1
|
Goldstein DS, Kopin IJ. Linking Stress, Catecholamine Autotoxicity, and Allostatic Load with Neurodegenerative Diseases: A Focused Review in Memory of Richard Kvetnansky. Cell Mol Neurobiol 2018; 38:13-24. [PMID: 28488009 PMCID: PMC5680155 DOI: 10.1007/s10571-017-0497-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 04/27/2017] [Indexed: 12/21/2022]
Abstract
In this Focused Review, we provide an update about evolving concepts that may link chronic stress and catecholamine autotoxicity with neurodegenerative diseases such as Parkinson's disease. Richard Kvetnansky's contributions to the field of stress and catecholamine systems inspired some of the ideas presented here. We propose that coordination of catecholaminergic systems mediates adjustments maintaining health and that senescence-related disintegration of these systems leads to disorders of regulation and to neurodegenerative diseases such as Parkinson's disease. Chronically repeated episodes of stress-related catecholamine release and reuptake, with attendant increases in formation of the toxic dopamine metabolite 3,4-dihydroxyphenylacetaldehyde, might accelerate this process.
Collapse
Affiliation(s)
- David S Goldstein
- Clinical Neurocardiology Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 9000 Rockville Pike MSC-1620, Building 10 Room 5N220, Bethesda, MD, 20892-1620, USA.
| | - Irwin J Kopin
- Clinical Neurocardiology Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 9000 Rockville Pike MSC-1620, Building 10 Room 5N220, Bethesda, MD, 20892-1620, USA
| |
Collapse
|
2
|
Spasojevic N, Jovanovic P, Stanisavljevic D, Stefanovic B, Dronjak S. Hypothalamic noradrenaline synthesis, uptake and storage in rats during adaptation to long-term individual housing. NEUROCHEM J+ 2013. [DOI: 10.1134/s1819712413020050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Abstract
The norepinephrine transporter (NET) terminates noradrenergic signalling by rapid re-uptake of neuronally released norepinephrine (NE) into presynaptic terminals. NET exerts a fine regulated control over NE-mediated behavioural and physiological effects including mood, depression, feeding behaviour, cognition, regulation of blood pressure and heart rate. NET is a target of several drugs which are therapeutically used in the treatment or diagnosis of disorders among which depression, attention-deficit hyperactivity disorder and feeding disturbances are the most common. Individual genetic variations in the gene encoding the human NET (hNET), located at chromosome 16q12.2, may contribute to the pathogenesis of those diseases. An increasing number of studies concerning the identification of single nucleotide polymorphisms in the hNET gene and their potential association with disease as well as the functional investigation of naturally occurring or induced amino acid variations in hNET have contributed to a better understanding of NET function, regulation and genetic contribution to disorders. This review will reflect the current knowledge in the field of NET from its initial discovery until now.
Collapse
Affiliation(s)
- H Bönisch
- Department of Pharmacology and Toxicology, University of Bonn, Reuterstr. 2b, 53115 Bonn, Germany.
| | | |
Collapse
|
4
|
Abstract
This study assessed whether painful diabetic neuropathy is associated with abnormal sympathetic nervous function in the affected limbs. Nine patients with diabetes (four men, five women; age 61 +/- 7 years) and painful peripheral neuropathy of the feet, but without evidence of generalized autonomic neuropathy, underwent intravenous infusion of tritiated norepinephrine (NE) and sampling of arterial and venous blood in both feet and in one arm to quantify the rate of entry of NE into the local venous plasma (NE spillover). In the same patients, positron emission tomography (PET) scanning after intravenous injection of the sympathoneural imaging agent 6-[(18)F]fluorodopamine was used to visualize sympathetic innervation and after intravenous [(13)N]ammonia to visualize local perfusion. The results were compared with those in the feet of normal volunteers and in an unaffected foot of patients with unilateral complex regional pain syndrome (CRPS). In addition, neurochemical results obtained in painful diabetic neuropathy were compared with those obtained in diabetic control patients with painless neuropathy and diabetic control patients without neuropathy. Local arteriovenous difference in plasma NE levels (DeltaNE(AV)) and NE spillover in the arms did not differ across the groups. However, DeltaNE(AV) in the feet was significantly less in the group with painful diabetic neuropathy than in the control groups. Also NE spillover in the feet tended to be lower in painful neuropathy. DeltaNE(AV) of diabetic control patients without neuropathy (n = 6) resembled values in the control groups without diabetes, whereas patients with painless diabetic neuropathy (n = 6) had evidence suggesting partial loss of sympathetic innervation. PET scanning revealed decreased flow-corrected 6-[(18)F]fluorodopamine-derived radioactivity in patients with painful diabetic neuropathy, compared with values in normal volunteers and patients with CRPS. The results provide neurochemical and neuroimaging evidence for regionally selective sympathetic denervation in the painful feet of patients with diabetic neuropathy.
Collapse
Affiliation(s)
- Cees J Tack
- Division of General Internal Medicine, University Medical Center Nijmegen, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
5
|
Koed K, Linnet K. Opposing changes in serotonin and norepinephrine transporter mRNA levels after serotonin depletion. Eur Neuropsychopharmacol 2000; 10:501-9. [PMID: 11115741 DOI: 10.1016/s0924-977x(00)00121-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We and others have earlier shown that severe serotonin depletion leads to a compensatory down-regulation in the expression of the serotonin transporter (5HTT) gene. We have now investigated the expression of both the 5HTT and the norepinephrine transporter (NET) gene to assess the possible interaction between the noradrenergic and the serotonergic neurotransmitter systems. Acute severe serotonin depletion induced by p-chlorophenylalanine (PCPA) treatment leads to enhanced NET(Long) mRNA levels and reduced 5HTT mRNA level. This change in transporter mRNA expression was paralleled by a non-significant change in protein expression. Chronic severe serotonin depletion combined with treatment with the antidepressant imipramine leads to enhanced NET(Long) mRNA levels. Acute treatment with the monoamine oxidase A inhibitor clorgyline, acute moderate NE reduction (alpha-methyl-p-tyrosine treatment) or less severe depletion for 3 weeks have no effect on the gene expression of the transporters. Taken together, the present data demonstrate that the NET gene expression is enhanced in case of severe serotonin depletion.
Collapse
Affiliation(s)
- K Koed
- Institute for Basic Research in Psychiatry, Department of Biological Psychiatry, Psychiatric Hospital in Aarhus, The Aarhus University Hospital, Skovagervej 2, DK-8240, Risskov, Denmark.
| | | |
Collapse
|
6
|
Habecker BA, Klein MG, Cox BC, Packard BA. Norepinephrine transporter expression in cholinergic sympathetic neurons: differential regulation of membrane and vesicular transporters. Dev Biol 2000; 220:85-96. [PMID: 10720433 DOI: 10.1006/dbio.2000.9631] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sympathetic neurons that undergo a noradrenergic to cholinergic change in phenotype provide a useful model system to examine the developmental regulation of proteins required to synthesize, store, or remove a particular neurotransmitter. This type of change occurs in the sympathetic sweat gland innervation during development and can be induced in cultured sympathetic neurons by extracts of sweat gland-containing footpads or by leukemia inhibitory factor. Sympathetic neurons initially produce norepinephrine (NE) and contain the vesicular monoamine transporter 2 (VMAT2), which packages NE into vesicles, and the norepinephrine transporter (NET), which removes NE from the synaptic cleft to terminate signaling. We have used a variety of biochemical and molecular techniques to test whether VMAT2 and NET levels decrease in sympathetic neurons which stop producing NE and make acetylcholine. In cultured sympathetic neurons, NET protein and mRNA decreased during the switch to a cholinergic phenotype but VMAT2 mRNA and protein did not decline. NET immunoreactivity disappeared from the developing sweat gland innervation in vivo as it acquired cholinergic properties. Surprisingly, NET simultaneously appeared in sweat gland myoepithelial cells. The presence of NET in myoepithelial cells did not require sympathetic innervation. VMAT2 levels did not decrease as the sweat gland innervation became cholinergic, indicating that NE synthesis and vesicular packaging are not coupled in this system. Thus, production of NE and the transporters required for noradrenergic transmission are not coordinately regulated during cholinergic development.
Collapse
Affiliation(s)
- B A Habecker
- Department of Physiology and Pharmacology, Oregon Health Sciences University, Portland, Oregon 97201-3098, USA.
| | | | | | | |
Collapse
|
7
|
Kim CH, Kim HS, Cubells JF, Kim KS. A previously undescribed intron and extensive 5' upstream sequence, but not Phox2a-mediated transactivation, are necessary for high level cell type-specific expression of the human norepinephrine transporter gene. J Biol Chem 1999; 274:6507-18. [PMID: 10037744 DOI: 10.1074/jbc.274.10.6507] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The synaptic action of norepinephrine is terminated by NaCl-dependent uptake into presynaptic noradrenergic nerve endings, mediated by the norepinephrine transporter (NET). NET is expressed only in neuronal tissues that synthesize and secrete norepinephrine and in most cases is co-expressed with the norepinephrine-synthetic enzyme dopamine beta-hydroxylase (DBH). To understand the molecular mechanisms regulating human NET (hNET) gene expression, we isolated and characterized an hNET genomic clone encompassing approximately 9. 5 kilobase pairs of the 5' upstream promoter region. Here we demonstrate that the hNET gene contains an as-yet-unidentified intron of 476 base pairs within the 5'-untranslated region. Furthermore, both primer extension and 5'-rapid amplification of cDNA ends analyses identified multiple transcription start sites from mRNAs expressed only in NET-expressing cell lines. The start sites clustered in two subdomains, each preceded by a TATA-like sequence motif. As expected for mature mRNAs, transcripts from most of these sites each contained an additional G residue at the 5' position. Together, the data strongly support the authenticity of these sites as the transcriptional start sites of hNET. We assembled hNET-chloramphenicol acetyltransferase reporter constructs containing different lengths of hNET 5' sequence in the presence or the absence of the first intron. Transient transfection assays indicated that the combination of the 5' upstream sequence and the first intron supported the highest level of noradrenergic cell-specific transcription. Forced expression of the paired-like homeodomain transcription factor Phox2a did not affect hNET promoter activity in NET-negative cell lines, in marked contrast to its effect on a DBH-chloramphenicol acetyltransferase reporter construct. Together with our previous studies suggesting a critical role of Phox2a for noradrenergic-specific expression of the DBH gene, these data support a model in which distinct, or partially distinct, molecular mechanisms regulate cell-specific expression of the NET and DBH genes.
Collapse
Affiliation(s)
- C H Kim
- Department of Neurology and Department of Anatomy and Neurobiology, University of Tennessee College of Medicine, Memphis, Tennessee 38163, USA
| | | | | | | |
Collapse
|
8
|
King VL, Dwoskin LP, Cassis LA. Cold exposure regulates the norepinephrine uptake transporter in rat brown adipose tissue. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:R143-51. [PMID: 9887188 DOI: 10.1152/ajpregu.1999.276.1.r143] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The neuronal uptake of norepinephrine (NE) in sympathetically innervated tissues is mediated by a high-affinity NE uptake transporter (NET). Rat interscapular brown adipose tissue (ISBAT) is densely innervated by the sympathetic nervous system for the control of cold- and diet-induced thermogenesis. To determine if cold exposure regulates the NET, kinetic parameters for [3H]NE uptake and [3H]nisoxetine (Nis) binding were determined in ISBAT from 7-day cold-exposed (CE) and control rats. Uptake of [3H]NE in ISBAT slices was of high affinity (1.6 microM). After 7 days of cold exposure the affinity for [3H]NE uptake was not altered; however, the uptake capacity was decreased (38%) in ISBAT slices from CE rats. Kinetic parameters for [3H]Nis binding demonstrated a single high-affinity site in ISBAT from CE and control rats with similar affinity. The density of [3H]Nis sites in ISBAT was decreased (38%) following cold exposure. A time course (2 h-7 days) for cold exposure demonstrated downregulation of [3H]Nis binding density by day 3, which remained through day 7. The affinity for [3H]Nis binding was transiently decreased at 2 h of cold exposure. Similarly, ISBAT NE content was decreased at 2 h of cold exposure. Pair feeding CE rats to food intake of controls normalized plasma NE content; however, [3H]Nis binding density in ISBAT remained decreased in pair-fed rats. These results demonstrate that the ISBAT NET is downregulated following cold exposure. Reductions in ISBAT NE content precede alterations in NET density; however, plasma NE content is not related to regulation of the NET.
Collapse
Affiliation(s)
- V L King
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536-0082, USA
| | | | | |
Collapse
|
9
|
Abstract
The first and rate-limiting enzyme in tetrahydrobiopterin (BH4) biosynthesis is GTP cyclohydrolase (GTPCH). BH4 serves as the essential cofactor for aromatic L-amino acid hydroxylases, such as tyrosine hydroxylase (TH) and tryptophan hydroxylase (TPH), as well as for nitric oxide synthase (NOS). We hypothesized that to provide access to the cofactor, a close association exists between BH4-synthesizing and BH4-dependent enzymes, and we determined the relationship among GTPCH, neuronal NOS (nNOS), and TH in rat brain and adrenal gland using immunohistochemistry and in situ hybridization. Analyses of adjacent sections revealed specific localization of GTPCH in TH-containing cells of the substantia nigra, ventral tegmental area, hypothalamus, locus ceruleus, and adrenal medulla, and also in TPH-containing cells of the dorsal raphe nucleus and pineal gland. Thus, BH4 can be synthesized in all monoaminergic cells and is readily available for the enzymes requiring it. In contrast, analysis of adjacent sections showed that nNOS was not colocalized with GTPCH. Scattered nNOS-positive cells were found in the cortex, striatum, cerebellum, and olfactory bulb, all areas that receive monoaminergic innervation. The absence of GTPCH in nNOS cells suggests that nitric oxide-producing cells may either obtain biopterin from monoamine-containing processes which terminate in close proximity, or take up biopterin released into the blood. Double labelling of the same section for TH and nNOS revealed the TH nerve terminals connecting with the nNOS-positive cell bodies, suggesting the possibility that the BH4-containing nerve terminals may directly donate this cofactor to the nNOS-containing cells.
Collapse
Affiliation(s)
- O Hwang
- Department of Neuroscience, Cornell University Medical College at the Burke Medical Research Institute, White Plains, New York 10605, USA
| | | | | | | |
Collapse
|
10
|
Nyquist-Battie C, Cochran P, Chronwall BM. Differential effects of high salt intake on neuropeptide Y and adrenergic markers in hearts of Dahl rats. Peptides 1998; 19:1377-83. [PMID: 9809652 DOI: 10.1016/s0196-9781(98)00101-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Adrenergic markers and neuropeptide Y (NPY) were examined in Dahl NaCl-sensitive and -resistant outbred male rats, fed either 0.35% or 8% NaCl diets for 8 weeks. The high salt diet caused left ventricular hypertrophy in sensitive rats but not in the resistant strain. Norepinephrine stores were not affected by high salt intake, but tyrosine hydroxylase, and dopamine beta-hydroxylase were elevated in the salt-induced hypertrophied left ventricle in conjunction with increased levels of nerve growth factor and p75 neurotrophin receptor. In contrast, high salt intake reduced ventricular neuropeptide Y in both Dahl salt-resistant and -sensitive rats.
Collapse
Affiliation(s)
- C Nyquist-Battie
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, USA.
| | | | | |
Collapse
|
11
|
Matsuoka I, Kumagai M, Kurihara K. Differential and coordinated regulation of expression of norepinephrine transporter in catecholaminergic cells in culture. Brain Res 1997; 776:181-8. [PMID: 9439811 DOI: 10.1016/s0006-8993(97)01016-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The norepinephrine transporter (NET) terminates noradrenergic neurotransmission at synapse by high-affinity sodium-dependent reuptake into presynaptic terminals, and thus serves as a marker of differentiation of noradrenergic neurons. In the present study, we studied the regulatory mechanism of the expression of NET-mRNA in cultured neurons from newborn rat superior cervical ganglia (SCG) and in clonal rat pheochromocytoma cells (PC12) SCG neurons in culture expressed a high level of NET-mRNA, which was further increased 2.5-5 fold from day 1 to day 13. Treatment of SCG neurons with the cholinergic differentiation factor (CDF)/leukemia inhibitory factor (LIF) and ciliary neurotrophic factor (CNTF), neurokines known to induce the switch from adrenergic to cholinergic phenotype in SCG neurons, led to the suppression of the level of NET-mRNA in a concentration dependent manner, concomitantly with the suppression of mRNA for tyrosine hydroxylase (TH), an adrenergic marker enzyme in cultured SCG neurons. On the other hand, retinoic acid, a compound which is also known to increase the expression of choline acetyltransferase, a cholinergic marker enzyme, and suppress the expression of TH in the cultured SCG neurons and PCI2 cells, rather increased the level of NET-mRNA in these two cell populations. Alterations of the Na(+)-dependent norepinephrine transport activity which paralleled the changes in the NET-mRNA levels were confirmed by the [3H]norepinephrine uptake assay. These results indicate that cell extrinsic factors regulate the expressions of NET and TH genes by a common as well as by distinct mechanisms.
Collapse
Affiliation(s)
- I Matsuoka
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| | | | | |
Collapse
|