and Fra 2, thus enabling detection of chronic neuronal activation. Young Wistar rats received s.c. infusions of either ouabain (50 microg/day) or saline for 7 or 14 days. At the end of the experimental period, mean arterial pressure (MAP) was assessed. In a separate set of rats FLI was detected immunohistochemically and quantified in cardiovascular and osmo-regulating centers. Resting MAP in ouabain-treated rats was significantly higher than in control rats at 14 but not at 7 days (125+/-4 vs. 101+/-6, P<0.05 and 102+/-4 vs. 98+/-6 (not significant), respectively). Within the supraoptic nucleus, ouabain induced significant increases in FLI compared with control rats at 14 days (9+/-2 vs. 2+/-2, P<0.05) but not at 7 days. Within the locus ceruleus, FLI was only detectable in rats that received ouabain infusions for 14 days but not in other groups of rats. Ouabain treatment did not induce significant changes in FLI within other areas. These results demonstrate that chronic s.c. ouabain infusion only increases neuronal FLI in the supraoptic nucleus and locus ceruleus where increases in FLI parallel the increase in blood pressure.
Collapse
Affiliation(s)
- S J Veerasingham
- Hypertension Unit H360, University of Ottawa Heart Institute and Departments of Cellular and Molecular Medicine, and Medicine, 40 Ruskin Street, University of Ottawa, Ontario K1Y 4W7, Ottawa, Canada
| | | | | |
Collapse
|
26
|
Vahid-Ansari F, Leenen FH. Pattern of neuronal activation in rats with CHF after myocardial infarction. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:H2140-6. [PMID: 9843814 DOI: 10.1152/ajpheart.1998.275.6.h2140] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To identify neuronal populations possibly contributing to the sympathetic hyperactivity in rats with congestive heart failure (CHF) after myocardial infarction (MI), immunohistochemical detection of Fra-like immunoreactivity (Fra-LI) was used as a marker of long-term neuronal activation. In adult Wistar rats, 2 and 4 wk after left coronary artery ligation, left ventricular (LV) peak systolic pressure and LV end-diastolic pressure were measured, immediately followed by transcardial perfusion and removal of the heart and brain. The brains were processed using an antibody that recognizes Fos, FosB, Fra-1, and Fra-2 for the detection of Fra-LI and using an antibody that only recognizes Fos-like immunoreactivity (Fos-LI). At both 2 and 4 wk after large MI, LV peak systolic pressure was significantly decreased and LV end-diastolic pressure increased. At 2 wk post-MI or sham surgery, Fra-LI was observed in several areas of either group but was significantly higher in the MI versus the sham group in the magnocellular division of the paraventricular nucleus (PVN), supraoptic nucleus (SON), subfornical organ, and caudal part of the nucleus of the solitary tract. At 4 wk after large MI, Fra-LI was clearly detected in the parvocellular and magnocellular divisions of the PVN, SON, and locus ceruleus. Modest expression was noted in these nuclei in rats with small MI, whereas Fra-like positive immunoreactive neurons were barely detectable in the sham group 4 wk postsurgery. In these nuclei, the extent of expression of Fra-LI correlated significantly with the LV end-diastolic pressure. Fos-LI was only noted in the cerebral cortex. These results indicate clear activation of neurons as identified by Fra-LI in specific cardiovascular control centers in rats with CHF 2 and 4 wk post-MI.
Collapse
Affiliation(s)
- F Vahid-Ansari
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Ontario, Canada K1Y 4W7
| | | |
Collapse
|
27
|
Van Huysse JW, Leenen FH. Role of endogenous brain "ouabain" in the sympathoexcitatory and pressor effects of sodium. Clin Exp Hypertens 1998; 20:657-67. [PMID: 9682921 DOI: 10.3109/10641969809053243] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Endogenous cardiac glycoside inhibitors of the Na, K-ATPase (called "ouabain" here) with structures similar to plant ouabain have been isolated in several tissues, including the adrenal cortex and the brain. Recent studies have demonstrated that "ouabain" in the anteroventral third ventricle (AV3V) region of the hypothalamus mediates the sympathoexcitatory and pressor responses to a high sodium diet in Dahl salt-sensitive (Dahl-S) and spontaneously hypertensive (SHR) rats. Although the mechanisms regulating the biosynthesis, release and deactivation of CNS "ouabain" remain unknown, the discovery of the importance of brain "ouabain" in cardiovascular regulation creates a novel path for the development of antihypertensive pharmacopeia.
Collapse
Affiliation(s)
- J W Van Huysse
- Department of Medicine, University of Ottawa Heart Institute, Ontario
| | | |
Collapse
|
28
|
Budzikowski AS, Vahid-Ansari F, Leenen FH. Chronic activation of brain areas by high-sodium diet in Dahl salt-sensitive rats. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:H2046-52. [PMID: 9841531 DOI: 10.1152/ajpheart.1998.274.6.h2046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To map changes in neuronal activity in the brains of Dahl salt-sensitive (Dahl S) vs. salt-resistant (Dahl R) rats by high-sodium diet, we used immunohistochemical detection of Fra-like proteins as a marker for long-term neuronal activation. Compared with Dahl R rats during regular sodium intake, Dahl S rats showed modestly higher expression of Fra-like immunoreactivity (Fra-LI) in the supraoptic nucleus, anterior hypothalamic area (AHA), central gray, and nucleus of solitary tract (NTS) at 5,6, and 9 wk of age but clearly elevated Fra-LI in the magnocellular part of the paraventricular nucleus (PVN) at 6 wk of age (but not at 5 and 9 wk). In the median preoptic nucleus (MnPO) Fra-LI was lower at 9 wk of age and no differences were observed in the parvocellular PVN and subfornical organ in Dahl S vs. Dahl R rats on regular sodium intake. Compared with Dahl S rats on a regular-sodium diet, Dahl S rats on a high-sodium diet from 4 to 9 wk of age had significantly increased blood pressure and experienced transient activation of magnocellular PVN and MnPO and virtually no changes in the activity of the parvocellular PVN, AHA, and NTS. In contrast, Dahl R rats showed marked activation in the magnocellular PVN after 1 and 2 wk on a high-sodium diet compared with Dahl R rats on a regular-sodium diet. The present study demonstrates that Dahl S rats show differential activation of brain areas participating in regulation of osmotic and cardiovascular homeostasis during development of sodium-sensitive hypertension.
Collapse
Affiliation(s)
- A S Budzikowski
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Ontario, Canada K1Y 4E9
| | | | | |
Collapse
|
29
|
Budzikowski AS, Huang BS, Leenen FH. Brain "ouabain", a neurosteroid, mediates sympathetic hyperactivity in salt-sensitive hypertension. Clin Exp Hypertens 1998; 20:119-40. [PMID: 9533610 DOI: 10.3109/10641969809053211] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This review addresses recent developments in the neurobiology of an endogenous inhibitor of brain Na+, K+ - ATPase, "ouabain". "Ouabain" is present in hypothalamic and medullary neurons and mediates sympathoexcitatory and pressor responses to acute and chronic increases in cerebrospinal fluid (CSF) sodium concentration as well as mediates the sympathoexcitatory and pressor responses to high dietary sodium intake in SHR and Dahl-S rats, and sympathetic hyperactivity in the congestive heart failure. Some of these actions of "ouabain" in the CNS take place in the median preoptic nucleus and ventral part of the AV3V region. Despite recent advances in unveiling a biological role for "ouabain" its structure, biosynthetic and metabolic pathways as well as actual control mechanisms remain unresolved.
Collapse
Affiliation(s)
- A S Budzikowski
- Hypertension Unit, University of Ottawa Heart Institute, Ontario, Canada
| | | | | |
Collapse
|
30
|
Balzan S, Montali U, Ghione S. Evidence of an endogenous ouabain-like immunoreactive compound with digitalis-like properties in the human. Ann N Y Acad Sci 1997; 834:626-30. [PMID: 9405875 DOI: 10.1111/j.1749-6632.1997.tb52333.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- S Balzan
- CNR Institute of Clinical Physiology, University of Pisa, Italy
| | | | | |
Collapse
|
31
|
Perrin A, Brasmes B, Chambaz EM, Defaye G. Bovine adrenocortical cells in culture synthesize an ouabain-like compound. Mol Cell Endocrinol 1997; 126:7-15. [PMID: 9027358 DOI: 10.1016/s0303-7207(96)03964-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Ouabain or a closely related isomer, and 'ouabain-like compound' (OLC), has been identified in plasma, by Hamlyn et al., using several physico-chemical and biological methods. Using a radioimmunoassay, the same authors later characterized an identical compound in adrenal cortex tissue and culture medium from adrenocortical cells. Nevertheless, other groups, using different immunosera, were not able to detect OLC in adrenal cortex and adrenocortical cells medium. In this report, we confirm the presence of OLC in bovine adrenal cortex and in fasciculata cells culture medium. The compound that we obtained has the same chromatographic properties as ouabain on HPLC using two types of elution systems. It presents the same mass spectrum and is able to bind to erythrocytes membranes Na(+)-K(+)-ATPase. In primary cultures of adrenocortical cells, its biosynthesis is increased after addition of pregnenolone or progesterone suggesting that these compounds may represent intermediate substrates in the biosynthetic pathway. Rhamnose readily enters the adrenocortical cell and increases slightly the biosynthesis of OLC. The present studies confirm that bovine adrenocortical cells in primary culture release an OLC with no differences with authentic ouabain using, HPLC, mass spectrometry and radioreceptor assay and suggest that OLC may be a product related to the adrenocortical steroidogenic pathway.
Collapse
Affiliation(s)
- A Perrin
- INSERM U 244, CEA Grenoble, DBMS/BRCE, France
| | | | | | | |
Collapse
|
32
|
Murata Y, Matsuda T, Tamada K, Hosoi R, Asano S, Takuma K, Tanaka K, Baba A. Ouabain-induced cell proliferation in cultured rat astrocytes. JAPANESE JOURNAL OF PHARMACOLOGY 1996; 72:347-53. [PMID: 9015743 DOI: 10.1254/jjp.72.347] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Ouabain markedly stimulated not only [3H]thymidine incorporation but also [3H]uridine incorporation into astrocytes. The effects were observed at 36-48 hr and 12-72 hr after addition of ouabain, respectively. The dose-response curves were both bell-shaped types with a peak at 10(-3) M for thymidine incorporation and 2 x 10(-3) M for uridine incorporation. Ouabain increased cell number as determined by an assay using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide and by a method using a hemocytometer. Low concentration of external K+ mimicked the effect of ouabain in stimulating [3H]-thymidine incorporation, and high concentration of external K+ blocked the effect of ouabain. In contrast to astrocytes, ouabain did not stimulate [3H]thymidine incorporation into C6 glioma and fibroblast cells. The effect of ouabain on [3H]thymidine incorporation in astrocytes was dependent on external Ca2+, and it was blocked by cycloheximide. These findings indicate that prolonged Na+, K(+)-ATPase inhibition causes cell proliferation in cultured astrocytes in cell-specific and Ca(2+)-dependent manners.
Collapse
Affiliation(s)
- Y Murata
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Osaka University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Huang BS, Leenen FH. Brain "ouabain" and angiotensin II in salt-sensitive hypertension in spontaneously hypertensive rats. Hypertension 1996; 28:1005-12. [PMID: 8952589 DOI: 10.1161/01.hyp.28.6.1005] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Spontaneously hypertensive rats (SHR) received from 5 to 9 weeks of age a high or regular sodium diet and concomitant intracerebroventricular infusions via minipumps of the following compounds: antibody Fab fragments (200 micrograms/d), which bind ouabain and related steroids with high affinity; the angiotensin II (Ang II) type 1 receptor blocker losartan (1 mg/kg per day); a combination of Fab fragments and losartan; and as control, gamma-globulins (200 micrograms/d). The same doses of Fab fragments and losartan were also given intravenously. At 9 weeks of age, compared with SHR on regular sodium, SHR on high sodium that were treated with gamma-globulins had higher resting blood pressure and showed significantly enhanced excitatory responses of blood pressure, renal sympathetic nerve activity, and heart rate to air stress and inhibitory responses to the central alpha 2-agonist guanabenz. Central Fab fragments and losartan alone or combined prevented all these effects of high sodium. Intravenous Fab fragments or losartan was ineffective. Compared with control SHR on high sodium, SHR on high sodium that were treated with Fab fragments had significantly increased sympathoexcitatory and pressor responses to central Ang II injection, consistent with a decrease in brain Ang II receptor occupancy. These data indicate that both increased brain "ouabain" and Ang II contribute to salt-sensitive hypertension in SHR. Brain Ang II receptor stimulation appears to be downstream of "ouabain" in the pathways mediating sympathoexcitatory and pressor effects of high sodium.
Collapse
Affiliation(s)
- B S Huang
- Hypertension Unit, University of Ottawa (Canada) Heart Institute, Ontario, Canada
| | | |
Collapse
|
34
|
Abstract
Hyponatremia is frequently seen in neurosurgical patients and is often attributed to inappropriate secretion of antidiuretic hormone. A number of studies in recent years have shown that hyponatremia in many patients with intracranial disease may actually be caused by cerebral salt wasting, in which a renal loss of sodium leads to hyponatremia and a decrease in extracellular fluid volume. The appropriate treatment of cerebral salt wasting fluid and salt replacement, is opposite from the usual treatment of hyponatremia caused by inappropriate secretion of antidiuretic hormone. This review summarizes the evidence in favor of cerebral salt wasting in patients with intracranial disease, examines the possible mechanisms responsible for this phenomenon, and discusses methods for diagnosis and treatment.
Collapse
Affiliation(s)
- M R Harrigan
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, USA
| |
Collapse
|
35
|
Komiyama Y, Mori T, Murakami T, Masuda M, Takahashi H. Production of ouabain-like factors of hypothalamo-pituitary origin, determined by a sensitive ELISA for ouabain, is increased in DOCA-salt hypertensive rats. PATHOPHYSIOLOGY 1995. [DOI: 10.1016/0928-4680(95)00009-p] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
36
|
Woolfson RG, Poston L, de Wardener HE. Digoxin-like inhibitors of active sodium transport and blood pressure: the current status. Kidney Int 1994; 46:297-309. [PMID: 7967340 DOI: 10.1038/ki.1994.275] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
37
|
Yamada K, Goto A, Nagoshi H, Hui C, Omata M. Role of brain ouabainlike compound in central nervous system-mediated natriuresis in rats. Hypertension 1994; 23:1027-31. [PMID: 8206587 DOI: 10.1161/01.hyp.23.6.1027] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Intracerebroventricular infusion of artificial sodium-rich cerebrospinal fluid induces increases in blood pressure and urinary sodium excretion. To examine the role of brain ouabainlike compound in these central nervous system-mediated responses, we evaluated the effects of prior intracerebroventricular injection of the Fab fragments of digoxin-specific antibody (Digibind, 10 mg/mL, 10 microL) on changes in blood pressure and urinary sodium excretion after intracerebroventricular infusion of high-sodium (323 mmol/L, 150 microL/kg per 15 minutes) cerebrospinal fluid in anesthetized rats. Antiouabain action of Digibind was revealed by the inhibition of a contractile response to ouabain in guinea pig aorta. Similar significant increases in blood pressure were found in rats that received preinjection of Digibind (n = 14) compared with control rats that received injection of saline (n = 5) or normal sheep IgG (n = 8). In rats pretreated with Digibind the natriuretic responses to central high sodium were significantly diminished by 68% (P < .05) or 82% (P < .05) compared with rats treated with saline or normal IgG, respectively. In contrast, Digibind did not affect either pressor or natriuretic responses to intracerebroventricular angiotensin II (600 ng/30 microL per 10 minutes). These data indicate that Digibind significantly inhibits increases in renal sodium excretion in response to high central sodium and suggest that brain ouabainlike compound may be involved in central nervous system-mediated natriuresis with nonpressor mechanisms.
Collapse
Affiliation(s)
- K Yamada
- Division of Health Care, Sanraku Hospital, Tokyo, Japan
| | | | | | | | | |
Collapse
|
38
|
Ouabain-like immunoreactive substances exist in the hypothalamus and the adrenal medulla in rats. PATHOPHYSIOLOGY 1994. [DOI: 10.1016/s0928-4680(05)80006-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
39
|
Yamada H, Ihara N, Takahashi H, Yoshimura M, Sano Y. Distribution of the endogenous digitalis-like substance (EDLS)-containing neurons labeled by digoxin antibody in hypothalamus and three circumventricular organs of dog and macaque. Brain Res 1992; 584:237-43. [PMID: 1325245 DOI: 10.1016/0006-8993(92)90900-t] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Endogenous digitalis-like substance (EDLS) is a newly discovered humoral agent which causes sodium-diuresis. EDLS is well known to have inhibitory activity to Na+,K(+)-ATPase and cross-immunoreactivity to digoxin antibody; however, its precise chemical structure has not yet been determined. We had previously developed a histochemical technique for EDLS, i.e., digoxin-immunohistochemistry, and demonstrated that EDLS was produced in the hypothalamic neurons. In the present study, the distribution of EDLS-containing neurons in the hypothalamus of dog and macaque was investigated using this technique, because anti-EDLS antibody cannot be obtained yet. In both species, EDLS neuronal somata were mainly localized in the paraventricular nucleus and the supraoptic nucleus and its accessory nuclei. A number of somata were also scattered in the other hypothalamic areas. The processes of these neurons ran from the area where the somata were located, through the lateral and basal area of the hypothalamus, to the infundibulum. These nerve fibers with varicosities were associated with the primary capillaries of hypophysial portal veins. A few immunopositive nerve fibers were also seen in the pituitary posterior lobe of both species. Intensive immunoreactivities were observed in the subfornical organ and organum vasculosum laminae terminalis. There were no differences between dog and macaque.
Collapse
Affiliation(s)
- H Yamada
- Department of Anatomy, Shiga University of Medical Science, Otsu, Japan
| | | | | | | | | |
Collapse
|