1
|
Aikins AO, Little JT, Rybalchenko N, Cunningham JT. Norepinephrine innervation of the supraoptic nucleus contributes to increased copeptin and dilutional hyponatremia in male rats. Am J Physiol Regul Integr Comp Physiol 2022; 323:R797-R809. [PMID: 36189988 PMCID: PMC9639772 DOI: 10.1152/ajpregu.00086.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 11/22/2022]
Abstract
Dilutional hyponatremia associated with liver cirrhosis is due to inappropriate release of arginine vasopressin (AVP). Elevated plasma AVP causes water retention resulting in a decrease in plasma osmolality. Cirrhosis, in this study caused by ligation of the common bile duct (BDL), leads to a decrease in central vascular blood volume and hypotension, stimuli for nonosmotic AVP release. The A1/A2 neurons stimulate the release of AVP from the supraoptic nucleus (SON) in response to nonosmotic stimuli. We hypothesize that the A1/A2 noradrenergic neurons support chronic release of AVP in cirrhosis leading to dilutional hyponatremia. Adult, male rats were anesthetized with 2-3% isoflurane (mixed with 95% O2/5% CO2) and injected in the SON with anti-dopamine β-hydroxylase (DBH) saporin (DSAP) or vehicle followed by either BDL or sham surgery. Plasma copeptin, osmolality, and hematocrit were measured. Brains were processed for ΔFosB, dopamine β-hydroxylase (DBH), and AVP immunohistochemistry. DSAP injection: 1) significantly reduced the number of DBH immunoreactive A1/A2 neurons (A1, P < 0.0001; A2, P = 0.0014), 2) significantly reduced the number of A1/A2 neurons immunoreactive to both DBH and ΔFosB positive neurons (A1, P = 0.0015; A2, P < 0.0001), 3) reduced the number of SON neurons immunoreactive to both AVP and ΔFosB (P < 0.0001), 4) prevented the increase in plasma copeptin observed in vehicle-injected BDL rats (P = 0.0011), and 5) normalized plasma osmolality and hematocrit (plasma osmolality, P = 0.0475; hematocrit, P = 0.0051) as compared with vehicle injection. Our data suggest that A1/A2 neurons contribute to increased plasma copeptin and hypoosmolality in male BDL rats.
Collapse
Affiliation(s)
- Ato O Aikins
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas
| | - Joel T Little
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas
| | - Nataliya Rybalchenko
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas
| | - J Thomas Cunningham
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas
| |
Collapse
|
2
|
Kim A, Madara JC, Wu C, Andermann ML, Lowell BB. Neural basis for regulation of vasopressin secretion by anticipated disturbances in osmolality. eLife 2021; 10:66609. [PMID: 34585668 PMCID: PMC8601670 DOI: 10.7554/elife.66609] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 09/28/2021] [Indexed: 12/01/2022] Open
Abstract
Water balance, tracked by extracellular osmolality, is regulated by feedback and feedforward mechanisms. Feedback regulation is reactive, occurring as deviations in osmolality are detected. Feedforward or presystemic regulation is proactive, occurring when disturbances in osmolality are anticipated. Vasopressin (AVP) is a key hormone regulating water balance and is released during hyperosmolality to limit renal water excretion. AVP neurons are under feedback and feedforward regulation. Not only do they respond to disturbances in blood osmolality, but they are also rapidly suppressed and stimulated, respectively, by drinking and eating, which will ultimately decrease and increase osmolality. Here, we demonstrate that AVP neuron activity is regulated by multiple anatomically and functionally distinct neural circuits. Notably, presystemic regulation during drinking and eating are mediated by non-overlapping circuits that involve the lamina terminalis and hypothalamic arcuate nucleus, respectively. These findings reveal neural mechanisms that support differential regulation of AVP release by diverse behavioral and physiological stimuli. Fine-tuning the amount of water present in the body at any given time is a tight balancing act. The hormone vasopressin helps to ensure that organisms do not get too dehydrated by allowing water in the urine to be reabsorbed into the bloodstream. A group of vasopressin neurons in the brain trigger the release of the hormone if water levels get too low (as reflected by an increase in osmolality, the level of substances dissolved in a unit of blood). However, these cells also receive additional information that allows them to predict and respond to upcoming changes in water levels. For example, drinking water while dehydrated ‘switches off’ the neurons, even before osmolality is restored in the blood to normal levels. Eating, on the other hand, rapidly activates vasopressin neurons before the food is digested and blood osmolality increases as a result. How vasopressin neurons receive this ‘anticipatory’ information remains unclear. Kim et al. explored this question in mice by inhibiting different sets of brain cells one by one, and then examining whether the neurons could still exhibit anticipatory responses. This revealed a remarkable division of labor in the neural circuits that regulate vasopressin neurons: two completely different sets of neurons from distinct areas of the brain are dedicated to relaying anticipatory information about either water or food intake. These findings help to understand how healthy levels of water can be maintained in the body. Overall, they give a glimpse into the neural mechanisms that underlie anticipatory forms of regulation, which can also take place when hunger or thirst neurons ‘foresee’ that food or water will be consumed.
Collapse
Affiliation(s)
- Angela Kim
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States.,Program in Neuroscience, Harvard Medical School, Boston, United States
| | - Joseph C Madara
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States
| | - Chen Wu
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States
| | - Mark L Andermann
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States.,Program in Neuroscience, Harvard Medical School, Boston, United States
| | - Bradford B Lowell
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States.,Program in Neuroscience, Harvard Medical School, Boston, United States
| |
Collapse
|
3
|
Aikins AO, Nguyen DH, Paundralingga O, Farmer GE, Shimoura CG, Brock C, Cunningham JT. Cardiovascular Neuroendocrinology: Emerging Role for Neurohypophyseal Hormones in Pathophysiology. Endocrinology 2021; 162:6247962. [PMID: 33891015 PMCID: PMC8234498 DOI: 10.1210/endocr/bqab082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Indexed: 11/19/2022]
Abstract
Arginine vasopressin (AVP) and oxytocin (OXY) are released by magnocellular neurosecretory cells that project to the posterior pituitary. While AVP and OXY currently receive more attention for their contributions to affiliative behavior, this mini-review discusses their roles in cardiovascular function broadly defined to include indirect effects that influence cardiovascular function. The traditional view is that neither AVP nor OXY contributes to basal cardiovascular function, although some recent studies suggest that this position might be re-evaluated. More evidence indicates that adaptations and neuroplasticity of AVP and OXY neurons contribute to cardiovascular pathophysiology.
Collapse
Affiliation(s)
- Ato O Aikins
- Department of Physiology and Anatomy, Graduate School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX 76107, USA
| | - Dianna H Nguyen
- Department of Physiology and Anatomy, Graduate School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX 76107, USA
- Texas College of Osteopathic Medicine, UNT Health Science Center, Fort Worth, TX 76107, USA
| | - Obed Paundralingga
- Department of Physiology and Anatomy, Graduate School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX 76107, USA
| | - George E Farmer
- Department of Physiology and Anatomy, Graduate School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX 76107, USA
| | - Caroline Gusson Shimoura
- Department of Physiology and Anatomy, Graduate School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX 76107, USA
| | - Courtney Brock
- Department of Physiology and Anatomy, Graduate School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX 76107, USA
| | - J Thomas Cunningham
- Department of Physiology and Anatomy, Graduate School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX 76107, USA
- Correspondence: J. Thomas Cunningham Department of Physiology & Anatomy CBH 338 UNT Health Science Center 3500 Camp Bowie Blvd Fort Worth, TX 76107, USA.
| |
Collapse
|
4
|
Wei HH, Yuan XS, Chen ZK, Chen PP, Xiang Z, Qu WM, Li RX, Zhou GM, Huang ZL. Presynaptic inputs to vasopressin neurons in the hypothalamic supraoptic nucleus and paraventricular nucleus in mice. Exp Neurol 2021; 343:113784. [PMID: 34139240 DOI: 10.1016/j.expneurol.2021.113784] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 05/29/2021] [Accepted: 06/13/2021] [Indexed: 11/29/2022]
Abstract
Arginine vasopressin (AVP) neurons in the hypothalamic supraoptic nucleus (SON) and paraventricular nucleus (PVN) are involved in important physiological behaviors, such as controling osmotic stability and thermoregulation. However, the presynaptic input patterns governing AVP neurons have remained poorly understood due to their heterogeneity, as well as intermingling of AVP neurons with other neurons both in the SON and PVN. In the present study, we employed a retrograde modified rabies-virus system to reveal the brain areas that provide specific inputs to AVP neurons in the SON and PVN. We found that AVP neurons of the SON and PVN received similar input patterns from multiple areas of the brain, particularly massive afferent inputs from the diencephalon and other brain regions of the limbic system; however, PVNAVP neurons received relatively broader and denser inputs compared to SONAVP neurons. Additionally, SONAVP neurons received more projections from the median preoptic nucleus and organum vasculosum of the lamina terminalis (a circumventricular organ), compared to PVNAVP neurons, while PVNAVP neurons received more afferent inputs from the bed nucleus of stria terminalis and dorsomedial nucleus of the hypothalamus, both of which are thermoregulatory nuclei, compared to those of SONAVP neurons. In addition, both SONAVP and PVNAVP neurons received direct afferent projections from the bilateral suprachiasmatic nucleus, which is the master regulator of circadian rhythms and is concomitantly responsible for fluctuations in AVP levels. Taken together, our present results provide a comprehensive understanding of the specific afferent framework of AVP neurons both in the SON and PVN, and lay the foundation for further dissecting the diverse roles of SONAVP and PVNAVP neurons.
Collapse
Affiliation(s)
- Hao-Hua Wei
- Department of Anatomy and Histoembryology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China; Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Xiang-Shan Yuan
- Department of Anatomy and Histoembryology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China; Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Ze-Ka Chen
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Pei-Pei Chen
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Zhe Xiang
- Department of Anatomy and Histoembryology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Wei-Min Qu
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Rui-Xi Li
- Department of Anatomy and Histoembryology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Guo-Min Zhou
- Department of Anatomy and Histoembryology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Zhi-Li Huang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
5
|
Campbell T, Shenton FC, Lucking E, Pyner S, Jones JFX. Electrophysiological characterisation of atrial volume receptors using ex vivo models of isolated rat cardiac atria. Exp Physiol 2020; 105:2190-2206. [PMID: 33372723 DOI: 10.1113/ep088972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/12/2020] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? What ex vivo preparation of the rat's cavoatrial junction is efficient for characterising atrial mechanoreceptors? What is the main finding and its importance? Of four different ex vivo preparations, static pressure, flow, open and euthermic, the optimal preparation was the euthermic one and involved direct recording from the right cardiac vagal branch with a Langendorff style perfusion at 37°C. Type A receptors were most common, and appeared insensitive to stretch and sensitive to atrial contraction. Type B and intermediate receptors were not isolated at 20°C but were observed closer to 37°C. The findings may suggest that type A and B receptors utilise different molecular transduction mechanisms. ABSTRACT Atrial volume receptors are a family of afferent neurons whose mechanically sensitive endings terminate in the atria, particularly at the cavoatrial junctions. These mechanosensors form the afferent limb of an atrial volume receptor reflex that regulates plasma volume. The prevailing functional classification of atrial receptors arose as a result of in vivo recordings in the cat and dog and were classified as type A, B or intermediate according to the timing of peak discharge during the cardiac cycle. In contrast, there have been far fewer studies of the common small laboratory mammals such as the rat. Using several ex vivo rat cavoatrial preparations, a total of 30 successful single cavoatrial mechanosensory recordings were obtained. These experiments show that the rat possesses type A, B and intermediate atrial mechanoreceptors as described for larger mammals. Recording these cavoatrial receptors proved challenging from the main vagus, but direct recording from the cardiac vagal branch greatly increased the yield of mechanically sensitive single units. In contrast to type A units, type B atrial mechanoreceptor activity was never observed at room temperature but required elevation of temperature to a more physiological range in order to be detected. The adequate stimulus for these receptors remains unclear; however, type A atrial receptors appear insensitive to direct atrial stretch when applied using a programmable positioner. The findings may suggest that type A and type B atrial receptors utilise different molecular transduction mechanisms.
Collapse
Affiliation(s)
- Thomas Campbell
- Discipline of Anatomy, School of Medicine, University College Dublin, Dublin, Ireland
| | | | - Eric Lucking
- Discipline of Anatomy, School of Medicine, University College Dublin, Dublin, Ireland
| | - Susan Pyner
- Department of Biosciences, Durham University, Durham, UK
| | | |
Collapse
|
6
|
Dobolyi A, Cservenák M, Young LJ. Thalamic integration of social stimuli regulating parental behavior and the oxytocin system. Front Neuroendocrinol 2018; 51:102-115. [PMID: 29842887 PMCID: PMC6175608 DOI: 10.1016/j.yfrne.2018.05.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/21/2018] [Accepted: 05/25/2018] [Indexed: 12/18/2022]
Abstract
Critically important components of the maternal neural circuit in the preoptic area robustly activated by suckling were recently identified. In turn, suckling also contributes to hormonal adaptations to motherhood, which includes oxytocin release and consequent milk ejection. Other reproductive or social stimuli can also trigger the release of oxytocin centrally, influencing parental or social behaviors. However, the neuronal pathways that transfer suckling and other somatosensory stimuli to the preoptic area and oxytocin neurons have been poorly characterized. Recently, a relay center of suckling was determined and characterized in the posterior intralaminar complex of the thalamus (PIL). Its neurons containing tuberoinfundibular peptide 39 project to both the preoptic area and oxytocin neurons in the hypothalamus. The present review argues that the PIL is a major relay nucleus conveying somatosensory information supporting maternal behavior and oxytocin release in mothers, and may be involved more generally in social cue evoked oxytocin release, too.
Collapse
Affiliation(s)
- Arpad Dobolyi
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary.
| | - Melinda Cservenák
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary; Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Larry J Young
- Center for Translational Social Neuroscience, Silvio O. Conte Center for Oxytocin and Social Cognition, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, USA.
| |
Collapse
|
7
|
Cafarchio EM, da Silva LA, Auresco LC, Ogihara CA, Almeida RL, Giannocco G, Luz MCB, Fonseca FLA, Sato MA. Cholinergic activation of neurons in the medulla oblongata changes urinary bladder activity by plasma vasopressin release in female rats. Eur J Pharmacol 2016; 776:116-23. [PMID: 26879866 DOI: 10.1016/j.ejphar.2016.02.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/11/2016] [Accepted: 02/11/2016] [Indexed: 12/15/2022]
Abstract
The central control of the micturition is dependent on cortical areas and other ascending and descending pathways in the brain stem. The descendent pathways from the pons to the urinary bladder (UB) can be direct or indirect through medullary neurons (MN). Chemical stimulation with l-glutamate of MN known for their involvement in cardiovascular regulation evokes changes in pelvic nerves activities, which innervate the urinary bladder. Different neurotransmitters have been found in medullary areas; nevertheless, their involvement in UB control is few understood. We focused to investigate if cholinergic activation of neurons in the medulla oblongata changes the urinary bladder activity. Carbachol (cholinergic agonist) or atropine (cholinergic antagonist) was injected into the 4thV in anesthetized female Wistar rats and the intravesical pressure (IP), mean arterial pressure (MAP), heart rate (HR) and renal conductance (RC) were recorded for 30 min. Carbachol injection into the 4thV increased IP with peak response at 30 min after carbachol and yielded no changes in MAP, HR and RC. Atropine injection into the 4thV decreased IP and elicited no changes in MAP, HR and RC. Plasma vasopressin levels evaluated by ELISA kit assay increased after carbachol into the 4th V. Intravenous blockade of V1 receptors prior to carbachol into the 4thV abolished the increase in IP evoked by carbachol. Therefore, our findings suggest that cholinergic activation of neurons in the medulla oblongata by carbachol injections into the 4thV increases IP due to plasma vasopressin release, which acts in V1 receptors in the UB.
Collapse
Affiliation(s)
- Eduardo M Cafarchio
- Dept. Morphology and Physiology, Faculdade de Medicina do ABC, Santo Andre, SP 09060-650, Brazil
| | - Luiz A da Silva
- Dept. Morphology and Physiology, Faculdade de Medicina do ABC, Santo Andre, SP 09060-650, Brazil
| | - Luciana C Auresco
- Dept. Morphology and Physiology, Faculdade de Medicina do ABC, Santo Andre, SP 09060-650, Brazil
| | - Cristiana A Ogihara
- Dept. Morphology and Physiology, Faculdade de Medicina do ABC, Santo Andre, SP 09060-650, Brazil
| | - Roberto L Almeida
- Dept. Morphology and Physiology, Faculdade de Medicina do ABC, Santo Andre, SP 09060-650, Brazil
| | - Gisele Giannocco
- Dept. Morphology and Physiology, Faculdade de Medicina do ABC, Santo Andre, SP 09060-650, Brazil
| | - Maria C B Luz
- Clinical Laboratory Analysis, Faculdade de Medicina do ABC, Santo Andre, SP 09060-650, Brazil
| | - Fernando L A Fonseca
- Clinical Laboratory Analysis, Faculdade de Medicina do ABC, Santo Andre, SP 09060-650, Brazil
| | - Monica A Sato
- Dept. Morphology and Physiology, Faculdade de Medicina do ABC, Santo Andre, SP 09060-650, Brazil.
| |
Collapse
|
8
|
Abstract
Prolactin (PRL) released from lactotrophs of the anterior pituitary gland in response to the suckling by the offspring is the major hormonal signal responsible for stimulation of milk synthesis in the mammary glands. PRL secretion is under chronic inhibition exerted by dopamine (DA), which is released from neurons of the arcuate nucleus of the hypothalamus into the hypophyseal portal vasculature. Suckling by the young activates ascending systems that decrease the release of DA from this system, resulting in enhanced responsiveness to one or more PRL-releasing hormones, such as thyrotropin-releasing hormone. The neuropeptide oxytocin (OT), synthesized in magnocellular neurons of the hypothalamic supraoptic, paraventricular, and several accessory nuclei, is responsible for contracting the myoepithelial cells of the mammary gland to produce milk ejection. Electrophysiological recordings demonstrate that shortly before each milk ejection, the entire neurosecretory OT population fires a synchronized burst of action potentials (the milk ejection burst), resulting in release of OT from nerve terminals in the neurohypophysis. Both of these neuroendocrine systems undergo alterations in late gestation that prepare them for the secretory demands of lactation, and that reduce their responsiveness to stimuli other than suckling, especially physical stressors. The demands of milk synthesis and release produce a condition of negative energy balance in the suckled mother, and, in laboratory rodents, are accompanied by a dramatic hyperphagia. The reduction in secretion of the adipocyte hormone, leptin, a hallmark of negative energy balance, may be an important endocrine signal to hypothalamic systems that integrate lactation-associated food intake with neuroendocrine systems.
Collapse
Affiliation(s)
- William R Crowley
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah Health Sciences Center, Salt Lake City, Utah
| |
Collapse
|
9
|
Wang L, Ennis M, Szabó G, Armstrong WE. Characteristics of GABAergic and cholinergic neurons in perinuclear zone of mouse supraoptic nucleus. J Neurophysiol 2014; 113:754-67. [PMID: 25376783 DOI: 10.1152/jn.00561.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The perinuclear zone (PNZ) of the supraoptic nucleus (SON) contains some GABAergic and cholinergic neurons thought to innervate the SON proper. In mice expressing enhanced green fluorescent protein (eGFP) in association with glutamate decarboxylase (GAD)65 we found an abundance of GAD65-eGFP neurons in the PNZ, whereas in mice expressing GAD67-eGFP, there were few labeled PNZ neurons. In mice expressing choline acetyltransferase (ChAT)-eGFP, large, brightly fluorescent and small, dimly fluorescent ChAT-eGFP neurons were present in the PNZ. The small ChAT-eGFP and GAD65-eGFP neurons exhibited a low-threshold depolarizing potential consistent with a low-threshold spike, with little transient outward rectification. Large ChAT-eGFP neurons exhibited strong transient outward rectification and a large hyperpolarizing spike afterpotential, very similar to that of magnocellular vasopressin and oxytocin neurons. Thus the large soma and transient outward rectification of large ChAT-eGFP neurons suggest that these neurons would be difficult to distinguish from magnocellular SON neurons in dissociated preparations by these criteria. Large, but not small, ChAT-eGFP neurons were immunostained with ChAT antibody (AB144p). Reconstructed neurons revealed a few processes encroaching near and passing through the SON from all types but no clear evidence of a terminal axon arbor. Large ChAT-eGFP neurons were usually oriented vertically and had four or five dendrites with multiple branches and an axon with many collaterals and local arborizations. Small ChAT-eGFP neurons had a more restricted dendritic tree compared with parvocellular GAD65 neurons, the latter of which had long thin processes oriented mediolaterally. Thus many of the characteristics found previously in unidentified, small PNZ neurons are also found in identified GABAergic neurons and in a population of smaller ChAT-eGFP neurons.
Collapse
Affiliation(s)
- Lie Wang
- Department of Anatomy and Neurobiology and Neuroscience Institute, University of Tennessee Health Science Center, Memphis, Tennessee; and
| | - Matthew Ennis
- Department of Anatomy and Neurobiology and Neuroscience Institute, University of Tennessee Health Science Center, Memphis, Tennessee; and
| | - Gábor Szabó
- Department of Gene Technology and Developmental Biology, Institute of Experimental Medicine, Budapest, Hungary
| | - William E Armstrong
- Department of Anatomy and Neurobiology and Neuroscience Institute, University of Tennessee Health Science Center, Memphis, Tennessee; and
| |
Collapse
|
10
|
Honda K, Zhang W, Tomiyama K. Oxytocin cells in the paraventricular nucleus receive excitatory synaptic inputs from the contralateral paraventricular and supraoptic nuclei in lactating rats. Neurosci Lett 2014; 572:44-7. [PMID: 24792395 DOI: 10.1016/j.neulet.2014.04.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 04/15/2014] [Accepted: 04/22/2014] [Indexed: 11/19/2022]
Abstract
The present experiments were undertaken to examine whether oxytocin cells in the paraventricular nucleus receive synaptic inputs from the contralateral supraoptic or paraventricular nucleus. Using urethane-anesthetized lactating rats, extracellular action potentials were recorded from single oxytocin or vasopressin cells in the paraventricular nucleus. Electrical stimulation was applied to the contralateral supraoptic nucleus or paraventricular nucleus, and responses of oxytocin or vasopressin cells were analyzed by peri-stimulus time histogram or by change in firing rate of oxytocin or vasopressin cells. Electrical stimulation of the contralateral supraoptic nucleus or paraventricular nucleus did not cause antidromic excitation in oxytocin or vasopressin cells but caused orthodromic responses. Although analysis by peri-stimulus time histogram showed that electrical stimulation of the contralateral supraoptic nucleus or paraventricular nucleus caused orthodromic excitation in both oxytocin and vasopressin cells, the proportion of excited oxytocin cells was greater than that of vasopressin cells. Train stimulation applied to the contralateral supraoptic nucleus or paraventricular nucleus at 10 Hz increased firing rates of oxytocin cells and decreased those of vasopressin cells. The results of the present experiments suggest that oxytocin cells in the paraventricular nucleus receive mainly excitatory synaptic inputs from the contralateral supraoptic nucleus and paraventricular nucleus. Receipt these synaptic inputs to oxytocin cells may contribute to the synchronized activation of oxytocin cells during the milk ejection reflex.
Collapse
Affiliation(s)
- Kazumasa Honda
- Faculty of Nursing and Welfare Sciences, Fukui Prefectural University, 4-1-1, Matsuoka-kenjojima, Eiheiji-cho 910-1195, Fukui, Japan.
| | - William Zhang
- Faculty of Nursing and Welfare Sciences, Fukui Prefectural University, 4-1-1, Matsuoka-kenjojima, Eiheiji-cho 910-1195, Fukui, Japan
| | - Keita Tomiyama
- Faculty of Nursing and Welfare Sciences, Fukui Prefectural University, 4-1-1, Matsuoka-kenjojima, Eiheiji-cho 910-1195, Fukui, Japan
| |
Collapse
|
11
|
Honda K, Sudo A, Ikeda K. Oxytocin cells in the supraoptic nucleus receive excitatory synaptic inputs from the contralateral supraoptic and paraventricular nuclei in the lactating rat. J Reprod Dev 2013; 59:569-74. [PMID: 24042175 PMCID: PMC3934149 DOI: 10.1262/jrd.2013-053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The present experiments were undertaken to examine whether oxytocin cells in the supraoptic nucleus receive synaptic inputs from the contralateral supraoptic nucleus or paraventricular nucleus. Using urethane-anesthetized lactating rats, extracellular action potentials were recorded from single oxytocin or vasopressin cells in the supraoptic nucleus. Electrical stimulation was applied to the contralateral supraoptic nucleus or paraventricular nucleus, and responses of oxytocin or vasopressin cells were analyzed by peri-stimulus time histogram or by change in firing rate of oxytocin or vasopressin cells. Electrical stimulation of the contralateral supraoptic nucleus or paraventricular nucleus did not cause antidromic excitation in oxytocin or vasopressin cells but caused orthodromic responses. Although analysis by peri-stimulus time histogram showed that electrical stimulation of the contralateral supraoptic nucleus or paraventricular nucleus caused orthodromic excitation in both oxytocin and vasopressin cells, the proportion of excited oxytocin cells was greater than that of vasopressin cells. Train stimulation applied to the contralateral supraoptic nucleus or paraventricular nucleus at 10 Hz increased firing rates of oxytocin cells and decreased those of vasopressin cells. The results of the present experiments suggest that oxytocin cells in the supraoptic nucleus receive mainly excitatory synaptic inputs from the contralateral supraoptic nucleus and paraventricular nucleus. Receipt these synaptic inputs to oxytocin cells may contribute to the synchronized activation of oxytocin cells during the milk ejection reflex.
Collapse
Affiliation(s)
- Kazumasa Honda
- Faculty of Nursing and Welfare Sciences, Fukui Prefectural University, Fukui 910-1195, Japan
| | | | | |
Collapse
|
12
|
Cunningham JT, Nedungadi TP, Walch JD, Nestler EJ, Gottlieb HB. ΔFosB in the supraoptic nucleus contributes to hyponatremia in rats with cirrhosis. Am J Physiol Regul Integr Comp Physiol 2012; 303:R177-85. [PMID: 22621966 PMCID: PMC3404636 DOI: 10.1152/ajpregu.00142.2012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 05/18/2012] [Indexed: 11/22/2022]
Abstract
Bile duct ligation (BDL), a model of hepatic cirrhosis, is associated with dilutional hyponatremia and inappropriate vasopressin release. ΔFosB staining was significantly increased in vasopressin and oxytocin magnocellular neurosecretory cells in the supraoptic nucleus (SON) of BDL rats. We tested the role of SON ΔFosB in fluid retention following BDL by injecting the SON (n = 10) with 400 nl of an adeno-associated virus (AAV) vector expressing ΔJunD (a dominant negative construct for ΔFosB) plus green fluorescent protein (GFP) (AAV-GFP-ΔJunD). Controls were either noninjected or injected with an AAV vector expressing only GFP. Three weeks after BDL or sham ligation surgery, rats were individually housed in metabolism cages for 1 wk. Average daily water intake was significantly elevated in all BDL rats compared with sham ligated controls. Average daily urine output was significantly greater in AAV-GFP-ΔJunD-treated BDL rats compared with all other groups. Daily average urine sodium concentration was significantly lower in AAV-GFP-ΔJunD-treated BDL rats than the other groups, although average daily sodium excretion was not different among the groups. SON expression of ΔJunD produced a diuresis in BDL rats that may be related to decreased circulating levels of vasopressin or oxytocin. These findings support the view that ΔFosB expression in SON magnocellular secretory cells contribute to dilutional hyponatremia in BDL rats.
Collapse
Affiliation(s)
- J Thomas Cunningham
- Department of Integrative Physiology and the Cardiovascular Research Institute, University of North Texas Health Science Centre at Fort Worth, Fort Worth, TX 76017, USA.
| | | | | | | | | |
Collapse
|
13
|
Abstract
Neuronal excitability in the adult brain is controlled by a balance between synaptic excitation and inhibition mediated by glutamate and GABA, respectively. While generally inhibitory in the adult brain, GABA(A) receptor activation is excitatory under certain conditions in which the GABA reversal potential is shifted positive due to intracellular Cl(-) accumulation, such as during early postnatal development and brain injury. However, the conditions under which GABA is excitatory are generally either transitory or pathological. Here, we reveal GABAergic synaptic inputs to be uniformly excitatory in vasopressin (VP)-secreting magnocellular neurons in the adult hypothalamus under normal conditions. The GABA reversal potential (E(GABA)) was positive to resting potential and spike threshold in VP neurons, but not in oxytocin (OT)-secreting neurons. The VP neurons lacked expression of the K(+)-Cl(-) cotransporter 2 (KCC2), the predominant Cl(-) exporter in the adult brain. The E(GABA) was unaffected by inhibition of KCC2 in VP neurons, but was shifted positive in OT neurons, which express KCC2. Alternatively, inhibition of the Na(+)-K(+)-Cl(-) cotransporter 1 (NKCC1), a Cl(-) importer expressed in most cell types mainly during postnatal development, caused a negative shift in E(GABA) in VP neurons, but had no effect on GABA currents in OT neurons. GABA(A) receptor blockade caused a decrease in the firing rate of VP neurons, but an increase in firing in OT neurons. Our findings demonstrate that GABA is excitatory in adult VP neurons, suggesting that the classical excitation/inhibition paradigm of synaptic glutamate and GABA control of neuronal excitability does not apply to VP neurons.
Collapse
|
14
|
Role of superior laryngeal nerve and Fos staining following dehydration and rehydration in the rat. Physiol Behav 2011; 104:1053-8. [PMID: 21781979 DOI: 10.1016/j.physbeh.2011.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 07/05/2011] [Accepted: 07/06/2011] [Indexed: 10/18/2022]
Abstract
Immunohistochemistry for Fos was used to determine the role of the superior laryngeal nerve in conscious rats following water deprivation and rehydration. Adult male rats were subjected to either unilateral superior laryngeal nerve section (SLNX) or sham surgery. Two weeks later rats from each surgical group were water deprived for 48 h or water deprived for 46 h and given access to water for 2 h prior to perfusion. Controls were allowed ad libitum access to water. Brains were processed for Fos using a commercially available antibody. Changes in plasma osmolality and hematocrit were not significantly different between SLNX and sham following any of the treatments. Water intake in rats was not significantly affected by SLNX. In the supraoptic nucleus (SON) of sham rats, water deprivation significantly increased Fos staining while water intake following dehydration prevented this increase. Water deprivation significantly increased Fos staining in the SON of SLNX rats. Following water intake after 46 h water deprivation in SLNX rats, Fos staining in the ipsilateral SON was significantly greater than the contralateral SON and significantly lower than 48 h water deprivation. In the nucleus of the solitary tract (NTS) of sham rats, both water deprivation and water intake produced significant increases in Fos staining bilaterally compared to euhydrated controls. In SLNX rats, water deprivation significantly increased Fos in both ipsilateral and contralateral NTS that was not different from sham rats. SLNX significantly decreased Fos staining in the ipsilateral NTS of rats given access to water after dehydration compared to the corresponding sham treated rats. Fos staining was not affected in the contralateral NTS of SLNX rats given access to water after dehydration. This suggests that the superior laryngeal nerve contributes to changes in Fos staining in the NTS and SON following water intake in dehydrated rats.
Collapse
|
15
|
Knight WD, Ji LL, Little JT, Cunningham JT. Dehydration followed by sham rehydration contributes to reduced neuronal activation in vasopressinergic supraoptic neurons after water deprivation. Am J Physiol Regul Integr Comp Physiol 2010; 299:R1232-40. [PMID: 20844266 DOI: 10.1152/ajpregu.00066.2010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This experiment tested the role of oropharyngeal and gastric afferents on hypothalamic activation in dehydrated rats instrumented with gastric fistulas and allowed to drink water or isotonic saline compared with euhydrated controls (CON). Rats were water-deprived for 48 h (48 WD) or 46 h WD with 2 h rehydration with water (46+W) or isotonic saline (46+S). 46+W and 46+S rats were given water with fistulas open (46+WO/46+SO, sham) or closed (46+WC/46+SC). Compared with CON, water deprivation increased and water rehydration decreased plasma osmolality, while sham rehydration had no effect. Water deprivation increased c-Fos staining in the lamina terminalis. However, none of the sham or rehydration treatments normalized c-Fos staining in the lamina terminalis. Analysis of AVP and c-Fos-positive neurons in the supraoptic nucleus (SON) revealed reduced colocalization in 46+WO and 46+SC rats compared with 48 WD and 46+SO rats. However, 46+WO and 46+SC rats had higher c-Fos staining in the SON than 46+WC or CON rats. Examination of c-Fos in the perinuclear zone (PNZ) revealed that sham and rehydrated rats had increased c-Fos staining to CON, while 48 WD and 46+SO rats had little or no c-Fos staining in this region. Thus, preabsorptive reflexes contribute to the regulation of AVP neurons in a manner independent of c-Fos expression in the lamina terminalis. Further, this reflex pathway may include inhibitory interneurons in the PNZ region surrounding the SON.
Collapse
Affiliation(s)
- W David Knight
- Department of Integrative Physiology and Cardiovascular Research Instittute, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas 76107, USA.
| | | | | | | |
Collapse
|
16
|
Inyushkin AN, Orlans HO, Dyball REJ. Secretory cells of the supraoptic nucleus have central as well as neurohypophysial projections. J Anat 2010; 215:425-34. [PMID: 19754684 DOI: 10.1111/j.1469-7580.2009.01121.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Conventional neuroanatomical methods may fail to demonstrate the presence of axons that are finer than 1 microm in diameter because such processes are near or below the limit of resolution of the light microscope. The presence of such axons can, however, be readily demonstrated by recording. The most easily interpreted type of recording for this purpose is the demonstration of antidromic activation of the cell body following stimulation of the region through which the axon passes. We have exploited this technique in the hypothalamus and have demonstrated the presence of double axonal projections or axons branching very near the cell bodies of the secretory cells of the neurohypophysial system in the rat supraoptic nucleus. We found that a small proportion of supraoptic magnocellular cells could be antidromically activated both from the neural stalk and from elsewhere in the hypothalamus, including the suprachiasmatic nucleus (8 cells of a total of 182) and the antero-ventral third ventricular region (AV3V; 4 of 182 cells) near the organum vasculosum of the lamina terminalis (OVLT). Collision of antidromic and orthodromic spikes showed that the cells were clearly antidromically (rather than synaptically, or orthodromically) activated from both sites. A stimulus applied to one of the axons prevented propagation of a spike evoked by a pulse delivered to the other axon until sufficient time had elapsed after the first stimulus for the resultant spike to have propagated from the first stimulus site along one cell process (towards the cell body or branch point), and from this point along the other axonal branch to the second stimulus site (there was also a short additional delay period during which the axon at the site of the second stimulus recovered from its absolute refractory period). If the interval between the stimuli was progressively reduced, there came a point where the second spike failed. Such a clear demonstration of dual projections in a system where the cells were previously thought to have only a single axon raises the possibility that many nerve cells in the CNS have previously unsuspected projections.
Collapse
Affiliation(s)
- A N Inyushkin
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | | | | |
Collapse
|
17
|
HONDA K, HIGUCHI T. Effects of Unilateral Electrolytic Lesion of the Dorsomedial Nucleus of the Hypothalamus on Milk-ejection Reflex in the Rat. J Reprod Dev 2010; 56:98-102. [DOI: 10.1262/jrd.09-090e] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Kazumasa HONDA
- Faculty of Nursing and Welfare Sciences, Fukui Prefectural University
| | - Takashi HIGUCHI
- Department of Physiology, Faculty of Medical Sciences, University of Fukui
| |
Collapse
|
18
|
HONDA K, HIGUCHI T. Electrical Activities of Neurones in the Dorsomedial Hypothalamic Nucleus Projecting to the Supraoptic Nucleus During Milk-ejection Reflex in the Rat. J Reprod Dev 2010; 56:336-40. [DOI: 10.1262/jrd.09-117e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Kazumasa HONDA
- Faculty of Nursing and Welfare Sciences, Fukui Prefectural University
| | - Takashi HIGUCHI
- Department of Physiology, Faculty of Medical Sciences, University of Fukui
| |
Collapse
|
19
|
Honda K, Higuchi T. Oxytocin neurons in the supraoptic nucleus receive excitatory inputs from the bilateral dorsomedial hypothalamic nuclei. Brain Res Bull 2007; 74:237-42. [PMID: 17720545 DOI: 10.1016/j.brainresbull.2007.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 05/29/2007] [Accepted: 06/01/2007] [Indexed: 10/23/2022]
Abstract
To examine whether inputs from the dorsomedial hypothalamic nucleus (DMH) alter the discharge of putative oxytocin (OT) neurons with hypothesis that excitation of DMH neurons would increase the activity of OT neurons, electrical stimulation was applied to the DMH in both sides of the hypothalamus while electrical activity of single OT neurons in the supraoptic nucleus (SON) was recorded in urethane-anesthetized lactating rats. About half of the OT neurons showed orthodromic excitation or inhibition followed by excitation in response to electrical stimulation of the DMH on both sides. Continuous electrical stimulation of the DMH both ipsi- and contralateral to the recording side at 10-50 Hz for 30-60 s increased firing rate in 58% of OT neurons tested. Continuous electrical stimulation of the DMH not only excited spiking activity of single OT neurons but also increased intramammary pressure. The results may suggest that some of the projections from the DMH to the SON are bilateral and possibly contribute to coordinated bilateral activation of OT neurons in the hypothalamus during the milk-ejection reflex.
Collapse
Affiliation(s)
- Kazumasa Honda
- Faculty of Nursing and Welfare Sciences, Fukui Prefectural University, Matsuoka-kenjojima, Eiheiji-cho, Fukui 910-1195, Japan.
| | | |
Collapse
|
20
|
McGowan BM, Stanley SA, White NE, Spangeus A, Patterson M, Thompson EL, Smith KL, Donovan J, Gardiner JV, Ghatei MA, Bloom SR. Hypothalamic mapping of orexigenic action and Fos-like immunoreactivity following relaxin-3 administration in male Wistar rats. Am J Physiol Endocrinol Metab 2007; 292:E913-9. [PMID: 17132825 DOI: 10.1152/ajpendo.00346.2006] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The insulin superfamily, characterized by common disulphide bonds, includes not only insulin but also insulin-like peptides such as relaxin-1 and relaxin-3. The actions of relaxin-3 are largely unknown, but recent work suggests a role in regulation of food intake. Relaxin-3 mRNA is highly expressed in the nucleus incertus, which has extensive projections to the hypothalamus, and relaxin immunoreactivity is present in several hypothalamic nuclei. In the rat, relaxin-3 binds and activates both relaxin family peptide receptor 1, which also binds relaxin-1, and a previously orphaned G protein-coupled receptor, RXFP3. These receptors are extensively expressed in the hypothalamus. The aims of these studies were twofold: 1) map the hypothalamic site(s) of the orexigenic action of relaxin-3 and 2) examine the site(s) of neuronal activation following central relaxin-3 administration. After microinjection into hypothalamic sites, human relaxin-3 (H3; 180 pmol) significantly stimulated 0- to 1-h food intake in the supraoptic nucleus (SON), arcuate nucleus (ARC), and the anterior preoptic area (APOA) [SON 0.4+/-0.2 (vehicle) vs. 2.9+/-0.5 g (H3), P<0.001; ARC 0.7+/-0.3 (vehicle) vs. 2.7+/-0.2 g (H3), P<0.05; and APOA 0.8+/-0.1 (vehicle) vs. 2.2+/-0.2 g (H3), P<0.05]. Cumulative food intake was significantly increased<or=8 h following administration into the SON and 4 h into the APOA. A significant increase in Fos-like immunoreactivity was seen in the SON following central relaxin-3 administration. Relaxin-3 stimulates feeding in several hypothalamic nuclei, and these studies provide additional support for relaxin-3 as an important peptide in appetite regulation.
Collapse
Affiliation(s)
- B M McGowan
- Department of Metabolic Medicine, Imperial College London, 6th Floor Commonwealth Bldg., Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Gottlieb HB, Ji LL, Jones H, Penny ML, Fleming T, Cunningham JT. Differential effects of water and saline intake on water deprivation-induced c-Fos staining in the rat. Am J Physiol Regul Integr Comp Physiol 2006; 290:R1251-61. [PMID: 16306162 DOI: 10.1152/ajpregu.00727.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We studied c-Fos staining in adult male rats after 48 h of water deprivation and after 46 h of water deprivation with 2 h of access to water or physiological saline. Controls were allowed ad libitum access to water and physiological saline. For immunocytochemistry, anesthetized rats were perfused with a commercially available antibody for c-Fos. Dehydration significantly increased plasma vasopressin (AVP), osmolality, plasma renin activity (PRA), hematocrit, and sodium concentration and decreased urinary volume. Fos staining was significantly increased in the median preoptic nucleus, organum vasculosum of the lamina terminalis, supraoptic nucleus (SON), and magnocellular and parvocellular paraventricular nucleus (PVN), as well as the area postrema, nucleus of the solitary tract (NTS), and rostral ventrolateral medulla (RVL). Rehydration with water significantly decreased AVP levels and Fos staining in the SON, PVN, and RVL and significantly increased Fos expression in the perinuclear zone of the SON, NTS, and parabrachial nucleus. Rehydration with water was associated with decreased urinary sodium concentration and hypotonicity, and hematocrit and PRA were comparable to levels seen after dehydration. After rehydration with saline, plasma osmolality, hematocrit, and PRA were not different from control, but plasma AVP and urinary sodium concentration were increased. In the SON, Fos staining was significantly increased, with a great percentage of the Fos cells also stained for oxytocin compared with water deprivation. Changes in Fos staining were also observed in the NTS, RVL, parabrachial nucleus, and PVN. Rehydration with water or saline produces differential effects on plasma AVP, Fos staining, and sodium concentration.
Collapse
Affiliation(s)
- Helmut B Gottlieb
- Dept. of Pharmacology, UTHSCSA, 7703 Floyd Curl Dr., San Antonio, TX 78229, USA
| | | | | | | | | | | |
Collapse
|
22
|
Theodosis DT, Koksma JJ, Trailin A, Langle SL, Piet R, Lodder JC, Timmerman J, Mansvelder H, Poulain DA, Oliet SHR, Brussaard AB. Oxytocin and estrogen promote rapid formation of functional GABA synapses in the adult supraoptic nucleus. Mol Cell Neurosci 2006; 31:785-94. [PMID: 16488155 DOI: 10.1016/j.mcn.2006.01.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2005] [Revised: 12/14/2005] [Accepted: 01/11/2006] [Indexed: 11/26/2022] Open
Abstract
We here investigated inhibitory synapse turnover in the adult brain using the hypothalamic supraoptic nucleus where new synapses form during different physiological conditions, in particular on oxytocin neurons largely controlled by GABAergic inputs and locally released oxytocin. Patch clamp recordings and ultrastructural analysis of the nucleus in acute slices from late gestating rats showed that oxytocin and estrogen promoted rapid formation of inhibitory synapses. Thus, after 2-h exposure to a combination of oxytocin and 17-beta estradiol, the frequency of miniature inhibitory postsynaptic currents was significantly enhanced. Since their amplitude and presynaptic GABA release probability were unmodified, this indicated an increased number of synapses. Electron microscopy confirmed increased densities of symmetric, putative GABAergic synapses within 2-h exposure to the peptide or steroid, effects which were reversible and oxytocin receptor mediated. Our observations thus offer direct evidence that hypothalamic GABAergic microcircuitries can undergo rapid and functional remodeling under changing neuroendocrine conditions.
Collapse
Affiliation(s)
- Dionysia T Theodosis
- Inserm, U 378, Bordeaux F33077 France; University Victor Segalen, Bordeaux F33077, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Godino A, Giusti-Paiva A, Antunes-Rodrigues J, Vivas L. Neurochemical brain groups activated after an isotonic blood volume expansion in rats. Neuroscience 2005; 133:493-505. [PMID: 15885915 DOI: 10.1016/j.neuroscience.2005.02.035] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Revised: 02/03/2005] [Accepted: 02/06/2005] [Indexed: 11/23/2022]
Abstract
In order to establish the involvement of particular neurochemical brain groups in the response to blood volume expansion, we analyzed Fos-labeling in combination with immunolabeling for serotonin, tyrosine hydroxylase, vasopressin and oxytocin, 90 min after a sham or i.v. isotonic blood volume expansion (BVE) in unanesthetized, unrestrained rats. We also examined the changes in concentration of oxytocin, atrial natriuretic peptide and vasopressin plasma, induced by blood volume load, to confirm our previous studies. The results demonstrate the participation of specific paraventricular and supraoptic nucleus groups of cells (oxytocinergic-vasopressinergic), serotoninergic dorsal raphe nucleus cells and catecholaminergic A1/A2/A6 groups (in the caudal ventrolateral medulla, nucleus of the solitary tract and locus coeruleus respectively), in the regulatory response to BVE. They provide detailed neuroanatomical evidence to support previous observations showing the contribution of these neurochemical systems in the neural, behavioral and endocrine response to isotonic BVE.
Collapse
Affiliation(s)
- A Godino
- Instituto de Investigación Médica M. y M. Ferreyra (INIMEC-CONICET), Casilla de Correo 389-5000, Córdoba, Argentina
| | | | | | | |
Collapse
|
24
|
Moos F, Marganiec A, Fontanaud P, Guillou-Duvoid A, Alonso G. Synchronization of oxytocin neurons in suckled rats: possible role of bilateral innervation of hypothalamic supraoptic nuclei by single medullary neurons. Eur J Neurosci 2004; 20:66-78. [PMID: 15245480 DOI: 10.1111/j.0953-816x.2004.03455.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have previously shown that oxytocin neurons located in the four hypothalamic magnocellular nuclei display synchronous bursts of action potentials before each milk ejection. The mechanisms involved in such a synchronization have, however, not yet been elucidated. In this study, we test the hypothesis of an extranuclear synchronization arising from a common extrahypothalamic input innervating bilateral magnocellular nuclei. First, two different retrograde tracers were injected into the right and left supraoptic nuclei of rats that were fixed 5-7 days later. Each tracer labelled numerous neurons in various brain regions ipsilateral or contralateral to the injection site, but colocalization of the two tracers within the same cell body could only be detected bilaterally in neurons in the ventromedial regions of the medulla oblongata. The axonal projections of these medullary neurons were then visualized by the unilateral microinjection of an anterograde tracer (BDA) within the ventromedial medulla oblongata. BDA-labelled axons afferent to the hypothalamus were found to branch towards both supraoptic nuclei through medial portions of the optic chiasma. Finally, in anaesthetized lactating rats, surgical lesions were placed medially through the optic chiasma and the electrical activity of oxytocin neurons in bilateral supraoptic nuclei was pair-recorded during suckling. The incidence of synchronous bursts in oxytocin neurons located within bilateral supraoptic nuclei were dramatically altered only when the medial portions of the optic chiasma were totally lesioned. Taken together, these data suggest that medullary neurons afferent to bilateral supraoptic nuclei are involved in the recruitment and synchronization of bursting in oxytocin neurons during suckling.
Collapse
Affiliation(s)
- Françoise Moos
- CNRS UMR 5101, Biologie des Neurones Endocrines, CCIPE, 141 rue de la Cardonille, 34094 Montpellier Cedex 05, France.
| | | | | | | | | |
Collapse
|
25
|
Currás-Collazo MC, Gillard ER, Jin J, Pandika J. Vasopressin and oxytocin decrease excitatory amino acid release in adult rat supraoptic nucleus. J Neuroendocrinol 2003; 15:182-90. [PMID: 12535160 DOI: 10.1046/j.1365-2826.2003.00976.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Oxytocin and vasopressin reduce the amplitude of excitatory postsynaptic responses in magnocellular neuroendocrine cells of the supraoptic nucleus (SON). To test whether synaptic glutamate release is modulated by these neuropeptides, we examined the combined effect of vasopressin and oxytocin on depolarization-induced glutamate and aspartate release from acutely dissected rat SON or fronto-parietal cortex punches. Glutamate release was stimulated with 60 mm K+ for 5-10 min and measured using ion exchange chromatography or high-performance liquid chromatography. During depolarization with high K+, extracellular glutamate levels increased, on average, to 204% of control values. In the presence of vasopressin/oxytocin, K+-stimulated glutamate and aspartate release were significantly reduced by 34% and 62%, respectively, in the SON. Treatment with the aminopeptidase inhibitor amastatin did not mimic the effects of exogenous vasopressin/oxytocin on glutamate or aspartate release, suggesting that, under the conditions tested here, amastatin treatment may produce more complex effects. The effects of exogenous neuropeptides are likely mediated by oxytocin and/or vasopressin receptors, as the oxytocin- and V1a-receptor antagonist, Manning Compound (10-100 micro m), partially reversed the effects of vasopressin/oxytocin on SON glutamate release. In contrast, in cortical punches, glutamate release was enhanced by high K+, but vasopressin/oxytocin did not significantly reduce glutamate/aspartate release, consistent with the relatively sparse distribution of vasopressin/oxytocin receptors in fronto-parietal cortex. These findings suggest that locally released oxytocin and vasopressin may autoregulate SON magnocellular neuroendocrine cell activity in part by modulating the release of excitatory amino acids from afferent terminals targeting these cells and/or from other cellular sources.
Collapse
Affiliation(s)
- M C Currás-Collazo
- Department of Cell Biology and Neuroscience, University of California, Riverside, California, USA.
| | | | | | | |
Collapse
|
26
|
Kombian SB, Hirasawa M, Mouginot D, Pittman QJ. Modulation of synaptic transmission by oxytocin and vasopressin in the supraoptic nucleus. PROGRESS IN BRAIN RESEARCH 2002; 139:235-46. [PMID: 12436939 DOI: 10.1016/s0079-6123(02)39020-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
It is now generally accepted that magnocellular neurons of the supraoptic and paraventricular nuclei release the neuropeptides oxytocin and vasopressin from their dendrites. Peptide release from their axon terminals in the posterior pituitary and dendrites differ in dynamics suggesting that they may be independently regulated. The dendritic release of peptide within the supraoptic nucleus (SON) is an important part of its physiological function since the local peptides can regulate the electrical activity of magnocellular neurons (MCNs) which possess receptors for these peptides. This direct postsynaptic action would affect the output of peptide in the neurohypophysis. Another way that these peptides can regulate MCN activity would be to modulate afferent inputs unto themselves. Although the influence of afferent inputs (inhibitory and excitatory) on SON magnocellular neuron physiology has been extensively described in the last decade, a role for these locally released peptides on synaptic physiology of this nucleus has been difficult to show until recently, partly because of the difficulty of performing stable synaptic recordings from these cells in suitable preparations that permit extensive examination. We recently showed that under appropriate conditions, oxytocin acts as a retrograde transmitter in the SON. Oxytocin, released from the dendrites of MCNs, decreased evoked excitatory synaptic transmission by inhibiting glutamate release from the presynaptic terminals. It modulated voltage-dependent calcium channels, mainly N-type and to a lesser extent P/Q-type channels, located on glutamatergic terminals. Although evidence is less conclusive, it is possible that vasopressin has similar actions to reduce excitatory transmission. This synaptic depressant effect of oxytocin and/or vasopressin, released from dendrites, would ensure that MCNs regulate afferent input unto themselves using their own firing rate as a gauge. Alternatively, it may only be a subset of afferent terminals that are sensitive to these peptides, thereby providing a means for the MCNs to selectively filter their afferent inputs. Indeed its specificity is partly proven by our observation that oxytocin does not affect spontaneous glutamate release, or GABA release from inhibitory terminals (Brussaard et al., 1996). Thus, the dendrites of MCNs of the supraoptic nucleus serve a dual role as both recipients of afferent input and regulators of the magnitude of afferent input, allowing them to directly participate in the shaping of their output. This adds to a rapidly growing body of evidence in support of the concept of a two-way communication between presynaptic terminals and postsynaptic dendrites, and shows the potential of this nucleus as a model to study such form of synaptic transmission.
Collapse
Affiliation(s)
- S B Kombian
- Faculty of Pharmacy, Kuwait University, Kuwait.
| | | | | | | |
Collapse
|
27
|
Csáki A, Kocsis K, Kiss J, Halász B. Localization of putative glutamatergic/aspartatergic neurons projecting to the supraoptic nucleus area of the rat hypothalamus. Eur J Neurosci 2002; 16:55-68. [PMID: 12153531 DOI: 10.1046/j.1460-9568.2002.02059.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Oxytocin and vasopressin neurosecretory neurons of the supraoptic nucleus receive a rich glutamatergic innervation. The nerve cells of this prominent structure express various ionotropic and metabotropic glutamate receptor subtypes and there is converging evidence that glutamate acts as an excitatory transmitter in the control of release of oxytocin and vasopressin synthesized in this cell group. The location of the glutamatergic neurons projecting to this hypothalamic region is unknown. The aim of the present investigation was to study this question. [(3)H]D-aspartate, which is selectively taken up by high-affinity uptake sites at presynaptic endings that use glutamate as a transmitter, and is transported back to the cell body, was injected into the supraoptic nucleus area. The neurons retrogradely labelled with [(3)H]D-aspartate were detected autoradiographically. Labelled nerve cells were found in several diencephalic and telencephalic structures, but not in the brainstem. Diencephalic cell groups included the supraoptic nucleus itself, its perinuclear area, hypothalamic paraventricular, suprachiasmatic, ventromedial, dorsomedial, ventral premammillary, supramammillary and thalamic paraventricular nuclei. Within the telencephalon, labelled neurons were detected in the septum, amygdala, bed nucleus of the stria terminalis and preoptic area. The findings provide neuromorphological data on the location of putative glutamatergic neurons projecting to the supraoptic nucleus and its perinuclear area. Furthermore, they indicate that local putative glutamatergic neurons as well as several diencephalic and telencephalic structures contribute to the glutamatergic innervation of the cell group and thus are involved in the control of oxytocin and vasopressin release by neurosecretory neurons of the nucleus.
Collapse
Affiliation(s)
- A Csáki
- Neuroendocrine Research Laboratory, Department of Human Morphology & Developmental Biology, Semmelweis University, Tüzoltó u. 58. H-1094 Budapest, Hungary
| | | | | | | |
Collapse
|
28
|
Cunningham JT, Bruno SB, Higgs KAN, Sullivan MJ. Intrapericardial procaine affects volume expansion-induced fos immunoreactivity in unanesthetized rats. Exp Neurol 2002; 174:181-92. [PMID: 11922660 DOI: 10.1006/exnr.2002.7863] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Acute volume expansion is associated with a specific pattern of Fos expression and the goal of the present study was to evaluate the contribution of cardiac receptors to this response. Adult male rats were instrumented with pericardial catheters introduced at the level of the thymus. Rats were also catheterized for measuring blood pressure, heart rate, central venous pressure, and intravenous infusion. Each rat received a 200-microl intrapericardial (i.p.c) injection of 2% procaine or 0.9% NaCl. Rats were then volume expanded with isotonic saline (10% body weight in 10 min) or given a control infusion (0.01 ml/min for 10 min). Ninety minutes after the start of the infusion, the rats were anesthetized and perfused transcardially. Their brains were sectioned and processed for Fos, dopamine-beta-hydroxylase, and oxytocin immunocytochemistry. Volume expansion plus i.p.c. saline produced a significant increase in Fos expression in the nucleus of the solitary tract, the ventrolateral medulla, the area postrema, the locus coeruleus, the paraventricular nucleus of the hypothalamus, the perinuclear zone of the supraoptic nucleus, and oxytocin neurons in the supraoptic nucleus. The i.p.c. procaine significantly blocked Fos expression produced by the volume expansion in the all of the regions examined except for the area postrema and the SON oxytocin neurons.
Collapse
Affiliation(s)
- J Thomas Cunningham
- Department of Physiology & the Dalton Cardiovascular Research Center, Research Park, Columbia, Missouri 65211, USA
| | | | | | | |
Collapse
|
29
|
Cunningham JT, Grindstaff RJ, Grindstaff RR, Sullivan MJ. Fos immunoreactivity in the diagonal band and the perinuclear zone of the supraoptic nucleus after hypertension and hypervolaemia in unanaesthetized rats. J Neuroendocrinol 2002; 14:219-27. [PMID: 11999722 DOI: 10.1046/j.0007-1331.2001.00765.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We used Fos immunocytochemistry to study the effects of hypertension and hypervolaemia on neurones in the diagonal band of Broca and the perinuclear zone of the supraoptic nucleus, two nuclei that are both involved in the baroreceptor regulation of vasopressin neurones in the supraoptic nucleus. In addition, we used sino-aortic denervation to examine the role of arterial baroreceptors in the response to these haemodynamic changes. Sham-operated and sino-aortic denervated rats were infused with phenylephrine sufficient to increase blood pressure for 2 h. Control rats were infused with the same volume of isontonic saline. Only Sham sino-aortic denervated rats showed reflex bradycardia in response to the increased blood pressure. Volume expansion was produced by infusing the rats with isotonic saline equal to 10% of their body weight for 10 min, which significantly increased central venous pressure. In the diagonal band of Broca and the perinuclear zone, the number of Fos-positive neurones was significantly increased after phenylephrine infusion. Sino-aortic denervation blocked the significant increase in both regions. After volume expansion, a significant increase in Fos staining was observed only in the perinuclear zone of the supraoptic nucleus. This increase was not blocked by sino-aortic denervation. Our results indicate that both the diagonal band of Broca and the perinuclear zone of the supraoptic nucleus are activated by stimulating arterial baroreceptors; however, the perinuclear zone of the supraoptic nucleus is stimulated during volume expansion. Furthermore, the activation of perinuclear zone of the supraoptic nucleus after volume expansion is not dependent on intact arterial baroreceptors.
Collapse
Affiliation(s)
- J T Cunningham
- Department of Physiology and the Dalton Cardiovascular Research Center, University of Missouri-Columbia, 65211, USA.
| | | | | | | |
Collapse
|
30
|
Francis K, Meddle SL, Bishop VR, Russell JA. Progesterone receptor expression in the pregnant and parturient rat hypothalamus and brainstem. Brain Res 2002; 927:18-26. [PMID: 11814428 DOI: 10.1016/s0006-8993(01)03318-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Oxytocin is synthesized by magnocellular neurons in the supraoptic and paraventricular nuclei (SON and PVN) and during pregnancy progesterone prevents premature activation of oxytocin neurons. Progesterone receptors (PR) are not detectable in SON oxytocin neurons of non-pregnant rats, so we sought to determine whether they are expressed during pregnancy and parturition. In addition, we examined PR expression in brainstem and hypothalamic regions that have known direct projections to the SON. Neuronal immunoreactive PR (irPR)-labeled nuclei were counted in sections from proestrous virgin, late pregnant (day 21) and parturient rats (90 min from birth onset). IrPR nuclei were not evident in the SON at any stage but irPR expression in the medial preoptic nucleus (MPA) significantly increased in pregnancy and parturition (159% and 189% of proestrous controls, respectively). Other hypothalamic areas did not exhibit a significant change in irPR expression. In the nucleus tractus solitarius (NTS) in the brainstem, there was no significant change in irPR in late pregnancy, but there was a significant reduction in irPR expression at parturition (22% of proestrous controls). Very few NTS neurons immunoreactive for tyrosine hydroxylase (irTH), and thus putatively noradrenergic, contained irPR. These findings taken with evidence that brainstem irTH neurons projecting to the SON are stimulated at parturition, whereas MPA cells projecting to the SON are not, suggest that any direct actions of progesterone or progesterone withdrawal on NTS or SON neurons are not mediated through the classical PR. Upregulation of PR expression in the MPA during pregnancy and parturition may relate to the onset of maternal behavior and/or regulation of GnRH neuronal activity.
Collapse
Affiliation(s)
- Karen Francis
- Division of Biomedical and Clinical Laboratory Sciences, University of Edinburgh Medical School, Edinburgh EH8 9XD, UK
| | | | | | | |
Collapse
|
31
|
Thomas Cunningham J, Bruno SB, Grindstaff RR, Grindstaff RJ, Higgs KH, Mazzella D, Sullivan MJ. Chapter 20 Cardiovascular regulation of supraoptic vasopressin neurons. PROGRESS IN BRAIN RESEARCH 2002. [DOI: 10.1016/s0079-6123(02)39022-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Theodosis DT, Poulain DA. Maternity leads to morphological synaptic plasticity in the oxytocin system. PROGRESS IN BRAIN RESEARCH 2001; 133:49-58. [PMID: 11589144 DOI: 10.1016/s0079-6123(01)33004-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The oxytocinergic system, which plays a major role in the control of different aspects of maternity, undergoes extensive synaptic and neuronal-glial remodelling during parturition and lactation and has thus become a remarkable example of activity-dependent morphological synaptic plasticity in the adult mammalian brain. The use of different comparative ultrastructural analyses on the rat supraoptic and paraventricular nuclei, together with identification of pre- and post-synaptic elements, has allowed us to show that there is a significant increase in the number of GABAergic, glutamatergic and noradrenergic synapses impinging on oxytocin neurons, concomitant with a reduction of glial coverage of the neurons. This synaptic plasticity involves axo-dendritic and axo-somatic contacts originating from terminals making one or several synaptic contacts in one plane of section. While noradrenergic afferents arise from medullary catecholaminergic neurons, our recent in vitro observations indicate that GABAergic and glutamatergic afferents derive, at least partly, from local intrahypothalamic neurons, in close proximity to oxytocin neurons. The cellular mechanisms underlying this morphological synaptic plasticity remain to be determined but it is highly likely that they depend on increased activity in both pre- and post-synaptic elements. Moreover, the oxytocin system continues to express 'embryonic' molecular features that may allow the morphological plasticity to occur. In particular, it expresses high levels of cell surface adhesion molecules currently thought to intervene in synaptic remodelling in the developing and lesioned central nervous system, including the weakly adhesive polysialylated isoform of the Neural Cell Adhesion Molecule, the axonal glycoprotein F3 and its ligand, the extracellular matrix glycoprotein, tenascin-C.
Collapse
Affiliation(s)
- D T Theodosis
- INSERM U378, Institut François Magendie, Université Victor Segalen Bordeaux II, 1 rue Léo Saignat, F33076 Bordeaux, France.
| | | |
Collapse
|
33
|
Grindstaff RR, Cunningham JT. Cardiovascular regulation of vasopressin neurons in the supraoptic nucleus. Exp Neurol 2001; 171:219-26. [PMID: 11573974 DOI: 10.1006/exnr.2001.7745] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This paper reviews the regulation of hypothalamic vasopressin and oxytocin neurosecretory cells in the neural response to plasma volume expansion. Many questions remain unanswered regarding how an increase in volume affects neurohypophysial hormone secretion, what receptors are important in mediating this response, and which neural pathways are responsible for conveying the signal from those receptors to the hypothalamus. Plasma volume expansion activates regions of the central nervous system associated with inhibition of vasopressin release, oxytocin secretion, and inhibition of sympathetic nerve activity. Cardiac receptors, not arterial baroreceptors, are primarily responsible for activation of the regions associated with regulation of vasopressin secretion and sympathetic outflow. Other stimuli that as yet are undefined account for activation of oxytocin-secreting neurons. Electrophysiology experiments have measured the inhibition of vasopressin-secreting magnocellular neurons in the supraoptic nucleus by select stimulation of cardiac receptors in the caval-atrial junction. Further experiments suggest that the perinuclear zone, a population of neurons surrounding the supraoptic nucleus, is a necessary part of the pathway by which caval-atrial stretch decreases the excitability of vasopressin neurons. The perinuclear zone is also a necessary synapse for arterial baroreceptor-mediated inhibition of vasopressin neurons. This suggests that the neural pathways that inhibit vasopressin release in response to an increase in blood pressure and an increase in blood volume may overlap at the perinuclear zone of the supraoptic nucleus. Finally, the integration of various neural pathways activated by multiple receptors to ultimately determine the activity of magnocellular neurons and vasopressin secretion is discussed.
Collapse
Affiliation(s)
- R R Grindstaff
- Department of Physiology and the Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | | |
Collapse
|
34
|
Burbach JP, Luckman SM, Murphy D, Gainer H. Gene regulation in the magnocellular hypothalamo-neurohypophysial system. Physiol Rev 2001; 81:1197-267. [PMID: 11427695 DOI: 10.1152/physrev.2001.81.3.1197] [Citation(s) in RCA: 240] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The hypothalamo-neurohypophysial system (HNS) is the major peptidergic neurosecretory system through which the brain controls peripheral physiology. The hormones vasopressin and oxytocin released from the HNS at the neurohypophysis serve homeostatic functions of water balance and reproduction. From a physiological viewpoint, the core question on the HNS has always been, "How is the rate of hormone production controlled?" Despite a clear description of the physiology, anatomy, cell biology, and biochemistry of the HNS gained over the last 100 years, this question has remained largely unanswered. However, recently, significant progress has been made through studies of gene identity and gene expression in the magnocellular neurons (MCNs) that constitute the HNS. These are keys to mechanisms and events that exist in the HNS. This review is an inventory of what we know about genes expressed in the HNS, about the regulation of their expression in response to physiological stimuli, and about their function. Genes relevant to the central question include receptors and signal transduction components that receive and process the message that the organism is in demand of a neurohypophysial hormone. The key players in gene regulatory events, the transcription factors, deserve special attention. They do not only control rates of hormone production at the level of the gene, but also determine the molecular make-up of the cell essential for appropriate development and physiological functioning. Finally, the HNS neurons are equipped with a machinery to produce and secrete hormones in a regulated manner. With the availability of several gene transfer approaches applicable to the HNS, it is anticipated that new insights will be obtained on how the HNS is able to respond to the physiological demands for its hormones.
Collapse
Affiliation(s)
- J P Burbach
- Rudolf Magnus Institute for Neurosciences, Section of Molecular Neuroscience, Department of Medical Pharmacology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
35
|
|
36
|
Grindstaff RJ, Grindstaff RR, Cunningham JT. Baroreceptor sensitivity of rat supraoptic vasopressin neurons involves noncholinergic neurons in the DBB. Am J Physiol Regul Integr Comp Physiol 2000; 279:R1934-43. [PMID: 11049879 DOI: 10.1152/ajpregu.2000.279.5.r1934] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies suggest that cholinergic neurons in the diagonal band of Broca (DBB) participate in the baroreceptor-mediated inhibition of phasic vasopressin neurons in the supraoptic nucleus (SON). To test this hypothesis, extracellular recordings were obtained from putative vasopressin SON neurons of anesthetized rats injected with the cholinergic immunotoxin 192 IgG-saporin (0.8 microg/microl) in the DBB. Baroreceptor sensitivity of neurons was tested with brief phenylephrine-induced (10 microg/10 microl iv) increases in blood pressure of at least 40 mmHg. In rats injected with vehicle or unconjugated saporin, 19 of 21 and 18 of 20 phasic neurons, respectively, were inhibited by increased blood pressure. In rats injected with 192 IgG-saporin, which significantly reduced the number of choline acetyltransferase (ChAT)-positive DBB neurons, 33 of 36 phasic neurons were inhibited. Normal rats and rats with DBB saporin injections received rhodamine bead injections into the perinuclear zone (PNZ) to retrogradely label DBB neurons, and their brains were stained for ChAT. ChAT-positive DBB neurons were not retrogradely labeled from the PNZ. Together, these results indicate that the pathway relaying baroreceptor information to the SON involves noncholinergic DBB neurons.
Collapse
Affiliation(s)
- R J Grindstaff
- Department of Physiology and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211, USA
| | | | | |
Collapse
|
37
|
Saeb-Parsy K, Lombardelli S, Khan FZ, McDowall K, Au-Yong IT, Dyball RE. Neural connections of hypothalamic neuroendocrine nuclei in the rat. J Neuroendocrinol 2000; 12:635-48. [PMID: 10849208 DOI: 10.1046/j.1365-2826.2000.00503.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The secretion of many hormones, including oxytocin, vasopressin and growth hormone, is not constant but shows a day-night rhythm. The suprachiasmatic nucleus (SCN) is thought to generate most mammalian biological rhythms and previous studies have reported suprachiasmatic efferents to the paraventricular nucleus (PVN) and the supraoptic nucleus (SON). We used in vivo extracellular electrophysiological techniques to show that the SCN also sends direct and indirect neural projections to the arcuate nucleus (ARC). This projection consisted of both excitatory and inhibitory components and may contribute to the entrainment of the rhythm in growth hormone secretion to the day-night cycle. Some SCN neurones appear to project to both the SON and the ARC. The SCN in turn receives excitatory and inhibitory inputs from the ARC and the peri-nuclear zone of the SON (peri-SON), which may provide feedback information, as well as allowing nonphotic entrainment of the SCN, for example, in response to feeding. Our data thus suggest extensive two-way connections between the SCN and its target nuclei which may contribute to the generation of day-night neuroendocrine rhythms. They also suggest the existence of indirect retinal projections to the ARC and PVN. We further investigated the retinal projection to the SCN. We were unable to demonstrate a significant difference in retinal input to those suprachiasmatic cells which had efferent projections to particular hypothalamic targets (SON and/or ARC), and those which did not.
Collapse
Affiliation(s)
- K Saeb-Parsy
- Department of Anatomy, University of Cambridge, Cambridge UK.
| | | | | | | | | | | |
Collapse
|
38
|
Grindstaff RJ, Grindstaff RR, Sullivan MJ, Cunningham JT. Role of the locus ceruleus in baroreceptor regulation of supraoptic vasopressin neurons in the rat. Am J Physiol Regul Integr Comp Physiol 2000; 279:R306-19. [PMID: 10896895 DOI: 10.1152/ajpregu.2000.279.1.r306] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The goal of this study was to identify the source of baroreceptor-related noradrenergic innervation of the diagonal band of Broca (DBB). Male Sprague-Dawley rats underwent sinoaortic denervation (SAD, n = 13) or sham SAD surgery (n = 13). We examined Fos expression produced by baroreceptor activation and dopamine-beta-hydroxylase immunofluorescence in hindbrain regions that contain noradrenergic neurons. Baroreceptors were stimulated by increasing blood pressure >40 mmHg with phenylephrine (10 microgram. kg(-1). min(-1) iv) in sham SAD and SAD rats. Controls were infused with 0.9% saline. Only the locus ceruleus (LC) demonstrated a baroreceptor-dependent increase in Fos immunoreactivity in dopamine-beta-hydroxylase-positive neurons. In a second experiment, normal rats received rhodamine-labeled microsphere injections in the DBB (n = 12) before phenylephrine or vehicle infusion. In these experiments, only the LC consistently contained Fos-positive cells after phenylephrine infusion that were retrogradely labeled from the DBB. Finally, we lesioned the LC with ibotenic acid and obtained extracellular recordings from identified vasopressin neurons in the supraoptic nucleus. LC lesions significantly reduced the number of vasopressin neurons that were inhibited by acute baroreceptor stimulation. Together, these results suggest that noradrenergic neurons in the LC participate in the baroreflex activation of the DBB and may thus be important in the baroreflex inhibition of vasopressin-releasing neurons in the supraoptic nucleus.
Collapse
Affiliation(s)
- R J Grindstaff
- Department of Physiology and Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | | | | | | |
Collapse
|
39
|
Kombian SB, Hirasawa M, Mouginot D, Chen X, Pittman QJ. Short-term potentiation of miniature excitatory synaptic currents causes excitation of supraoptic neurons. J Neurophysiol 2000; 83:2542-53. [PMID: 10805656 DOI: 10.1152/jn.2000.83.5.2542] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Magnocellular neurons (MCNs) of the hypothalamic supraoptic nucleus (SON) secrete vasopressin and oxytocin. With the use of whole-cell and nystatin-perforated patch recordings of MCNs in current- and voltage-clamp modes, we show that high-frequency stimulation (HFS, 10-200 Hz) of excitatory afferents induces increases in the frequency and amplitude of 2,3-dioxo-6-nitro-1,2,3, 4-tetrahydrobenzo(f)quinoxaline-7-sulfonamide (NBQX)-sensitive miniature excitatory postsynaptic currents (mEPSCs) lasting up to 20 min. This synaptic enhancement, referred to as short-term potentiation (STP), could be induced repeatedly; required tetrodotoxin (TTX)-dependent action potentials to initiate, but not to maintain; and was independent of postsynaptic membrane potential, N-methyl-D-aspartate (NMDA) receptors, or retrograde neurohypophyseal neuropeptide release. STP was not accompanied by changes in the conductance of the MCNs or in the responsiveness of the postsynaptic non-NMDA receptors, as revealed by brief application of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate. mEPSCs showed similar rise times before and after HFS and analysis of amplitude distributions of mEPSCs revealed one or more peaks pre-HFS and the appearance of additional peaks post-HFS, which were equidistant from the first peak. STP of mEPSCs was not associated with enhanced evoked responses, but was associated with an NBQX-sensitive increase in spontaneous activity of MCNs. Thus we have identified a particularly long-lasting potentiation of excitatory synapses in the SON, which has a presynaptic locus, is dissociated from changes in evoked release, and which regulates postsynaptic cell excitability.
Collapse
Affiliation(s)
- S B Kombian
- Faculty of Pharmacy, Kuwait University, Safat 13110, Kuwait
| | | | | | | | | |
Collapse
|
40
|
Majdoubi ME, Poulain DA, Theodosis DT. Activity-dependent morphological synaptic plasticity in an adult neurosecretory system: magnocellular oxytocin neurons of the hypothalamus. Biochem Cell Biol 2000. [DOI: 10.1139/o00-023] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Oxytocin and vasopressin neurons, located in the supraoptic and paraventricular nuclei of the hypothalamus, send their axons to the neurohypophysis where the neurohormones are released directly into the general circulation. Hormone release depends on the electrical activity of the neurons, which in turn is regulated by different afferent inputs. During conditions that enhance oxytocin secretion (parturition, lactation, and dehydration), these afferents undergo morphological remodelling which results in an increased number of synapses contacting oxytocin neurons. The synaptic changes are reversible with cessation of stimulation. Using quantitative analyses on immunolabelled preparations, we have established that this morphological synaptic plasticity affects both inhibitory and excitatory afferent inputs to oxytocin neurons. This review describes such synaptic modifications, their functional significance, and the cellular mechanisms that may be responsible.Key words: oxytocin, vasopressin, GABA, glutamate, noradrenaline, hypothalamo-neurohypophysial system, lactation.
Collapse
|
41
|
Pittman QJ, Hirasawa M, Mouginot D, Kombian SB. Neurohypophysial peptides as retrograde transmitters in the supraoptic nucleus of the rat. Exp Physiol 2000; 85 Spec No:139S-143S. [PMID: 10795916 DOI: 10.1111/j.1469-445x.2000.tb00017.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A possible role for vasopressin and oxytocin in the physiology of the supraoptic nucleus was investigated using nystatin-perforated patch recording in acute brain slices from the rat containing the supraoptic nucleus. We observed that exogenously applied oxytocin reduced glutamate-mediated synaptic transmission by acting at a presynaptic oxytocin receptor. Endogenous oxytocin, released either by afferent excitation (tetanus) or by postsynaptic depolarization of the recorded magnocellular neurone caused a similar reduction of excitatory input and this could be blocked with an oxytocin antagonist. Thus endogenous oxytocin, released from magnocellular dendrites, acts as a retrograde transmitter to reduce afferent excitation. We discuss the possible significance of these results in terms of the physiological role of oxytocin in the intact animal and suggest possible avenues for further experimentation.
Collapse
Affiliation(s)
- Q J Pittman
- Department of Physiology and Biophysics, University of Calgary, Alberta, Canada.
| | | | | | | |
Collapse
|
42
|
Delville Y, De Vries GJ, Ferris CF. Neural connections of the anterior hypothalamus and agonistic behavior in golden hamsters. BRAIN, BEHAVIOR AND EVOLUTION 2000; 55:53-76. [PMID: 10838477 DOI: 10.1159/000006642] [Citation(s) in RCA: 207] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In male golden hamsters, offensive aggression is regulated by an interaction between arginine-vasopressin and serotonin at the level of the anterior hypothalamus. The present studies were conducted to study a neural network underlying this interaction. The connections of the anterior hypothalamus were examined by retrograde and anterograde tracing in adult male hamsters. Several limbic areas were found to contain both types of tracing suggesting reciprocal connections with the anterior hypothalamus. Their functional significance relating to the consummation of aggression was tested by comparing neuronal activity (examined through quantification of c-Fos-immunolabeling) in two groups of animals. Experimental animals were sacrificed after attacking an intruder. Control animals were sacrificed after exposure to a woodblock carrying the odor of an intruder that elicited behaviors related to offensive aggression without its consummation. An increased density of Fos-immunoreactivity was found in experimental animals within the medial amygdaloid nucleus, ventrolateral hypothalamus, bed nucleus of the stria terminalis and dorsolateral part of the midbrain central gray. These data suggest that these areas are integrated in a neural network centered on the anterior hypothalamus and involved in the consummation of offensive aggression. Finally, c-Fos-immunoreactivity was combined with labeling of serotonin and vasopressin neurons to identify sub-populations particularly associated with offensive aggression. Vasopressin neurons in the nucleus circularis and medial division of the supraoptic nucleus showed increased neuronal activity in the fighters, supporting their role in the control of offensive aggression.
Collapse
Affiliation(s)
- Y Delville
- Program in Neuropsychiatric Sciences, Psychiatry Department, University of Massachusetts Medical Center, Worcester, MA, USA.
| | | | | |
Collapse
|
43
|
Li C, Chen P, Smith MS. Neural populations in the rat forebrain and brainstem activated by the suckling stimulus as demonstrated by cFos expression. Neuroscience 1999; 94:117-29. [PMID: 10613502 DOI: 10.1016/s0306-4522(99)00236-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
During lactation in the rat, the suckling stimulus plays an important role in mediating alterations in hypothalamic neuroendocrine function associated with lactation. To provide the basis for understanding the neural circuitry that may transmit suckling-induced signals into the hypothalamus, the present study used the expression of the immediate-early gene product, cFos protein, as a marker for neuronal activation to identify neural populations in the brain of lactating female rats activated by the suckling stimulus. In addition, cFos expression induced by the exteroceptive sensory stimuli (olfactory, auditory, visual) associated with pup exposure alone was also determined. Thus, cFos patterns in response to the physical suckling stimulus, which would include exteroceptive sensory stimuli associated with pup exposure, were compared with the patterns induced in response to pup exposure alone, so that neuronal populations specifically activated by the suckling stimulus could be identified. After 90 min of suckling, several forebrain areas, including the lateral septum, medial preoptic area, periventricular preoptic area and supraoptic nucleus of hypothalamus, showed a significant increase in cFos expression, compared with non-suckled controls and pup exposure animals. In addition, in the bed nucleus of stria terminalis, the medial amygdala and several cortical areas, cFos-positive cells were found in both suckling and pup exposure animals. In the brainstem, the suckling stimulus induced a significant increase in cFos expression in the ventrolateral medulla, locus coeruleus, lateral parabrachial nucleus, lateral and ventrolateral portions of the caudal part of the periaqueductal gray, and caudal portion of the paralemniscal nucleus, compared with non-suckled controls and pup exposure animals. As expected, in several areas related with sensory input, such as reticular formation and pontine nucleus, cFos expression was found in both suckling and pup exposure animals. Moreover, when double-label immunocytochemistry was used to identify cFos- and catecholamine-positive neurons in the brainstem, it was found that catecholamine-positive neurons in the ventrolateral medulla and locus coeruleus showed a significant increase in cFos expression in response to suckling compared with non-resuckled and pup-exposure groups. Using cFos expression as a marker for neuronal activation, the present studies identified the neural populations in the brain that are activated by the suckling stimulus. By comparing the pattern of cFos expression observed in response to pup exposure alone or the suckling stimulus, the present studies differentiated the neural populations activated by the physical suckling stimulus from the populations activated by the exteroceptive sensory stimuli associated with pup exposure. These suckling-activated areas are likely candidates for playing an important role in transmitting the effects of the suckling stimulus into the hypothalamus to regulate neuroendocrine alterations associated with lactation.
Collapse
Affiliation(s)
- C Li
- Oregon Regional Primate Research Center, Department of Physiology and Pharmacology, Oregon Health Sciences University, Beaverton 97006, USA
| | | | | |
Collapse
|
44
|
Palkovits M. Interconnections between the neuroendocrine hypothalamus and the central autonomic system. Geoffrey Harris Memorial Lecture, Kitakyushu, Japan, October 1998. Front Neuroendocrinol 1999; 20:270-95. [PMID: 10569279 DOI: 10.1006/frne.1999.0186] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tract-tracing techniques in combination with immunohistochemistry and in situ hybridization were used in intact and operated rats (hypothalamic lesions, transections of neuronal pathways) to localize and characterize neuronal connections between the hypothalamus and autonomic centers. Viscerosensory and somatosensory signals which relay in the spinal cord and the medulla oblongata reach the hypothalamus through various catecholaminergic and noncatecholaminergic neuronal pathways. Vice versa, the hypothalamus influences autonomic activities through humoral and neurohumoral pathways. Descending hypothalamic efferents carry feedback signals to viscerosensory and brainstem catecholaminergic neurons and regulatory inputs to parasympathetic (dorsal vagal nucleus) and sympathetic (thoracolumbar intermediolateral cell column) preganglionic neurons. These fibers arise mainly from neurons of the paraventricular, arcuate, perifornical, and dorsomedial nuclei and the lateral hypothalamus. The major neuroanatomical observations are the following: (1) pathways between the hypothalamus and autonomic centers are bidirectional: the ascending and descending fibers may use the same avenues; (2) the descending axons are mainly peptidergic (CRF, vasopressin, oxytocin, somatostatin, enkephalin, POMC, and cANP), while the ascending fibers are both peptidergic (enkephalin, NPY, neurotensin, dynorphins) and catecholaminergic; (3) descending hypothalamic axons terminate directly on the sensory, preganglionic, and catecholaminergic neurons in the medulla and the spinal cord; (4) hypothalamic projections to the autonomic centers are always bilateral; (5) while medullary autonomic and catecholaminergic fibers innervate hypothalamic neurons directly, spinohypothalamic axons are relayed on neurons in the lateral hypothalamus.
Collapse
Affiliation(s)
- M Palkovits
- Department of Anatomy, Semmelweis University Medical School, Budapest, Hungary.
| |
Collapse
|
45
|
van Vulpen EH, Yang CR, Nissen R, Renaud LP. Hypothalamic A14 and A15 catecholamine cells provide the dopaminergic innervation to the supraoptic nucleus in rat: a combined retrograde tracer and immunohistochemical study. Neuroscience 1999; 93:675-80. [PMID: 10465451 DOI: 10.1016/s0306-4522(99)00173-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study investigated the origin of a dopaminergic innervation of the hypothalamic supraoptic nucleus. In pentobarbital-anaesthetized male Long-Evans rats, a transpharyngeal approach was used to inject a retrograde tracer, rhodamine latex microspheres, into the supraoptic nucleus. After 13-26 h survival under anaesthesia, animals were perfused transcardially, the brain sectioned and processed for tyrosine hydroxylase immunofluorescence, a marker for hypothalamic dopaminergic neurons. In six cases with injections restricted to the supraoptic nucleus, rhodamine-labelled microspheres were observed in a population of tyrosine hydroxylase-positive neurons located in the A15 cells below the anterior commissure (A15 dorsal) and above the optic chiasm (A15 ventral), and the dorsal and lateral periventricular A14 cell group. Occasional double-labelled cells were seen in the medial and lateral hypothalamus and bed nucleus of the stria terminalis, but rarely in other known dopaminergic cell groups, notably the ventral tegmental area (A10), zona incerta (A13) and substantia nigra. In support of a role for dopamine in neurohypophysial regulation, these observations indicate that the major dopaminergic input to magnocellular neurons in the hypothalamic supraoptic nucleus is derived from a relatively sparse population of neurons located in the A14 and A15 cell groups.
Collapse
Affiliation(s)
- E H van Vulpen
- Neuroscience Unit, Loeb Research Institute, Ottawa Civic Hospital and University of Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
46
|
Bourque CW. Osmoregulation of vasopressin neurons: a synergy of intrinsic and synaptic processes. PROGRESS IN BRAIN RESEARCH 1999; 119:59-76. [PMID: 10074781 DOI: 10.1016/s0079-6123(08)61562-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The release of vasopressin into the general circulation varies as a function of plasma osmolality and therefore plays a major role in systemic osmoregulation. In vivo, the secretion of this hormone in the neurohypophysis is primarily determined by the rate of action potential discharge of the magnocellular neurosecretory cells (MNCs) in the hypothalamus. Experiments done over the past 20 years have clarified much of the neurophysiological basis underlying this important osmoregulatory reflex. As discussed here, recent findings indicate that the regulation of the firing rate of MNCs during changes in systemic osmolality involves the concerted modulation of mechanosensitive ion channels in MNCs, as well as excitatory glutamatergic inputs derived from forebrain regions such as the organum vasculosum of the lamina terminalis.
Collapse
Affiliation(s)
- C W Bourque
- Centre for Research in Neuroscience, Montreal General Hospital, QC, Canada
| |
Collapse
|
47
|
Pittman QJ, Mouginot D, Kombian SB. GABAB receptors and supraoptic neuronal activity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 449:107-15. [PMID: 10026790 DOI: 10.1007/978-1-4615-4871-3_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
48
|
Bianchi R, Corsetti G, Rodella L, Tredici G, Gioia M. Supraspinal connections and termination patterns of the parabrachial complex determined by the biocytin anterograde tract-tracing technique in the rat. J Anat 1998; 193 ( Pt 3):417-30. [PMID: 9877297 PMCID: PMC1467862 DOI: 10.1046/j.1469-7580.1998.19330417.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have re-evaluated, using the anterograde tracer biocytin, supraspinal efferent projections from the parabrachial complex (PBN) to gain new information about the nature of its connections and nerve terminal patterns. We selectively injected biocytin into the 3 main regions of the nucleus (lateral PBN, medial PBN and Kölliker-Fuse nucleus). We observed distinct groups of ascending and descending fibres of different calibre from the PBN running throughout the brain and reaching many brain areas involved in the regulation of autonomic function. Here we detected labelled bouton-like terminals and fibres with en-passage varicosities. The ascending efferents from the lateral PBN mainly reached the reticular, raphe and thalamic nuclei, the zona incerta (ZI), central nucleus of the amygdala (CeA) and lateral area of the periaqueductal grey (PAG). Thin descending efferents reached the ventral region of the solitary tract nucleus (STN). The ascending efferents from the medial PBN were seen in the raphe nuclei, reticular nuclei, ventral and lateral areas of the PAG, thalamic nuclei, and in the medial and lateral nuclei of the amygdala. Descending efferents were seen in the STN and in some reticular nuclei. The ascending projections from the Kölliker-Fuse targeted the ventral area of PAG, CeA, ZI, lateral hypothalamic area, ventromedial thalamic nucleus and, with only a few terminals, the ipsi and contralateral reticular area. A large number of descending efferents reached STN, caudal and paragigantocellular reticular nuclei. The higher sensitivity of biocytin compared with other types of markers allowed us to determine more effectively the distribution, nature and extent of the supraspinal PBN connections. This suggested that in several nerve circuits the PBN probably plays a more important role than previously thought.
Collapse
Affiliation(s)
- R Bianchi
- Department of Biomedical Sciences and Biotechnology, University of Brescia, Italy.
| | | | | | | | | |
Collapse
|
49
|
Randolph RR, Li Q, Curtis KS, Sullivan MJ, Cunningham JT. Fos expression following isotonic volume expansion of the unanesthetized male rat. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:R1345-52. [PMID: 9612401 DOI: 10.1152/ajpregu.1998.274.5.r1345] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiopulmonary afferents, baroreceptor afferents, or atrial natriuretic peptide binding to circumventricular organs may mediate the central response to volume expansion, a condition common to pregnancy, exercise training, and congestive heart failure. This study used Fos immunocytochemistry to examine brain regions activated by volume expansion. Male Sprague-Dawley rats were infused with isotonic saline equal to 10% of their body weight in 10 min followed by a maintenance infusion of 0.5 ml/min for 110 min. Control animals received 2-h infusions at 0.01 ml/min. Five minutes after the start of volume expansion, central venous pressure of expanded animals was significantly greater than control animals. The volume-expanded group exhibited significantly greater Fos activation (P < 0.05) in the area postrema, nucleus of the solitary tract, caudal ventrolateral medulla, paraventricular nucleus, supraoptic nucleus, and perinuclear zone of the supraoptic nucleus. Double labeling indicates that oxytocinergic neurons in the supraoptic nucleus are activated. Neurons in brain regions known to inhibit both sympathetic activity and vasopressin release show increased Fos expression following isotonic volume expansion.
Collapse
Affiliation(s)
- R R Randolph
- Department of Physiology, University of Missouri, Columbia 65211, USA
| | | | | | | | | |
Collapse
|
50
|
Shioda S, Iwase M, Homma I, Nakajo S, Nakaya K, Nakai Y. Vasopressin neuron activation and Fos expression by stimulation of the caudal ventrolateral medulla. Brain Res Bull 1998; 45:443-50. [PMID: 9570713 DOI: 10.1016/s0361-9230(97)00342-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The present study demonstrates that projections ascending from the caudal ventrolateral medulla have direct effects on the expression of the immediate early gene c-fos and of the arginine-vasopressin gene in neurosecretory cells of the hypothalamic supraoptic nucleus. Intense Fos-like immunoreactivity (Fos-LI) was observed in many magnocellular neurons of the supraoptic nucleus after electrical stimulation of the caudal ventrolateral medulla. In sham-operated rats, Fos-LI was absent or present in very few magnocellular neurons in the supraoptic nucleus. Fos-LI was visible in neurons expressing arginine-vasopressin, and was seen rarely in oxytocin neurons by double-immunostaining method. This study showed that 76% of all Fos-positive cells were arginine-vasopressin immunoreactive, whereas only 4% of them showed oxytocin immunoreactivity in the supraoptic nucleus. With in situ hybridization, a high level of arginine-vasopressin mRNA was noted in the supraoptic nucleus 3 h after stimulation of the caudal ventrolateral medulla; the expression was highest 6 h after the stimulation compared with the same region in sham-operated animals. These findings suggest that noradrenaline, released from the axon terminals originating from the caudal ventrolateral medulla, may participate in the regulation of gene transcription of arginine-vasopressin in response to physiological stimuli.
Collapse
Affiliation(s)
- S Shioda
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|