1
|
Serotonergic control of the glutamatergic neurons of the subthalamic nucleus. PROGRESS IN BRAIN RESEARCH 2021; 261:423-462. [PMID: 33785138 DOI: 10.1016/bs.pbr.2020.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The subthalamic nucleus (STN) houses a dense cluster of glutamatergic neurons that play a central role in the functional dynamics of the basal ganglia, a group of subcortical structures involved in the control of motor behaviors. Numerous anatomical, electrophysiological, neurochemical and behavioral studies have reported that serotonergic neurons from the midbrain raphe nuclei modulate the activity of STN neurons. Here, we describe this serotonergic innervation and the nature of the regulation exerted by serotonin (5-hydroxytryptamine, 5-HT) on STN neuron activity. This regulation can occur either directly within the STN or at distal sites, including other structures of the basal ganglia or cortex. The effect of 5-HT on STN neuronal activity involves several 5-HT receptor subtypes, including 5-HT1A, 5-HT1B, 5-HT2C and 5-HT4 receptors, which have garnered the highest attention on this topic. The multiple regulatory effects exerted by 5-HT are thought to be modified under pathological conditions, altering the activity of the STN, or due to the benefits and side effects of treatments used for Parkinson's disease, notably the dopamine precursor l-DOPA and high-frequency STN stimulation. Originally understood as a motor center, the STN is also associated with decision making and participates in mood regulation and cognitive performance, two domains of personality that are also regulated by 5-HT. The literature concerning the link between 5-HT and STN is already important, and the functional overlap is evident, but this link is still not entirely understood. The understanding of this link between 5-HT and STN should be increased due to the possible importance of this regulation in the control of fronto-STN loops and inherent motor and non-motor behaviors.
Collapse
|
2
|
Lagière M, Bosc M, Whitestone S, Benazzouz A, Chagraoui A, Millan MJ, De Deurwaerdère P. A Subset of Purposeless Oral Movements Triggered by Dopaminergic Agonists Is Modulated by 5-HT 2C Receptors in Rats: Implication of the Subthalamic Nucleus. Int J Mol Sci 2020; 21:ijms21228509. [PMID: 33198169 PMCID: PMC7698107 DOI: 10.3390/ijms21228509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
Dopaminergic medication for Parkinson’s disease is associated with troubling dystonia and dyskinesia and, in rodents, dopaminergic agonists likewise induce a variety of orofacial motor responses, certain of which are mimicked by serotonin2C (5-HT2C) receptor agonists. However, the neural substrates underlying these communalities and their interrelationship remain unclear. In Sprague-Dawley rats, the dopaminergic agonist, apomorphine (0.03–0.3 mg/kg) and the preferential D2/3 receptor agonist quinpirole (0.2–0.5 mg/kg), induced purposeless oral movements (chewing, jaw tremor, tongue darting). The 5-HT2C receptor antagonist 5-methyl-1-[[2-[(2-methyl-3-pyridyl)oxyl]-5-pyridyl]carbamoyl]-6-trifluoromethylindone (SB 243213) (1 mg/kg) reduced the oral responses elicited by specific doses of both agonists (0.1 mg/kg apomorphine; 0.5 mg/kg quinpirole). After having confirmed that the oral bouts induced by quinpirole 0.5 mg/kg were blocked by another 5-HT2C antagonist (6-chloro-5-methyl-1-[6-(2-methylpiridin-3-yloxy)pyridine-3-yl carbamoyl] indoline (SB 242084), 1 mg/kg), we mapped the changes in neuronal activity in numerous sub-territories of the basal ganglia using c-Fos expression. We found a marked increase of c-Fos expression in the subthalamic nucleus (STN) in combining quinpirole (0.5 mg/kg) with either SB 243213 or SB 242084. In a parallel set of electrophysiological experiments, the same combination of SB 243213/quinpirole produced an irregular pattern of discharge and an increase in the firing rate of STN neurons. Finally, it was shown that upon the electrical stimulation of the anterior cingulate cortex, quinpirole (0.5 mg/kg) increased the response of substantia nigra pars reticulata neurons corresponding to activation of the “hyperdirect” (cortico-subthalamonigral) pathway. This effect of quinpirole was abolished by the two 5-HT2C antagonists. Collectively, these results suggest that induction of orofacial motor responses by D2/3 receptor stimulation involves 5-HT2C receptor-mediated activation of the STN by recruitment of the hyperdirect (cortico-subthalamonigral) pathway.
Collapse
Affiliation(s)
- Mélanie Lagière
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5287), 146 Rue Léo Saignat, 33076 Bordeaux CEDEX, France; (M.L.); (M.B.); (S.W.)
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5293), 33076 Bordeaux CEDEX, France;
| | - Marion Bosc
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5287), 146 Rue Léo Saignat, 33076 Bordeaux CEDEX, France; (M.L.); (M.B.); (S.W.)
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5293), 33076 Bordeaux CEDEX, France;
| | - Sara Whitestone
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5287), 146 Rue Léo Saignat, 33076 Bordeaux CEDEX, France; (M.L.); (M.B.); (S.W.)
| | - Abdelhamid Benazzouz
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5293), 33076 Bordeaux CEDEX, France;
| | - Abdeslam Chagraoui
- Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Normandie Univ, UNIROUEN, INSERM, U1239, CHU Rouen, 76000 Rouen, France;
- Department of Medical Biochemistry, Rouen University Hospital, 76000 Rouen, France
| | - Mark J. Millan
- Institut de Recherche Servier, Center for Therapeutic Innovation in Neuropsychiatry, Croissy/Seine, 78290 Paris, France;
| | - Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5287), 146 Rue Léo Saignat, 33076 Bordeaux CEDEX, France; (M.L.); (M.B.); (S.W.)
- Correspondence: ; Tel.: +33-(0)-557-57-12-90
| |
Collapse
|
3
|
Kreiss DS, De Deurwaerdère P. Purposeless oral activity induced by meta-chlorophenylpiperazine (m-CPP): Undefined tic-like behaviors? J Neurosci Methods 2017; 292:30-36. [PMID: 28483714 DOI: 10.1016/j.jneumeth.2017.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 03/20/2017] [Accepted: 05/05/2017] [Indexed: 01/04/2023]
Abstract
BACKGROUND The pathophysiological hypothesis underlying tic disorders in Tourette syndrome (TS) is that basal ganglia are not capable of properly filtering cortical information, leading patients with difficulties in inhibiting unwanted behaviors or impulses. One of the main challenges for furthering such a hypothesis is to find appropriate animal models summarizing some aspects of the disease. METHODS It has been established for more than 25 years in rodents that the prototypical serotonin (5-HT) agonist meta-chlorophenylpiperazine (m-CPP) elicits purposeless oral movements including chewing behavior. These bouts of oral movements, originally thought to mimic human oral dyskinesia consequent to long-term administration of antipsychotic drugs or parkinsonian tremor, could correspond to an undefined form of tics. Here, we describe the nature of the purposeless oral movements triggered by m-CPP and other agonists which could be associated with obsessive compulsive disorders. We report the pharmacology of this response with a focus on the 5-HT2C receptor subtype and the degree to which the dopaminergic and cholinergic systems are involved. The orofacial dyskinetic effects are related to the action of these compounds in associative/limbic territories of the basal ganglia, rather than sensorimotor ones, as expected from the human disease. CONCLUSION In spite of the low translational value of these oral movements, the neurobiological analysis of these oral movements could help to a better understanding of the pathophysiology of tics and compulsive disorders often cormorbid with TS.
Collapse
Affiliation(s)
- Deborah S Kreiss
- Washington and Lee University, Dept. of Psychology, Neuroscience Program, Lexington, VA, United States
| | | |
Collapse
|
4
|
De Deurwaerdère P, Di Giovanni G, Millan MJ. Expanding the repertoire of L-DOPA's actions: A comprehensive review of its functional neurochemistry. Prog Neurobiol 2016; 151:57-100. [PMID: 27389773 DOI: 10.1016/j.pneurobio.2016.07.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/18/2016] [Accepted: 07/03/2016] [Indexed: 01/11/2023]
Abstract
Though a multi-facetted disorder, Parkinson's disease is prototypically characterized by neurodegeneration of nigrostriatal dopaminergic neurons of the substantia nigra pars compacta, leading to a severe disruption of motor function. Accordingly, L-DOPA, the metabolic precursor of dopamine (DA), is well-established as a treatment for the motor deficits of Parkinson's disease despite long-term complications such as dyskinesia and psychiatric side-effects. Paradoxically, however, despite the traditional assumption that L-DOPA is transformed in residual striatal dopaminergic neurons into DA, the mechanism of action of L-DOPA is neither simple nor entirely clear. Herein, focussing on its influence upon extracellular DA and other neuromodulators in intact animals and experimental models of Parkinson's disease, we highlight effects other than striatal generation of DA in the functional profile of L-DOPA. While not excluding a minor role for glial cells, L-DOPA is principally transformed into DA in neurons yet, interestingly, with a more important role for serotonergic than dopaminergic projections. Moreover, in addition to the striatum, L-DOPA evokes marked increases in extracellular DA in frontal cortex, nucleus accumbens, the subthalamic nucleus and additional extra-striatal regions. In considering its functional profile, it is also important to bear in mind the marked (probably indirect) influence of L-DOPA upon cholinergic, GABAergic and glutamatergic neurons in the basal ganglia and/or cortex, while anomalous serotonergic transmission is incriminated in the emergence of L-DOPA elicited dyskinesia and psychosis. Finally, L-DOPA may exert intrinsic receptor-mediated actions independently of DA neurotransmission and can be processed into bioactive metabolites. In conclusion, L-DOPA exerts a surprisingly complex pattern of neurochemical effects of much greater scope that mere striatal transformation into DA in spared dopaminergic neurons. Their further experimental and clinical clarification should help improve both L-DOPA-based and novel strategies for controlling the motor and other symptoms of Parkinson's disease.
Collapse
Affiliation(s)
- Philippe De Deurwaerdère
- CNRS (Centre National de la Recherche Scientifique), Institut des Maladies Neurodégénératives, UMR CNRS 5293, F-33000 Bordeaux, France.
| | - Giuseppe Di Giovanni
- Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, UK; Department of Physiology & Biochemistry, Faculty of Medicine and Surgery, University of Malta, Malta
| | - Mark J Millan
- Institut de Recherche Servier, Pole for Therapeutic Innovation in Neuropsychiatry, 78290 Croissy/Seine,Paris, France
| |
Collapse
|
5
|
De Deurwaerdère P, Di Giovanni G. Serotonergic modulation of the activity of mesencephalic dopaminergic systems: Therapeutic implications. Prog Neurobiol 2016; 151:175-236. [PMID: 27013075 DOI: 10.1016/j.pneurobio.2016.03.004] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/13/2016] [Accepted: 03/14/2016] [Indexed: 12/14/2022]
Abstract
Since their discovery in the mammalian brain, it has been apparent that serotonin (5-HT) and dopamine (DA) interactions play a key role in normal and abnormal behavior. Therefore, disclosure of this interaction could reveal important insights into the pathogenesis of various neuropsychiatric diseases including schizophrenia, depression and drug addiction or neurological conditions such as Parkinson's disease and Tourette's syndrome. Unfortunately, this interaction remains difficult to study for many reasons, including the rich and widespread innervations of 5-HT and DA in the brain, the plethora of 5-HT receptors and the release of co-transmitters by 5-HT and DA neurons. The purpose of this review is to present electrophysiological and biochemical data showing that endogenous 5-HT and pharmacological 5-HT ligands modify the mesencephalic DA systems' activity. 5-HT receptors may control DA neuron activity in a state-dependent and region-dependent manner. 5-HT controls the activity of DA neurons in a phasic and excitatory manner, except for the control exerted by 5-HT2C receptors which appears to also be tonically and/or constitutively inhibitory. The functional interaction between the two monoamines will also be discussed in view of the mechanism of action of antidepressants, antipsychotics, anti-Parkinsonians and drugs of abuse.
Collapse
Affiliation(s)
- Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5293, 33076 Bordeaux Cedex, France.
| | - Giuseppe Di Giovanni
- Department of Physiology & Biochemistry, Faculty of Medicine and Surgery, University of Malta, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
6
|
Buspirone requires the intact nigrostriatal pathway to reduce the activity of the subthalamic nucleus via 5-HT1A receptors. Exp Neurol 2016; 277:35-45. [DOI: 10.1016/j.expneurol.2015.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 12/04/2015] [Accepted: 12/10/2015] [Indexed: 11/18/2022]
|
7
|
Hu Y, Liu X, Qiao D. Increased extracellular dopamine and 5-hydroxytryptamine levels contribute to enhanced subthalamic nucleus neural activity during exhausting exercise. Biol Sport 2015; 32:187-92. [PMID: 26424920 PMCID: PMC4577555 DOI: 10.5604/20831862.1150299] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 02/06/2015] [Accepted: 02/27/2015] [Indexed: 11/23/2022] Open
Abstract
The purpose of the study was to explore the mechanism underlying the enhanced subthalamic nucleus (STN) neural activity during exhausting exercise from the perspective of monoamine neurotransmitters and changes of their corresponding receptors. Rats were randomly divided into microdialysis and immunohistochemistry study groups. For microdialysis study, extracellular fluid of the STN was continuously collected with a microdialysis probe before, during and 90 min after one bout of exhausting exercise. Dopamine (DA) and 5-hydroxytryptamine (5-HT) levels were subsequently detected with high-performance liquid chromatography (HPLC). For immunohistochemistry study, the expression of DRD2 and HT2C receptors in the STN, before, immediately after and 90 min after exhaustion was detected through immunohistochemistry technique. Microdialysis study results showed that the extracellular DA and 5-HT neurotransmitters increased significantly throughout the procedure of exhausting exercise and the recovery period (P<0.05 or P<0.01). Immunohistochemistry study results showed that the expression levels of DRD2 and HT2C in the rat STN immediately after exhausting exercise and at the time point of 90 min after exhaustion were both higher than those of the rest condition, but the difference was not significant (P>0.05). Our results suggest that the increased extracellular DA and 5-HT in the STN might be one important factor leading to the enhanced STN neural activity and the development of fatigue during exhausting exercise. This study may essentially offer useful evidence for better understanding of the mechanism of the central type of exercise-induced fatigue.
Collapse
Affiliation(s)
- Y Hu
- College of Physical Education and Sports, Beijing Normal University, Beijing, 100875, China ; Department of Physical Education of Central South University, Changsha Hunan, 410083, China
| | - X Liu
- College of Physical Education and Sports, Beijing Normal University, Beijing, 100875, China
| | - D Qiao
- College of Physical Education and Sports, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
8
|
Liebig L, von Ameln-Mayerhofer A, Hentschke H. MDMA modulates spontaneous firing of subthalamic nucleus neurons in vitro. Exp Brain Res 2014; 233:137-47. [PMID: 25234400 DOI: 10.1007/s00221-014-4095-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 09/05/2014] [Indexed: 10/24/2022]
Abstract
3,4-Methylene-dioxy-N-methylamphetamine (MDMA, 'ecstasy') has a broad spectrum of molecular targets in the brain, among them receptors and transporters of the serotonergic (5-hydroxytryptamine, 5-HT) and noradrenergic systems. Its action on the serotonergic system modulates motor systems in rodents and humans. Although parts of the basal ganglia could be identified as mediators of the motor effects of MDMA, very little is known about the role of the subthalamic nucleus (STN). Therefore, this study investigated the modulation of spontaneous action potential activity of the STN by MDMA (2.5-20 µM) in vitro. MDMA had very heterogeneous effects, ranging from a complete but reversible inhibition to a more than twofold increase in firing at 5 µM. On average, MDMA excited STN neurons moderately, but lost its excitatory effect in the presence of the 5-HT(2A) antagonist MDL 11,939. 5-HT(1A) receptors did not appear to play a major role. Effects of MDMA on transporters for serotonin (SERT) and norepinephrine (NET) were investigated by coapplication of the reuptake inhibitors citalopram and desipramine, respectively. Similar to the effects of 5-HT(2A) receptor blockade, antagonism of SERT and NET bestowed an inhibitory effect on MDMA. From these results, we conclude that both the 5-HT and the noradrenergic system mediate MDMA-induced effects on STN neurons.
Collapse
Affiliation(s)
- Luise Liebig
- Experimental Anaesthesiology Section, University Hospital Tübingen, Waldhörnlestr. 22, 72072, Tübingen, Germany
| | | | | |
Collapse
|
9
|
Miguelez C, Morera-Herreras T, Torrecilla M, Ruiz-Ortega JA, Ugedo L. Interaction between the 5-HT system and the basal ganglia: functional implication and therapeutic perspective in Parkinson's disease. Front Neural Circuits 2014; 8:21. [PMID: 24672433 PMCID: PMC3955837 DOI: 10.3389/fncir.2014.00021] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 02/27/2014] [Indexed: 01/15/2023] Open
Abstract
The neurotransmitter serotonin (5-HT) has a multifaceted function in the modulation of information processing through the activation of multiple receptor families, including G-protein-coupled receptor subtypes (5-HT1, 5-HT2, 5-HT4-7) and ligand-gated ion channels (5-HT3). The largest population of serotonergic neurons is located in the midbrain, specifically in the raphe nuclei. Although the medial and dorsal raphe nucleus (DRN) share common projecting areas, in the basal ganglia (BG) nuclei serotonergic innervations come mainly from the DRN. The BG are a highly organized network of subcortical nuclei composed of the striatum (caudate and putamen), subthalamic nucleus (STN), internal and external globus pallidus (or entopeduncular nucleus in rodents, GPi/EP and GPe) and substantia nigra (pars compacta, SNc, and pars reticulata, SNr). The BG are part of the cortico-BG-thalamic circuits, which play a role in many functions like motor control, emotion, and cognition and are critically involved in diseases such as Parkinson's disease (PD). This review provides an overview of serotonergic modulation of the BG at the functional level and a discussion of how this interaction may be relevant to treating PD and the motor complications induced by chronic treatment with L-DOPA.
Collapse
Affiliation(s)
- Cristina Miguelez
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU Leioa, Spain ; Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU Vitoria-Gasteiz, Spain
| | - Teresa Morera-Herreras
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU Leioa, Spain
| | - Maria Torrecilla
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU Leioa, Spain
| | - Jose A Ruiz-Ortega
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU Leioa, Spain ; Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU Vitoria-Gasteiz, Spain
| | - Luisa Ugedo
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU Leioa, Spain
| |
Collapse
|
10
|
Aristieta A, Morera-Herreras T, Ruiz-Ortega JA, Miguelez C, Vidaurrazaga I, Arrue A, Zumarraga M, Ugedo L. Modulation of the subthalamic nucleus activity by serotonergic agents and fluoxetine administration. Psychopharmacology (Berl) 2014; 231:1913-24. [PMID: 24271033 PMCID: PMC3984421 DOI: 10.1007/s00213-013-3333-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 10/12/2013] [Indexed: 11/24/2022]
Abstract
RATIONALE Within the basal ganglia, the subthalamic nucleus (STN) is the only glutamatergic structure and occupies a central position in the indirect pathway. In rat, the STN receives serotonergic input from the dorsal raphe nucleus and expresses serotonergic receptors. OBJECTIVE This study examined the consequences of serotonergic neurotransmission modulation on STN neuron activity. METHODS In vivo single-unit extracellular recordings, HPLC determination, and rotarod and bar test were performed in control, 4-chloro-DL-phenylalanine methyl ester hydrochloride- (pCPA, a serotonin synthesis inhibitor) and chronically fluoxetine-treated rats. RESULTS The pCPA treatment and the administration of serotonin (5-HT) receptor antagonists increased number of bursting neurons in the STN. The systemic administration of the 5-HT(1A) agonist, 8-OH-DPAT, decreased the firing rate and increased the coefficient of variation of STN neurons in pCPA-treated rats but not in control animals. Additionally, microinjection of 8-OH-DPAT into the STN reduced the firing rate of STN neurons, while microinjection of the 5-HT(2C) agonist, Ro 60-0175, increased the firing rate in both control and fluoxetine-treated animals. Finally, the fluoxetine challenge increased the firing rate of STN neurons in fluoxetine-treated rats and induced catalepsy. CONCLUSIONS Our results indicate that the depletion and the blockage of 5-HT modify STN neuron firing pattern. STN neuron activity is under the control of 5-HT(1A) and 5-HT(2C) receptors located both inside and outside the STN. Finally, fluoxetine increases STN neuron activity in chronically fluoxetine-treated rats, which may explain the role of this nucleus in fluoxetine-induced extrapyramidal side effects.
Collapse
Affiliation(s)
- A. Aristieta
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - T. Morera-Herreras
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU, 48940 Leioa, Spain ,Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
| | - J. A. Ruiz-Ortega
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU, 48940 Leioa, Spain ,Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
| | - C. Miguelez
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU, 48940 Leioa, Spain ,Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
| | - I. Vidaurrazaga
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - A. Arrue
- Red de Salud Mental de Bizkaia. Departamento de Investigación Neuroquímica, Hospital de Zamudio, Arteaga Auzoa, 45, 48170 Zamudio, Spain
| | - M. Zumarraga
- Red de Salud Mental de Bizkaia. Departamento de Investigación Neuroquímica, Hospital de Zamudio, Arteaga Auzoa, 45, 48170 Zamudio, Spain
| | - L. Ugedo
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| |
Collapse
|
11
|
Camacho-Abrego I, Tellez-Merlo G, Melo AI, Rodríguez-Moreno A, Garcés L, De La Cruz F, Zamudio S, Flores G. Rearrangement of the dendritic morphology of the neurons from prefrontal cortex and hippocampus after subthalamic lesion in Sprague-Dawley rats. Synapse 2013; 68:114-26. [DOI: 10.1002/syn.21722] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 09/16/2013] [Accepted: 09/20/2013] [Indexed: 01/31/2023]
Affiliation(s)
- Israel Camacho-Abrego
- Laboratorio de Neuropsiquiatría; Instituto de Fisiología; Universidad Autónoma de Puebla; CP: 72570, Puebla Puebla México
- Departamento de Fisiología; Escuela Nacional de Ciencias Biológicas; Instituto Politécnico Nacional; México D. F. México
| | - Gullermina Tellez-Merlo
- Laboratorio de Neuropsiquiatría; Instituto de Fisiología; Universidad Autónoma de Puebla; CP: 72570, Puebla Puebla México
| | - Angel I. Melo
- Centro de Investigación en Reproducción Animal; CINVESTAV-Universidad Autónoma de Tlaxcala; Tlaxcala México
| | | | - Linda Garcés
- Departamento de Fisiología; Escuela Nacional de Ciencias Biológicas; Instituto Politécnico Nacional; México D. F. México
| | - Fidel De La Cruz
- Departamento de Fisiología; Escuela Nacional de Ciencias Biológicas; Instituto Politécnico Nacional; México D. F. México
| | - Sergio Zamudio
- Departamento de Fisiología; Escuela Nacional de Ciencias Biológicas; Instituto Politécnico Nacional; México D. F. México
| | - Gonzalo Flores
- Laboratorio de Neuropsiquiatría; Instituto de Fisiología; Universidad Autónoma de Puebla; CP: 72570, Puebla Puebla México
| |
Collapse
|
12
|
Multiple controls exerted by 5-HT2C receptors upon basal ganglia function: from physiology to pathophysiology. Exp Brain Res 2013; 230:477-511. [PMID: 23615975 DOI: 10.1007/s00221-013-3508-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 03/28/2013] [Indexed: 10/26/2022]
Abstract
Serotonin2C (5-HT2C) receptors are expressed in the basal ganglia, a group of subcortical structures involved in the control of motor behaviour, mood and cognition. These receptors are mediating the effects of 5-HT throughout different brain areas via projections originating from midbrain raphe nuclei. A growing interest has been focusing on the function of 5-HT2C receptors in the basal ganglia because they may be involved in various diseases of basal ganglia function notably those associated with chronic impairment of dopaminergic transmission. 5-HT2C receptors act on numerous types of neurons in the basal ganglia, including dopaminergic, GABAergic, glutamatergic or cholinergic cells. Perhaps inherent to their peculiar molecular properties, the modality of controls exerted by 5-HT2C receptors over these cell populations can be phasic, tonic (dependent on the 5-HT tone) or constitutive (a spontaneous activity without the presence of the ligand). These controls are functionally organized in the basal ganglia: they are mainly localized in the input structures and preferentially distributed in the limbic/associative territories of the basal ganglia. The nature of these controls is modified in neuropsychiatric conditions such as Parkinson's disease, tardive dyskinesia or addiction. Most of the available data indicate that the function of 5-HT2C receptor is enhanced in cases of chronic alterations of dopamine neurotransmission. The review illustrates that 5-HT2C receptors play a role in maintaining continuous controls over the basal ganglia via multiple diverse actions. We will discuss their interest for treatments aimed at ameliorating current pharmacotherapies in schizophrenia, Parkinson's disease or drugs abuse.
Collapse
|
13
|
De Deurwaerdère P, Mignon L, Chesselet MF. Physiological and Pathophysiological Aspects of 5-HT2c Receptors in Basal Ganglia. 5-HT2C RECEPTORS IN THE PATHOPHYSIOLOGY OF CNS DISEASE 2011. [DOI: 10.1007/978-1-60761-941-3_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
|
14
|
Beyeler A, Kadiri N, Navailles S, Boujema MB, Gonon F, Moine CL, Gross C, De Deurwaerdère P. Stimulation of serotonin2C receptors elicits abnormal oral movements by acting on pathways other than the sensorimotor one in the rat basal ganglia. Neuroscience 2010; 169:158-70. [PMID: 20447448 DOI: 10.1016/j.neuroscience.2010.04.061] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 04/20/2010] [Accepted: 04/25/2010] [Indexed: 11/24/2022]
Abstract
Serotonin2C (5-HT(2C)) receptors act in the basal ganglia, a group of sub-cortical structures involved in motor behavior, where they are thought to modulate oral activity and participate in iatrogenic motor side-effects in Parkinson's disease and Schizophrenia. Whether abnormal movements initiated by 5-HT(2C) receptors are directly consequent to dysfunctions of the motor circuit is uncertain. In the present study, we combined behavioral, immunohistochemical and extracellular single-cell recordings approaches in rats to investigate the effect of the 5-HT(2C) agonist Ro-60-0175 respectively on orofacial dyskinesia, the expression of the marker of neuronal activity c-Fos in basal ganglia and the electrophysiological activity of substantia nigra pars reticulata (SNr) neuron connected to the orofacial motor cortex (OfMC) or the medial prefrontal cortex (mPFC). The results show that Ro-60-0175 (1 mg/kg) caused bouts of orofacial movements that were suppressed by the 5-HT(2C) antagonist SB-243213 (1 mg/kg). Ro-60-0175 (0.3, 1, 3 mg/kg) dose-dependently enhanced Fos expression in the striatum and the nucleus accumbens. At the highest dose, it enhanced Fos expression in the subthalamic nucleus, the SNr and the entopeduncular nucleus but not in the external globus pallidus. However, the effect of Ro-60-0175 was mainly associated with associative/limbic regions of basal ganglia whereas subregions of basal ganglia corresponding to sensorimotor territories were devoid of Fos labeling. Ro-60-0175 (1-3 mg/kg) did not affect the electrophysiological activity of SNr neurons connected to the OfMC nor their excitatory-inhibitory-excitatory responses to the OfMC electrical stimulation. Conversely, Ro-60-0175 (1 mg/kg) enhanced the late excitatory response of SNr neurons evoked by the mPFC electrical stimulation. These results suggest that oral dyskinesia induced by 5-HT(2C) agonists are not restricted to aberrant signalling in the orofacial motor circuit and demonstrate discrete modifications in associative territories.
Collapse
Affiliation(s)
- A Beyeler
- Université de Bordeaux, 33076 Bordeaux Cedex, France; Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5227), 33076 Bordeaux Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Zhang QJ, Liu X, Liu J, Wang S, Ali U, Wu ZH, Wang T. Subthalamic neurons show increased firing to 5-HT2C receptor activation in 6-hydroxydopamine-lesioned rats. Brain Res 2009; 1256:180-9. [DOI: 10.1016/j.brainres.2008.12.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 12/07/2008] [Accepted: 12/11/2008] [Indexed: 11/30/2022]
|
16
|
Shen KZ, Kozell LB, Johnson SW. Multiple conductances are modulated by 5-HT receptor subtypes in rat subthalamic nucleus neurons. Neuroscience 2007; 148:996-1003. [PMID: 17706881 PMCID: PMC2034448 DOI: 10.1016/j.neuroscience.2007.07.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 06/28/2007] [Accepted: 08/03/2007] [Indexed: 11/16/2022]
Abstract
Firing patterns of subthalamic nucleus (STN) neurons influence normal and abnormal movements. The STN expresses multiple 5-HT receptor subtypes that may regulate neuronal excitability. We used whole-cell patch-clamp recordings to characterize 5-HT receptor-mediated effects on membrane currents in STN neurons in rat brain slices. In 80 STN neurons under voltage-clamp (-70 mV), 5-HT (30 microM) evoked inward currents in 64%, outward currents in 17%, and biphasic currents in 19%. 5-HT-induced outward current was caused by an increased K(+) conductance (1.4+/-0.2 nS) and was blocked by the 5-HT(1A) antagonist WAY 100135. The 5-HT-evoked inward current, which was blocked by antagonists at 5-HT(2C) and/or 5-HT(4) receptors, had two types of current-voltage (I-V) relations. Currents associated with the type 1 I-V relation showed negative slope conductance at potentials <-110 mV and were occluded by Ba(2+). In contrast, the type 2 I-V relation appeared linear and had positive slope conductance (0.64+/-0.11 nS). Type 2 inward currents were Ba(2+)-insensitive, and the reversal potential of -19 mV suggests a mixed cation conductance. In STN neurons in which 5-HT evoked inward currents, 5-HT potentiated burst firing induced by N-methyl-d-aspartate (NMDA). But in neurons in which 5-HT evoked outward current, 5-HT slowed NMDA-dependent burst firing. We conclude that 5-HT receptor subtypes can differentially regulate firing pattern by modulating multiple conductances in STN neurons.
Collapse
Affiliation(s)
- K-Z Shen
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | |
Collapse
|
17
|
Liu J, Chu YX, Zhang QJ, Wang S, Feng J, Li Q. 5,7-dihydroxytryptamine lesion of the dorsal raphe nucleus alters neuronal activity of the subthalamic nucleus in normal and 6-hydroxydopamine-lesioned rats. Brain Res 2007; 1149:216-22. [PMID: 17376410 DOI: 10.1016/j.brainres.2007.02.052] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2006] [Revised: 02/17/2007] [Accepted: 02/21/2007] [Indexed: 11/30/2022]
Abstract
The subthalamic nucleus receives serotonergic projections from the dorsal raphe nucleus. However, the role of serotonergic innervation in the activity of subthalamic neurons in vivo is unknown. The aim of the present work is to study the changes in the firing of subthalamic neurons in rats with 5,7-dihydroxytryptamine lesions of the dorsal raphe nucleus and rats with combined 5,7-dihydroxytryptamine lesions in the dorsal raphe nucleus and 6-hydroxydopamine lesions in the substantia nigra pars compacta by using single-unit extracellular recordings. In rats with 5,7-dihydroxytryptamine lesions of the dorsal raphe nucleus, the firing rate of subthalamic neurons increased significantly compared with normal rats and the firing pattern changed significantly towards a more bursting firing in the majority of the neurons observed. In rats with combined dorsal raphe nucleus and substantia nigra pars compacta lesions, the firing rate and firing pattern of subthalamic neurons did not show a significant difference compared to rats with lesions of the substantia nigra pars compacta. However, dorsal raphe nucleus and substantia nigra pars compacta lesions combined increased significantly the percentage of subthalamic neurons with burst-firing pattern compared to normal rats, while having no effect on their firing rate. These results show that the serotonergic efferent projections of the dorsal raphe nucleus significantly influence on the activity of subthalamic neurons and that the loss of dopaminergic projection by substantia nigra pars compacta lesion decreases the effect of the lesions of the dorsal raphe nucleus on subthalamic nucleus neuronal activity, suggesting that the role of the dorsal raphe nucleus may be exerted by the dorsal raphe nucleus-substantia nigra pars compacta-subthalamic nucleus pathway.
Collapse
Affiliation(s)
- Jian Liu
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China.
| | | | | | | | | | | |
Collapse
|
18
|
Stanford IM, Kantaria MA, Chahal HS, Loucif KC, Wilson CL. 5-Hydroxytryptamine induced excitation and inhibition in the subthalamic nucleus: action at 5-HT(2C), 5-HT(4) and 5-HT(1A) receptors. Neuropharmacology 2005; 49:1228-34. [PMID: 16229866 DOI: 10.1016/j.neuropharm.2005.09.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Revised: 08/23/2005] [Accepted: 09/02/2005] [Indexed: 10/25/2022]
Abstract
Extracellular single-unit recordings in mouse brain slices were used to determine the effect of exogenously applied 5-HT on STN neurones. Recordings were made from 74 STN cells which fired action potentials at a regular rate of 7.19+/-0.5 Hz. In 61 cells (82%), 5-HT application increased STN neurone firing rate (10 microM, 180+/-16.8%, n=35) with an estimated EC(50) of 5.4 microM. The non-specific 5-HT(2) receptor agonist alpha-methyl 5-HT (1-10 microM) mimicked 5-HT induced excitations (15 cells). These excitations were significantly reduced by pre-perfusion with the specific 5-HT(2C) receptor antagonist RS102221 (500 nM, 9 cells) and the 5HT(4) antagonist GR113808 (500 nM, 7 cells). In 6 cells (8%) 5-HT induced biphasic responses where excitation was followed by inhibition, while in 7 cells (9%) inhibition of firing rate was observed alone. Inhibitory responses were reduced by the 5-HT(1A) antagonist WAY100135 (1 microM, 4 cells). No inhibitory responses were observed following alpha-methyl 5-HT applications. Both the excitations and inhibitions were unaffected by picrotoxin (50 microM, n=5) and CNQX (10 microM, n=5) indicative of direct postsynaptic effects. Thus, in STN neurones, 5-HT elicits two distinct effects, at times on the same neurone, the first being an excitation which is mediated by 5-HT(2C) and 5-HT(4) receptors and the second an inhibition which is mediated by 5-HT(1A) receptors.
Collapse
Affiliation(s)
- I M Stanford
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| | | | | | | | | |
Collapse
|
19
|
Xiang Z, Wang L, Kitai ST. Modulation of spontaneous firing in rat subthalamic neurons by 5-HT receptor subtypes. J Neurophysiol 2005; 93:1145-57. [PMID: 15738272 DOI: 10.1152/jn.00561.2004] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The subthalamic nucleus (STN) is considered to be one of the driving forces in the basal ganglia circuit. The STN is innervated by serotonergic afferents from the raphe nucleus and expresses a variety of 5-HT receptor subtypes. We investigated the effects of 5-HT and 5-HT receptor subtype agonists and antagonists on the firing properties of STN neurons in rat brain slices. We used cell-attached, perforated-patch, and whole cell recording techniques to detect changes in firing frequency and pattern and electrical membrane properties. Due to the depolarization of membrane potential caused by reduced potassium conductance, 5-HT (10 microM) increased the firing frequency of STN neurons without changing their firing pattern. Cadmium failed to occlude the effect of 5-HT on firing frequency. 5-HT had no effect on afterhyperpolarization current. These results indicated that the 5-HT action was not mediated by high-voltage-activated calcium channel currents and calcium-dependent potassium currents. 5-HT had no effect on hyperpolarization-activated cation current (I(H)) amplitude and voltage-dependence of I(H) activation, suggesting that I(H) was not involved in 5-HT-induced excitation. The increased firing by 5-HT was mimicked by 5-HT(2/4) receptor agonist alpha-methyl-5-HT and was partially mimicked by 5-HT2 receptor agonist DOI or 5-HT4 receptor agonist cisapride. The 5-HT action was partially reversed by 5-HT4 receptor antagonist SB 23597-190, 5-HT2 receptor antagonist ketanserin, and 5-HT2C receptor antagonist RS 102221. Our data indicate that 5-HT has significant ability to modulate membrane excitability in STN neurons; modulation is accomplished by decreasing potassium conductance by activating 5-HT4 and 5-HT2C receptors.
Collapse
Affiliation(s)
- Zixiu Xiang
- Deptartment of Neurosurgery, University of Tennessee, Neuroscience Institute, Health Science Center, 847 Monroe Ave., Johnson Bldg., Rm. 427, Memphis, TN 38163, USA.
| | | | | |
Collapse
|
20
|
|
21
|
Belforte JE, Pazo JH. Turning behaviour induced by stimulation of the 5-HT receptors in the subthalamic nucleus. Eur J Neurosci 2004; 19:346-55. [PMID: 14725629 DOI: 10.1111/j.0953-816x.2003.03125.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The basal ganglia, which receive a rich serotonergic innervation, have been implicated in hyperkinetic and hypokinetic disorders. Moreover, a decrease in subthalamic nucleus (STN) activity has been associated with motor hyperactivity. To address the role of subthalamic serotonergic innervation in its motor function, turning behaviour was studied in rats with stimulation of the subthalamic serotonin (5-HT) receptors by intracerebral microinjections. The intrasubthalamic administration of 5-HT induced dose-dependent contralateral turning behaviour, with a maximal effect at a dose of 2.5 microg in 0.2 microL. Similar results were observed with microinjections of other 5-HT receptor agonists: quipazine (a 5-HT2B/C/3 agonist), MK-212 (a 5-HT2B/C agonist) and m-chlorophenylbiguanidine (a 5-HT3 agonist), while microinjections of 5-HT into the zona incerta or in the previously lesioned STN were ineffective. The effect of 5-HT was blocked by coadministration of the antagonist mianserin. Stimulation of subthalamic 5-HT receptors in animals bearing a lesion of the nigrostriatal pathway did not modify the motor response, which indicates that the dopamine innervation of the nucleus is not involved in this effect. Kainic acid lesion of the substantia nigra pars reticulata (SNr) suppressed the contralateral rotations elicited by stimulation of 5-HT2B/C/3 subthalamic receptors. This suggests a role of the subthalamic-nigral pathway in the turning activity. Furthermore, the partial blockade of glutamatergic receptors in the SNr by the antagonist DNQX increased the contralateral circling elicited by stimulation of 5-HT receptors in the STN. We concluded that the activation of the 5-HT2B/C and 5-HT3 subthalamic receptors elicited contralateral turning behaviour, probably via the subthalamic-nigral pathway.
Collapse
Affiliation(s)
- J E Belforte
- Laboratorio de Neurofisiología, Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires. Paraguay 2155, Buenos Aires 1121, Argentina
| | | |
Collapse
|
22
|
Arcos D, Sierra A, Nuñez A, Flores G, Aceves J, Arias-Montaño JA. Noradrenaline increases the firing rate of a subpopulation of rat subthalamic neurones through the activation of α1-adrenoceptors. Neuropharmacology 2003; 45:1070-9. [PMID: 14614950 DOI: 10.1016/s0028-3908(03)00315-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In the rat subthalamic nucleus, which plays a critical role in the control of motor behaviour, specific binding of [3H]-prazosin was detected by radioligand binding to homogenates and by autoradiography in slices. [3H]-Prazosin binding to homogenates (Bmax 71 +/- 5 fmol/mg protein; Kd 0.27 +/- 0.05 nM) was competed for by alpha1-antagonists. In subthalamic nucleus slices and in the presence of 10 mM LiCl, noradrenaline (100 microM) produced a modest, but consistent, stimulation of [3H]-inositol phosphate accumulation (146 +/- 6% of basal), reversed by the alpha1-antagonist prazosin (1 microM). Extracellular single-unit recordings in slices showed that in a subpopulation (61 out of 94 cells) of rat subthalamic neurones with regular, single-spike firing pattern, noradrenaline induced a concentration-dependent increase in the firing rate (EC50 2.5 +/- 0.2 microM, maximum effect 272 +/- 33% of basal). The action of noradrenaline was mimicked by the selective alpha1-agonist phenylephrine but not by selective alpha2- or beta-agonists, and was blocked by the alpha1-antagonist prazosin but not by alpha2- or beta-antagonists. The excitatory effect of noradrenaline was not prevented by perfusion with low Ca2+/high Mg2+ solution. In four out of 11 neurones perfusion with 3 microM noradrenaline resulted in a shift from bursting to regular firing. Taken together, our results indicate that rat subthalamic neurones express alpha1-adrenoceptors responsible for noradrenaline-induced stimulation of the firing rate of a subpopulation of neurones. By modulating the spontaneous activity of STN neurones, noradrenergic pathways might have a significant role in regulating basal ganglia function and thus motor activity.
Collapse
Affiliation(s)
- Demetrio Arcos
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados (Cinvestav), Mexico, DF, Mexico
| | | | | | | | | | | |
Collapse
|
23
|
Tofighy A, Abbott A, Centonze D, Cooper AJ, Noor E, Pearce SM, Puntis M, Stanford IM, Wigmore MA, Lacey MG. Excitation by dopamine of rat subthalamic nucleus neurones in vitro-a direct action with unconventional pharmacology. Neuroscience 2003; 116:157-66. [PMID: 12535949 DOI: 10.1016/s0306-4522(02)00546-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Recent anatomical and physiological studies have pointed to a functional innervation of the subthalamic nucleus by dopamine. This nucleus has a pivotal role in basal ganglia function and voluntary movement control and the possibility that dopamine, and dopaminergic medication used in Parkinson's disease, might directly influence its activity is of considerable interest. We have evaluated electrophysiologically the action and pharmacology of dopamine on single subthalamic neurones in rat brain slices. Dopamine increased firing rate to up to a mean of 60% in 98% of the 261 neurones tested when examined using extracellular single-unit recording. This excitation was unaffected by the GABA antagonist picrotoxin, and the glutamate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione, and persisted in a low Ca(2+)/raised Mg(2+) solution, indicative of a direct action, independent of synaptic transmission. Of the 33 cells examined using whole patch-clamp recording, only 13 showed measurable increases in firing rate and/or depolarisations in response to dopamine. Dopamine-responsive cells displayed significantly greater access resistance, suggesting that an unidentified cytoplamic constituent, removed by whole-cell dialysis, was required for the response. Using extracellular recording, the D2-like dopamine receptor agonists quinpirole and bromocryptine, but not the D1-like receptor agonist 1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,8-diol, also consistently caused an excitation. This was mimicked by the catecholamine releaser amphetamine in 60% of cells tested. However, the dopamine excitation was not significantly reduced either by the D1-like receptor antagonist 7-chloro8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine or the D2-like receptor antagonists (-)-sulpiride, eticlopride and (+)-butaclamol, and the quinpirole excitation was also unaffected by (-)-sulpiride. In contrast, (-)-sulpiride, eticlopride and (+)-butaclamol all abolished the D2-like receptor-mediated inhibition by dopamine of substantia nigra pars compacta neurones. The alpha-adrenoceptor antagonist phentolamine was a weak antagonist of dopamine excitations, but not of those caused by quinpirole. Dopamine excitations also showed weak sensitivity to the 5-HT(2) antagonist ritanserin, but were unaffected by the alpha(1)-adrenoceptor antagonist prazocin and the beta-adrenoceptor antagonist propranolol. The pharmacology of this dopamine excitation is inconsistent with an action on any known catecholamine receptor. However, the effect of amphetamine indicates that an unidentified monamine--possibly dopamine--can be released within the subthalamic nucleus to cause an excitation. The anomalies of its pharmacological characterisation do not strongly support a physiologically relevant direct action of dopamine in the rat subthalamic nucleus.
Collapse
Affiliation(s)
- A Tofighy
- Department of Pharmacology, Division of Neuroscience, The Medical School, University of Birmingham, Vincent Drive, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Martinez-Price DL, Geyer MA. Subthalamic 5-HT(1A) and 5-HT(1B) receptor modulation of RU 24969-induced behavioral profile in rats. Pharmacol Biochem Behav 2002; 71:569-80. [PMID: 11888548 DOI: 10.1016/s0091-3057(01)00704-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The effects of systemic administration of the serotonin (5-HT)(1A/1B) agonist 5-methoxy-3-(1,2,3,6-tetrahydropyridin-4-yl)1H-indole (RU 24969) on locomotor and investigatory behavior in rats have been well characterized using the behavioral pattern monitor (BPM). To elucidate the neural circuitry underlying this behavioral profile, intracerebral dose--response studies were conducted at two sites with high densities of 5-HT(1B) receptors, the subthalamic nucleus (STN) and substantia nigra. Infusion of RU 24969 into the STN produced systemic RU 24969-like changes in locomotor activity and patterns but an uncharacteristic increase in investigatory holepokes. Intra-STN administration of the selective 5-HT(1A) receptor agonist 8-hydroxy-2-(di-N-propylamino)tetralin (8-OH-DPAT) produced RU 24969-like changes in locomotor patterns only, while the 5-HT(1B) receptor agonist 3(1,2,5,6-tetrahydropyrid-4-yl)pyrrolo[3,2-b]pyrid-5-one dihydrochloride (CP-93,129) increased locomotor activity, produced no change in locomotor patterns and nonsignificantly increased holepokes. Intranigral infusion of RU 24969 produced systemic and intra-STN RU 24969-like increases in locomotor activity. Intranigral RU 24969, however, failed to produce any changes in locomotor patterns or investigatory holepokes. Intranigral infusions of CP-93,129 or 8-OH-DPAT had no effects on locomotor activity, locomotor patterns or investigatory holepokes. These results provide evidence for multiple-site mediation of the locomotor-activating effects of RU 24969 and for a dissociation of the neural substrates underlying locomotor and investigatory components of the RU 24969-induced behavioral profile.
Collapse
Affiliation(s)
- Diana L Martinez-Price
- Graduate Program in Neuroscience and Department of Psychiatry-0804, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0804, USA
| | | |
Collapse
|
25
|
Bevan MD, Magill PJ, Hallworth NE, Bolam JP, Wilson CJ. Regulation of the timing and pattern of action potential generation in rat subthalamic neurons in vitro by GABA-A IPSPs. J Neurophysiol 2002; 87:1348-62. [PMID: 11877509 DOI: 10.1152/jn.00582.2001] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The regulation of activity in the subthalamic nucleus (STN) by GABAergic inhibition from the reciprocally connected globus pallidus (GP) plays an important role in normal movement and disorders of movement. To determine the precise manner in which GABAergic synaptic input, acting at A-type receptors, influences the firing of STN neurons, we recorded the response of STN neurons to GABA-A inhibitory postsynaptic potentials (IPSPs) that were evoked by supramaximal electrical stimulation of the internal capsule using the perforated-patch technique in slices at 37 degrees C. The mean equilibrium potential of the GABA-A IPSP (EGABA-A IPSP) was -79.4 +/- 7.0 mV. Single IPSPs disrupted the spontaneous oscillation that underlies rhythmic single-spike firing in STN neurons. As the magnitude of IPSPs increased, the effectiveness of prolonging the interspike interval was related more strongly to the phase of the oscillation at which the IPSP was evoked. Thus the largest IPSPs tended to reset the oscillatory cycle, whereas the smallest IPSPs tended to produce relatively phase-independent delays in firing. Multiple IPSPs were evoked at various frequencies and over different periods and their impact was studied on STN neurons held at different levels of polarization. Multiple IPSPs reduced and/or prevented action potential generation and/or produced sufficient hyperpolarization to activate a rebound depolarization, which generated a single spike or restored rhythmic spiking and/or generated a burst of activity. The pattern of IPSPs and the level of polarization of STN neurons were critical in determining the nature of the response. The duration of bursts varied from 20 ms to several hundred milliseconds, depending on the intrinsic rebound properties of the postsynaptic neuron. These data demonstrate that inhibitory input from the GP can produce a range of firing patterns in STN neurons, depending on the number and frequencies of IPSPs and the membrane properties and voltage of the postsynaptic neuron.
Collapse
Affiliation(s)
- M D Bevan
- Department of Anatomy and Neurobiology, University of Tennessee, Rm. 515 Link, 855 Monroe Avenue, Memphis, TN 38163, USA.
| | | | | | | | | |
Collapse
|
26
|
Abbott A, Wigmore MA, Lacey MG. Excitation of rat subthalamic nucleus neurones in vitro by activation of a group I metabotropic glutamate receptor. Brain Res 1997; 766:162-7. [PMID: 9359599 DOI: 10.1016/s0006-8993(97)00550-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The subthalamic nucleus (SThN) provides a glutamate mediated excitatory drive to several other component nuclei of the basal ganglia, thereby significantly influencing locomotion and control of voluntary movement. We have characterised functionally the metabotropic glutamate (mGlu) receptors in the SThN using extracellular single unit recording from rat midbrain slices. SThN neurones fired action potentials spontaneously at a rate of 10 Hz which was increased by the group I/II mGlu receptor agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylate (1S,3 R-ACPD; 1-30 microM) and the group I selective agonist (S, R)-dihydroxyphenylglycine (DHPG; 1-30 microM). However, both the group II selective agonist (1S,1'R,2'R,3'R)-2-(2,3-dicarboxycyclopropyl)glycine (DCG-IV; 1 microM) and the group III selective agonist (S)-2-amino-4-phosphonobutanoic acid (L-AP4; 10 microM) were without effect, indicating that the excitation was mediated by a group I mGlu receptor. The excitation caused by DHPG (3 microM) was reversed by co-application of the mGlu receptor antagonist (+)-alpha-methyl-4-carboxyphenylglycine (MCPG; 500 microM). Thus a group I mGlu receptor mediates excitation of SThN neurones, and suggests a use for group I mGlu receptor ligands for treatment of both hypo- and hyperkinetic disorders of basal ganglia origin, such as Parkinson's disease and Huntington's disease.
Collapse
Affiliation(s)
- A Abbott
- Department of Pharmacology, The Medical School, University of Birmingham, Edgbaston, UK
| | | | | |
Collapse
|
27
|
Flores G, Hernandez S, Rosales MG, Sierra A, Martines-Fong D, Flores-Hernandez J, Aceves J. M3 muscarinic receptors mediate cholinergic excitation of the spontaneous activity of subthalamic neurons in the rat. Neurosci Lett 1996; 203:203-6. [PMID: 8742028 DOI: 10.1016/0304-3940(95)12297-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The effect of the muscarinic antagonist on carbachol-induced increase in spontaneous activity of neurons of the subthalamic nucleus was examined by recording the extracellular unitary activity in an in vitro slice preparation. Carbachol produced (98% of the 263 neurons tested) an increase (twofold of the basal at 500 nM) of the discharge frequency. The EC50 for the carbachol-induced effect was 375 +/- 8.7 nM (mean +/- SEM). The response was blocked by muscarinic antagonists in a dose dependent manner. However, the IC50 (94 +/- 3 nM) for the M3 antagonist 4-diphenyl acetoxy-N-methyl piperidine methobromide (4-DAMP) was considerably less than the other muscarinic antagonists (M1 antagonist pirenzepine, IC50 1340 +/- 110 nM; M2 antagonist AF-DX-116, IC50 6780 +/- 690 nM). These results suggest that the cholinergic input to the rat subthalamic nucleus exerts a postsynaptic excitatory action and this effect is likely mediated via muscarinic receptor type 3.
Collapse
Affiliation(s)
- G Flores
- Departamento de Fisiologia, Instituto Politecnico Nacional, Mexico
| | | | | | | | | | | | | |
Collapse
|