1
|
Yang SH, Yang E, Lee J, Kim JY, Yoo H, Park HS, Jung JT, Lee D, Chun S, Jo YS, Pyeon GH, Park JY, Lee HW, Kim H. Neural mechanism of acute stress regulation by trace aminergic signalling in the lateral habenula in male mice. Nat Commun 2023; 14:2435. [PMID: 37105975 PMCID: PMC10140019 DOI: 10.1038/s41467-023-38180-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Stress management is necessary for vertebrate survival. Chronic stress drives depression by excitation of the lateral habenula (LHb), which silences dopaminergic neurons in the ventral tegmental area (VTA) via GABAergic neuronal projection from the rostromedial tegmental nucleus (RMTg). However, the effect of acute stress on this LHb-RMTg-VTA pathway is not clearly understood. Here, we used fluorescent in situ hybridisation and in vivo electrophysiology in mice to show that LHb aromatic L-amino acid decarboxylase-expressing neurons (D-neurons) are activated by acute stressors and suppress RMTg GABAergic neurons via trace aminergic signalling, thus activating VTA dopaminergic neurons. We show that the LHb regulates RMTg GABAergic neurons biphasically under acute stress. This study, carried out on male mice, has elucidated a molecular mechanism in the efferent LHb-RMTg-VTA pathway whereby trace aminergic signalling enables the brain to manage acute stress by preventing the hypoactivity of VTA dopaminergic neurons.
Collapse
Affiliation(s)
- Soo Hyun Yang
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, South Korea
| | - Esther Yang
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, South Korea
| | - Jaekwang Lee
- Division of Functional Food Research, Korea Food Research Institute, Wanju, 55365, South Korea
| | - Jin Yong Kim
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, South Korea
| | - Hyeijung Yoo
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, South Korea
| | - Hyung Sun Park
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, South Korea
| | - Jin Taek Jung
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, South Korea
| | - Dongmin Lee
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, South Korea
| | - Sungkun Chun
- Department of Physiology, Jeonbuk National University Medical School, Jeonju, 54907, South Korea
| | - Yong Sang Jo
- School of Psychology, Korea University, Seoul, 02841, South Korea
| | - Gyeong Hee Pyeon
- School of Psychology, Korea University, Seoul, 02841, South Korea
| | - Jae-Yong Park
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul, 02841, South Korea
| | - Hyun Woo Lee
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, South Korea.
| | - Hyun Kim
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
2
|
Abstract
N,N-dimethyltryptamine (DMT) is a potent psychedelic naturally produced by many plants and animals, including humans. Whether or not DMT is significant to mammalian physiology, especially within the central nervous system, is a debate that started in the early 1960s and continues to this day. This review integrates historical and recent literature to clarify this issue, giving special attention to the most controversial subjects of DMT's biosynthesis, its storage in synaptic vesicles and the activation receptors like sigma-1. Less discussed topics, like DMT's metabolic regulation or the biased activation of serotonin receptors, are highlighted. We conclude that most of the arguments dismissing endogenous DMT's relevance are based on obsolete data or misleading assumptions. Data strongly suggest that DMT can be relevant as a neurotransmitter, neuromodulator, hormone and immunomodulator, as well as being important to pregnancy and development. Key experiments are addressed to definitely prove what specific roles DMT plays in mammalian physiology.
Collapse
Affiliation(s)
- Javier Hidalgo Jiménez
- ICEERS Foundation (International Center for Ethnobotanical Education, Research and Services), Barcelona, Spain
| | - José Carlos Bouso
- ICEERS Foundation (International Center for Ethnobotanical Education, Research and Services), Barcelona, Spain
| |
Collapse
|
3
|
Ugrumov MV, Pavlova EN, Kolacheva AA, Dil’mukhametova LK, Bogdanov VV, Blokhin V, Pronina TS. The Periventricular Nucleus as a Brain Center Containing Dopaminergic Neurons and Neurons Expressing Individual Enzymes of Dopamine Synthesis. Int J Mol Sci 2022; 23:ijms23126739. [PMID: 35743179 PMCID: PMC9224269 DOI: 10.3390/ijms23126739] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 12/27/2022] Open
Abstract
Since the 1980s, the concept of dopamine-rich brain centers as clusters of only dopaminergic neurons has been fundamentally revised. It has been shown that, in addition to dopaminergic neurons, most of these centers contain neurons expressing one of the enzymes of dopamine synthesis: tyrosine hydroxylase (TH) or aromatic L-amino acid decarboxylase (AADC). We have obtained convincing evidence that in rats, the hypothalamic periventricular nucleus (PeVN) is one of the largest dopamine-rich centers, containing dopaminergic and monoenzymatic neurons. Indeed, using double immunostaining for TH and AADC, the PeVN was shown to contain almost three thousand dopaminergic and monoenzymatic neurons. According to high-performance liquid chromatography, PeVN contains L-DOPA and dopamine, which, apparently, are synthesized in monoenzymatic TH neurons and bienzymatic neurons, respectively. According to confocal microscopy, neurons (cell bodies, fibers), which were immunopositive only to TH, only to AADC, or both, are in close topographic relationships with each other and with the 3rd ventricle. These data suggest the mutual regulation of the neurons, as well as the delivery of dopamine and L-DOPA to the third ventricle, which is confirmed by their detection in the cerebrospinal fluid. Thus, evidence has been obtained that PeVN is one of the largest dopamine-rich centers of the brain, containing dopaminergic and monoenzymatic neurons.
Collapse
|
4
|
Phenethylamine is a substrate of monoamine oxidase B in the paraventricular thalamic nucleus. Sci Rep 2022; 12:17. [PMID: 34996979 PMCID: PMC8742005 DOI: 10.1038/s41598-021-03885-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/09/2021] [Indexed: 11/30/2022] Open
Abstract
Monoamine oxidase (MAO) is a key enzyme responsible for the degradation of neurotransmitters and trace amines. MAO has two subtypes (MAO-A and MAO-B) that are encoded by different genes. In the brain, MAO-B is highly expressed in the paraventricular thalamic nucleus (PVT); however, its substrate in PVT remains unclear. To identify the MAO-B substrate in PVT, we generated Maob knockout (KO) mice and measured five candidate substrates (i.e., noradrenaline, dopamine, 3-methoxytyramine, serotonin, and phenethylamine [PEA]) by liquid chromatography tandem mass spectrometry. We showed that only PEA levels were markedly elevated in the PVT of Maob KO mice. To exclude the influence of peripheral MAO-B deficiency, we developed brain-specific Maob KO mice, finding that PEA in the PVT was increased in brain-specific Maob KO mice, whereas the extent of PEA increase was less than that in global Maob KO mice. Given that plasma PEA levels were elevated in global KO mice, but not in brain–specific KO mice, and that PEA passes across the blood–brain barrier, the substantial accumulation of PEA in the PVT of Maob KO mice was likely due to the increase in plasma PEA. These data suggest that PEA is a substrate of MAO-B in the PVT as well as other tissues.
Collapse
|
5
|
Abstract
Trace amines are endogenous compounds classically regarded as comprising β-phenylethyalmine, p-tyramine, tryptamine, p-octopamine, and some of their metabolites. They are also abundant in common foodstuffs and can be produced and degraded by the constitutive microbiota. The ability to use trace amines has arisen at least twice during evolution, with distinct receptor families present in invertebrates and vertebrates. The term "trace amine" was coined to reflect the low tissue levels in mammals; however, invertebrates have relatively high levels where they function like mammalian adrenergic systems, involved in "fight-or-flight" responses. Vertebrates express a family of receptors termed trace amine-associated receptors (TAARs). Humans possess six functional isoforms (TAAR1, TAAR2, TAAR5, TAAR6, TAAR8, and TAAR9), whereas some fish species express over 100. With the exception of TAAR1, TAARs are expressed in olfactory epithelium neurons, where they detect diverse ethological signals including predators, spoiled food, migratory cues, and pheromones. Outside the olfactory system, TAAR1 is the most thoroughly studied and has both central and peripheral roles. In the brain, TAAR1 acts as a rheostat of dopaminergic, glutamatergic, and serotonergic neurotransmission and has been identified as a novel therapeutic target for schizophrenia, depression, and addiction. In the periphery, TAAR1 regulates nutrient-induced hormone secretion, suggesting its potential as a novel therapeutic target for diabetes and obesity. TAAR1 may also regulate immune responses by regulating leukocyte differentiation and activation. This article provides a comprehensive review of the current state of knowledge of the evolution, physiologic functions, pharmacology, molecular mechanisms, and therapeutic potential of trace amines and their receptors in vertebrates and invertebrates.
Collapse
Affiliation(s)
- Raul R Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| | - Marius C Hoener
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| | - Mark D Berry
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| |
Collapse
|
6
|
Berry MD, Gainetdinov RR, Hoener MC, Shahid M. Pharmacology of human trace amine-associated receptors: Therapeutic opportunities and challenges. Pharmacol Ther 2017; 180:161-180. [DOI: 10.1016/j.pharmthera.2017.07.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Goshima Y, Nakamura F, Masukawa D, Chen S, Koga M. The Cardiovascular Actions of DOPA Mediated by the Gene Product of ocular albinism 1. J Pharmacol Sci 2014; 126:14-20. [DOI: 10.1254/jphs.14r03cr] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
8
|
Mitkovski M, Padovan-Neto FE, Raisman-Vozari R, Ginestet L, da-Silva CA, Del-Bel EA. Investigations into Potential Extrasynaptic Communication between the Dopaminergic and Nitrergic Systems. Front Physiol 2012; 3:372. [PMID: 23055978 PMCID: PMC3457048 DOI: 10.3389/fphys.2012.00372] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 08/29/2012] [Indexed: 12/21/2022] Open
Abstract
Nitric oxide is unconstrained by cell membranes and can therefore act along a broad distance as a volume transmitter. Spillover of nitric oxide between neurons may have a major impact on central nervous system diseases and particularly on neurodegeneration. There is evidence whereby communication between nitrergic and dopaminergic systems plays an essential role in the control of the nigrostriatal pathway. However, there is sparse information for either the coexistence or overlap of nitric oxide and dopaminergic structures. The dual localization of immunoreactivity for nitric oxide synthase (NOS) and tyrosine hydroxylase, enzymes responsible for the synthesis of nitric oxide and dopamine, respectively, was examined in neurons of the nigrostriatal pathway in the rat brain by means of a double-immunohistochemical method and confocal laser scanning microscopy, acquired at the resolution limit. After perfusional fixation, the brains were cut and double-immunostained. A proximity analysis of tyrosine hydroxylase and NOS structures was done using binary masks generated from the respective maximum projections, using confocal laser microscopy. Unrevealed regions were determined somatodendritic positive for both NOS and tyrosine hydroxylase, within an image limit resolution at 2 μm-wide margin. The described interconnected localization of nNOS(+) and TH(+) containing neuronal fibers and cells bodies in the nigrostriatal pathway propose a close anatomical link between the two neurotransmitters.
Collapse
Affiliation(s)
- M Mitkovski
- Light Microscopy Facility, Max-Planck-Institute of Experimental Medicine Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
9
|
Ahmed EI, Northcutt KV, Lonstein JS. L-amino acid decarboxylase- and tyrosine hydroxylase-immunoreactive cells in the extended olfactory amygdala and elsewhere in the adult prairie vole brain. J Chem Neuroanat 2011; 43:76-85. [PMID: 22074805 DOI: 10.1016/j.jchemneu.2011.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 10/25/2011] [Accepted: 10/26/2011] [Indexed: 11/28/2022]
Abstract
Neurons synthesizing dopamine (DA) are widely distributed in the brain and implicated in a tremendous number of physiological and behavioral functions, including socioreproductive behaviors in rodents. We have recently been investigating the possible involvement of sex- and species-specific TH-immunoreactive (TH-ir) cells in the male prairie vole (Microtus ochrogaster) principal bed nucleus of the stria terminalis (pBST) and posterodorsal medial amygdala (MeApd) in the chemosensory control of their monogamous pairbonding and parenting behaviors. These TH-ir cells are not immunoreactive for dopamine-beta-hydroxylase (DBH), suggesting they are not noradrenergic but possibly DAergic. A DAergic phenotype would require them to contain aromatic L-amino acid decarboxylase (AADC) and here we examined the existence of cells immunoreactive for both TH and AADC in the pBST and MeApd of adult virgin male and female prairie voles. We also investigated the presence of TH/AADC cells in the anteroventral periventricular nucleus (AVPV), medial preoptic area (MPO), arcuate nucleus (ARH), zona incerta (ZI), substantia nigra (SN) and ventral tegmental area (VTA). Among our findings were: (1) the pBST and MeApd each contained completely non-overlapping distributions of TH-ir and AADC-ir cells, (2) the AVPV contained surprisingly few AADC-ir cells and almost no TH-ir cells contained AADC-ir, (3) approximately 60% of the TH-ir cells in the MPO, ARH, and ZI also contained AADC-ir, (4) unexpectedly, only about half of TH-ir cells in the SN and VTA contained AADC-ir, and (5) notable populations of AADC-ir cells were found outside traditional monoamine-synthesizing regions, including some sites that do not contain AADC-ir cells in adult laboratory rats or cats (medial septum and cerebral cortex). In the absence of the chemical requirements to produce DA, monoenzymatic TH-ir cells in the virgin adult prairie vole pBST, MeApd, and elsewhere in their brain may instead produce L-DOPA as an end product and use it as a neurotransmitter or neuromodulator, similar to what has been observed for monoenzymatic TH-synthesizing cells in the laboratory rat brain.
Collapse
Affiliation(s)
- Eman I Ahmed
- Neuroscience Program, 108 Giltner Hall, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
10
|
Aromatic l-amino acid decarboxylase expression profiling and isoform detection in the developing porcine brain. Brain Res 2010; 1308:1-13. [DOI: 10.1016/j.brainres.2009.10.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 10/12/2009] [Accepted: 10/19/2009] [Indexed: 02/07/2023]
|
11
|
Kitahama K, Ikemoto K, Jouvet A, Araneda S, Nagatsu I, Raynaud B, Nishimura A, Nishi K, Niwa SI. Aromatic L-amino acid decarboxylase-immunoreactive structures in human midbrain, pons, and medulla. J Chem Neuroanat 2009; 38:130-40. [PMID: 19589383 DOI: 10.1016/j.jchemneu.2009.06.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 06/29/2009] [Accepted: 06/29/2009] [Indexed: 11/19/2022]
Abstract
The objective of the present study was to determine with precision the localization of neurons and fibers immunoreactive (ir) for aromatic L-amino acid decarboxylase (AADC), the second-step enzyme responsible for conversion of L-dihydroxyphenylalanine (L-DOPA) to dopamine (DA) and 5-hydroxytryptophan (5-HTP) to serotonin (5-hydroxytryptamine: 5-HT) in the midbrain, pons, and medulla oblongata of the adult human brain. Intense AADC immunoreactivity was observed in a large number of presumptive 5-HT neuronal cell bodies distributed in all of the raphe nuclei, as well as in regions outside the raphe nuclei such as the ventral portions of the pons and medulla. Moderate to strong immunoreaction was observable in presumptive DA cells in the mesencephalic reticular formation, substantia nigra, and ventral tegmental area of Tsai, as well as in presumptive noradrenergic (NA) cells, which were aggregated in the locus coeruleus and dispersed in the subcoeruleus nuclei. In the medulla oblongata, immunoreaction of moderate intensity was distributed in the mid and ventrolateral portions of the intermediate reticular nucleus, which constitutes the oblique plate of A1/C1 presumptive adrenergic and/or NA neurons. The dorsal vagal AADC-ir neurons were fewer in number and stained more weakly than cells immunoreactive for tyrosine hydroxylase (TH). AADC immunoreactivity was not identified in an aggregate of TH-ir neurons lying in the gelatinous subnucleus of the solitary nucleus, a restricted region just rostroventral to the area postrema. Nonaminergic AADC-positive neurons (D neurons), which are abundant in the rat and cat midbrain, pons, and medulla, were hardly detectable in homologous regions in the human brain, although they were clearly distinguishable in the forebrain.
Collapse
Affiliation(s)
- Kunio Kitahama
- Laboratoire de Physiologie Intégrative, Cellulaire et Moléculaire, UMR5123 Centre National de la Recherche Scientifique, Bat Raphaël Dubois, Campus La Doua, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne Cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kvetnansky R, Sabban EL, Palkovits M. Catecholaminergic systems in stress: structural and molecular genetic approaches. Physiol Rev 2009; 89:535-606. [PMID: 19342614 DOI: 10.1152/physrev.00042.2006] [Citation(s) in RCA: 363] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Stressful stimuli evoke complex endocrine, autonomic, and behavioral responses that are extremely variable and specific depending on the type and nature of the stressors. We first provide a short overview of physiology, biochemistry, and molecular genetics of sympatho-adrenomedullary, sympatho-neural, and brain catecholaminergic systems. Important processes of catecholamine biosynthesis, storage, release, secretion, uptake, reuptake, degradation, and transporters in acutely or chronically stressed organisms are described. We emphasize the structural variability of catecholamine systems and the molecular genetics of enzymes involved in biosynthesis and degradation of catecholamines and transporters. Characterization of enzyme gene promoters, transcriptional and posttranscriptional mechanisms, transcription factors, gene expression and protein translation, as well as different phases of stress-activated transcription and quantitative determination of mRNA levels in stressed organisms are discussed. Data from catecholamine enzyme gene knockout mice are shown. Interaction of catecholaminergic systems with other neurotransmitter and hormonal systems are discussed. We describe the effects of homotypic and heterotypic stressors, adaptation and maladaptation of the organism, and the specificity of stressors (physical, emotional, metabolic, etc.) on activation of catecholaminergic systems at all levels from plasma catecholamines to gene expression of catecholamine enzymes. We also discuss cross-adaptation and the effect of novel heterotypic stressors on organisms adapted to long-term monotypic stressors. The extra-adrenal nonneuronal adrenergic system is described. Stress-related central neuronal regulatory circuits and central organization of responses to various stressors are presented with selected examples of regulatory molecular mechanisms. Data summarized here indicate that catecholaminergic systems are activated in different ways following exposure to distinct stressful stimuli.
Collapse
Affiliation(s)
- Richard Kvetnansky
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | | | | |
Collapse
|
13
|
Thompson AM, Thompson GC. Experimental evidence that the serotonin transporter mediates serotonin accumulation in LSO neurons of the postnatal mouse. Brain Res 2008; 1253:60-8. [PMID: 19070605 DOI: 10.1016/j.brainres.2008.11.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 11/07/2008] [Accepted: 11/07/2008] [Indexed: 12/29/2022]
Abstract
During the same postnatal period of development when their terminal projection patterns in the midbrain are maturing, lateral superior olivary (LSO) neurons are immunoreactive for serotonin (5-HT). As there is no evidence that LSO neurons synthesize 5-HT, it is likely that they accumulate 5-HT via the 5-HT transporter. To determine if the 5-HT transporter is responsible for 5-HT inside postnatal mouse LSO neurons, pups (postnatal ages 5-6) were treated with fluoxetine and LSO neurons examined for 5-HT. We also evaluated whether LSO neurons containing 5-HT expressed the 5-HT transporter. To further rule out any potential synthesis of 5-HT, brainstem sections of mice at postnatal ages when 5-HT staining is the most robust were stained for the rate-limiting enzyme in the synthesis of 5-HT, tryptophan hydroxylase. Fluoxetine treatment reduced or in most cases, completely eliminated the number of neurons in the LSO stained for 5-HT. Postnatal LSO neurons containing 5-HT were immunoreactive for the 5-HT transporter; in older animals in which 5-HT was no longer observed in the LSO neurons, 5-HT transporter expression was similarly absent. Further, LSO neurons in mice at any age did not stain for tryptophan hydroxylase. These results indicate that LSO neurons express the functional 5-HT transporter to internalize 5-HT; this mechanism may serve to regulate extracellular 5-HT levels during maturation of their terminal endings in the inferior colliculus.
Collapse
Affiliation(s)
- Ann M Thompson
- The University of Oklahoma Health Sciences Center, Department of Otorhinolaryngology, Oklahoma City, OK 73126-0901, USA.
| | | |
Collapse
|
14
|
Dissociation of metabolic and neurovascular responses to levodopa in the treatment of Parkinson's disease. J Neurosci 2008; 28:4201-9. [PMID: 18417699 DOI: 10.1523/jneurosci.0582-08.2008] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We compared the metabolic and neurovascular effects of levodopa (LD) therapy for Parkinson's disease (PD). Eleven PD patients were scanned with both [15O]-H2O and [18F]-fluorodeoxyglucose positron emission tomography in the unmedicated state and during intravenous LD infusion. Images were used to quantify LD-mediated changes in the expression of motor- and cognition-related PD covariance patterns in scans of cerebral blood flow (CBF) and cerebral metabolic rate for glucose (CMR). These changes in network activity were compared with those occurring during subthalamic nucleus (STN) deep brain stimulation (DBS), and those observed in a test-retest PD control group. Separate voxel-based searches were conducted to identify individual regions with dissociated treatment-mediated changes in local cerebral blood flow and metabolism. We found a significant dissociation between CBF and CMR in the modulation of the PD motor-related network by LD treatment (p < 0.001). This dissociation was characterized by reductions in network activity in the CMR scans (p < 0.003) occurring concurrently with increases in the CBF scans (p < 0.01). Flow-metabolism dissociation was also evident at the regional level, with LD-mediated reductions in CMR and increases in CBF in the putamen/globus pallidus, dorsal midbrain/pons, STN, and ventral thalamus. CBF responses to LD in the putamen and pons were relatively greater in patients exhibiting drug-induced dyskinesia. In contrast, flow-metabolism dissociation was not present in the STN DBS treatment group or in the PD control group. These findings suggest that flow-metabolism dissociation is a distinctive feature of LD treatment. This phenomenon may be especially pronounced in patients with LD-induced dyskinesia.
Collapse
|
15
|
Grandy DK. Trace amine-associated receptor 1-Family archetype or iconoclast? Pharmacol Ther 2007; 116:355-90. [PMID: 17888514 PMCID: PMC2767338 DOI: 10.1016/j.pharmthera.2007.06.007] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Accepted: 06/25/2007] [Indexed: 01/25/2023]
Abstract
Interest has recently been rekindled in receptors that are activated by low molecular weight, noncatecholic, biogenic amines that are typically found as trace constituents of various vertebrate and invertebrate tissues and fluids. The timing of this resurgent focus on receptors activated by the "trace amines" (TA) beta-phenylethylamine (PEA), tyramine (TYR), octopamine (OCT), synephrine (SYN), and tryptamine (TRYP) is the direct result of 2 publications that appeared in 2001 describing the cloning of a novel G protein-coupled receptor (GPCR) referred to by their discoverers Borowsky et al. as TA1 and Bunzow et al. as TA receptor 1 (TAR1). When heterologously expressed in Xenopus laevis oocytes and various eukaryotic cell lines, recombinant rodent and human TAR dose-dependently couple to the stimulation of adenosine 3',5'-monophosphate (cAMP) production. Structure-activity profiling based on this functional response has revealed that in addition to the TA, other biologically active compounds containing a 2-carbon aliphatic side chain linking an amino group to at least 1 benzene ring are potent and efficacious TA receptor agonists with amphetamine (AMPH), methamphetamine, 3-iodothyronamine, thyronamine, and dopamine (DA) among the most notable. Almost 100 years after the search for TAR began, numerous TA1/TAR1-related sequences, now called TA-associated receptors (TAAR), have been identified in the genome of every species of vertebrate examined to date. Consequently, even though heterologously expressed TAAR1 fits the pharmacological criteria established for a bona fide TAR, a major challenge for those working in the field is to discern the in vivo pharmacology and physiology of each purported member of this extended family of GPCR. Only then will it be possible to establish whether TAAR1 is the family archetype or an iconoclast.
Collapse
Affiliation(s)
- David K Grandy
- Department of Physiology and Pharmacology, L334, School of Medicine, Oregon Health and Science University, Portland, OR 97239, United States.
| |
Collapse
|
16
|
Kitahama K, Geffard M, Araneda S, Arai R, Ogawa K, Nagatsu I, Pequignot JM. Localization of L-DOPA uptake and decarboxylating neuronal structures in the cat brain using dopamine immunohistochemistry. Brain Res 2007; 1167:56-70. [PMID: 17692830 DOI: 10.1016/j.brainres.2007.05.081] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 05/31/2007] [Accepted: 05/31/2007] [Indexed: 12/31/2022]
Abstract
The present study examined dopamine-immunoreactive neuronal structures using immunohistochemistry in conjunction with an anti-dopamine antiserum, following injection of l-3,4-dihydroxyphenylalanine (L-DOPA) with or without an inhibitor of monoamine oxidase (Pargyline) in the cat brain. L-DOPA injection made it possible to detect dopamine immunoreactivity in presumptive serotonergic and noradrenergic cell bodies and axons. Weak to moderate dopamine immunoreactivity was observed in non-aminergic cells (possibly so-called "D" cells containing aromatic L-amino acid decarboxylase (AADC)) in several hypothalamic, midbrain, pontine and medullary nuclei. Intense dopamine immunoreactivity became visible in a large number of cells and axons (possibly containing AADC) with wide distribution in the brain following administration of L-DOPA with Pargyline. AADC is most likely active in cells and axons that take up L-DOPA, where it decarboxylates the L-DOPA to dopamine. However, newly synthesized dopamine in such cells is rapidly oxidized by monoamine oxidase.
Collapse
Affiliation(s)
- Kunio Kitahama
- Laboratorie de Physiologie Intégrative, Cellulaire et Moléculaire, CNRS UMR5123/Université Lyon1, Bat Raphaël Dubois, Campus La Doua, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
17
|
Björklund A, Dunnett SB. Dopamine neuron systems in the brain: an update. Trends Neurosci 2007; 30:194-202. [PMID: 17408759 DOI: 10.1016/j.tins.2007.03.006] [Citation(s) in RCA: 1184] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 02/23/2007] [Accepted: 03/19/2007] [Indexed: 10/23/2022]
Abstract
The basic organization of the catecholamine-containing neuronal systems and their axonal projections in the brain was initially worked out using classical histofluorescence techniques during the 1960s and 1970s. The introduction of more versatile immunohistochemical methods, along with a range of highly sensitive tract-tracing techniques, has provided a progressively more detailed picture, making the dopamine system one of the best known, and most completely mapped, neurotransmitter systems in the brain. The purpose of the present review is to summarize our current knowledge of the diversity and neurochemical features of the nine dopamine-containing neuronal cell groups in the mammalian brain, their distinctive cellular properties, and their ability to regulate their dopaminergic transmitter machinery in response to altered functional demands and aging.
Collapse
Affiliation(s)
- Anders Björklund
- Neurobiology Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, Lund SE-22184, Sweden.
| | | |
Collapse
|
18
|
Brumovsky P, Villar MJ, Hökfelt T. Tyrosine hydroxylase is expressed in a subpopulation of small dorsal root ganglion neurons in the adult mouse. Exp Neurol 2006; 200:153-65. [PMID: 16516890 DOI: 10.1016/j.expneurol.2006.01.023] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 01/05/2006] [Accepted: 01/24/2006] [Indexed: 11/17/2022]
Abstract
The expression of tyrosine hydroxylase (TH) was studied in adult mouse dorsal root ganglia (DRGs) and spinal cord by means of immunohistochemistry and in situ hybridization. TH immunoreactivity and TH mRNA were present in 10-15% of lumbar DRG neurons, in most cases being small/medium-sized. Only very few of these neurons coexpressed calcitonin gene-related peptide (CGRP), and only around 6% bound isolectin B4 (IB4). Dopamine beta-hydroxylase-positive(+) or aromatic amino acid decarboxylase (AADC)+ DRG neurons were rare and did not colocalize TH. No evidence for dopamine transporter expression was obtained. Axotomy of the sciatic nerve only showed a tendency towards reduction in the number of TH+ neurons. In the dorsal horn of the spinal cord, moderately dense and widespread TH+ nerve terminals were observed, mainly in the gray matter and they did not show a typical primary afferent pattern. Also, dorsal rhizotomy or peripheral axotomy had no apparent effect on TH-LI in the dorsal horn. In the skin, along with an abundant TH+ innervation of blood vessels and sweat gland acini, a number of fibers was observed in close relation to the skin surface, some even penetrating into the epithelium. These results demonstrate presence, in normal adult mouse DRGs, of a subpopulation of TH+, essentially CGRP- and IB4-negative small/medium-sized neurons. No evidence for transport of TH into central afferents was obtained, but the enzyme may be present in some sensory fibers in the skin. The fact that neither AADC nor the dopamine transporter could be visualized suggests of non-dopaminergic transmitter phenotype, but the levels of these two dopaminergic markers may be too low to be detected with the present methodology. A further alternative is that L-DOPA after release is extracellularly converted to dopamine.
Collapse
Affiliation(s)
- Pablo Brumovsky
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
19
|
Abstract
Trace amines (TAs) are endogenous compounds that are related to biogenic amine neurotransmitters and are present in the mammalian nervous system in trace amounts. Although their pronounced pharmacological effects and tight link to major human disorders such as depression and schizophrenia have been studied for decades, the understanding of their molecular mode of action remained incomplete because of the apparent absence of specialized receptors. However, the recent discovery of a novel family of G-protein-coupled receptors (GPCRs) that includes individual members that are highly specific for TAs indicates a potential role for TAs as vertebrate neurotransmitters or neuromodulators, although the majority of these GPCRs so far have not been demonstrated to be activated by TAs. The unique pharmacology and expression pattern of these receptors make them prime candidates for targets in drug development in the context of several neurological diseases. Current research focuses on dissecting their molecular pharmacology and on the identification of endogenous ligands for the apparently TA-insensitive members of this receptor family.
Collapse
Affiliation(s)
- Lothar Lindemann
- F. Hoffmann-La Roche, Pharmaceuticals Division, Discovery Neuroscience, CH-4070-Basel, Switzerland.
| | | |
Collapse
|
20
|
Misu Y, Kitahama K, Goshima Y. L-3,4-Dihydroxyphenylalanine as a neurotransmitter candidate in the central nervous system. Pharmacol Ther 2003; 97:117-37. [PMID: 12559386 DOI: 10.1016/s0163-7258(02)00325-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Historically, 3,4-dihydroxyphenylalanine (DOPA) has been believed to be an inert amino acid that alleviates the symptoms of Parkinson's disease by its conversion to dopamine via the enzyme aromatic L-amino acid decarboxylase. In contrast to this generally accepted idea, we propose that DOPA itself is a neurotransmitter and/or neuromodulator, in addition to being a precursor of dopamine. Several criteria, such as synthesis, metabolism, active transport, existence, physiological release, competitive antagonism, and physiological or pharmacological responses, must be satisfied before a compound is accepted as a neurotransmitter. Recent evidence suggests that DOPA fulfills these criteria in its involvement mainly in baroreflex neurotransmission in the lower brainstem and in delayed neuronal death by transient ischemia in the striatum and the hippocampal CA1 region of rats.
Collapse
Affiliation(s)
- Yoshimi Misu
- Department of Pharmacology, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan.
| | | | | |
Collapse
|
21
|
Hagberg GE, Torstenson R, Marteinsdottir I, Fredrikson M, Långström B, Blomqvist G. Kinetic compartment modeling of [11C]-5-hydroxy-L-tryptophan for positron emission tomography assessment of serotonin synthesis in human brain. J Cereb Blood Flow Metab 2002; 22:1352-66. [PMID: 12439293 DOI: 10.1097/01.wcb.0000040946.89393.9d] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The substrate for the second enzymatic step in serotonin synthesis, 5-hydroxy-L-tryptophan, labeled in the beta-position ([11C]-HTP), was used for positron emission tomography (PET) measurements in six healthy human participants, examined on two occasions. One- and two-tissue kinetic compartment modeling of time-radioactivity curves was performed, using arterial, metabolite-corrected [11C]-HTP values as input function. The availability of unchanged tracer in arterial blood plasma was > or = 80% up to 60 minutes after injection, while [11C]-hydroxyindole acetic acid and [11C]-serotonin accounted for the remaining radioactivity, amounting to < or = 16% and < or = 4%, respectively. Compartment modeling was performed for brain stem, putamen, caudate nucleus, anterior cingulate, white matter, and superior occipital, occipitotemporal, and temporal cortices. The average biologic half-life for plasma-to-tissue equilibrium was 7 to 12 minutes, and the volume of distribution was 0.2 to 0.5 microL.mL(-1). In all regions except white matter, the kinetic compartment model that included irreversible [11C]-HTP trapping showed significantly improved model fits with respect to a one-tissue compartment model. The [11C]-HTP trapping rate constant depended on the estimated tissue availability of the serotonin precursor tryptophan, known to reflect serotonin synthesis in healthy individuals, and correlated with serotonin tissue concentration and synthesis rates reported previously in literature. These findings suggest the use of [11C]-HTP PET measurements to investigate serotonin synthesis.
Collapse
|
22
|
Tóth BE, Bodnár I, Homicskó KG, Fülöp F, Fekete MIK, Nagy GM. Physiological role of salsolinol: its hypophysiotrophic function in the regulation of pituitary prolactin secretion. Neurotoxicol Teratol 2002; 24:655-66. [PMID: 12200196 DOI: 10.1016/s0892-0362(02)00216-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have recently observed that 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (salsolinol) produced by hypothalamic neurons can selectively release prolactin from the anterior lobe (AL) of the pituitary gland. Moreover, high affinity binding sites for SAL have been detected in areas, like median eminence (ME) and the neuro-intermediate lobe (NIL) that are known terminal fields of the tuberoinfundibular DAergic (TIDA) and tuberohypophysial (THDA)/periventricular (PHDA) DAergic systems of the hypothalamus, respectively. However, the in situ biosynthesis and the mechanism of action of SAL are still enigmatic, these observations clearly suggest that sites other than the AL might be targets of SAL action. Based on our recent observations it may be relevant to postulate that an "autosynaptocrine" regulatory mechanism functioning at the level of the DAergic terminals localized in both the ME and NIL, may play a role in the hypophyseotrophic regulation of PRL secretion. Furthermore, SAL may be a key player in these processes. The complete and precise mapping of these intra-terminal mechanisms should help us to understand the tonic DAerg regulation of PRL secretion. Moreover, it may also give insight into the role of pre-synaptic processes that most likely have distinct and significant functional as well as pathological roles in other brain areas using DAergic neurotransmission, like striatonigral and mesolimbic systems.
Collapse
Affiliation(s)
- Béla E Tóth
- Neuroendocrine Research Laboratory, Department of Human Morphology and Developmental Biology, Semmelweis University, Tuzoltó u. 58, Budapest H-1094, Hungary
| | | | | | | | | | | |
Collapse
|
23
|
Ershov PV, Ugrumov MV, Calas A, Makarenko IG, Krieger M, Thibault J. Neurons possessing enzymes of dopamine synthesis in the mediobasal hypothalamus of rats. Topographic relations and axonal projections to the median eminence in ontogenesis. J Chem Neuroanat 2002; 24:95-107. [PMID: 12191726 DOI: 10.1016/s0891-0618(02)00019-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We evaluated the topographic relations between tyrosine hydroxylase (TH)- and/or aromatic L-amino acid decarboxylase (AADC)-immunoreactive neurons in the arcuate nucleus (AN), as well as between TH- and/or AADC-immunoreactive axons in the median eminence (ME) in rats at the 21st embryonic day, 9th postnatal day, and in adulthood. The double-immunofluorescent technique in combination with confocal microscopy was used. Occasional bienzymatic neurons but numerous monoenzymatic TH- or AADC-immunoreactive neurons were observed in fetuses. There was almost no overlap in the distribution of monoenzymatic neurons, and therefore few appositions were observed in between. In postnatal animals, numerous bienzymatic neurons appeared in addition to monoenzymatic neurons. They were distributed throughout the AN resulting in the increased frequency of appositions. Furthermore, specialized-like contacts between monoenzymatic TH- and AADC-immunoreactive neurons appeared. The quantification of the fibers in the ME showed that there were large specific areas of the monoenzymatic TH-immunoreactive fibers and bienzymatic fibers in fetuses, followed by the gradual reduction of the former and the increase of the latter to adulthood. The specific area of the monoenzymatic AADC-immunoreactive fibers in fetuses was rather low, and thereafter increased progressively to adulthood. The fibers of all the types were in apposition in the ME at each studied age. Close topographic relations between the neurons containing individual complementary enzymes of dopamine synthesis at the level of cell bodies and axons suggest functional interaction in between.
Collapse
Affiliation(s)
- Petr V Ershov
- Laboratory of Neurohistology, Institute of Normal Physiology, Russian Academy of Medical Sciences, 8 Baltiiskaya St., Moscow, Russia
| | | | | | | | | | | |
Collapse
|
24
|
Chatelin S, Wehrlé R, Mercier P, Morello D, Sotelo C, Weber MJ. Neuronal promoter of human aromatic L-amino acid decarboxylase gene directs transgene expression to the adult floor plate and aminergic nuclei induced by the isthmus. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 97:149-60. [PMID: 11750071 DOI: 10.1016/s0169-328x(01)00318-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In order to analyze the regulatory sequences involved in the neuronal expression of aromatic L-amino acid decarboxylase (AADC), we have generated transgenic mice carrying the LacZ gene under the control of a 3.6-kb human aadc genomic fragment flanking the neuronal alternative first exon. A series of double labeling experiments were performed to compare the pattern of transgene expression to that of specific markers for catecholaminergic and serotonergic neurons. In the adult brain parenchyma, transgene expression was observed in the substantia nigra (SN), the ventral tegmental area (VTA) and the dorsal, medial and pontine raphe nuclei. A large degree of co-expression was observed with tyrosine-hydroxylase (TH) in the SN and VTA, and with serotonin (5-HT) in the dorsal raphe nucleus. Moreover, expression was observed in cells that were both TH- and 5-HT-negative, in particular in the ventral tegmental decussation and the dorsal tip of the VTA. Transgene expression was also observed in the walls of central cavities. Cells positive for both beta-gal and PSA-NCAM were localized in the ventral ependyma of the third and fourth ventricle, and of the central canal of the spinal cord, in what appears to be the adult floor plate. Transgene expressing, PSA-NCAM negative, cells located along the ventral midline of the spinal cord seemed to have migrated out of the ependyma. Our data thus reveal the complexity of aadc gene regulation. The present transgene provides a unique marker for monoaminergic nuclei induced by the isthmus and for the adult floor plate.
Collapse
Affiliation(s)
- S Chatelin
- Laboratoire de Biologie Moléculaire Eucaryote, UMR5099, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex, France
| | | | | | | | | | | |
Collapse
|
25
|
Goodchild AK, Phillips JK, Lipski J, Pilowsky PM. Differential expression of catecholamine synthetic enzymes in the caudal ventral pons. J Comp Neurol 2001; 438:457-67. [PMID: 11559901 DOI: 10.1002/cne.1328] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The analysis of colocalization of multiple catecholamine biosynthetic enzymes within the ventrolateral part of the medulla oblongata of the rat revealed distinct subpopulations of neurons within the C1 region (Phillips et al., J Comp Neurol 2001, 432:20-34). In extending this study to include the caudal pons, it was shown for the first time that the A5 cell group could be distinguished by the presence of immunoreactivity to tyrosine hydroxylase (TH), aromatic l-amino acid decarboxylase (AADC), and dopamine beta hydroxylase (DBH). A novel cell group was also identified. The cells within this new group were immunoreactive to DBH but not TH, AADC, or phenylethanolamine N-methyltransferase (PNMT) and will be referred to as the TH-, DBH+ cell group. The TH-, DBH+ neurons were not immunoreactive for either the dopamine or noradrenaline transporters, suggesting that these neurons do not take up these transmitters. A5 neurons were immunoreactive for the noradrenaline transporter but not the dopamine transporter (as previously shown). Retrograde tracing with cholera toxin B revealed that the TH-, DBH+ neurons do not project to the thoracic spinal cord or to the rostral ventrolateral medulla, but A5 neurons do. A calbindin immunoreactive cell group is located in a region overlapping TH-, DBH+ cell group. However, only a few neurons were immunoreactive for both markers. The physiological role of the TH-, DBH+ cell group remains to be determined.
Collapse
Affiliation(s)
- A K Goodchild
- Hypertension and Stroke Research Laboratories, Departments of Physiology and Neurosurgery, University of Sydney, Royal North Shore Hospital, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
26
|
Bodnár I, Göõz P, Okamura H, Tóth BE, Vecsernyé M, Halász B, Nagy GM. Effect of neonatal treatment with monosodium glutamate on dopaminergic and L-DOPA-ergic neurons of the medial basal hypothalamus and on prolactin and MSH secretion of rats. Brain Res Bull 2001; 55:767-74. [PMID: 11595361 DOI: 10.1016/s0361-9230(01)00584-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The effect of neonatal treatment with monosodium L-glutamate (MSG) on the dopaminergic systems of the medial basal hypothalamus has been investigated using tyrosine hydroxylase (TH) and aromatic L-amino acid decarboxylase (AADC) immunocytochemistry. Changes in plasma levels of prolactin (PRL) and alpha-melanocyte-stimulating hormone (MSH) have also been determined in intact and in MSG-treated rats after inhibition of TH by alpha-methyl-p-tyrosine (alpha-MpT) or without inhibition of enzyme activity. Monosodium glutamate resulted in a 40% reduction in the number of TH immunopositive tuberoinfundibular neurons, but no change in the number of AADC-positive tuberoinfundibular nerve cells, indicating that this reduction has occurred mainly in TH-positive but AADC-negative elements, i.e., in L-DOPA-ergic neurons. In contrast, MSG did not cause changes in the number of TH and AADC immunoreactive neurons of the periventriculohypophysial and tuberohypophysial dopaminergic systems, and it did not influence basal plasma PRL levels. alpha-methyl-p-tyrosine has increased plasma PRL concentrations in both control and MSG-treated rats of both sexes, but significantly higher responses were detected in females. None of the treatments had any effect on plasma MSH level. These findings suggest that MSG affects primarily L-DOPA-ergic neurons located in the ventrolateral part of the arcuate nucleus, but not dopaminergic neurons situated in the dorsomedial part of the arcuate nucleus; neither PRL nor MSH secretion is altered by MSG; a significant sex difference exists in the pituitary PRL response to inhibition of TH, and this response is not affected by MSG.
Collapse
Affiliation(s)
- I Bodnár
- Neuroendocrine Research Laboratory, Department of Human Morphology and Developmental Biology, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
27
|
Sugaya Y, Sasaki Y, Goshima Y, Kitahama K, Kusakabe T, Miyamae T, Kato T, Misu Y. Autoradiographic studies using L-[(14)C]DOPA and L-DOPA reveal regional Na(+)-dependent uptake of the neurotransmitter candidate L-DOPA in the CNS. Neuroscience 2001; 104:1-14. [PMID: 11311526 DOI: 10.1016/s0306-4522(01)00008-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We previously proposed that L-3,4-dihydroxyphenylalanine (L-DOPA) is a neurotransmitter in the CNS. Receptor and transporter molecules for L-DOPA, however, have not been determined. In the present study, in order to localize the uptake sites of L-DOPA in the CNS, we performed autoradiographic uptake studies using L-[14C]DOPA and L-[3H]DOPA in the uptake study on rat brain slice preparations, and further analyzed the properties of L-DOPA uptake. Image analysis of the L-[14C]DOPA autoradiogram showed a unique heterogeneous distribution of uptake sites in the brain. The intensity was relatively high in the cerebral cortex, the hypothalamus, the cerebellum and the hippocampus, while the density was moderate or even low in the striatum and the substantia nigra. L-DOPA and phenylalanine, but not dopamine (10mM) were able to almost completely inhibit the uptake of L-[14C]DOPA to basal levels. Microautoradiographic studies using L-[3H]DOPA revealed accumulation of dense grains in the median eminence, the supraoptic nucleus of the hypothalamus, the cerebral cortex (layer I) and the hippocampus. In the cerebellum, grains formed in clusters surrounding the Purkinje cells. This grain accumulation was concluded to be in Bergmann glial cells, since the morphological pattern of grain accumulation was similar to that of the immunoreactivity of the glutamate aspartate transporter, a marker protein for Bergmann glial cells. In the hippocampus, the grain density significantly decreased under Na(+)-free conditions. In addition, grain density also decreased in the absence of Cl(-). In contrast, grains in the choroid plexus and the ependymal cell layer, were not affected by the absence of Na(+). These findings indicated that the uptake of L-DOPA occurs via various types of large neutral amino acid transport mechanisms. It appears that neuronal and/or glial cells, which take up L-DOPA in a Na(+)-dependent manner, exist in the CNS. Our finding further supports the concept that L-DOPA itself may act as a neurotransmitter or neuromodulator.
Collapse
Affiliation(s)
- Y Sugaya
- Department of Pharmacology, Yokohama City University School of Medicine, 236-0004, Yokohama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Phillips JK, Goodchild AK, Dubey R, Sesiashvili E, Takeda M, Chalmers J, Pilowsky PM, Lipski J. Differential expression of catecholamine biosynthetic enzymes in the rat ventrolateral medulla. J Comp Neurol 2001; 432:20-34. [PMID: 11241375 DOI: 10.1002/cne.1086] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Adrenergic (C1) neurons located in the rostral ventrolateral medulla are considered a key component in the control of arterial blood pressure. Classically, C1 cells have been identified by their immunoreactivity for the catecholamine biosynthetic enzymes tyrosine hydroxylase (TH) and/or phenylethanolamine N-methyltransferase (PNMT). However, no studies have simultaneously demonstrated the expression of aromatic L-amino acid decarboxylase (AADC) and dopamine beta-hydroxylase (DBH) in these neurons. We examined the expression and colocalization of all four enzymes in the rat ventrolateral medulla using immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR) analysis. Retrograde tracer injected into thoracic spinal segments T2-T4 was used to identify bulbospinal neurons. Using fluorescence and confocal microscopy, most cells of the C1 group were shown to be double or triple labeled with TH, DBH, and PNMT, whereas only 65-78% were immunoreactive for AADC. Cells that lacked detectable immunoreactivity for AADC were located in the rostral C1 region, and approximately 50% were spinally projecting. Some cells in this area lacked DBH immunoreactivity (6.5-8.3%) but were positive for TH and/or PNMT. Small numbers of cells were immunoreactive for only one of the four enzymes. Numerous fibres that were immunoreactive for DBH but not for TH or PNMT were noted in the rostral C1 region. Single-cell RT-PCR analysis conducted on spinally projecting C1 neurons indicated that only 76.5% of cells that contained mRNA for TH, DBH, and PNMT contained detectable message for AADC. These experiments suggest that a proportion of C1 cells may not express all of the enzymes necessary for adrenaline synthesis.
Collapse
Affiliation(s)
- J K Phillips
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Akbar M, Ishihara K, Sasa M, Misu Y. Inhibition by L-3,4-dihydroxyphenylalanine of hippocampal CA1 neurons with facilitation of noradrenaline and gamma-aminobutyric acid release. Eur J Pharmacol 2001; 414:197-203. [PMID: 11239919 DOI: 10.1016/s0014-2999(01)00793-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Electrophysiological studies were performed to elucidate whether L-3,4-dihydroxyphenylalanine (L-DOPA) acted on hippocampal CA1 neurons, since this drug has been reported to act as a neurotransmitter in the hypothalamus and striatum. Hippocampal slices (450 microM thick) obtained from male Wistar rats (4-7 weeks of age) were placed in a bath (maintained at 30+/-1 degrees C) continuously perfused with artificial cerebrospinal fluid. The population spikes elicited by electrical stimuli applied to the Schaffer collateral/commissural fibers were recorded in the hippocampal CA1 region, using a glass micropipette filled with 3 M NaCl. Drugs were applied in the bath through a perfusion system. The population spikes were inhibited by L-DOPA (1 nM-10 microM) with a bell-shaped concentration-response curve (n=7-15). Maximum inhibitory effects were obtained at 100 nM. L-DOPA cyclohexyl ester, a putative L-DOPA recognition site antagonist, antagonized the L-DOPA-induced inhibition of population spike. However, the inhibition remained unaffected in the presence of 3-hydroxybenzylhydrazine, an aromatic amino acid decarboxylase inhibitor. Furthermore, bath application of either phentolamine, an alpha-adrenoceptor antagonist, or bicuculline, a GABA(A) receptor antagonist, antagonized the inhibitory effects of L-DOPA on population spikes. In addition, bicuculline (1 microM) antagonized the inhibition of population spike induced by 6-fluoronorepinephrine (10 microM), an alpha-adrenoceptor agonist, while phentolamine (10 microM) did not affect the muscimol (1 microM)-induced inhibition. These results suggested that L-DOPA itself acted on L-DOPA recognition sites to release noradrenaline, and that the latter facilitates gamma-aminobutyric acid (GABA) release via alpha-adrenoceptors located on the GABA-containing cells and/or their nerve terminals, thereby inhibiting the population spikes in the hippocampal CA1 field.
Collapse
Affiliation(s)
- M Akbar
- Department of Pharmacology, Hiroshima University School of Medicine, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | | | | | | |
Collapse
|
30
|
Balan IS, Ugrumov MV, Calas A, Mailly P, Krieger M, Thibault J. Tyrosine hydroxylase-expressing and/or aromatic L-amino acid decarboxylase-expressing neurons in the mediobasal hypothalamus of perinatal rats: differentiation and sexual dimorphism. J Comp Neurol 2000; 425:167-76. [PMID: 10954837 DOI: 10.1002/1096-9861(20000918)425:2<167::aid-cne1>3.0.co;2-k] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this quantitative and semiquantitative immunocytochemical study, the authors evaluated the differentiation of neurons expressing tyrosine hydroxylase (TH) and/or aromatic L-amino acid decarboxylase (AADC) in the mediobasal hypothalamus (MBH) of male and female rats on embryonic day 18 (E18), E20, and postnatal day 9 (P9). Four neuronal populations were distinguished according to either enzyme expression or neuron location. The earliest and most prominent first population was represented by TH-immunoreactive (IR)/AADC-immunonegative (IN) neurons that were detected initially at E18 and always were located in the ventrolateral region of the MBH. The second population of TH-IN/AADC-IR neurons was observed first at E20 and, after that time, was distributed dorsomedially. The third minor population of TH-IR/AADC-IR neurons initially was detected at E20 and was located dorsomedially. The fourth population was represented by TH-IR/AADC-IN neurons that were distributed in the dorsomedial region at any studied age. The numbers of TH-IR and AADC-IR neurons increased from their initial detection at E18 and E20 until P9. The area of TH-IR and AADC-IR neurons also increased from E18 to E20 and from E20 to P9, respectively. Both TH-IR and AADC-IR neurons showed sex differences in the neuron number, size, and optic density (OD). The numbers of TH-IR neurons in males exceeded those of females at E20 and at P9, although, at P9, sexual dimorphism was a characteristic only of the ventrolateral population. The area and OD of TH-IR neurons from females exceeded those from males in the entire mediobasal hypothalamus (MBH) at E18 and E20 but only in its dorsomedial region at P9. Sexual dimorphism also was an attribute of AADC-IR neurons at E20 and P9. Their number, size, and OD were significantly higher in females than in males. Thus, the MBH of perinatal rats contained two major populations of TH-IR/AADC-IN or TH-IN-AADC-IR neurons and a minor population of TH-IR/AADC-IR neurons. The differentiating neurons expressing either enzyme showed sexual dimorphism.
Collapse
Affiliation(s)
- I S Balan
- Laboratory of Neurohistology, Institute of Normal Physiology, Russian Academy of Medical Sciences, Moscow 117808, Russia
| | | | | | | | | | | |
Collapse
|
31
|
Smeets WJ, González A. Catecholamine systems in the brain of vertebrates: new perspectives through a comparative approach. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2000; 33:308-79. [PMID: 11011071 DOI: 10.1016/s0165-0173(00)00034-5] [Citation(s) in RCA: 300] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A comparative analysis of catecholaminergic systems in the brain and spinal cord of vertebrates forces to reconsider several aspects of the organization of catecholamine systems. Evidence has been provided for the existence of extensive, putatively catecholaminergic cell groups in the spinal cord, the pretectum, the habenular region, and cortical and subcortical telencephalic areas. Moreover, putatively dopamine- and noradrenaline-accumulating cells have been demonstrated in the hypothalamic periventricular organ of almost every non-mammalian vertebrate studied. In contrast with the classical idea that the evolution of catecholamine systems is marked by an increase in complexity going from anamniotes to amniotes, it is now evident that the brains of anamniotes contain catecholaminergic cell groups, of which the counterparts in amniotes have lost the capacity to produce catecholamines. Moreover, a segmental approach in studying the organization of catecholaminergic systems is advocated. Such an approach has recently led to the conclusion that the chemoarchitecture and connections of the basal ganglia of anamniote and amniote tetrapods are largely comparable. This review has also brought together data about the distribution of receptors and catecholaminergic fibers as well as data about developmental aspects. From these data it has become clear that there is a good match between catecholaminergic fibers and receptors, but, at many places, volume transmission seems to play an important role. Finally, although the available data are still limited, striking differences are observed in the spatiotemporal sequence of appearance of catecholaminergic cell groups, in particular those in the retina and olfactory bulb.
Collapse
Affiliation(s)
- W J Smeets
- Graduate School of Neurosciences of Amsterdam, Research Institute of Neurosciences, Amsterdam, The Netherlands.
| | | |
Collapse
|
32
|
Furukawa N, Goshima Y, Miyamae T, Sugiyama Y, Shimizu M, Ohshima E, Suzuki F, Arai N, Fujita K, Misu Y. L-DOPA cyclohexyl ester is a novel potent and relatively stable competitive antagonist against L-DOPA among several L-DOPA ester compounds. JAPANESE JOURNAL OF PHARMACOLOGY 2000; 82:40-7. [PMID: 10874587 DOI: 10.1254/jjp.82.40] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We explored L-DOPA esters with chemically bulky structures to find a potent stable competitive antagonist against L-DOPA, compared to DOPA methyl ester (DOPA ME). In anesthetized rats, DOPA cyclohexyl ester (DOPA CHE), DOPA cyclopentyl ester (DOPA CPE) and DOPA cyclopentyldimethyl ester (DOPA CPDME) at 1 microgram microinjected into depressor sites of the nucleus tractus solitarii elicited or tended to elicit more marked antagonism against depressor responses to 60 ng L-DOPA, compared to DOPA ME. At 100 ng, DOPA CHE elicited the most potent antagonism. At 1 microgram, duration of the antagonistic activity of DOPA CHE was approximately three times longer than that of DOPA ME. During microdialysis of the nucleus accumbens, conversion from DOPA CHE at 1 microM perfused via probes to extracellular L-DOPA was the lowest among these compounds and less than one half of that from DOPA ME. Binding studies showed that the recognition site for L-DOPA differs from ionotropic glutamatergic, dopaminergic D1 and D2 receptors. We recently found that L-DOPA evoked by transient ischemia may act as a DOPA CHE-sensitive causal factor for glutamate release and resultant neuronal cell death. DOPA CHE is the most potent, relatively stable competitive antagonist against L-DOPA and is a useful mother compound to develop neuroprotective drugs.
Collapse
Affiliation(s)
- N Furukawa
- Department of Pharmacology, Yokohama City University School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Miyamae T, Goshima Y, Yue JL, Misu Y. L-dopaergic components in the caudal ventrolateral medulla in baroreflex neurotransmission. Neuroscience 1999; 92:137-49. [PMID: 10392837 DOI: 10.1016/s0306-4522(98)00721-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
L-3,4-Dihydroxyphenylalanine (L-DOPA) is probably a transmitter of the primary baroreceptor afferents terminating in the nucleus tractus solitarii; L-DOPA functions tonically to activate depressor sites of the caudal ventrolateral medulla, which receives input from the nucleus tractus solitarii [Misu Y. et al. (1996) Prog. Neurobiol. 49, 415-454]. We have attempted to clarify whether or not L-DOPAergic components within the caudal ventrolateral medulla are involved in baroreflex neurotransmission in anesthetized rats. Electrolytic lesions of the right nucleus tractus solitarii (1 mA d.c. for 10 s, 10 days before measurement) selectively decreased by 45% the tissue content of L-DOPA in the dissected ipsilateral caudal ventrolateral medulla. Electrolytic lesions did not decrease dopamine, norepinephrine and epinephrine levels. During microdialysis of the right caudal ventrolateral medulla, extracellular levels of L-DOPA, norepinephrine, epinephrine and 3,4-dihydroxyphenylacetic acid were consistently detectable using high-performance liquid chromatography with electrochemical detection. However, extracellular dopamine levels were lower than the assay limit. Baroreceptor activation by i.v. phenylephrine selectively evoked L-DOPA without increasing the levels of norepinephrine, epinephrine and 3,4-dihydroxyphenylacetic acid. This L-DOPA release was suppressed by acute lesion in the ipsilateral nucleus tractus solitarii. Intermittent stimulation of the right aortic depressor nerve (20 Hz, 3 V, 0.3 ms duration, for 30 min) repetitively and constantly caused L-DOPA release, hypotension and bradycardia, without increases in levels of norepinephrine, epinephrine and 3,4-dihydroxyphenylacetic acid. Local inhibition of L-DOPA synthesis with alpha-methyl-p-tyrosine (30 microM) infused into the ipsilateral caudal ventrolateral medulla gradually decreased basal levels of L-DOPA and 3,4-dihydroxyphenylacetic acid without decreasing norepinephrine and epinephrine. The inhibition of L-DOPA synthesis interrupted L-DOPA release and decreased by 65% depressor responses elicited by aortic nerve stimulation; however, it produced no effect on bradycardic responses. CoCl2 (119 ng), a mainly presynaptic inhibitory transmission marker, and L-DOPA methyl ester (1 microg), a competitive L-DOPA antagonist, when microinjected into depressor sites of the right caudal ventrolateral medulla, reduced by 60% depressor responses to transient ipsilateral stimulation of the aortic nerve (20 Hz, 3 V, 0.1 ms duration, for 10 s). No changes in bradycardic responses were observed. There may exist an L-DOPAergic relay from the nucleus tractus solitarii to the caudal ventrolateral medulla. L-DOPAergic components in the caudal ventrolateral medulla are involved in baroreflex neurotransmission via a baroreceptor-aortic depressor nerve-nucleus tractus solitarii-caudal ventrolateral medulla relay in the rat.
Collapse
Affiliation(s)
- T Miyamae
- Department of Pharmacology, Yokohama City University School of Medicine, Yokohama, Japan
| | | | | | | |
Collapse
|
34
|
Ikemoto K, Kitahama K, Nishimura A, Jouvet A, Nishi K, Arai R, Jouvet M, Nagatsu I. Tyrosine hydroxylase and aromatic L-amino acid decarboxylase do not coexist in neurons in the human anterior cingulate cortex. Neurosci Lett 1999; 269:37-40. [PMID: 10821639 DOI: 10.1016/s0304-3940(99)00409-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Immunoreactivity for aromatic L-amino acid decarboxylase (AADC), the second step dopamine-synthesizing enzyme, was found immunohistochemically in neurons of the human anterior cingulate cortex (ACC). Most of these neurons were located in layers V and VI and subcortical white matter; a small number were occasionally found in layer III. Double immunohistochemistry for tyrosine hydroxylase (TH: the first step dopamine-synthesizing enzyme) and AADC revealed that no neuronal cell bodies in the ACC were doubly immunostained for TH and AADC, suggesting that these TH-only- or AADC-only-immunoreactive neurons were not dopaminergic. AADC neurons in the human ACC might transform L-DOPA to dopamine, droxidopa to noradrenaline, and/or 5-hydroxytryptophan to serotonin.
Collapse
Affiliation(s)
- K Ikemoto
- Department of Anatomy, Fujita Heath University, School of Medicine, Toyoake, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Miyamae T, Goshima Y, Shimizu M, Shibata T, Kawashima K, Ohshima E, Suzuki F, Misu Y. Some interactions of L-DOPA and its related compounds with glutamate receptors. Life Sci 1999; 64:1045-54. [PMID: 10210287 DOI: 10.1016/s0024-3205(99)00031-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
L-DOPA is probably a transmitter and/or modulator in the central nervous system (1). L-DOPA methyl ester (DOPA ME) is a competitive L-DOPA antagonist. However, it remains to be clarified whether there exist L-DOPAergic receptors. In Xenopus laevis oocytes injected with rat brain poly(A)+ RNA, L-DOPA induced small inward currents with ED50 of 2.2 mM at a holding potential of -70 mV. The currents were abolished by kynurenic acid or CNQX. Similar L-DOPA-currents were seen in oocytes co-injected with AMPA receptors, GluRs1,2,3 and 4. In brain membrane preparations, L-DOPA inhibited specific binding of [3H]-AMPA with IC50 of 260 microM. This inhibition was not modified by 200 microM ascorbic acid, an antioxidant. L-DOPA did not inhibit binding of [3H]-ligands of MK-801, kainate, DCKA and CGP39653. DOPA ME and L-DOPA cyclohexyl ester, a novel, potent and competitive antagonist (2), inhibited specific binding of [3H]-MK-801 with respective IC50 of 1 and 0.68 mM, but elicited no effect on that of the other [3H]-ligands. With low affinities, L-DOPA acts on AMPA receptors, while competitive antagonists act on NMDA ion channel domain. L-DOPAergic agonist and antagonist may not interact on ionotropic glutamate receptors. DOPA ME-sensitive L-DOPA recognition sites (1) seem to differ from glutamate receptors.
Collapse
Affiliation(s)
- T Miyamae
- Department of Pharmacology, Yokohama City University School of Medicine, Yokohama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Ikemoto K, Nagatsu I, Nishimura A, Nishi K, Arai R. Do all of human midbrain tyrosine hydroxylase neurons synthesize dopamine? Brain Res 1998; 805:255-8. [PMID: 9733977 DOI: 10.1016/s0006-8993(98)00661-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We examined whether all of human midbrain tyrosine hydroxylase (TH) neurons substantially synthesize dopamine (DA) using dual labeling immunohistochemical technique of TH and aromatic L-amino acid decarboxylase (AADC). In the substantia nigra, besides many neurons doubly stained for TH and AADC, neurons stained only for TH and only for AADC (D-neurons [C.B. Jaeger, D.A. Ruggiero, V.R. Albert, T.H. Joh, D.J. Reis, Immunocytochemical localization of aromatic l-amino acid decarboxylase, in: A. Björklund, T. Hökfelt (Eds.), Handbook of Chemical Neuroanatomy, Classical Transmitters in the CNS, Vol. 2, Part 1, Elsevier, Amsterdam, 1984, pp. 387-408.]) were identified. In the ventral tegmental area, dually labeled neurons and TH-only-positive neurons were found. It is indicated that the number of midbrain TH neurons does not reflect the exact number of DA neurons.
Collapse
Affiliation(s)
- K Ikemoto
- Department of Anatomy, Fujita Heath University, School of Medicine, Toyoake, Aichi, 470-1192, Japan.
| | | | | | | | | |
Collapse
|
37
|
Li XM, Juorio AV, Qi J, Boulton AA. L-deprenyl induces aromatic L-amino acid decarboxylase (AADC) mRNA in the rat substantia nigra and ventral tegmentum. An in situ hybridization study. MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1998; 35:149-55. [PMID: 10343976 DOI: 10.1007/bf02815121] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
L-Deprenyl is a complex drug, and number of mechanisms have been proposed to explain its effects. These include blockade of dopamine metabolism, amplification of dopamine responses, induction of superoxide dismutase or delaying apoptosis. Using in situ hybridization techniques, we have shown that L-deprenyl (5-10 mg/kg intraperitoneally, killed after 24 h) increases aromatic L-amino acid decarboxylase (AADC) mRNA levels in rat substantia nigraventral tegmental area. In human brain tissue, AADC is present at low levels, suggesting a possible rate-limiting role in monoamine synthesis. This is particularly important in parkinsonian patients, since the therapeutic efficacy of L-DOPA is attributed to its enzymatic decarboxylation to dopamine. The present findings support that one of the effects of L-deprenyl may be to facilitate the decarboxylation of L-DOPA by increasing the availability of AADC.
Collapse
Affiliation(s)
- X M Li
- Department of Psychiatry, University of Saskatchewan, Saskatoon, Canada
| | | | | | | |
Collapse
|
38
|
Beltramo M, Pairault C, Krieger M, Thibault J, Tillet Y, Clairambault P. Immunolocalization of aromatic L-amino acid decarboxylase, tyrosine hydroxylase, dopamine, and serotonin in the forebrain ofAmbystoma mexicanum. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19980209)391:2<227::aid-cne6>3.0.co;2-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
39
|
Tedroff JM. The neuroregulatory properties of L-DOPA. A review of the evidence and potential role in the treatment of Parkinson's disease. Rev Neurosci 1997; 8:195-204. [PMID: 9548232 DOI: 10.1515/revneuro.1997.8.3-4.195] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Accumulating evidence suggests that L-dihydroxyphenylalanine (L-DOPA) has neurotransmitter-like and/or neuromodulatory properties in the CNS. Such evidence is based on a wide range of findings including the existence of specific L-DOPAergic neurons in several regions of the CNS, neurotransmitter-like characteristics and specific pharmacological effects. This review attempts to outline the main evidence for this conception and to relate such findings to L-DOPA treatment effects in Parkinson's disease. In this context L-DOPA in itself has been shown to potentiate D2 receptor-mediated effects, inhibit acetylcholine release and increase the release of L-glutamate, neuropharmacological effects which can be linked to treatment side-effects in advanced Parkinson's disease. It is suggested that supersensitive L-DOPA-mediated effects contribute to the pathogenesis underlying L-DOPA-induced motor complications in advanced Parkinson's disease. However, since specific L-DOPA receptors have yet to be identified, the assessment of the relative importance of L-DOPA-mediated effects in this clinical context must be regarded as incomplete.
Collapse
Affiliation(s)
- J M Tedroff
- Department of Neurology, University Hospital, Uppsala, Sweden
| |
Collapse
|
40
|
Pierre J, Mahouche M, Suderevskaya E, Rep�rant J, Ward R. Immunocytochemical localization of dopamine and its synthetic enzymes in the central nervous system of the lampreyLampetra fluviatilis. J Comp Neurol 1997. [DOI: 10.1002/(sici)1096-9861(19970331)380:1<119::aid-cne9>3.0.co;2-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Lewis D, Sesack S. Chapter VI Dopamine systems in the primate brain. HANDBOOK OF CHEMICAL NEUROANATOMY 1997. [DOI: 10.1016/s0924-8196(97)80008-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
42
|
Nagatsu I, Takeuchi T, Sakai M, Arai R, Karasawa N, Nagatsu T. Transient appearance of GTP cyclohydrolase I — positive non-monoaminergic neurons in the ventral lateral geniculate nucleus of postnatal mice. Neurosci Lett 1996. [DOI: 10.1016/0304-3940(96)12934-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Abstract
L-DOPA is proposed to be a neurotransmitter and/or neuromodulator in CNS. It is released probably from neurons, which may contain L-DOPA as an end-product, and/or from some compartment other than catecholamine-containing vesicles. The L-DOPA itself produces presynaptic and postsynaptic responses. All are stereoselective and most are antagonized by competitive antagonist. In striatum, L-DOPA is neuromodulator, mother of catecholamines, not only a precursor for dopamine but also a potentiator of children for presynaptic beta-adrenoceptors to facilitate dopamine release and postsynaptic D2 receptors, and ACh release inhibitor. All may cooperate for Parkinson's disease. Meanwhile, supersensitization of increase in L-glutamate release to nanomolar levodopa was seen in Parkinson's model rats, which may relate to dyskinesia or "on-off" during chronic therapy. In lower brainstem, L-DOPA tonically activates postsynaptic depressor sites of NTS and CVLM and pressor sites of RVLM. L-DOPA is probably a neurotransmitter of primary baroreceptor afferents terminating in NTS. GABA, the inhibitory neuromodulator for baroreflex in NTS, tonically functions to inhibit, via GABAA receptors, L-DOPA release and depressor responses to levodopa. Levodopa inversely releases GABA. L-DOPAergic monosynaptic relay from NTS to CVLM and from PHN to RVLM is suggested. Tonic L-DOPAergic baroreceptor-aortic nerve-NTS-CVLM relay seems to carry baroreflex information. Disturbance of neuronal activity to release L-DOPA in NTS, loss of the activity in CVLM, enhancement of the activity with decreased decarboxylation and increase in sensitivity to levodopa in RVLM may be involved in maintenance of hypertension in SHR. This is a story of "L-DOPAergic receptors" with extremely high affinity and low density.
Collapse
Affiliation(s)
- Y Misu
- Department of Pharmacology, Yokohama City University School of Medicine, Japan
| | | | | | | |
Collapse
|
44
|
Warembourg M, Deneux D, Krieger M, Jolivet A. Progesterone receptor immunoreactivity in aromatic L-amino acid decarboxylase-containing neurons of the guinea pig hypothalamus and preoptic area. J Comp Neurol 1996; 367:477-90. [PMID: 8731220 DOI: 10.1002/(sici)1096-9861(19960415)367:4<477::aid-cne1>3.0.co;2-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A double-labeling immunofluorescence procedure was used to determine whether progesterone receptor (PR)-immunoreactive (IR) neurons in the preoptic area and hypothalamus of female guinea pigs also contained aromatic L-amino acid decarboxylase (AADC), an enzyme involved in the synthesis of both catecholamines and serotonin. Immunostaining was performed on cryostat sections prepared from ovariectomized guinea pigs primed by estradiol to induce PR. The nuclear presence of PR was visualized by a red fluorescence while the AADC-containing perikarya showed a yellow-green fluorescence. The topographic distribution of AADC-IR neurons was investigated by using a specific antiserum obtained by immunization of rabbits with a recombinant protein beta-galactosidase-AADC in the two regions known to contain the densest populations of estradiol-induced PR-IR cells: the preoptic area and the mediobasal hypothalamus. The localization of PR-IR and AADC-IR cell populations showed considerable overlap in these areas, mainly in the medial and periventricular preoptic nuclei and in the arcuate nucleus. A quantitative analysis of double-labeled cells estimated that about 15% to 23% of AADC-IR cells in the preoptic area and about 11% to 21% of AADC-IR cells in the arcuate nucleus possessed PR. This colocalization persisted throughout the rostrocaudal extent of these areas and represented 3% to 9% of the population of PR-IR cells. These findings provide neuroanatomical evidence that a subset of AADC neurons is directly regulated by progesterone. The exact physiological role of this enzyme in target cells for progesterone is not understood. AADC may be involved in functions other than that for the synthesis of the classical neurotransmitters.
Collapse
|
45
|
Mura A, Jackson D, Manley MS, Young SJ, Groves PM. Aromatic L-amino acid decarboxylase immunoreactive cells in the rat striatum: a possible site for the conversion of exogenous L-DOPA to dopamine. Brain Res 1995; 704:51-60. [PMID: 8750961 DOI: 10.1016/0006-8993(95)01104-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The efficacy of L-dihydroxyphenylalanine (L-DOPA) in ameliorating the symptoms of Parkinson's disease (PD) is attributed to its conversion to dopamine (DA) by the enzyme aromatic L-amino-acid decarboxylase (AADC) in the striatum. Although the site of this conversion in the DA-denervated striatum has yet to be identified, it has been proposed that L-DOPA could be converted to DA at non-dopaminergic sites containing AADC. In the present study, we used immunocytochemical techniques to examine the localization of AADC and DA in the striatum of rats with a unilateral 6-hydroxydopamine (6-OHDA) lesion of the nigrostriatal dopaminergic projection. In the DA-denervated striatum, we observed AADC-immunoreactive (-IR) cells with morphological characteristics similar to a class of small aspiny interneuron. Although usually obscured by a dense plexus of AADC-IR fibers, these cells could also occasionally be detected in the intact striatum. Acute administration of L-DOPA to DA-denervated animals elicited contralateral rotational behavior as well as a pronounced c-fos protein immunoreactivity in the striatum ipsilateral to the lesion. Following acute administration of L-DOPA, but not after acute saline, DA-IR cells were detected in the denervated striatum. These DA-IR cells are similar in morphology and were found in the same location as the AADC-IR cells. These results strongly suggest the existence of a class of AADC-containing striatal cells that can form DA from exogenous L-DOPA in the rat. In the DA deafferented striatum, DA produced by these cells from exogenous L-DOPA could be released to exert physiological effects on DA receptive tissue. It is possible that similar cells could contribute to the efficacy of L-DOPA in the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- A Mura
- Department of Psychiatry, University of California San Diego, La Jolla 92093-0603, USA
| | | | | | | | | |
Collapse
|
46
|
Abstract
We have explored probable neurotransmitter roles of L-3,4-dihydroxyphenylalanine (L-DOPA) in baroreceptor reflex and blood pressure regulation in depressor sites of the nucleus tractus solitarii (NTS) and the caudal ventrolateral medulla (CVLM), and in pressor sites of the rostral ventrolateral medulla (RVLM) in anesthetized rats. During microdialysis of these three areas, the basal L-DOPA release is in part tetrodotoxin (TTX)-sensitive and Ca2(+)-dependent, high K+ Ca2(+)-dependently releases dL-DOPA. L-DOPA microinjected (10-300 ng) dose-dependently produces postsynaptic depressor responses in the NTS and CVLM and pressor responses in the RVLM, and a recognition site for L-DOPA functions tonically to activate depressor neurons in the NTS and CVLM and pressor neurons in the RVLM. It is highly probable that L-DOPA is a neurotransmitter of the baroreceptor afferents terminating in the NTS, which is based on further findings such as (1) antagonism by a competitive L-DOPA antagonist against depressor responses to aortic nerve stimulation, (2) TTX-sensitive L-DOPA release by aortic nerve stimulation, (3) abolition of baroreceptor-stimulated L-DOPA release by bilateral sino-aortic denervation and (4) decreases in tyrosine hydroxylase (TH)- and L-DOPA-immunoreactivities without modifications of dopamine- and DBH-immunoreactivities in the left NTS and ganglion nodosum 7 days after ipsilateral aortic nerve denervation peripheral to the ganglion. In the NTS, GABA tonically functions to inhibit via GABAA receptors L-DOPA release and depressor responses to L-DOPA, whereas L-DOPA induces GABA release. Impaired TTX-sensitive neuronal activity to release L-DOPA in the NTS and enhanced TTX-sensitive neuronal activity including a decrease in decarboxylation of L-DOPA to dopamine and an increase in sensitivity of the recognition site to L-DOPA in the RVLM are relevant to the maintenance of hypertension in spontaneously hypertensive rats. Decreases in the contents of L-DOPA in the right CVLM 10 days after electrical lesion of the ipsilateral NTS suggest a 'L-DOPAergic' and monosynaptic relay from the NTS to the CVLM. L-DOPA seems to play major roles as a neurotransmitter for baroreceptor reflex and blood pressure regulation in the lower brainstem of rats.
Collapse
Affiliation(s)
- Y Misu
- Department of Pharmacology, Yokohama City University School of Medicine, Japan
| | | | | |
Collapse
|
47
|
Yue JL, Okumura Y, Miyamae T, Ueda H, Misu Y. Altered tonic L-3,4-dihydroxyphenylalanine systems in the nucleus tractus solitarii and the rostral ventrolateral medulla of spontaneously hypertensive rats. Neuroscience 1995; 67:95-106. [PMID: 7477914 DOI: 10.1016/0306-4522(94)00611-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have proposed that L-3,4-dihydroxyphenylalanine (L-DOPA) is a neurotransmitter in the central nervous system [Y. Misu et al. (1995) Adv. Pharmac. 32, 427-459]. L-DOPA as a probable neurotransmitter for the primary baroreceptor afferents tonically functions to mediate cardiodepressor control in the nucleus tractus solitarii and also tonically functions to mediate cardiopressor control in the rostral ventrolateral medulla of rats. We further attempted to clarify whether a transmitter-like L-DOPA system is altered in these areas of adult spontaneously hypertensive rats. By microdialysis in the left nucleus tractus solitarii area, the basal L-DOPA release was lower in spontaneously hypertensive rats than that in Wistar-Kyoto rats. This release was partially reduced by tetrodotoxin (1 microM) to the same absolute levels in the two strains. Tonic neuronal L-DOPA release is impaired in this nucleus of spontaneously hypertensive rats. This impairment is not secondarily due to decrease in formation or increase in decarboxylation of L-DOPA, since tyrosine hydroxylase activity was increased in spontaneously hypertensive rats, compared to Wistar-Kyoto rats, while no difference of L-aromatic amino acid decarboxylase activity was seen in the caudal dorsomedial medulla including the nucleus. L-DOPA (10-300 ng) microinjected into the nucleus produced dose-dependent hypotension and bradycardia. A maximum depressor response of spontaneously hypertensive rats to L-DOPA at higher doses was slightly greater than that of Wistar-Kyoto rats. On the other hand, in the left rostral ventrolateral medulla, the basal L-DOPA release was higher in spontaneously hypertensive rats than that in Wistar-Kyoto rats. This release was also partially reduced by tetrodotoxin to the same absolute levels in the two strains. Tonic neuronal L-DOPA release is enhanced in spontaneously hypertensive rats. This enhancement seems to include partially a decrease in decarboxylation of L-DOPA, since L-aromatic amino acid decarboxylase activity was decreased in spontaneously hypertensive rats compared to Wistar-Kyoto rats, while no difference in tyrosine hydroxylase activity was seen. L-DOPA (10-600 ng) produced dose-dependent hypertension and tachycardia. Importantly, a pressor response of spontaneously hypertensive rats to L-DOPA at lower doses was slightly greater than that of Wistar-Kyoto rats. L-DOPA seems to play a transmitter-like role in blood pressure regulation at levels of the nucleus tractus solitarii and rostral ventrolateral medulla in rats.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- J L Yue
- Department of Pharmacology, Yokohama City University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
48
|
Neff NH, Hadjiconstantinou M. Aromatic L-amino acid decarboxylase modulation and Parkinson's disease. PROGRESS IN BRAIN RESEARCH 1995; 106:91-7. [PMID: 8584678 DOI: 10.1016/s0079-6123(08)61206-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Aromatic L-amino acid decarboxylase (AAAD) is the second enzyme in the sequence leading to the synthesis of the catecholamines and serotonin, and it is the rate-limiting enzyme for the synthesis of the trace amines. In the striatum AAAD activity is increased by neuronal firing and diminished or enhanced by activation or blocking dopamine (DA) D1 or D2 receptors, respectively. At least two biochemical mechanisms appear responsible for modulation, short-term involving second messengers and possible phosphorylation, and long-term involving protein synthesis. In Parkinson's disease AAAD is the rate-controlling enzyme for the synthesis of DA when L-DOPA is administered and any change of AAAD activity could have clinical consequences. Indeed, the "on-off phenomenon" where there are fluctuations between off-periods of marked akinesia over several hours with on-periods of improved motility may be related to oscillating or poorly modulated AAAD activity and conversion of L-DOPA to DA. Studies are presented demonstrating how AAAD activity can be enhanced in an animal model of Parkinson's disease and how rapid fluctuations of AAAD can be provoked via second messenger system activation.
Collapse
Affiliation(s)
- N H Neff
- Department of Pharmacology, Ohio State University College of Medicine, Columbus 43210, USA
| | | |
Collapse
|
49
|
Misu Y, Ueda H, Goshima Y. Neurotransmitter-like actions of L-DOPA. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1995; 32:427-59. [PMID: 7748801 DOI: 10.1016/s1054-3589(08)61019-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Y Misu
- Department of Pharmacology, Yokohama City University School of Medicine, Japan
| | | | | |
Collapse
|
50
|
Yue JL, Okamura H, Goshima Y, Nakamura S, Geffard M, Misu Y. Baroreceptor-aortic nerve-mediated release of endogenous L-3,4-dihydroxyphenylalanine and its tonic depressor function in the nucleus tractus solitarii of rats. Neuroscience 1994; 62:145-61. [PMID: 7816196 DOI: 10.1016/0306-4522(94)90321-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have proposed that L-3,4-dihydroxyphenylalanine (L-DOPA) is a neurotransmitter and/or neuromodulator in the central nervous system [Misu Y. and Goshima Y. (1993) Trends pharmac. Sci. 14, 119-123]. This study aimed to explore whether or not endogenous L-DOPA, as a neurotransmitter candidate of the primary baroreceptor afferents, tonically functions to activate depressor neurons in the nucleus tractus solitarii of anesthetized rats. By parallel microdialysis in bilateral nucleus tractus solitarii areas, the basal L-DOPA release was in part inhibited by tetrodotoxin perfusion (1 microM) or Ca2+ deprivation, and was markedly reduced by alpha-methyl-p-tyrosine (200 mg/kg, i.p.), a tyrosine hydroxylase inhibitor. Forty to 100 mM K+ concentration-dependently released L-DOPA. Fifty millimoles K+ repetitively and constantly released L-DOPA. This release was Ca(2+)-dependent. Stimulation of the left aortic nerve (100 Hz, 8 V) repetitively and constantly released L-DOPA and this release was tetrodotoxin-sensitive. Phenylephrine i.v. infused produced L-DOPA release and reflex bradycardia, temporally associated with a rise and subsequent recovery of blood pressure. This release and bradycardia were abolished by denervation of the bilateral carotid sinus and aortic nerves. In addition, L-DOPA methyl ester, a competitive L-DOPA antagonist, when microinjected into depressor sites of the left nucleus tractus solitarii, antagonized depressor responses to mild stimulation (20 Hz, 3 V) of the ipsilateral aortic nerve. This antagonist alone, microinjected bilaterally, elicited a dose-dependent hypertension, which was abolished by alpha-methyl-p-tyrosine. Furthermore, by immunocytochemical analysis seven days after denervation of the left aortic nerve, tyrosine hydroxylase- and L-DOPA-, but not dopamine- and dopamine-beta-hydroxylase-immunoreactivities decreased in the ipsilateral nucleus tractus solitarii and dorsal motor vagus nucleus complex area. In the left ganglion nodosum, denervation decreased staining and number of L-DOPA-immunoreactive cells and staining of tyrosine hydroxylase-immunoreactive cells, but no modification of dopamine-immunoreactive cells was seen. Taken together with previous findings that L-DOPA itself is stereoselectively responsible for cardiovascular control in this nucleus, it is probable that L-DOPA is a neurotransmitter of the primary baroreceptor afferents terminating directly in depressor neurons and/or indirectly in some neurons within a microcircuit, including depressor neurons of the nucleus tractus solitarii. Endogenously released L-DOPA itself tonically functions to activate depressor neurons for regulation of blood pressure in the rat nucleus tractus solitarii.
Collapse
Affiliation(s)
- J L Yue
- Department of Pharmacology, Yokohama City University School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|