1
|
Yakhnitsa V, Thompson J, Ponomareva O, Ji G, Kiritoshi T, Mahimainathan L, Molehin D, Pruitt K, Neugebauer V. Dysfunction of Small-Conductance Ca 2+-Activated Potassium (SK) Channels Drives Amygdala Hyperexcitability and Neuropathic Pain Behaviors: Involvement of Epigenetic Mechanisms. Cells 2024; 13:1055. [PMID: 38920682 PMCID: PMC11201618 DOI: 10.3390/cells13121055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
Neuroplasticity in the amygdala and its central nucleus (CeA) is linked to pain modulation and pain behaviors, but cellular mechanisms are not well understood. Here, we addressed the role of small-conductance Ca2+-activated potassium (SK) channels in pain-related amygdala plasticity. The facilitatory effects of the intra-CeA application of an SK channel blocker (apamin) on the pain behaviors of control rats were lost in a neuropathic pain model, whereas an SK channel activator (NS309) inhibited pain behaviors in neuropathic rats but not in sham controls, suggesting the loss of the inhibitory behavioral effects of amygdala SK channels. Brain slice electrophysiology found hyperexcitability of CeA neurons in the neuropathic pain condition due to the loss of SK channel-mediated medium afterhyperpolarization (mAHP), which was accompanied by decreased SK2 channel protein and mRNA expression, consistent with a pretranscriptional mechanisms. The underlying mechanisms involved the epigenetic silencing of the SK2 gene due to the increased DNA methylation of the CpG island of the SK2 promoter region and the change in methylated CpG sites in the CeA in neuropathic pain. This study identified the epigenetic dysregulation of SK channels in the amygdala (CeA) as a novel mechanism of neuropathic pain-related plasticity and behavior that could be targeted to control abnormally enhanced amygdala activity and chronic neuropathic pain.
Collapse
Affiliation(s)
- Vadim Yakhnitsa
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Jeremy Thompson
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Olga Ponomareva
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Takaki Kiritoshi
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Lenin Mahimainathan
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Deborah Molehin
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Kevin Pruitt
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
2
|
Sharif A, Matsumoto J, Choijiljav C, Badarch A, Setogawa T, Nishijo H, Nishimaru H. Characterization of Ultrasonic Vocalization-Modulated Neurons in Rat Motor Cortex Based on Their Activity Modulation and Axonal Projection to the Periaqueductal Gray. eNeuro 2024; 11:ENEURO.0452-23.2024. [PMID: 38490744 PMCID: PMC10988357 DOI: 10.1523/eneuro.0452-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/13/2023] [Accepted: 01/02/2024] [Indexed: 03/17/2024] Open
Abstract
Vocalization, a means of social communication, is prevalent among many species, including humans. Both rats and mice use ultrasonic vocalizations (USVs) in various social contexts and affective states. The motor cortex is hypothesized to be involved in precisely controlling USVs through connections with critical regions of the brain for vocalization, such as the periaqueductal gray matter (PAG). However, it is unclear how neurons in the motor cortex are modulated during USVs. Moreover, the relationship between USV modulation of neurons and anatomical connections from the motor cortex to PAG is also not clearly understood. In this study, we first characterized the activity patterns of neurons in the primary and secondary motor cortices during emission of USVs in rats using large-scale electrophysiological recordings. We also examined the axonal projection of the motor cortex to PAG using retrograde labeling and identified two clusters of PAG-projecting neurons in the anterior and posterior parts of the motor cortex. The neural activity patterns around the emission of USVs differed between the anterior and posterior regions, which were divided based on the distribution of PAG-projecting neurons in the motor cortex. Furthermore, using optogenetic tagging, we recorded the USV modulation of PAG-projecting neurons in the posterior part of the motor cortex and found that they showed predominantly sustained excitatory responses during USVs. These results contribute to our understanding of the involvement of the motor cortex in the generation of USV at the neuronal and circuit levels.
Collapse
Affiliation(s)
- Aamir Sharif
- Department of System Emotional Science, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Jumpei Matsumoto
- Department of System Emotional Science, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama 930-0194, Japan
| | - Chinzorig Choijiljav
- Department of System Emotional Science, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Amarbayasgalant Badarch
- Department of System Emotional Science, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Tsuyoshi Setogawa
- Department of System Emotional Science, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama 930-0194, Japan
| | - Hisao Nishijo
- Department of System Emotional Science, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama 930-0194, Japan
- Department of Sport and Health Sciences, Faculty of Human Sciences, University of East Asia, Shimonoseki 751-0807, Japan
| | - Hiroshi Nishimaru
- Department of System Emotional Science, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
3
|
Bao L, Rao J, Yu D, Zheng B, Yin B. Decoding the language of fear: Unveiling objective and subjective indicators in rodent models through a systematic review and meta-analysis. Neurosci Biobehav Rev 2024; 157:105537. [PMID: 38215801 DOI: 10.1016/j.neubiorev.2024.105537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/23/2023] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
While rodent models are vital for studying mental disorders, the underestimation of construct validity of fear indicators has led to limitations in translating to effective clinical treatments. Addressing this gap, we systematically reviewed 5054 articles from the 1960 s, understanding underlying theoretical advancement, and selected 68 articles with at least two fear indicators for a three-level meta-analysis. We hypothesized correlations between different indicators would elucidate similar functions, while magnitude differences could reveal distinct neural or behavioral mechanisms. Our findings reveal a shift towards using freezing behavior as the primary fear indicator in rodent models, and strong, moderate, and weak correlations between freezing and conditioned suppression ratios, 22-kHz ultrasonic vocalizations, and autonomic nervous system responses, respectively. Using freezing as a reference, moderator analysis shows treatment types and fear stages significantly influenced differences in magnitudes between two indicators. Our analysis supports a two-system model of fear in rodents, where objective and subjective fears could operate on a threshold-based mechanism.
Collapse
Affiliation(s)
- Lili Bao
- School of Psychology, Fujian Normal University, China; Key Laboratory for Learning and Behavioral Sciences, Fujian Normal University, China
| | - Jiaojiao Rao
- School of Psychology, Fujian Normal University, China; Key Laboratory for Learning and Behavioral Sciences, Fujian Normal University, China
| | - Delin Yu
- School of Psychology, Fujian Normal University, China; Key Laboratory for Learning and Behavioral Sciences, Fujian Normal University, China
| | - Benhuiyuan Zheng
- School of Psychology, Fujian Normal University, China; Key Laboratory for Learning and Behavioral Sciences, Fujian Normal University, China
| | - Bin Yin
- School of Psychology, Fujian Normal University, China; Key Laboratory for Learning and Behavioral Sciences, Fujian Normal University, China.
| |
Collapse
|
4
|
Araya EI, Carvalho EC, Andreatini R, Zamponi GW, Chichorro JG. Trigeminal neuropathic pain causes changes in affective processing of pain in rats. Mol Pain 2022; 18:17448069211057750. [PMID: 35042377 PMCID: PMC8777332 DOI: 10.1177/17448069211057750] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Trigeminal neuropathic pain has been modeled in rodents through the constriction of the
infraorbital nerve (CCI-ION). Sensory alterations, including spontaneous pain, and thermal
and mechanical hyperalgesia are well characterized, but there is a notable lack of
evidence about the affective pain component in this model. Evaluation of the emotional
component of pain in rats has been proposed as a way to optimize potential translational
value of non-clinical studies. In rats, 22 and 50 kHz ultrasonic vocalizations (USVs) are
considered well-established measures of negative and positive emotional states,
respectively. Thus, this study tested the hypothesis that trigeminal neuropathic pain
would result, in addition to the sensory alterations, in a decrease of 50 kHz USV, which
may be related to altered function of brain areas involved in emotional pain processing.
CCI-ION surgery was performed on 60-day-old male Wistar rats. 15 days after surgery, von
Frey filaments were applied to detect mechanical hyperalgesia, and USV was recorded. At
the same timepoint, systemic treatment with d,l-amphetamine (1 mg/kg) allowed
investigation of the involvement of the dopaminergic system in USV emission. Finally,
brain tissue was collected to assess the change in tyrosine hydroxylase (TH) expression in
the nucleus accumbens (NAc) and c-Fos expression in brain areas involved in emotional pain
processing, including the prefrontal cortex (PFC), amygdala, and NAc. The results showed
that CCI-ION rats presented mechanical hyperalgesia and a significant reduction of
environmental-induced 50 kHz USV. Amphetamine caused a marked increase in 50 kHz USV
emission in CCI-ION rats. In addition, TH expression was lower in constricted animals and
c-Fos analysis revealed an increase in neuronal activation. Taken together, these data
indicate that CCI-ION causes a reduction in the emission of environmental-induced
appetitive calls concomitantly with facial mechanical hyperalgesia and that both changes
may be related to a reduction in the mesolimbic dopaminergic activity.
Collapse
Affiliation(s)
- Erika I Araya
- Department of Pharmacology, Biological Sciences Building, 232174Federal University of Parana, Curitiba, Brazil
| | - Eduardo C Carvalho
- Department of Pharmacology, Biological Sciences Building, 232174Federal University of Parana, Curitiba, Brazil
| | - Roberto Andreatini
- Department of Pharmacology, Biological Sciences Building, 232174Federal University of Parana, Curitiba, Brazil
| | - Gerald W Zamponi
- Department of Physiology and Pharmacology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, 70401University of Calgary, Calgary, AB, Canada
| | - Juliana G Chichorro
- Department of Pharmacology, Biological Sciences Building, 232174Federal University of Parana, Curitiba, Brazil
| |
Collapse
|
5
|
Presto P, Ji G, Junell R, Griffin Z, Neugebauer V. Fear Extinction-Based Inter-Individual and Sex Differences in Pain-Related Vocalizations and Anxiety-like Behaviors but Not Nocifensive Reflexes. Brain Sci 2021; 11:brainsci11101339. [PMID: 34679403 PMCID: PMC8533751 DOI: 10.3390/brainsci11101339] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 02/06/2023] Open
Abstract
Inter-individual and sex differences in pain responses are recognized but their mechanisms are not well understood. This study was intended to provide the behavioral framework for analyses of pain mechanisms using fear extinction learning as a predictor of phenotypic and sex differences in sensory (mechanical withdrawal thresholds) and emotional-affective aspects (open field tests for anxiety-like behaviors and audible and ultrasonic components of vocalizations) of acute and chronic pain. In acute arthritis and chronic neuropathic pain models, greater increases in vocalizations were found in females than males and in females with poor fear extinction abilities than females with strong fear extinction, particularly in the neuropathic pain model. Female rats showed higher anxiety-like behavior than males under baseline conditions but no inter-individual or sex differences were seen in the pain models. No inter-individual and sex differences in mechanosensitivity were observed. The data suggest that vocalizations are uniquely suited to detect inter-individual and sex differences in pain models, particularly in chronic neuropathic pain, whereas no such differences were found for mechanosensitivity, and baseline differences in anxiety-like behaviors disappeared in the pain models.
Collapse
Affiliation(s)
- Peyton Presto
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, 3601 4th St, Lubbock, TX 79430-6592, USA; (P.P.); (G.J.); (R.J.); (Z.G.)
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, 3601 4th St, Lubbock, TX 79430-6592, USA; (P.P.); (G.J.); (R.J.); (Z.G.)
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430-6592, USA
| | - Riley Junell
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, 3601 4th St, Lubbock, TX 79430-6592, USA; (P.P.); (G.J.); (R.J.); (Z.G.)
| | - Zach Griffin
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, 3601 4th St, Lubbock, TX 79430-6592, USA; (P.P.); (G.J.); (R.J.); (Z.G.)
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, 3601 4th St, Lubbock, TX 79430-6592, USA; (P.P.); (G.J.); (R.J.); (Z.G.)
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430-6592, USA
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430-6592, USA
- Correspondence: ; Tel.: +1-806-743-3880; Fax: +1-806-732-2744
| |
Collapse
|
6
|
Brudzynski SM. Biological Functions of Rat Ultrasonic Vocalizations, Arousal Mechanisms, and Call Initiation. Brain Sci 2021; 11:brainsci11050605. [PMID: 34065107 PMCID: PMC8150717 DOI: 10.3390/brainsci11050605] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/02/2021] [Accepted: 05/05/2021] [Indexed: 01/21/2023] Open
Abstract
This review summarizes all reported and suspected functions of ultrasonic vocalizations in infant and adult rats. The review leads to the conclusion that all types of ultrasonic vocalizations subserving all functions are vocal expressions of emotional arousal initiated by the activity of the reticular core of the brainstem. The emotional arousal is dichotomic in nature and is initiated by two opposite-in-function ascending reticular systems that are separate from the cognitive reticular activating system. The mesolimbic cholinergic system initiates the aversive state of anxiety with concomitant emission of 22 kHz calls, while the mesolimbic dopaminergic system initiates the appetitive state of hedonia with concomitant emission of 50 kHz vocalizations. These two mutually exclusive arousal systems prepare the animal for two different behavioral outcomes. The transition from broadband infant isolation calls to the well-structured adult types of vocalizations is explained, and the social importance of adult rat vocal communication is emphasized. The association of 22 kHz and 50 kHz vocalizations with aversive and appetitive states, respectively, was utilized in numerous quantitatively measured preclinical models of physiological, psychological, neurological, neuropsychiatric, and neurodevelopmental investigations. The present review should help in understanding and the interpretation of these models in biomedical research.
Collapse
Affiliation(s)
- Stefan M Brudzynski
- Department of Psychology, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
7
|
Audible calls and their ontogenetic relationship with ultrasonic vocalization in a rodent with a wide vocal range, the fat-tailed gerbil (Pachyuromys duprasi). Behav Processes 2020; 180:104241. [DOI: 10.1016/j.beproc.2020.104241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 01/16/2023]
|
8
|
Hernandez-Lallement J, Attah AT, Soyman E, Pinhal CM, Gazzola V, Keysers C. Harm to Others Acts as a Negative Reinforcer in Rats. Curr Biol 2020; 30:949-961.e7. [DOI: 10.1016/j.cub.2020.01.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/11/2019] [Accepted: 01/07/2020] [Indexed: 12/21/2022]
|
9
|
Han Y, Sichterman B, Carrillo M, Gazzola V, Keysers C. Similar levels of emotional contagion in male and female rats. Sci Rep 2020; 10:2763. [PMID: 32066797 PMCID: PMC7026170 DOI: 10.1038/s41598-020-59680-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/31/2020] [Indexed: 12/21/2022] Open
Abstract
Emotional contagion, the ability to feel what other individuals feel without necessarily understanding the feeling or knowing its source, is thought to be an important element of social life. In humans, emotional contagion has been shown to be stronger in women than men. Emotional contagion has been shown to exist also in rodents, and a growing number of studies explore the neural basis of emotional contagion in male rats and mice. Here we explore whether there are sex differences in emotional contagion in rats. We use an established paradigm in which a demonstrator rat receives footshocks while freezing is measured in both the demonstrator and an observer rat. The two rats can hear, smell and see each other. By comparing pairs of male rats with pairs of female rats, we found (i) that female demonstrators froze less when submitted to footshocks, but that (ii) the emotional contagion response, i.e. the degree of influence across the rats, did not depend on the sex of the rats. This was true whether emotional contagion was quantified based on the slope of a regression linking demonstrator and observer average freezing, or on Granger causality estimates of moment-to-moment freezing. The lack of sex differences in emotional contagion is compatible with an interpretation of emotional contagion as serving selfish danger detection.
Collapse
Affiliation(s)
- Yingying Han
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Bo Sichterman
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Maria Carrillo
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Valeria Gazzola
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands.,Department of Psychology, Faculty of Social and Behavioural Sciences, University of Amsterdam (UvA), Amsterdam, The Netherlands
| | - Christian Keysers
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands. .,Department of Psychology, Faculty of Social and Behavioural Sciences, University of Amsterdam (UvA), Amsterdam, The Netherlands.
| |
Collapse
|
10
|
Developing Improved Translational Models of Pain: A Role for the Behavioral Scientist. Perspect Behav Sci 2020; 43:39-55. [PMID: 32440644 DOI: 10.1007/s40614-019-00239-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The effective management of pain is a longstanding public health concern. Although opioids have been frontline analgesics for decades, they also have well-known undesirable effects that limit their clinical utility, such as abuse liability and respiratory depression. The failure to develop better analgesics has, in some ways, contributed to the escalating opioid epidemic that has claimed tens of thousands of lives and has cost hundreds of billions of dollars in health-care expenses. A paradigm shift is needed in the pharmacotherapy of pain management that will require extensive efforts throughout biomedical science. The purpose of the present review is to highlight the critical role of the behavioral scientist to devise improved translational models of pain for drug development. Despite high heterogeneity of painful conditions that involve cortical-dependent pain processing, current models often feature an overreliance on simple reflex-based measures and an emphasis on the absence, rather than presence, of behavior as evidence of analgesic efficacy. Novel approaches should focus on the restoration of operant and other CNS-mediated behavior under painful conditions.
Collapse
|
11
|
Turner PV, Pang DS, Lofgren JL. A Review of Pain Assessment Methods in Laboratory Rodents. Comp Med 2019; 69:451-467. [PMID: 31896391 PMCID: PMC6935698 DOI: 10.30802/aalas-cm-19-000042] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/29/2019] [Accepted: 07/09/2019] [Indexed: 12/22/2022]
Abstract
Ensuring that laboratory rodent pain is well managed underpins the ethical acceptability of working with these animals in research. Appropriate treatment of pain in laboratory rodents requires accurate assessments of the presence or absence of pain to the extent possible. This can be challenging some situations because laboratory rodents are prey species that may show subtle signs of pain. Although a number of standard algesiometry assays have been used to assess evoked pain responses in rodents for many decades, these methods likely represent an oversimplification of pain assessment and many require animal handling during testing, which can result in stress-induced analgesia. More recent pain assessment methods, such as the use of ethograms, facial grimace scoring, burrowing, and nest-building, focus on evaluating changes in spontaneous behaviors or activities of rodents in their home environments. Many of these assessment methods are time-consuming to conduct. While many of these newer tests show promise for providing a more accurate assessment of pain, most require more study to determine their reliability and sensitivity across a broad range of experimental conditions, as well as between species and strains of animals. Regular observation of laboratory rodents before and after painful procedures with consistent use of 2 or more assessment methods is likely to improve pain detection and lead to improved treatment and care-a primary goal for improving overall animal welfare.
Collapse
Affiliation(s)
- Patricia V Turner
- Charles River, Wilmington , Massachusetts Dept of Pathobiology, University of Guelph, Guelph, Canada;,
| | - Daniel Sj Pang
- Dept of Clinical Sciences, Université de Montréal, Quebec, J2S 2M2, Veterinary Clinical and Diagnostic Sciences, University of Calgary, Alberta, Canada
| | | |
Collapse
|
12
|
Jirkof P, Rudeck J, Lewejohann L. Assessing Affective State in Laboratory Rodents to Promote Animal Welfare-What Is the Progress in Applied Refinement Research? Animals (Basel) 2019; 9:E1026. [PMID: 31775293 PMCID: PMC6941082 DOI: 10.3390/ani9121026] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/18/2019] [Accepted: 11/21/2019] [Indexed: 12/21/2022] Open
Abstract
An animal's capacity to suffer is a prerequisite for any animal welfare concern, and the minimization of suffering is a key aim of refinement research. In contrast to the traditional focus on avoiding or reducing negative welfare states, modern animal welfare concepts highlight the importance of promoting positive welfare states in laboratory animals. Reliable assessments of affective states, as well as the knowledge of how to elicit positive affective states, are central to this concept. Important achievements have been made to assess pain and other negative affective states in animals in the last decades, but it is only recently that the neurobiology of positive emotions in humans and animals has been gaining more interest. Thereby, the need for promotion of positive affective states for laboratory animals is gaining more acceptance, and methods allowing the assessment of affective states in animals have been increasingly introduced. In this overview article, we present common and emerging methods to assess affective states in laboratory rodents. We focus on the implementation of these methods into applied refinement research to identify achieved progress as well as the future potential of these tools to improve animal welfare in animal-based research.
Collapse
Affiliation(s)
- Paulin Jirkof
- Department Animal Welfare and 3R, University of Zurich, 8057 Zurich, Switzerland
| | - Juliane Rudeck
- German Federal Institute for Risk Assessment (BfR), German Center for the Protection of Laboratory Animals (Bf3R), 12277 Berlin, Germany; (J.R.); (L.L.)
| | - Lars Lewejohann
- German Federal Institute for Risk Assessment (BfR), German Center for the Protection of Laboratory Animals (Bf3R), 12277 Berlin, Germany; (J.R.); (L.L.)
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie University Berlin, 14163 Berlin, Germany
| |
Collapse
|
13
|
Barroso AR, Araya EI, de Souza CP, Andreatini R, Chichorro JG. Characterization of rat ultrasonic vocalization in the orofacial formalin test: Influence of the social context. Eur Neuropsychopharmacol 2019; 29:1213-1226. [PMID: 31447094 DOI: 10.1016/j.euroneuro.2019.08.298] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/31/2019] [Accepted: 08/12/2019] [Indexed: 12/26/2022]
Abstract
Rats emit ultrasonic vocalizations (USVs) about 22 kHz and 50 kHz sound frequency to communicate the presence of negative or positive emotional states, respectively. The calling behavior may be influenced by several factors, including environmental factors. Likewise, pain behavior can be modulated according to the social context, and also can be transferred to conspecifics through direct observation and/or social interaction. Herein we investigated if acute pain induction was related to changes in emission of aversive and appetitive calls and how different social contexts affected the nociceptive behavior and USVs. Our results demonstrated that orofacial formalin injection in rats induced aversive calls in addition to the nociceptive behavior, and both are reduced by systemic treatment with morphine (2.5 mg/kg). Exposure of formalin-injected rats to cagemates had no effect on the nociceptive behavior or calls emitted by the demonstrator, but the observer showed emotional contagion of pain. In contrast, exposure of formalin-injected rats to non-cagemates decreased the nociceptive behavior of the demonstrator, without affecting the calls emission. The emotional contagion was not detected in non-cagemates or in cagemates separated by a visual barrier. In conclusion, we suggest that familiarity and the visual contact contributes to emotional contagion of pain. USV analysis may represent an additional measure in the evaluation of the emotional aspect of orofacial pain, and for the study of pain modulation.
Collapse
Affiliation(s)
- Amanda Ribeiro Barroso
- Department of Pharmacology, Biological Sciences Building, Federal University of Parana, 100 Cel. Francisco H. dos Santos Ave, Curitiba, PR 81531-980, Brazil
| | - Erika Ivanna Araya
- Department of Pharmacology, Biological Sciences Building, Federal University of Parana, 100 Cel. Francisco H. dos Santos Ave, Curitiba, PR 81531-980, Brazil
| | - Camila Pasquini de Souza
- Department of Pharmacology, Biological Sciences Building, Federal University of Parana, 100 Cel. Francisco H. dos Santos Ave, Curitiba, PR 81531-980, Brazil
| | - Roberto Andreatini
- Department of Pharmacology, Biological Sciences Building, Federal University of Parana, 100 Cel. Francisco H. dos Santos Ave, Curitiba, PR 81531-980, Brazil
| | - Juliana Geremias Chichorro
- Department of Pharmacology, Biological Sciences Building, Federal University of Parana, 100 Cel. Francisco H. dos Santos Ave, Curitiba, PR 81531-980, Brazil.
| |
Collapse
|
14
|
Alemán-Laporte J, Bandini LA, Garcia-Gomes MS, Zanatto DA, Fantoni DT, Amador Pereira MA, Navas-Suárez PE, Kirsten TB, Jimenez RR, Alvarado G, Mori CC. Combination of ketamine and xylazine with opioids and acepromazine in rats: Physiological changes and their analgesic effect analysed by ultrasonic vocalization. Lab Anim 2019; 54:171-182. [PMID: 31142228 DOI: 10.1177/0023677219850211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, the effect of four anaesthetic protocols that included the combination of xylazine (X) and ketamine (K) with acepromazine (A) and opioids (methadone (Me), morphine (Mo) or tramadol (T)) was evaluated in laboratory rats of both sexes. Ultrasonic vocalization (USV) was used as an indicator of pain during the recovery period. The objective was to evaluate the physiological parameters and the analgesic effect of each protocol to determine which protocol was the safest and fulfil the requirements of a balanced anaesthesia. The better protocols were the XKA protocol for both sexes and the XKMe protocol for females because the combinations achieve surgical plane of anaesthesia in rats. However, pain assessment during the formalin test revealed that rats anaesthetized with XKA produced more numbers of USV, suggesting that it is not a good protocol for the control of immediate postoperative pain. All protocols produced depression in body temperature and respiratory and heart rates, and had important effects, such as micturition and maintenance of open eyes. Only rats anaesthetized with XKA protocol did not present piloerection. These results demonstrated that good monitoring and care during anaesthesia must be included to prevent complications that compromise the life of the animal and to ensure a good recovery. The inclusion of analgesia in anaesthesia protocols must be used routinely, ensuring minimal presence of pain and thus more reliable results in the experimental procedures.
Collapse
Affiliation(s)
- Jilma Alemán-Laporte
- Department of Pathology, University of São Paulo, Brazil.,Laboratorio de Docencia en Cirugía y Cáncer (DCLab), University of Costa Rica, Costa Rica
| | | | | | | | | | | | | | | | - Randall R Jimenez
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Germany
| | - Gilbert Alvarado
- Department of Pathology, University of São Paulo, Brazil.,Laboratory of Experimental and Comparative Pathology (LAPECOM), School of Biology, University of Costa Rica, Costa Rica
| | | |
Collapse
|
15
|
|
16
|
Carrillo M, Han Y, Migliorati F, Liu M, Gazzola V, Keysers C. Emotional Mirror Neurons in the Rat's Anterior Cingulate Cortex. Curr Biol 2019; 29:1301-1312.e6. [PMID: 30982647 PMCID: PMC6488290 DOI: 10.1016/j.cub.2019.03.024] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 03/11/2019] [Accepted: 03/14/2019] [Indexed: 11/27/2022]
Abstract
How do the emotions of others affect us? The human anterior cingulate cortex (ACC) responds while experiencing pain in the self and witnessing pain in others, but the underlying cellular mechanisms remain poorly understood. Here we show the rat ACC (area 24) contains neurons responding when a rat experiences pain as triggered by a laser and while witnessing another rat receive footshocks. Most of these neurons do not respond to a fear-conditioned sound (CS). Deactivating this region reduces freezing while witnessing footshocks to others but not while hearing the CS. A decoder trained on spike counts while witnessing footshocks to another rat can decode stimulus intensity both while witnessing pain in another and while experiencing the pain first-hand. Mirror-like neurons thus exist in the ACC that encode the pain of others in a code shared with first-hand pain experience. A smaller population of neurons responded to witnessing footshocks to others and while hearing the CS but not while experiencing laser-triggered pain. These differential responses suggest that the ACC may contain channels that map the distress of another animal onto a mosaic of pain- and fear-sensitive channels in the observer. More experiments are necessary to determine whether painfulness and fearfulness in particular or differences in arousal or salience are responsible for these differential responses.
Collapse
Affiliation(s)
- Maria Carrillo
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Yinging Han
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Filippo Migliorati
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Ming Liu
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Valeria Gazzola
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands; Department of Psychology, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, the Netherlands
| | - Christian Keysers
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands; Department of Psychology, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, the Netherlands.
| |
Collapse
|
17
|
Lenell C, Newkirk B, Johnson AM. Laryngeal Neuromuscular Response to Short- and Long-Term Vocalization Training in Young Male Rats. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2019; 62:247-256. [PMID: 30950702 PMCID: PMC6436889 DOI: 10.1044/2018_jslhr-s-18-0316] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/15/2018] [Accepted: 10/17/2018] [Indexed: 06/09/2023]
Abstract
Purpose Although vocal training is often purported to restore and rebalance laryngeal muscle function, little is known about the direct effects of vocal training on the laryngeal muscles themselves. Consequently, parameters of vocal exercise dose, such as training duration and intensity, have not been well defined. The goal of this study was to use a behavioral animal model to determine the effects of short- and long-term ultrasonic vocalization (USV) training on USV acoustics, thyroarytenoid (TA) muscle neuromuscular junctions (NMJs), and TA muscle fiber size in adult rats. Method Twenty-four young adult male Long-Evans rats were divided into 3 groups (untrained control, 4-week training, and 8-week training). Baseline and posttraining USVs were recorded and acoustically analyzed for fundamental frequency, frequency bandwidth, amplitude, and duration. Presynaptic and postsynaptic NMJ morphological features and muscle fiber size were measured in the TA. Results USV training had no effect on USV acoustics. Eight weeks of USV training, however, resulted in a lower NMJ motor endplate dispersion ratio, consistent with previous findings. USV training did not affect fiber size within the TA muscle. Conclusions This study demonstrated that 8 weeks of USV training can induce peripheral neural adaptations in the NMJ of the TA muscle in young rats. The observed adaptations suggest that vocal training is consistent with endurance-type exercise, but the adaptations occur on a longer time scale than similar adaptations in the limb muscles.
Collapse
Affiliation(s)
- Charles Lenell
- Department of Communicative Sciences and Disorders, New York University, New York
| | - Bethany Newkirk
- Paragon Rehabilitation, Creasy Springs Health Campus, Lafayette, IN
| | - Aaron M. Johnson
- Department of Communicative Sciences and Disorders, New York University, New York
- NYU Voice Center, Department of Otolaryngology–Head and Neck Surgery, New York University School of Medicine, New York
| |
Collapse
|
18
|
22 kHz and 55 kHz ultrasonic vocalizations differentially influence neural and behavioral outcomes: Implications for modeling anxiety via auditory stimuli in the rat. Behav Brain Res 2018; 360:134-145. [PMID: 30521931 DOI: 10.1016/j.bbr.2018.12.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/26/2018] [Accepted: 12/01/2018] [Indexed: 11/20/2022]
Abstract
The communicative role of ultrasonic vocalizations (USVs) in rats is well established, with distinct USVs indicative of different affective states. USVs in the 22 kHz range are typically emitted by adult rats when in anxiety- or fear-provoking situations (e.g. predator odor, social defeat), while 55 kHz range USVs are typically emitted in appetitive situations (e.g., play, anticipation of reward). Previous work indicates that USVs (real-time and playback) can effectively communicate these affective states and influence changes in behavior and neural activity of the receiver. Changes in cFos activation following 22 kHz USVs have been seen in cortical and limbic regions involved in anxiety, including the basolateral amygdala (BLA). However, it is unclear how USV playback influences cFos activity within the bed nucleus of the stria terminalis (BNST), a region also thought to be critical in processing anxiety-related information, and the nucleus accumbens, a region associated with reward. The present work sought to characterize distinct behavioral, physiological, and neural responses in rats presented with aversive (22 kHz) compared to appetitive (55 kHz) USVs or silence. Our findings show that rats exposed to 22 kHz USVs: 1) engage in anxiety-like behaviors in the elevated zero maze, and 2) show distinct patterns of cFos activation within the BLA and BNST that contrast those seen in 55 kHz playback and silence. Specifically, 22 kHz USVs increased cFos density in the anterodorsal nuclei, while 55 kHz playback increased cFos in the oval nucleus of the BNST, without significant changes within the nucleus accumbens. These results provide important groundwork for leveraging ethologically-relevant stimuli in the rat to improve our understanding of anxiety-related responses in both typical and pathological populations.
Collapse
|
19
|
Affiliation(s)
- Jordan Raine
- Mammal Vocal Communication and Cognition Research Group, School of Psychology, University of Sussex, Brighton, UK
| | - Katarzyna Pisanski
- Mammal Vocal Communication and Cognition Research Group, School of Psychology, University of Sussex, Brighton, UK
| | - Julia Simner
- MULTISENSE Research Lab, School of Psychology, University of Sussex, Brighton, UK
| | - David Reby
- Mammal Vocal Communication and Cognition Research Group, School of Psychology, University of Sussex, Brighton, UK
| |
Collapse
|
20
|
Vardigan JD, Houghton AK, Lange HS, Adarayan ED, Pall PS, Ballard JE, Henze DA, Uslaner JM. Pharmacological validation of a novel nonhuman primate measure of thermal responsivity with utility for predicting analgesic effects. J Pain Res 2018; 11:735-741. [PMID: 29692626 PMCID: PMC5903490 DOI: 10.2147/jpr.s152879] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Introduction The development of novel analgesics to treat acute or chronic pain has been a challenge due to a lack of translatable measurements. Preclinical end points with improved translatability are necessary to more accurately inform clinical testing paradigms, which may help guide selection of viable drug candidates. Methods In this study, a nonhuman primate biomarker which is sensitive to standard analgesics at clinically relevant plasma concentrations, can differentiate analgesia from sedation and utilizes a protocol very similar to that which can be employed in human clinical studies is described. Specifically, acute heat stimuli were delivered to the volar forearm using a contact heat thermode in the same manner as the clinical setting. Results Clinically efficacious exposures of morphine, fentanyl, and tramadol produced robust analgesic effects, whereas doses of diazepam that produce sedation had no effect. Conclusion We propose that this assay has predictive utility that can help improve the probability of success for developing novel analgesics.
Collapse
Affiliation(s)
| | | | | | | | - Parul S Pall
- Merck Research Laboratories, West Point, PA, USA
| | | | | | | |
Collapse
|
21
|
Pereira-Figueiredo I, Castellano O, Riolobos AS, Ferreira-Dias G, López DE, Sancho C. Long-Term Sertraline Intake Reverses the Behavioral Changes Induced by Prenatal Stress in Rats in a Sex-Dependent Way. Front Behav Neurosci 2017; 11:99. [PMID: 28611606 PMCID: PMC5446993 DOI: 10.3389/fnbeh.2017.00099] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 05/11/2017] [Indexed: 11/13/2022] Open
Abstract
Early life stress is a major factor underlying the vulnerability to respond to stressful events later in life. The present study attempted to evaluate the role of prenatal stress affecting the development of stress-related disorders and their reversion by postnatal exposure to Sertraline (SERT), a front-line medication for medication for posttraumatic stress disorder (PTSD) in humans. To achieve this, adult male and female prenatally stressed (PS) or unstressed (Controls) offspring rats, following oral chronic treatment with SERT (5 mg/kg/day; from 1 month to 4 months old), or not, were studied prior to and after a traumatic event. First, anxiety-like behavior during the prepulse inhibition (PPI) test, a modulation of the startle reflex, was examined in all animals. Subsequently, the animals were subjected to a session of mild inescapable footshocks (IS; 0.35 mA, 5 s) in a shuttle box that was followed by 4 days of situational reminders in the aversive context. Prior to the footshocks no effects of PS or SERT were shown, and no changes in PPI and the habituation to the shuttle box were found. After them, PS led animals to exhibit behavioral alterations. When compared to the Controls, PS animals of both sexes displayed less rearing activity in the aversive environment. PS males responded less to footshock delivery and, in most of the animals, fear extinction was impaired. Moreover, the early postnatal exposure to SERT lessened the behavioral impact of PS in females, while in males it had no effect. Current results extend previous data from our laboratory, showing that PS heightened vulnerability to stress later on, and that SERT acts differently in males and females.
Collapse
Affiliation(s)
- Inês Pereira-Figueiredo
- Neuroscience Institute of Castilla y León, Institute for Biomedical Research of Salamanca (IBSAL), University of SalamancaSalamanca, Spain
| | - Orlando Castellano
- Neuroscience Institute of Castilla y León, Institute for Biomedical Research of Salamanca (IBSAL), University of SalamancaSalamanca, Spain.,Department of Cell Biology and Pathology, University of SalamancaSalamanca, Spain
| | - Adelaida S Riolobos
- Neuroscience Institute of Castilla y León, Institute for Biomedical Research of Salamanca (IBSAL), University of SalamancaSalamanca, Spain.,Department of Physiology and Pharmacology, University of SalamancaSalamanca, Spain
| | - Graça Ferreira-Dias
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of LisbonLisbon, Portugal
| | - Dolores E López
- Neuroscience Institute of Castilla y León, Institute for Biomedical Research of Salamanca (IBSAL), University of SalamancaSalamanca, Spain.,Department of Cell Biology and Pathology, University of SalamancaSalamanca, Spain
| | - Consuelo Sancho
- Neuroscience Institute of Castilla y León, Institute for Biomedical Research of Salamanca (IBSAL), University of SalamancaSalamanca, Spain.,Department of Physiology and Pharmacology, University of SalamancaSalamanca, Spain
| |
Collapse
|
22
|
Abstract
This chapter provides an introduction to animals that are commonly used for research. It presents information on basic care topics such as biology, behavior, housing, feeding, sexing, and breeding of these animals. The chapter provides some insight into the reasons why these animals are used in research. It also gives an overview of techniques that can be utilized to collect blood or to administer drugs or medicine. Each section concludes with a brief description of how to recognize abnormal signs, in addition to lists of various diseases.
Collapse
|
23
|
Air-puff induced vocalizations: A novel approach to detecting negative affective state following concussion in rats. J Neurosci Methods 2016; 275:45-49. [PMID: 27984100 DOI: 10.1016/j.jneumeth.2016.10.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/27/2016] [Accepted: 10/28/2016] [Indexed: 11/20/2022]
Abstract
BACKGROUND Negative emotional states resulting from concussion are of increasing concern. In the current study, we developed a model to investigate negative affect following concussion in the projectile concussive impact (PCI) model. High frequency ultrasonic vocalizations (22kHz USVs) are associated with negative affective stimuli in rats. Changes in negative affective state were examined following PCI using a mild air-puff stimulus to elicit 22kHz USVs. NEW METHOD Forty-eight hours post-injury, animals were placed into a clean acrylic box lined with bedding. A 5min baseline recording was followed by 15 air puffs (55psi) spaced 15s apart aimed at the upper back and neck. RESULTS Injured animals produced on average 153.5±55.13 more vocalizations than shams, vocalizing on average 4min longer than shams. Additionally, concussed animals vocalized to fewer air-puffs, exhibiting a 1.5 fold lower threshold for the expression of negative affect. COMPARISON WITH EXISTING METHODS Studies currently used to test negative affective states following concussion in animals, such as the elevated plus maze and forced swim task have, as of yet, been unsuccessful in demonstrating injury effects in the PCI model. While the air-puff test has been applied in other fields, to our knowledge it has not been utilized to study traumatic brain injury. CONCLUSION The current study demonstrates that the air-puff vocalization test may be a valuable tool in assessing negative mood states following concussion in rat models and may be used to evaluate novel therapies following brain injury for the treatment of mood dysfunction.
Collapse
|
24
|
Bonasera SJ, Schenk AK, Luxenberg EJ, Wang X, Basbaum A, Tecott LH. Mice Lacking Serotonin 2C Receptors Have increased Affective Responses to Aversive Stimuli. PLoS One 2015; 10:e0142906. [PMID: 26630489 PMCID: PMC4667991 DOI: 10.1371/journal.pone.0142906] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/28/2015] [Indexed: 01/01/2023] Open
Abstract
Although central serotonergic systems are known to influence responses to noxious stimuli, mechanisms underlying serotonergic modulation of pain responses are unclear. We proposed that serotonin 2C receptors (5-HT2CRs), which are expressed within brain regions implicated in sensory and affective responses to pain, contribute to the serotonergic modulation of pain responses. In mice constitutively lacking 5-HT2CRs (2CKO mice) we found normal baseline sensory responses to noxious thermal, mechanical and chemical stimuli. In contrast, 2CKO mice exhibited a selective enhancement of affect-related ultrasonic afterdischarge vocalizations in response to footshock. Enhanced affect-related responses to noxious stimuli were also exhibited by 2CKO mice in a fear-sensitized startle assay. The extent to which a brief series of unconditioned footshocks produced enhancement of acoustic startle responses was markedly increased in 2CKO mice. As mesolimbic dopamine pathways influence affective responses to noxious stimuli, and these pathways are disinhibited in 2CKO mice, we examined the sensitivity of footshock-induced enhancement of startle to dopamine receptor blockade. Systemic administration of the dopamine D2/D3 receptor antagonist raclopride selectively reduced footshock-induced enhancement of startle without influencing baseline acoustic startle responses. We propose that 5-HT2CRs regulate affective behavioral responses to unconditioned aversive stimuli through mechanisms involving the disinhibition of ascending dopaminergic pathways.
Collapse
MESH Headings
- Animals
- Dopamine Antagonists/pharmacology
- Fear/physiology
- Female
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Raclopride/pharmacology
- Receptor, Serotonin, 5-HT2C/physiology
- Receptors, Dopamine D2/chemistry
- Reflex, Startle/drug effects
- Reflex, Startle/physiology
- Ultrasonics
- Vocalization, Animal/drug effects
- Vocalization, Animal/physiology
- Vocalization, Animal/radiation effects
Collapse
Affiliation(s)
- Stephen J. Bonasera
- Division of Geriatrics, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - A. Katrin Schenk
- Department of Psychiatry, University of California San Francisco, San Francisco, California, United States of America
| | - Evan J. Luxenberg
- Division of Geriatrics, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Xidao Wang
- Department of Anatomy, University of California San Francisco, San Francisco, California, United States of America
| | - Allan Basbaum
- Department of Anatomy, University of California San Francisco, San Francisco, California, United States of America
| | - Laurence H. Tecott
- Department of Psychiatry, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
25
|
Construction of an impedimetric immunosensor for label-free detecting carbofuran residual in agricultural and environmental samples. Food Control 2015. [DOI: 10.1016/j.foodcont.2015.01.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
|
27
|
Tappe-Theodor A, Kuner R. Studying ongoing and spontaneous pain in rodents - challenges and opportunities. Eur J Neurosci 2014; 39:1881-90. [DOI: 10.1111/ejn.12643] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 04/30/2014] [Accepted: 04/30/2014] [Indexed: 01/15/2023]
Affiliation(s)
- Anke Tappe-Theodor
- Institute of Pharmacology; Heidelberg University; Im Neuenheimer Feld 366 69120 Heidelberg Germany
| | - Rohini Kuner
- Institute of Pharmacology; Heidelberg University; Im Neuenheimer Feld 366 69120 Heidelberg Germany
| |
Collapse
|
28
|
Shumake J, Furgeson-Moreira S, Monfils MH. Predictability and heritability of individual differences in fear learning. Anim Cogn 2014; 17:1207-21. [PMID: 24791664 PMCID: PMC4138434 DOI: 10.1007/s10071-014-0752-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 04/05/2014] [Accepted: 04/22/2014] [Indexed: 12/22/2022]
Abstract
Our objective was to characterize individual differences in fear conditioning and extinction in an outbred rat strain, to test behavioral predictors of these individual differences, and to assess their heritability. We fear-conditioned 100 Long-Evans rats, attempted to extinguish fear the next day, and tested extinction recall on the third day. The distribution of freezing scores after fear conditioning was skewed, with most rats showing substantial freezing; after fear extinction, the distribution was bimodal with most rats showing minimal freezing, but a substantial portion showing maximal freezing. Longer rearing episodes measured prior to conditioning predicted less freezing at the beginning of extinction, but differences in extinction learning were not predicted by any baseline exploratory behaviors. We tested the heritability of extinction differences by breeding rats from the top and bottom 20 % of freezing scores during extinction recall. We then ran the offspring through the same conditioning/extinction procedure, with the addition of recording ultrasonic vocalizations throughout training and testing. Only a minority of rats emitted distress vocalizations during fear acquisition, but the incidence was less frequent in the offspring of good extinguishers than in poor extinguishers or randomly bred controls. The occurrence of distress vocalizations during acquisition predicted higher levels of freezing during fear recall regardless of breeding line, but the relationship between vocalization and freezing was no longer evident following extinction training, at which point freezing levels were influenced only by breeding and not by vocalization. The heritability (h2) of extinction recall was estimated at 0.36, consistent with human estimates.
Collapse
Affiliation(s)
- Jason Shumake
- Department of Psychology, The University of Texas at Austin, 108 E. Dean Keeton Stop A8000, Austin, TX, 78712-1043, USA,
| | | | | |
Collapse
|
29
|
Whittaker AL, Howarth GS. Use of spontaneous behaviour measures to assess pain in laboratory rats and mice: How are we progressing? Appl Anim Behav Sci 2014. [DOI: 10.1016/j.applanim.2013.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Zhao F, Williams M, Bowlby M, Houghton A, Hargreaves R, Evelhoch J, Williams DS. Qualification of fMRI as a biomarker for pain in anesthetized rats by comparison with behavioral response in conscious rats. Neuroimage 2013; 84:724-32. [PMID: 24064074 DOI: 10.1016/j.neuroimage.2013.09.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 09/07/2013] [Accepted: 09/13/2013] [Indexed: 10/26/2022] Open
Abstract
fMRI can objectively measure pain-related neural activities in humans and animals, providing a valuable tool for studying the mechanisms of nociception and for developing new analgesics. However, due to its extreme sensitivity to subject motion, pain fMRI studies are performed in animals that are immobilized, typically with anesthesia. Since anesthesia could confound the nociceptive processes, it is unknown how well nociceptive-related neural activities measured by fMRI in anesthetized animals correlate with nociceptive behaviors in conscious animals. The threshold to vocalization (VT) in response to an increasing noxious electrical stimulus (NES) was implemented in conscious rats as a behavioral measure of nociception. The antinociceptive effect of systemic (intravenous infusion) lidocaine on NES-induced fMRI signals in anesthetized rats was compared with the corresponding VT in conscious rats. Lidocaine infusion increased VT and suppressed the NES-induced fMRI signals in most activated brain regions. The temporal characteristics of the nociception signal by fMRI and by VT in response to lidocaine infusion were highly correlated with each other, and with the pharmacokinetics (PK) of lidocaine. These results indicate that the fMRI activations in these regions may be used as biomarkers of acute nociception in anesthetized rats. Interestingly, systemic lidocaine had no effect on NES-induced fMRI activations in the primary somatosensory cortex (S1), a result that warrants further investigation.
Collapse
|
31
|
Abstract
We studied the specific features of ultrasonic vocalization of Wistar rats in various motivational and emotional states. No significant changes were found in ultrasonic vocalization of rats during experimental food motivation and after the satisfaction of food requirements. The state of thirst and satisfaction of water requirements in animals were associated with an increase in the mean frequency of ultrasound and dominance of ultrasonic waves of a higher frequency. The formation of a negative emotional state in rats after immobilization with simultaneous electrocutaneous stimulation was accompanied by a decrease in the total duration of ultrasonic vocalization and shift in the power spectrum of ultrasound towards the dominant frequencies of 20-30, 40-50, and 80-90 kHz. During the post-stress period, the maximum power of ultrasonic waves approached the baseline (30-40 kHz). Our results indicate that the formation of various motivational and emotional states in rats is characterized by specific patterns of ultrasonic vocalization. Therefore, the parameters of ultrasonic vocalization can serve as an objective criteria for the subjective state of a living organism.
Collapse
|
32
|
Leandri M, Leandri S, Ghignotti M, Cilli M, Lunardi G. The ITFR, impulsive tail flick reflex by short duration nociceptive stimuli. J Neurosci Methods 2011; 199:69-77. [DOI: 10.1016/j.jneumeth.2011.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 04/28/2011] [Accepted: 05/02/2011] [Indexed: 11/28/2022]
|
33
|
Du Y, Kong L, Wang Q, Wu X, Li L. Auditory frequency-following response: a neurophysiological measure for studying the "cocktail-party problem". Neurosci Biobehav Rev 2011; 35:2046-57. [PMID: 21645541 DOI: 10.1016/j.neubiorev.2011.05.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 05/12/2011] [Accepted: 05/19/2011] [Indexed: 11/19/2022]
Abstract
How do we recognize what one person is saying when others are speaking at the same time? The "cocktail-party problem" proposed by Cherry (1953) has puzzled scientific societies for half a century. This puzzle will not be solved without using appropriate neurophysiological investigation that should satisfy the following four essential requirements: (1) certain critical speech characteristics related to speech intelligibility are recorded; (2) neural responses to different speech sources are differentiated; (3) neural correlates of bottom-up binaural unmasking of responses to target speech are measurable; (4) neural correlates of attentional top-down unmasking of target speech are measurable. Before speech signals reach the cerebral cortex, some critical acoustic features are represented in subcortical structures by the frequency-following responses (FFRs), which are sustained evoked potentials based on precisely phase-locked responses of neuron populations to low-to-middle-frequency periodical acoustical stimuli. This review summarizes previous studies on FFRs associated with each of the four requirements and suggests that FFRs are useful for studying the "cocktail-party problem".
Collapse
Affiliation(s)
- Yi Du
- Department of Psychology, Speech and Hearing Research Center, Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing, China
| | | | | | | | | |
Collapse
|
34
|
Zhang XJ, Zhang TW, Hu SJ, Xu H. Behavioral assessments of the aversive quality of pain in animals. Neurosci Bull 2011; 27:61-7. [PMID: 21270905 DOI: 10.1007/s12264-011-1035-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Animals and humans share similar mechanisms of pain detection and similar brain areas involved in pain processing. Also, they show similar pain behaviors, such as reflexed sensation to nociceptive stimuli. Pain is often described in sensory discrimination (algosity) and affective motivation (unpleasantness) dimensions. Both basic and clinical findings indicate that individuals with chronic pain usually suffer more from pain-associated affective disturbances than from the actual pain sensations per se. Although the neural systems responsible for the sensory component of pain have been studied extensively, the neural mechanisms underlying negative affective component are not well understood. This is partly due to the relative paucity of animal paradigms for reliable examination of each component of pain. In humans, the experience of pain and suffering can be reported by language, while in animals, pain can only be inferred through physical and behavioral reactions. Animal behaviors, cognitive psychology and functional brain imaging have made it possible to assess pain affection and pain memory in animals. Animals subjected to either neuropathic injury or inflammatory insult display significant conditioned place aversion to a pain-paired environment in behaviors. The present review aims to summarize the common methods of affective unpleasantness assessment in rats.
Collapse
Affiliation(s)
- Xu-Jie Zhang
- Institute of Neuroscience, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | | | | | | |
Collapse
|
35
|
Mazzuca M, Minlebaev M, Shakirzyanova A, Tyzio R, Taccola G, Janackova S, Gataullina S, Ben-Ari Y, Giniatullin R, Khazipov R. Newborn Analgesia Mediated by Oxytocin during Delivery. Front Cell Neurosci 2011; 5:3. [PMID: 21519396 PMCID: PMC3080614 DOI: 10.3389/fncel.2011.00003] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 03/31/2011] [Indexed: 12/02/2022] Open
Abstract
The mechanisms controlling pain in newborns during delivery are poorly understood. We explored the hypothesis that oxytocin, an essential hormone for labor and a powerful neuromodulator, exerts analgesic actions on newborns during delivery. Using a thermal tail-flick assay, we report that pain sensitivity is two-fold lower in rat pups immediately after birth than 2 days later. Oxytocin receptor antagonists strongly enhanced pain sensitivity in newborn, but not in 2-day-old rats, whereas oxytocin reduced pain at both ages suggesting an endogenous analgesia by oxytocin during delivery. Similar analgesic effects of oxytocin, measured as attenuation of pain-vocalization induced by electrical whisker pad stimulation, were also observed in decerebrated newborns. Oxytocin reduced GABA-evoked calcium responses and depolarizing GABA driving force in isolated neonatal trigeminal neurons suggesting that oxytocin effects are mediated by alterations of intracellular chloride. Unlike GABA signaling, oxytocin did not affect responses mediated by P2X3 and TRPV1 receptors. In keeping with a GABAergic mechanism, reduction of intracellular chloride by the diuretic NKCC1 chloride co-transporter antagonist bumetanide mimicked the analgesic actions of oxytocin and its effects on GABA responses in nociceptive neurons. Therefore, endogenous oxytocin exerts an analgesic action in newborn pups that involves a reduction of the depolarizing action of GABA on nociceptive neurons. Therefore, the same hormone that triggers delivery also acts as a natural pain killer revealing a novel facet of the protective actions of oxytocin in the fetus at birth.
Collapse
Affiliation(s)
- Michel Mazzuca
- INMED/INSERM U901, Université de la Méditerranée Marseille, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Noise exposure during early development influences the acoustic startle reflex in adult rats. Physiol Behav 2011; 102:453-8. [DOI: 10.1016/j.physbeh.2010.12.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 09/24/2010] [Accepted: 12/08/2010] [Indexed: 11/18/2022]
|
37
|
McNamara KCS, Lisembee AM, Lifshitz J. The whisker nuisance task identifies a late-onset, persistent sensory sensitivity in diffuse brain-injured rats. J Neurotrauma 2010; 27:695-706. [PMID: 20067394 DOI: 10.1089/neu.2009.1237] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Post-traumatic morbidity reduces the quality of life for traumatic brain injury (TBI) survivors by altering neuropsychological function. After midline fluid percussion injury (FPI), diffuse pathology in the ventral posterior thalamus suggests that somatosensory whisker function may be impaired post-injury. The goals of the present study were to design and validate a task to detect injury-induced somatosensory morbidity (Experiment 1), and to evaluate preliminary applications of the task (Experiment 2). In Experiment 1, male Sprague-Dawley rats were subjected to moderate FPI (approximately 1.9 atm) or sham injury. Over an 8-week time course, the whiskers on both mystacial pads were stimulated manually with an applicator stick in an open field for three 5-min periods. Behavioral responses in this whisker nuisance task were recorded using objective criteria (max score = 16). Sham animals were ambivalent or soothed by whisker stimulation (4.0 +/- 0.8), whereas brain-injured rats showed aggravated responses at 1 week (6.7 +/- 0.9), which became significant at 4 weeks (9.5 +/- 0.5) and 8 weeks (8.4 +/- 1.1) compared to sham injury, indicating chronic injury-induced sensory sensitivity. Total free serum corticosterone levels indicated a significant stress response in brain-injured (125.0 +/- 17.7 ng/mL), but not uninjured animals (74.2 +/- 12.2 ng/mL) in response to whisker stimulation. In Experiment 2, to evaluate applications of the whisker nuisance task, four additional uninjured and brain-injured groups were subjected to mild brain injury only, shaved whiskers after moderate brain injury, repeated whisker nuisance task stimulation after moderate brain injury, or regular opportunities for tactile exploration of an enriched environment after moderate brain injury over 4 weeks post-injury. The whisker nuisance task has the sensitivity to detect mild brain injury (7.7 +/- 1.0), but morbidity was not mitigated by any of the neurorehabilitative interventions. Following diffuse brain injury, the whisker nuisance task is a promising tool to detect post-traumatic morbidity and the efficacy of therapeutic interventions that may restore discrete circuit function in brain-injured patients.
Collapse
Affiliation(s)
- Katelyn C S McNamara
- Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, Kentucky 40536-0509, USA
| | | | | |
Collapse
|
38
|
Du Y, Ma T, Wang Q, Wu X, Li L. Two crossed axonal projections contribute to binaural unmasking of frequency-following responses in rat inferior colliculus. Eur J Neurosci 2009; 30:1779-89. [DOI: 10.1111/j.1460-9568.2009.06947.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Castelhano-Carlos MJ, Baumans V. The impact of light, noise, cage cleaning and in-house transport on welfare and stress of laboratory rats. Lab Anim 2009; 43:311-27. [PMID: 19505937 DOI: 10.1258/la.2009.0080098] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Human interaction and physical environmental factors are part of the stimuli presented to laboratory animals everyday, influencing their behaviour and physiology and contributing to their welfare. Certain environmental conditions and routine procedures in the animal facility might induce stress responses and when the animal is unable to maintain its homeostasis in the presence of a particular stressor, the animal's wellbeing is threatened. This review article summarizes several published studies on the impact of environmental factors such as light, noise, cage cleaning and in-house transport on welfare and stress of laboratory rats. The behaviour and physiological responses of laboratory rats to different environmental housing conditions and routine procedures are reviewed. Recommendations on the welfare of laboratory rats and refinements in experimental design are discussed and how these can influence and improve the quality of scientific data.
Collapse
Affiliation(s)
- M J Castelhano-Carlos
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | | |
Collapse
|
40
|
Bassi GS, Broiz AC, Gomes MZ, Brandão ML. Evidence for mediation of nociception by injection of the NK-3 receptor agonist, senktide, into the dorsal periaqueductal gray of rats. Psychopharmacology (Berl) 2009; 204:13-24. [PMID: 19093101 DOI: 10.1007/s00213-008-1434-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Accepted: 12/01/2008] [Indexed: 10/21/2022]
Abstract
RATIONALE Ultrasound vocalizations (USVs) at approximately 22 kHz are usual components of the defensive response of rats. However, depending on the neural substrate that is activated, such as the dorsal periaqueductal gray (dPAG), USV emissions may be reduced. Activation of neurokinin-1 (NK-1)-mediated mechanisms of the dPAG causes analgesia, reduced 22 kHz USVs, and anxiogenic-like effects in rats exposed to the elevated plus maze (EPM). Involvement of other types of neurokinin receptors in this activation has not yet been evaluated. OBJECTIVES The present study examined whether local injections of the selective NK-3 agonist senktide (1-100 pmol/0.2 microL) into the dPAG can (1) cause anxiogenic effects in the EPM, (2) influence novelty-induced 22 kHz USVs, or (3) change nociceptive reactivity in the tail-flick test. RESULTS Senktide elicited a significant increase in exploratory behavior, an effect accompanied by hyperalgesia and an increase in the number of 22 kHz USVs. The nociceptive effects, increased locomotor activity, and USV emissions elicited by local injections of senktide (50 pmol/0.2 microL) were reduced by prior injections of the selective NK-3 receptor antagonist SB222200 (50 pmol/0.2 microL) into the dPAG. CONCLUSIONS These findings show that NK-3 receptors in the dPAG mediate nociceptive responses in this area, contrasting with the known fear-related processes mediated by NK-1 receptors in the dPAG. Both hyperalgesia and fear-related processes are accompanied by emissions of 22 kHz USVs.
Collapse
Affiliation(s)
- Gabriel S Bassi
- Instituto de Neurociências & Comportamento-INeC, Ribeirão Preto, SP, Brasil
| | | | | | | |
Collapse
|
41
|
Du Y, Huang Q, Wu X, Galbraith GC, Li L. Binaural Unmasking of Frequency-Following Responses in Rat Amygdala. J Neurophysiol 2009; 101:1647-59. [DOI: 10.1152/jn.91055.2008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Survival in natural environments for small animals such as rats often depends on precise neural coding of life-threatening acoustic signals, and binaural unmasking of species-specific pain calls is especially critical. This study investigated how species-specific tail-pain chatter is represented in the rat amygdala, which receives afferents from both auditory thalamus and auditory association cortex, and whether the amygdaloid representation of the chatter can be binaurally unmasked. The results show that chatter with a fundamental frequency (F0) of 2.1 kHz was able to elicit salient phase-locked frequency-following responses (FFRs) in the lateral amygdala nucleus in anesthetized rats. FFRs to the F0 of binaurally presented chatter were sensitive to the interaural time difference (ITD), with the preference of ipsilateral-ear leading, as well as showing features of binaural inhibition. When interaurally correlated masking noises were added and ipsilateral chatter led contralateral chatter, introducing an ITD disparity between the chatter and masker significantly enhanced (unmasked) the FFRs. This binaural unmasking was further enhanced by chemically blocking excitatory glutamate receptors in the auditory association cortex. When the chatter was replaced by a harmonic tone complex with an F0 of 0.7 kHz, both the binaural-inhibition feature and the binaural unmasking were preserved only for the harmonic of 2.1 kHz but not the tone F0. These results suggest that both frequency-dependent ascending binaural modulations and cortical descending modulations of the precise auditory coding of the chatter in the amygdala are critical for processing life-threatening acoustic signals in noisy and even reverberant environments.
Collapse
|
42
|
Hwan Jeon J, Ik Song J, Hwan Kim D. A note on acoustic analysis of dairy calves’ vocalizations at 1 day after separation from dam. ITALIAN JOURNAL OF ANIMAL SCIENCE 2009. [DOI: 10.4081/ijas.2009.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Palazzo E, Fu Y, Ji G, Maione S, Neugebauer V. Group III mGluR7 and mGluR8 in the amygdala differentially modulate nocifensive and affective pain behaviors. Neuropharmacology 2008; 55:537-45. [PMID: 18533199 PMCID: PMC2601632 DOI: 10.1016/j.neuropharm.2008.05.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 05/06/2008] [Accepted: 05/09/2008] [Indexed: 10/22/2022]
Abstract
The amygdala plays an important role in the emotional-affective component of pain and in pain modulation. Group III metabotropic glutamate receptors (mGluRs) regulate pain-related activity in the amygdala, but the behavioral consequence and contribution of individual subtypes are not known yet. This study determined the effects of mGluR7 and mGluR8 activation in the central nucleus of the amygdala (CeA) on nocifensive and affective pain responses and on pain-related anxiety-like behavior of adult rats. The pain state was induced by intraarticular injections of kaolin/carrageenan into one knee joint to produce a localized monoarthritis. Subtype-selective agonists were administered into the CeA by microdialysis in normal rats and in rats with arthritis. An mGluR7-selective agonist (N,N'-dibenzyhydryl-ethane-1,2-diamine dihydrochloride, AMN082, 25microM) decreased spinal withdrawal reflex thresholds and increased audible and ultrasonic vocalizations evoked by brief (15s) compression of the knee. AMN082 also decreased the open-arm preference in the elevated plus maze (EPM) test, suggesting anxiety-like behavior. In arthritic animals, however, AMN082 failed to modulate the increased spinal reflexes and vocalizations and anxiety-like behavior. An mGluR8-selective agonist (S-3,4-dicarboxyphenylglycine, S-3,4-DCPG, 10microM) had no effect in normal animals but inhibited the increased spinal reflex responses and audible and ultrasonic vocalizations of arthritic rats. S-3,4-DCPG also increased the open-arm choices of arthritic rats, suggesting anxiolytic effects. The results suggest that under normal conditions mGluR7, but not mGluR8, facilitates pain responses and has anxiogenic properties whereas mGluR8, but not mGluR7, can inhibit nocifensive and affective behaviors and anxiety in a model of arthritic pain.
Collapse
Affiliation(s)
- Enza Palazzo
- Department of Neuroscience and Cell Biology, The University of Texas Medical Branch, Galveston, TX, USA
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
| | - Yu Fu
- Department of Neuroscience and Cell Biology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Guangchen Ji
- Department of Neuroscience and Cell Biology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Sabatino Maione
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
| | - Volker Neugebauer
- Department of Neuroscience and Cell Biology, The University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
44
|
Burn CC. What is it like to be a rat? Rat sensory perception and its implications for experimental design and rat welfare. Appl Anim Behav Sci 2008. [DOI: 10.1016/j.applanim.2008.02.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Cloutier S, Newberry RC. Use of a conditioning technique to reduce stress associated with repeated intra-peritoneal injections in laboratory rats. Appl Anim Behav Sci 2008. [DOI: 10.1016/j.applanim.2007.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
46
|
Adwanikar H, Ji G, Li W, Doods H, Willis WD, Neugebauer V. Spinal CGRP1 receptors contribute to supraspinally organized pain behavior and pain-related sensitization of amygdala neurons. Pain 2007; 132:53-66. [PMID: 17335972 PMCID: PMC2066202 DOI: 10.1016/j.pain.2007.01.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Revised: 01/26/2007] [Accepted: 01/26/2007] [Indexed: 10/23/2022]
Abstract
CGRP receptor activation has been implicated in peripheral and central sensitization. The role of spinal CGRP receptors in supraspinal pain processing and higher integrated pain behavior is not known. Here we studied the effect of spinal inhibition of CGRP1 receptors on supraspinally organized vocalizations and activity of amygdala neurons. Our previous studies showed that pain-related audible and ultrasonic vocalizations are modulated by the central nucleus of the amygdala (CeA). Vocalizations in the audible and ultrasonic range and hindlimb withdrawal thresholds were measured in awake adult rats before and 5-6h after induction of arthritis by intra-articular injections of kaolin and carrageenan into one knee. Extracellular single-unit recordings were made from neurons in the latero-capsular division of the CeA (CeLC) in anesthetized rats before and after arthritis induction. CGRP1 receptor antagonists were applied to the lumbar spinal cord intrathecally (5 microl/min) 6h postinduction of arthritis. Spinal administration of peptide (CGRP8-37, 1 microM) and non-peptide (BIBN4096BS, 1 microM) CGRP1 receptor antagonists significantly inhibited the increased responses of CeLC neurons to mechanical stimulation of the arthritic knee but had no effect under normal conditions. In arthritic rats, the antagonists also inhibited the audible and ultrasonic components of vocalizations evoked by noxious stimuli and increased the threshold of hindlimb withdrawal reflexes. The antagonists had no effect on vocalizations and spinal reflexes in normal rats. These data suggest that spinal CGRP1 receptors are not only important for spinal pain mechanisms but also contribute significantly to the transmission of nociceptive information to the amygdala and to higher integrated behavior.
Collapse
Affiliation(s)
- Hita Adwanikar
- Department of Neuroscience & Cell Biology, University of Texas Medical Branch, Galveston, TX 77555-1069, USA
| | - Guangchen Ji
- Department of Neuroscience & Cell Biology, University of Texas Medical Branch, Galveston, TX 77555-1069, USA
| | - Weidong Li
- Department of Neuroscience & Cell Biology, University of Texas Medical Branch, Galveston, TX 77555-1069, USA
| | - Henri Doods
- Boehringer Ingelheim Pharma GmbH & Co. KG, D-88397 Biberach, Germany
| | - William D. Willis
- Department of Neuroscience & Cell Biology, University of Texas Medical Branch, Galveston, TX 77555-1069, USA
| | - Volker Neugebauer
- Department of Neuroscience & Cell Biology, University of Texas Medical Branch, Galveston, TX 77555-1069, USA
| |
Collapse
|
47
|
Mayer J. Use of behavior analysis to recognize pain in small mammals. Lab Anim (NY) 2007; 36:43-8. [PMID: 17519944 DOI: 10.1038/laban0607-43] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Accepted: 02/09/2007] [Indexed: 11/08/2022]
Abstract
The minimization of pain in laboratory animals is a gold standard with implications for improvements in both animal welfare and research quality. Changes in behavioral parameters may indicate that an animal is in pain, but in order to effectively use behavioral change to assess pain, the observer must be familiar with normal behaviors. The author discusses normal and pain-related behaviors exhibited by rodents, rabbits, and ferrets.
Collapse
Affiliation(s)
- Jörg Mayer
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA.
| |
Collapse
|
48
|
Finkel JC, Besch VG, Hergen A, Kakareka J, Pohida T, Melzer JM, Koziol D, Wesley R, Quezado ZMN. Effects of aging on current vocalization threshold in mice measured by a novel nociception assay. Anesthesiology 2006; 105:360-9. [PMID: 16871071 PMCID: PMC4780048 DOI: 10.1097/00000542-200608000-00020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Age-related changes in nociception have been extensively studied in the past decades. However, it remains unclear whether in addition to the increased incidence of chronic illness, age-related changes in nociception contribute to increased prevalence of pain in the elderly. Although a great deal of evidence suggests that nociception thresholds increase with aging, other studies yield disparate results. The aim of this investigation was to longitudinally determine the effect of aging on nociception. METHODS The authors developed a nociception assay for mice using electrical stimuli at 2,000, 250, and 5 Hz that reportedly stimulate Abeta, Adelta, and C sensory nerve fibers, respectively. A system was designed to automate a method that elicits and detects pain-avoiding behavior in mice. Using a Latin square design, the authors measured current vocalization thresholds serially over the course of mice's life span. RESULTS For 2,000-Hz (Abeta), 250-Hz (Adelta), and 5-Hz (C) electrical stimuli, current vocalization thresholds first decreases and then increases with aging following a U-shaped pattern (P < 0.001). In addition, average current vocalization thresholds at youth and senescence are significantly higher than those at middle age for the 250-Hz (Adelta) and 5-Hz (C fiber) electrical stimulus (P < 0.05). CONCLUSIONS Using a novel and noninjurious nociception assay, the authors showed that over the life span of mice, current vocalization threshold to electrical stimuli changes in a U-shaped pattern. The findings support the notion that age-related changes in nociception are curvilinear, and to properly study and treat pain, the age of subjects should be considered.
Collapse
Affiliation(s)
- Julia C Finkel
- Department of Anesthesia and Surgical Services, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892-1512, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Oliveira AR, Barros HMT. Ultrasonic Rat Vocalizations During the Formalin Test: A Measure of the Affective Dimension of Pain? Anesth Analg 2006; 102:832-9. [PMID: 16492837 DOI: 10.1213/01.ane.0000196530.72813.d9] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The emission of ultrasonic vocalization (USV) by rats submitted to the formalin test has not yet been demonstrated. We performed two experiments to establish the formalin concentration to induce USV and the relationship of USV emission with motor behaviors and the effects of morphine and naloxone on USV during the formalin test. Male Wistar rats were used. In Experiment 1, 3 different groups of rats were subcutaneously injected with 5%, 10%, or 12.5% formalin in 1 of the anterior paws. Experiment 2 was intended to verify the effect of morphine 1, 2.5, or 5 mg/kg on USV during the 12.5% formalin test, whereas other groups of rats received naloxone 2 mg/kg with each one of the morphine doses to verify the specificity of opioid action. USV and motor behaviors were simultaneously measured in 5-min windows for 40 min, and early (0-5 min), interphase (5-20 min), and late (20-40 min) phases of the test were characterized. Vocalization was detected mostly during the interphase of the formalin test, mainly after formalin 12.5%. Morphine suppressed USV in a naloxone-reversible manner. This is a demonstration of USV during the formalin test, allowing the inclusion of an additional nonreflex behavioral measure to help characterize more clinically relevant integrated behavioral patterns in this rat model of pain.
Collapse
Affiliation(s)
- Alexandre R Oliveira
- Pharmacology Division, Fundação Faculdade Federal de Ciências Medicas de Porto Alegre
| | | |
Collapse
|
50
|
Han JS, Bird GC, Li W, Jones J, Neugebauer V. Computerized analysis of audible and ultrasonic vocalizations of rats as a standardized measure of pain-related behavior. J Neurosci Methods 2005; 141:261-9. [PMID: 15661308 DOI: 10.1016/j.jneumeth.2004.07.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2004] [Revised: 07/01/2004] [Accepted: 07/01/2004] [Indexed: 11/22/2022]
Abstract
The behavioral assessment of experimental pain is essential for the analysis of pain mechanisms and the validation of therapeutic targets. Arthritic pain, in particular, is significantly associated with negative affective states and disorders. Here we present a standardized method for the quantitative analysis of audible and ultrasonic (25 +/- 4 kHz) vocalizations in awake rats as a measure of higher integrated behavior in a model of arthritic pain. A bat detector and a condenser microphone were used to record ultrasonic and audible vocalizations, respectively, in response to innocuous and noxious mechanical stimulation of the knee before and after induction of acute arthritis in one knee. A computerized system was used to analyze number and duration of the filtered signals. For the behavioral tests, the animal was placed in a customized recording chamber to ensure consistent stimulus application and stable recordings and to eliminate any movement-induced noise. Noxious stimuli produced stronger vocalizations than innocuous stimuli. Both audible and ultrasonic vocalizations to innocuous (allodynia) and noxious (hyperalgesia) stimuli increased after the induction of acute arthritis. These changes were accompanied by increased knee joint circumference, lowered hind limb withdrawal thresholds and reduced exploratory behavior in the same animals. The computerized analysis of audible and ultrasonic vocalizations is a valid, quantitative, reliable and convenient method to measure pain-related behavior.
Collapse
Affiliation(s)
- Jeong S Han
- Department of Neuroscience and Cell Biology, The University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-1069, USA
| | | | | | | | | |
Collapse
|