1
|
Lee M, Harley G, Katerelos M, Gleich K, Sullivan MA, Laskowski A, Coughlan M, Fraser SA, Mount PF, Power DA. Mutation of regulatory phosphorylation sites in PFKFB2 worsens renal fibrosis. Sci Rep 2020; 10:14531. [PMID: 32884050 PMCID: PMC7471692 DOI: 10.1038/s41598-020-71475-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/12/2020] [Indexed: 11/13/2022] Open
Abstract
Fatty acid oxidation is the major energy pathway used by the kidney, although glycolysis becomes more important in the low oxygen environment of the medulla. Fatty acid oxidation appears to be reduced in renal fibrosis, and drugs that reverse this improve fibrosis. Expression of glycolytic genes is more variable, but some studies have shown that inhibiting glycolysis reduces renal fibrosis. To address the role of glycolysis in renal fibrosis, we have used a genetic approach. The crucial control point in the rate of glycolysis is 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase. Phosphorylation of the kidney isoform, PFKFB2, on residues Ser468 and Ser485 stimulates glycolysis and is the most important mechanism regulating glycolysis. We generated transgenic mice with inactivating mutations of Ser468 and Ser485 in PFKFB2 (PFKFB2 KI mice). These mutations were associated with a reduced ability to increase glycolysis in primary cultures of renal tubular cells from PFKFB2 KI mice compared to WT cells. This was associated in PFKFB2 KI mice with increased renal fibrosis, which was more severe in the unilaternal ureteric obstruction (UUO) model compared with the folic acid nephropathy (FAN) model. These studies show that phosphorylation of PFKFB2 is important in limiting renal fibrosis after injury, indicating that the ability to regulate and maintain adequate glycolysis in the kidney is crucial for renal homeostasis. The changes were most marked in the UUO model, probably reflecting a greater effect on distal renal tubules and the greater importance of glycolysis in the distal nephron.
Collapse
Affiliation(s)
- Mardiana Lee
- Kidney Laboratory, Department of Nephrology, Austin Health, Heidelberg, VIC, 3084, Australia.,Department of Medicine, The University of Melbourne, Heidelberg, VIC, Australia
| | - Geoff Harley
- Kidney Laboratory, Department of Nephrology, Austin Health, Heidelberg, VIC, 3084, Australia.,Department of Medicine, The University of Melbourne, Heidelberg, VIC, Australia
| | - Marina Katerelos
- Kidney Laboratory, Department of Nephrology, Austin Health, Heidelberg, VIC, 3084, Australia
| | - Kurt Gleich
- Kidney Laboratory, Department of Nephrology, Austin Health, Heidelberg, VIC, 3084, Australia
| | - Mitchell A Sullivan
- Mater Research Institute-the University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Adrienne Laskowski
- Glycation, Nutrition and Metabolism Laboratory, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Melinda Coughlan
- Glycation, Nutrition and Metabolism Laboratory, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Scott A Fraser
- Kidney Laboratory, Department of Nephrology, Austin Health, Heidelberg, VIC, 3084, Australia
| | - Peter F Mount
- Kidney Laboratory, Department of Nephrology, Austin Health, Heidelberg, VIC, 3084, Australia.,Department of Medicine, The University of Melbourne, Heidelberg, VIC, Australia.,The Institute for Breathing and Sleep (IBAS), Austin Health, Heidelberg, VIC, Australia
| | - David A Power
- Kidney Laboratory, Department of Nephrology, Austin Health, Heidelberg, VIC, 3084, Australia. .,Department of Medicine, The University of Melbourne, Heidelberg, VIC, Australia. .,The Institute for Breathing and Sleep (IBAS), Austin Health, Heidelberg, VIC, Australia.
| |
Collapse
|
2
|
Cargill K, Sims-Lucas S. Metabolic requirements of the nephron. Pediatr Nephrol 2020; 35:1-8. [PMID: 30554363 DOI: 10.1007/s00467-018-4157-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 12/23/2022]
Abstract
The mammalian kidney is a complex organ that has several metabolically active cell types to aid in waste filtration, salt-water balance, and electrolyte homeostasis in the body. These functions are done primarily through the nephron, which relies on strict regulation of various metabolic pathways. Any deviations in the metabolic profile of nephrons or their precursor cells called nephron progenitors can lead to renal pathologies and abnormal development. Metabolism encompasses the mechanisms by which cells generate intermediate molecules and energy in the form of adenosine triphosphate (ATP). ATP is required by all cells and is mainly generated through glycolysis, fatty acid oxidation, and oxidative phosphorylation. During kidney development, self-renewing or proliferating cells rely on glycolysis to a greater extent than the other metabolic pathways to supply energy, replenish reducing equivalents, and generate nucleotides. However, terminally differentiated cell types rely more heavily on fatty acid oxidation and oxidative phosphorylation performed in the mitochondria to fulfill energy requirements. Further, the mature nephron is comprised of distinct segments and each segment utilizes metabolic pathways to varying degrees depending on the specific function. This review will focus on major metabolic processes performed by the nephron during health and disease.
Collapse
Affiliation(s)
- Kasey Cargill
- Rangos Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, USA.,Department of Pediatrics, Division of Nephrology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sunder Sims-Lucas
- Rangos Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, USA. .,Department of Pediatrics, Division of Nephrology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Onishi A, Fu Y, Darshi M, Crespo-Masip M, Huang W, Song P, Patel R, Kim YC, Nespoux J, Freeman B, Soleimani M, Thomson S, Sharma K, Vallon V. Effect of renal tubule-specific knockdown of the Na +/H + exchanger NHE3 in Akita diabetic mice. Am J Physiol Renal Physiol 2019; 317:F419-F434. [PMID: 31166707 PMCID: PMC6732454 DOI: 10.1152/ajprenal.00497.2018] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 05/21/2019] [Accepted: 05/27/2019] [Indexed: 01/03/2023] Open
Abstract
Na+/H+ exchanger isoform 3 (NHE3) contributes to Na+/bicarbonate reabsorption and ammonium secretion in early proximal tubules. To determine its role in the diabetic kidney, type 1 diabetic Akita mice with tubular NHE3 knockdown [Pax8-Cre; NHE3-knockout (KO) mice] were generated. NHE3-KO mice had higher urine pH, more bicarbonaturia, and compensating increases in renal mRNA expression for genes associated with generation of ammonium, bicarbonate, and glucose (phosphoenolpyruvate carboxykinase) in proximal tubules and H+ and ammonia secretion and glycolysis in distal tubules. This left blood pH and bicarbonate unaffected in nondiabetic and diabetic NHE3-KO versus wild-type mice but was associated with renal upregulation of proinflammatory markers. Higher renal phosphoenolpyruvate carboxykinase expression in NHE3-KO mice was associated with lower Na+-glucose cotransporter (SGLT)2 and higher SGLT1 expression, indicating a downward tubular shift in Na+ and glucose reabsorption. NHE3-KO was associated with lesser kidney weight and glomerular filtration rate (GFR) independent of diabetes and prevented diabetes-associated albuminuria. NHE3-KO, however, did not attenuate hyperglycemia or prevent diabetes from increasing kidney weight and GFR. Higher renal gluconeogenesis may explain similar hyperglycemia despite lower SGLT2 expression and higher glucosuria in diabetic NHE3-KO versus wild-type mice; stronger SGLT1 engagement could have affected kidney weight and GFR responses. Chronic kidney disease in humans is associated with reduced urinary excretion of metabolites of branched-chain amino acids and the tricarboxylic acid cycle, a pattern mimicked in diabetic wild-type mice. This pattern was reversed in nondiabetic NHE3-KO mice, possibly reflecting branched-chain amino acids use for ammoniagenesis and tricarboxylic acid cycle upregulation to support formation of ammonia, bicarbonate, and glucose in proximal tubule. NHE3-KO, however, did not prevent the diabetes-induced urinary downregulation in these metabolites.
Collapse
Affiliation(s)
- Akira Onishi
- Department of Medicine, University of California San Diego and Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Yiling Fu
- Department of Medicine, University of California San Diego and Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Manjula Darshi
- Center for Renal Precision Medicine, University of Texas Health San Antonio, San Antonio, Texas
| | - Maria Crespo-Masip
- Department of Medicine, University of California San Diego and Veterans Affairs San Diego Healthcare System, San Diego, California
- Biomedical Research Institute (IRBLleida), University of Lleida, Lleida, Spain
| | - Winnie Huang
- Department of Medicine, University of California San Diego and Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Panai Song
- Department of Medicine, University of California San Diego and Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Rohit Patel
- Department of Medicine, University of California San Diego and Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Young Chul Kim
- Department of Medicine, University of California San Diego and Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Josselin Nespoux
- Department of Medicine, University of California San Diego and Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Brent Freeman
- Department of Medicine, University of California San Diego and Veterans Affairs San Diego Healthcare System, San Diego, California
| | | | - Scott Thomson
- Department of Medicine, University of California San Diego and Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Kumar Sharma
- Center for Renal Precision Medicine, University of Texas Health San Antonio, San Antonio, Texas
| | - Volker Vallon
- Department of Medicine, University of California San Diego and Veterans Affairs San Diego Healthcare System, San Diego, California
| |
Collapse
|
4
|
Lan R, Geng H, Singha PK, Saikumar P, Bottinger EP, Weinberg JM, Venkatachalam MA. Mitochondrial Pathology and Glycolytic Shift during Proximal Tubule Atrophy after Ischemic AKI. J Am Soc Nephrol 2016; 27:3356-3367. [PMID: 27000065 DOI: 10.1681/asn.2015020177] [Citation(s) in RCA: 223] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 02/03/2016] [Indexed: 02/01/2023] Open
Abstract
During recovery by regeneration after AKI, proximal tubule cells can fail to redifferentiate, undergo premature growth arrest, and become atrophic. The atrophic tubules display pathologically persistent signaling increases that trigger production of profibrotic peptides, proliferation of interstitial fibroblasts, and fibrosis. We studied proximal tubules after ischemia-reperfusion injury (IRI) to characterize possible mitochondrial pathologies and alterations of critical enzymes that govern energy metabolism. In rat kidneys, tubules undergoing atrophy late after IRI but not normally recovering tubules showed greatly reduced mitochondrial number, with rounded profiles, and large autophagolysosomes. Studies after IRI of kidneys in mice, done in parallel, showed large scale loss of the oxidant-sensitive mitochondrial protein Mpv17L. Renal expression of hypoxia markers also increased after IRI. During early and late reperfusion after IRI, kidneys exhibited increased lactate and pyruvate content and hexokinase activity, which are indicators of glycolysis. Furthermore, normally regenerating tubules as well as tubules undergoing atrophy exhibited increased glycolytic enzyme expression and inhibitory phosphorylation of pyruvate dehydrogenase. TGF-β antagonism prevented these effects. Our data show that the metabolic switch occurred early during regeneration after injury and was reversed during normal tubule recovery but persisted and became progressively more severe in tubule cells that failed to redifferentiate. In conclusion, irreversibility of the metabolic switch, taking place in the context of hypoxia, high TGF-β signaling and depletion of mitochondria characterizes the development of atrophy in proximal tubule cells and may contribute to the renal pathology after AKI.
Collapse
Affiliation(s)
- Rongpei Lan
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas
| | - Hui Geng
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas
| | - Prajjal K Singha
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas
| | - Pothana Saikumar
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas
| | - Erwin P Bottinger
- Department of Medicine, Mount Sinai School of Medicine, New York, New York; and
| | - Joel M Weinberg
- Department of Medicine, Veterans Affairs Ann Arbor Healthcare System and University of Michigan Medical Center, Ann Arbor, Michigan
| | | |
Collapse
|
5
|
Comparative proteomic analysis of silkworm fat body after knocking out fibroin heavy chain gene: a novel insight into cross-talk between tissues. Funct Integr Genomics 2015; 15:611-37. [DOI: 10.1007/s10142-015-0461-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 07/28/2015] [Accepted: 08/02/2015] [Indexed: 11/25/2022]
|
6
|
Abstract
The vacuolar H+-ATPase (V-ATPase) acidifies compartments of the vacuolar system of eukaryotic cells. In renal epithelial cells, it resides on the plasma membrane and is essential for bicarbonate transport and acid-base homeostasis. The factors that regulate the H+-ATPase remain largely unknown. The present study examines the effect of glucose on H+-ATPase activity in the pig kidney epithelial cell line LLC-PK1. Cellular pH was measured by performing ratiometric fluorescence microscopy using the pH-sensitive indicator BCECF-AM. Intracellular acidification was induced with NH3/NH4+prepulse, and rates of intracellular pH (pHi) recovery (after in situ calibration) were determined by the slopes of linear regression lines during the first 3 min of recovery. The solutions contained 1 μM ethylisopropylamiloride and were K+free to eliminate Na+/H+exchange and H+-K+-ATPase activity. After NH3/NH4+-induced acidification, LLC-PK1cells had a significant pHirecovery rate that was inhibited entirely by 100 nM of the V-ATPase inhibitor concanamycin A. Acute removal of glucose from medium markedly reduced V-ATPase-dependent pHirecovery activity. Readdition of glucose induced concentration-dependent reactivation of V-ATPase pHirecovery activity within 2 min. Glucose replacement produced no significant change in cell ATP or ADP content. H+-ATPase activity was completely inhibited by the glycolytic inhibitor 2-deoxy-d-glucose (20 mM) but only partially inhibited by the mitochondrial electron transport inhibitor antimycin A (20 μM). The phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin (500 nM) abolished glucose activation of V-ATPase, and activity was restored after wortmannin removal. Glucose activates V-ATPase activity in kidney epithelial cells through the glycolytic pathway by a signaling pathway that requires PI3K activity. These findings represent an entirely new physiological effect of glucose, linking it to cellular proton secretion and vacuolar acidification.
Collapse
Affiliation(s)
- Suguru Nakamura
- Department of Medicine, University of Florida, College of Medicine, Gainesille, Florida 32610, USA.
| |
Collapse
|
7
|
Martin G, Durozard D, Besson J, Baverel G. Effect of the antiepileptic drug sodium valproate on glutamine and glutamate metabolism in isolated human kidney tubules. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1033:261-6. [PMID: 2107874 DOI: 10.1016/0304-4165(90)90130-o] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We studied the effects of sodium valproate, a widely used antiepileptic drug and a hyperammonemic agent, on L-[1-14C]glutamine and L-[1-14C]glutamate metabolism in isolated human kidney-cortex tubules. Valproate markedly stimulated glutamine removal as well as the formation of ammonia, 14CO2, pyruvate, lactate and alanine, but it inhibited glucose synthesis; the increase in ammonia formation was explained by a stimulation by valproate mainly of flux through glutaminase (EC 3.5.1.2) and to a much lesser extent of flux through glutamate dehydrogenase (EC 1.4.1.3). By contrast, valproate did not stimulate glutamate removal or ammonia formation, suggesting that the increase in flux through glutamate dehydrogenase observed with glutamine as substrate was secondary to the increase in flux through glutaminase. Accumulation of pyruvate, alanine and lactate in the presence of valproate was less from glutamate than from glutamine. Inhibition by aminooxyacetate of accumulation of alanine from glutamine caused by valproate did not prevent the acceleration of glutamine utilization and the subsequent stimulation of ammonia formation. It is concluded from these data, which are the first concerning the in vitro metabolism of glutamine and glutamate in human kidney-cortex tubules, that the stimulatory effect of valproate is primarily exerted at the level of glutaminase in human renal cortex.
Collapse
Affiliation(s)
- G Martin
- INSERM U 80 and CNRS UA 1177, Laboratoire de Physiologie Rénale et Métabolique, Faculté de Médecine Alexis Carrel, Lyon, France
| | | | | | | |
Collapse
|
8
|
García-Salguero L, Lupiáñez JA. Metabolic adaptation of the renal carbohydrate metabolism. III. Effects of high protein diet on the gluconeogenic and glycolytic fluxes in the proximal and distal renal tubules. Mol Cell Biochem 1989; 90:99-110. [PMID: 2555680 DOI: 10.1007/bf00221209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The adaptive response of renal metabolism of glucose was studied in isolated rat proximal and distal renal tubules after a high protein-low carbohydrate diet administration. This nutritional situation significantly stimulated the gluconeogenic activity in the renal proximal tubules (about 1.5 fold at 48 hours) due, in part, to a marked increase in the fructose 1,6-bisphosphatase (FBPase) and phosphoenolpyruvate carboxykinase (PEPCK) activities. In this tubular fragment, FBPase activity increased only at subsaturating fructose 1,6-bisphosphate concentration (30% at 48 hours) which involved a significant decrease in the Km (31%) for its substrate without changes in the Vmax. This enzymatic behaviour is probably related to modifications in the activity of the enzyme already present in the renal cells. Proximal PEPCK activity progressively increased at all substrate concentrations (almost 2 fold at 48h of high protein diet) which brought about changes in Vmax without changes in Kim. These changes are in agreement with variations in the cellular concentration of the enzyme. Neither gluconeogenesis nor the gluconeogenic enzymes changed in the distal fractions of the renal tubules. On the other hand, a high protein diet did not apparently modify the glycolytic ability in any fragment of the nephron, although a significant increase in the phosphofructokinase (PFK) and pyruvate kinase (PK) activities was found in the distal renal tubules. This short term regulation involved a significant decrease from 24 hours in the Km value of distal PFK (almost 40%) without changes in Vmax. The kinetic behaviour of distal PK was mixed. In the first 24h after high protein diet a significant decrease in the Km for phosphoenolpyruvate was found (30%) without variation in the Vmax, however during the second 24 hours the activity of this glycolytic enzyme increased significantly (almost 1.3 fold) without modifications in its Km value. On the contrary, this nutritional state did not modify the kinetic behaviour of any glycolytic enzyme in the proximal regions of the renal tubules.
Collapse
Affiliation(s)
- L García-Salguero
- Departamento de Bioquímica y Biología Molecular, Universidad de Granada, Spain
| | | |
Collapse
|
9
|
Garcia-Salguero L, Lupiáñez JA. Long-term control on renal carbohydrate metabolism--II. Effect of starve-feed cycles on renal tubule glycolysis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1989; 92:67-74. [PMID: 2523273 DOI: 10.1016/0305-0491(89)90314-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
1. The effects of different and alternative starve-feed cycles on glycolysis from isolated renal tubules as well as the glycolytic enzymes phosphofructokinase and pyruvate kinase have been studied. Adaptive responses of renal glycolysis under the nutritional conditions mentioned are reported. 2. Renal glucose utilization increased in a linear fashion during the feeding state of the nutritional cycles, becoming twice as much in both feeding and fasting cycles. Conversely, a decrease in this metabolic pathway took place during the starve periods of the cycles. During the feed-starve cycle the decrease reached 70% in 48 hr of fasting after being fed with a high carbohydrate diet. Whereas in the opposite cycle it was almost 35%. 3. The activities of renal glycolytic enzymes, phosphofructokinase and pyruvate kinase are parallel to the glycolytic capacity of renal tubules in different nutritional conditions. These changes only occur at cellular substrate concentration. 4. The behaviour of the kinetic parameters of these enzymes throughout these experimental conditions is reported. In general, variations in Km values without changes in Vmax values take place which reflect an increase in the catalytic efficiency of the glycolytic enzymes during the feeding state and conversely a decrease during the starvation state.
Collapse
Affiliation(s)
- L Garcia-Salguero
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Granada, Spain
| | | |
Collapse
|