1
|
Tzortzopoulos A, Thomaidou D, Gaitanou M, Matsas R, Skoulakis E. Expression of Mammalian BM88/CEND1 in Drosophila Affects Nervous System Development by Interfering with Precursor Cell Formation. Neurosci Bull 2019; 35:979-995. [PMID: 31079319 PMCID: PMC6864003 DOI: 10.1007/s12264-019-00386-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/27/2018] [Indexed: 12/31/2022] Open
Abstract
We used Drosophila melanogaster as an experimental model to express mouse and pig BM88/CEND1 (cell cycle exit and neuronal differentiation 1) in order to investigate its potential functional effects on Drosophila neurogenesis. BM88/CEND1 is a neuron-specific protein whose function is implicated in triggering cells to exit from the cell cycle and differentiate towards a neuronal phenotype. Transgenic flies expressing either mouse or pig BM88/CEND1 in the nervous system had severe neuronal phenotypes with variable expressivity at various stages of embryonic development. In early embryonic stage 10, BM88/CEND1 expression led to an increase in the neural-specific antigenicity of neuroectoderm at the expense of precursor cells [neuroblasts (Nbs) and ganglion mother cells (GMCs)] including the defective formation and differentiation of the MP2 precursors, whereas at later stages (12-15), protein accumulation induced gross morphological defects primarily in the CNS accompanied by a reduction of Nb and GMC markers. Furthermore, the neuronal precursor cells of embryos expressing BM88/CEND1 failed to carry out proper cell-cycle progression as revealed by the disorganized expression patterns of specific cell-cycle markers. BM88/CEND1 accumulation in the Drosophila eye affected normal eye disc development by disrupting the ommatidia. Finally, we demonstrated that expression of BM88/CEND1 modified/reduced the levels of activated MAP kinase indicating a functional effect of BM88/CEND1 on the MAPK signaling pathway. Our findings suggest that the expression of mammalian BM88/CEND1 in Drosophila exerts specific functional effects associated with neuronal precursor cell formation during embryonic neurogenesis and proper eye disc development. This study also validates the use of Drosophila as a powerful model system in which to investigate gene function and the underlying molecular mechanisms.
Collapse
Affiliation(s)
| | - Dimitra Thomaidou
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, 11521, Athens, Greece
| | - Maria Gaitanou
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, 11521, Athens, Greece
| | - Rebecca Matsas
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, 11521, Athens, Greece
| | - Efthimios Skoulakis
- "Alexander Fleming" Biomedical Sciences Research Centre, 16672, Athens, Greece
| |
Collapse
|
2
|
Gaitanou M, Segklia K, Matsas R. Cend1, a Story with Many Tales: From Regulation of Cell Cycle Progression/Exit of Neural Stem Cells to Brain Structure and Function. Stem Cells Int 2019; 2019:2054783. [PMID: 31191667 PMCID: PMC6525816 DOI: 10.1155/2019/2054783] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/21/2019] [Accepted: 02/07/2019] [Indexed: 12/15/2022] Open
Abstract
Neural stem/precursor cells (NPCs) generate the large variety of neuronal phenotypes comprising the adult brain. The high diversity and complexity of this organ have its origin in embryonic life, during which NPCs undergo symmetric and asymmetric divisions and then exit the cell cycle and differentiate to acquire neuronal identities. During these processes, coordinated regulation of cell cycle progression/exit and differentiation is essential for generation of the appropriate number of neurons and formation of the correct structural and functional neuronal circuits in the adult brain. Cend1 is a neuronal lineage-specific modulator involved in synchronization of cell cycle exit and differentiation of neuronal precursors. It is expressed all along the neuronal lineage, from neural stem/progenitor cells to mature neurons, and is associated with the dynamics of neuron-generating divisions. Functional studies showed that Cend1 has a critical role during neurogenesis in promoting cell cycle exit and neuronal differentiation. Mechanistically, Cend1 acts via the p53-dependent/Cyclin D1/pRb signaling pathway as well as via a p53-independent route involving a tripartite interaction with RanBPM and Dyrk1B. Upon Cend1 function, Notch1 signaling is suppressed and proneural genes such as Mash1 and Neurogenins 1/2 are induced. Due to its neurogenic activity, Cend1 is a promising candidate therapeutic gene for brain repair, while the Cend1 minimal promoter is a valuable tool for neuron-specific gene delivery in the CNS. Mice with Cend1 genetic ablation display increased NPC proliferation, decreased migration, and higher levels of apoptosis during development. As a result, they show in the adult brain deficits in a range of motor and nonmotor behaviors arising from irregularities in cerebellar cortex lamination and impaired Purkinje cell differentiation as well as a paucity in GABAergic interneurons of the cerebral cortex, hippocampus, and amygdala. Taken together, these studies highlight the necessity for Cend1 expression in the formation of a structurally and functionally normal brain.
Collapse
Affiliation(s)
- Maria Gaitanou
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, Vas. Sofias Avenue, 11521 Athens, Greece
| | - Katerina Segklia
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, Vas. Sofias Avenue, 11521 Athens, Greece
| | - Rebecca Matsas
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, Vas. Sofias Avenue, 11521 Athens, Greece
| |
Collapse
|
3
|
Sergaki MC, Guillemot F, Matsas R. Impaired cerebellar development and deficits in motor coordination in mice lacking the neuronal protein BM88/Cend1. Mol Cell Neurosci 2010; 44:15-29. [PMID: 20153830 DOI: 10.1016/j.mcn.2010.01.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 01/27/2010] [Accepted: 01/29/2010] [Indexed: 11/20/2022] Open
Abstract
During nervous system development, neural progenitors arise in proliferative zones, then exit the cell cycle and differentiate as they migrate away from these zones. The neuronal protein BM88/Cend1 has been implicated in coordination of cell cycle exit and differentiation of neuronal precursors. To further elucidate its function we generated Cend1 knock-out mice and analyzed their phenotype during postnatal cerebellar development. Cend1(-/-) mice showed no overt abnormalities in the gross anatomy of the cerebellum or other brain regions. However, detailed analysis revealed alterations in cerebellar layering arising from increased proliferation of granule cell precursors, delayed radial granule cell migration and impaired Purkinje cell differentiation. Accordingly, expression of Patched1, cyclin D1, reelin and brain-derived neurotrophic factor, which correlate with morphological development of the cerebellum, was altered in Cend1(-/-) mice. The observed anatomical and molecular alterations were accompanied by deficits in motor behaviour. Our results suggest that Cend1 is required for normal cerebellar development.
Collapse
Affiliation(s)
- Maria Christina Sergaki
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, 127 Vassilissis Sofias Avenue, 11521 Athens, Greece
| | | | | |
Collapse
|
4
|
Wakabayashi T, Kosaka J, Mochii M, Miki Y, Mori T, Takamori Y, Yamada H. C38, equivalent to BM88, is developmentally expressed in maturing retinal neurons and enhances neuronal maturation. J Neurochem 2009; 112:1235-48. [PMID: 20002527 DOI: 10.1111/j.1471-4159.2009.06536.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
C38 antigen is specifically expressed in neuronal cells of the retina. The purpose of this study was to isolate C38 cDNA and determine its molecular functions. Sequence analysis of C38 cDNA revealed that C38 is equivalent to rat BM88, which has been reported to induce cell-cycle arrest and neuronal differentiation in Neuro2a cells. C38 and Ki67, a marker of proliferating cells, were not colocalized during retinal development. C38 was first detected in the retinal ganglion cells at embryonic day 16, much later than the expression of doublecortin, a marker of immature neurons. Although all the horizontal cells were post-mitotic at this stage, C38 was not detected in horizontal cells until the postnatal period. In addition, C38 over-expression did not induce neuronal differentiation or cell-cycle arrest of pluripotent P19 embryonal carcinoma cells. Instead, C38 promoted maturation during neuronal differentiation of P19 embryonal carcinoma cells by down-regulating Oct-3, a pluripotent cell marker and enhancing the expressions of positive regulators of neurogenesis. In conclusion, during retinal development, C38 is first expressed in post-mitotic retinal neurons and is up-regulated during their maturation. C38 does not induce neuronal competence in pluripotent cells, but does promote maturation in already committed neuronal cells.
Collapse
Affiliation(s)
- Taketoshi Wakabayashi
- Department of Anatomy & Cell Science, Kansai Medical University, Osaka 570-8506, Japan.
| | | | | | | | | | | | | |
Collapse
|
5
|
Georgopoulou N, Hurel C, Politis PK, Gaitanou M, Matsas R, Thomaidou D. BM88 is a dual function molecule inducing cell cycle exit and neuronal differentiation of neuroblastoma cells via cyclin D1 down-regulation and retinoblastoma protein hypophosphorylation. J Biol Chem 2006; 281:33606-33620. [PMID: 16893893 DOI: 10.1074/jbc.m602689200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Control of cell cycle progression/exit and differentiation of neuronal precursors is of paramount importance during brain development. BM88 is a neuronal protein associated with terminal neuron-generating divisions in vivo and is implicated in mechanisms underlying neuronal differentiation. Here we have used mouse neuroblastoma Neuro 2a cells as an in vitro model of neuronal differentiation to dissect the functional properties of BM88 by implementing gain- and loss-of-function approaches. We demonstrate that stably transfected cells overexpressing BM88 acquire a neuronal phenotype in the absence of external stimuli, as judged by enhanced expression of neuronal markers and neurite outgrowth-inducing signaling molecules. In addition, cell cycle measurements involving cell growth assays, BrdUrd incorporation, and fluorescence-activated cell sorting analysis revealed that the BM88-transfected cells have a prolonged G(1) phase, most probably corresponding to cell cycle exit at the G(0) restriction point, as compared with controls. BM88 overexpression also results in increased levels of the cell cycle regulatory protein p53, and accumulation of the hypophosphorylated form of the retinoblastoma protein leading to cell cycle arrest, with concomitant decreased levels and, in many cells, cytoplasmic localization of cyclin D1. Conversely, BM88 gene silencing using RNA interference experiments resulted in acceleration of cell proliferation accompanied by impairment of retinoic acid-induced neuronal differentiation of Neuro 2a cells. Taken together, our results suggest that BM88 plays an essential role in regulating cell cycle exit and differentiation of Neuro 2a cells toward a neuronal phenotype and further support its involvement in the proliferation/differentiation transition of neural stem/progenitor cells during embryonic development.
Collapse
Affiliation(s)
- Niki Georgopoulou
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, 127 Vassilissis Sofias Avenue, 115 21 Athens, Greece
| | | | | | | | | | | |
Collapse
|
6
|
Politis PK, Rohrer H, Matsas R. Expression pattern of BM88 in the developing nervous system of the chick and mouse embryo. Gene Expr Patterns 2006; 7:165-77. [PMID: 16949349 DOI: 10.1016/j.modgep.2006.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Revised: 06/28/2006] [Accepted: 06/29/2006] [Indexed: 11/21/2022]
Abstract
We isolated a chick homologue of BM88 (cBM88), a cell-intrinsic nervous system-specific protein and examined the expression of BM88 mRNA and protein in the developing brain, spinal cord and peripheral nervous system of the chick embryo by in situ hybridization and immunohistochemistry. cBM88 is widely expressed in the developing central nervous system, both in the ventricular and mantle zones where precursor and differentiated cells lie, respectively. In the spinal cord, particularly strong cBM88 expression is detected ventrally in the motor neuron area. cBM88 is also expressed in the dorsal root ganglia and sympathetic ganglia. In the early neural tube, cBM88 is first detected at HH stage 15 and its expression increases with embryonic age. At early stages, cBM88 expression is weaker in the ventricular zone (VZ) and higher in the mantle zone. At later stages, when gliogenesis persists instead of neurogenesis, BM88 expression is abolished in the VZ and cBM88 is restricted in the neuron-containing mantle zone of the neural tube. Association of cBM88 expression with cells of the neuronal lineage in the chick spinal cord was demonstrated using a combination of markers characteristic of neuronal or glial precursors, as well as markers of differentiated neuronal, oligodendroglial and astroglial cells. In addition to the spinal cord, cBM88 is expressed in the HH stage 45 (embryonic day 19) brain, including the telencephalon, diencephalon, mesencephalon, optic tectum and cerebellum. BM88 is also widely expressed in the mouse embryonic CNS and PNS, in both nestin-positive neuroepithelial cells and post-mitotic betaIII-tubulin positive neurons.
Collapse
Affiliation(s)
- Panagiotis K Politis
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, 127 Vas. Sofias Avenue, Athens 11521, Greece
| | | | | |
Collapse
|
7
|
Papadodima O, Sergaki M, Hurel C, Mamalaki A, Matsas R. Characterization of the BM88 promoter and identification of an 88 bp fragment sufficient to drive neurone-specific expression. J Neurochem 2005; 95:146-59. [PMID: 16181419 DOI: 10.1111/j.1471-4159.2005.03350.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BM88 is a neurone-specific protein implicated in cell cycle exit and differentiation of neuronal precursors. It is widely expressed in terminally differentiated neurones but also in neuronal progenitors, albeit in lower levels. Thus BM88 expression shows a tight correlation with the progression of progenitor cells towards neuronal differentiation. Here we report the genomic organization and proximal promoter characterization of the human and mouse BM88 genes. Both promoters lie in a CpG island, are TATA-less and have multiple transcription start sites. Deletion analysis performed on the human BM88 gene revealed an 88 bp minimal promoter fragment that is preferentially active in neural cells. Importantly, this minimal promoter is sufficient to confer specific transcriptional activity in primary neurones, but not in glial cells. Within the promoter region there are four functional Sp1-binding sites. Simultaneous mutations to all four Sp1 sites results in complete loss of promoter activity. Transactivation experiments revealed that Sp1 directly activates the BM88 promoter while activation also occurs in the presence of neurogenin-1. Characterization of the promoter elements that control neurone-specific and developmental expression of BM88 should contribute to the elucidation of the transcriptional networks that regulate the transition from a proliferative neural progenitor to a post-mitotic neurone.
Collapse
Affiliation(s)
- Olga Papadodima
- Department of Biochemistry, Hellenic Pasteur Institute, 11521 Athens, Greece
| | | | | | | | | |
Collapse
|
8
|
Koutmani Y, Hurel C, Patsavoudi E, Hack M, Gotz M, Thomaidou D, Matsas R. BM88 is an early marker of proliferating precursor cells that will differentiate into the neuronal lineage. Eur J Neurosci 2005; 20:2509-23. [PMID: 15548196 DOI: 10.1111/j.1460-9568.2004.03724.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Progression of progenitor cells towards neuronal differentiation is tightly linked with cell cycle control and the switch from proliferative to neuron-generating divisions. We have previously shown that the neuronal protein BM88 drives neuroblastoma cells towards exit from the cell cycle and differentiation into a neuronal phenotype in vitro. Here, we explored the role of BM88 during neuronal birth, cell cycle exit and the initiation of differentiation in vivo. By double- and triple-labelling with the S-phase marker BrdU or the late G2 and M-phase marker cyclin B1, antibodies to BM88 and markers of the neuronal or glial cell lineages, we demonstrate that in the rodent forebrain, BM88 is expressed in multipotential progenitor cells before terminal mitosis and in their neuronal progeny during the neurogenic interval, as well as in the adult. Further, we defined at E16 a cohort of proliferative progenitors that exit S phase in synchrony, and by following their fate for 24 h we show that BM88 is associated with the dynamics of neuron-generating divisions. Expression of BM88 was also evident in cycling cortical radial glial cells, which constitute the main neurogenic population in the cerebral cortex. In agreement, BM88 expression was markedly reduced and restricted to a smaller percentage of cells in the cerebral cortex of the Small eye mutant mice, which lack functional Pax6 and exhibit severe neurogenesis defects. Our data show an interesting correlation between BM88 expression and the progression of progenitor cells towards neuronal differentiation during the neurogenic interval.
Collapse
Affiliation(s)
- Yassemi Koutmani
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, 127 Vassilissis Sofias Avenue, Athens 115 21, Greece
| | | | | | | | | | | | | |
Collapse
|
9
|
Sidera K, Samiotaki M, Yfanti E, Panayotou G, Patsavoudi E. Involvement of cell surface HSP90 in cell migration reveals a novel role in the developing nervous system. J Biol Chem 2004; 279:45379-88. [PMID: 15302889 DOI: 10.1074/jbc.m405486200] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Heat shock protein HSP90 plays important roles in cellular regulation, primarily as a chaperone for a number of key intracellular proteins. We report here that the two HSP90 isoforms, alpha and beta, also localize on the surface of cells in the nervous system and are involved in their migration. A 94-kDa surface antigen, the 4C5 antigen, which was previously shown to be involved in migration processes during development of the nervous system, is shown to be identical to HSP90alpha using mass spectrometry analysis. This identity is further confirmed by immunoprecipitation experiments and by induction of 4C5 antigen expression in heat shock-treated embryonic rat brain cultures. Moreover, immunocytochemistry on live cerebellar rat cells reveals cell surface localization of both HSP90alpha and -beta. Cell migration from cerebellar and sciatic nerve explants is inhibited by anti-HSP90alpha and anti-HSP90beta antibodies, similarly to the inhibition observed with monoclonal antibody 4C5. Moreover, immunostaining with rhodamine-phalloidin of migrating Schwann cells cultured in the presence of antibodies against both alpha and beta isoforms of HSP90 reveals that HSP90 activity is associated with actin cytoskeletal organization, necessary for lamellipodia formation.
Collapse
Affiliation(s)
- Katerina Sidera
- Department of Biochemistry, Hellenic Pasteur Institute, Athens 11521, Greece
| | | | | | | | | |
Collapse
|
10
|
Gaitanou M, Buanne P, Pappa C, Georgopoulou N, Mamalaki A, Tirone F, Matsas R. Cloning, expression and localization of human BM88 shows that it maps to chromosome 11p15.5, a region implicated in Beckwith-Wiedemann syndrome and tumorigenesis. Biochem J 2001; 355:715-724. [PMID: 11311134 PMCID: PMC1221787 DOI: 10.1042/bj3550715] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Porcine BM88 is a neuron-specific protein that enhances neuroblastoma cell differentiation in vitro and may be involved in neuronal differentiation in vivo. Here we report the identification, by Western blotting, of homologous proteins in human and mouse brain and the isolation of their respective cDNAs. Several human and mouse clones were identified in the EST database using porcine BM88 cDNA as a query. A human and a mouse EST clone were chosen for sequencing and were found both to predict a protein of 149 amino acids, with 79.9% reciprocal identity, and 76.4% and 70.7% identities to the porcine protein, respectively. This indicated that the clones corresponded to the human and mouse BM88 homologues. In vitro expression in a cell-free system as well as transient expression in COS7 cells yielded polypeptide products that were recognized by anti-BM88 antibodies and were identical in size to the native BM88 protein. Northern-blot analysis showed a wide distribution of the gene in human brain whereas immunohistochemistry on human brain sections demonstrated that the expression of BM88 is confined to neurons. The initial mapping assignment of human BM88 to chromosome 11p15.5, a region implicated in Beckwith-Wiedemann syndrome and tumorigenesis, was retrieved from the UniGene database maintained at the National Centre for Biotechnology Information (NCBI, Bethesda, MD, U.S.A.). We confirmed this localization by performing fluorescence in situ hybridization on BM88-positive cosmid clones isolated from a human genomic library. These results suggest that BM88 may be a candidate gene for genetic disorders associated with alterations at 11p15.5.
Collapse
Affiliation(s)
- M Gaitanou
- Department of Biochemistry, Hellenic Pasteur Institute, 127 Vassilissis Sofias Avenue, 115 21 Athens, Greece
| | | | | | | | | | | | | |
Collapse
|
11
|
Boutou E, Hurel C, Matsas R. Early expression of the BM88 antigen during neuronal differentiation of P19 embryonal carcinoma cells. Int J Dev Neurosci 2000; 18:321-8. [PMID: 10715587 DOI: 10.1016/s0736-5748(99)00101-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Abstract
Previous studies have shown that the BM88 antigen, a neuron-specific molecule, promotes the differentiation of mouse neuroblastoma cells [23] (Mamalaki A., Boutou E., Hurel C., Patsavoudi E., Tzartos S. and Matsas R. (1995) The BM88 antigen, a novel neuron-specific molecule, enhances the differentiation of mouse neuroblastoma cells. J. Biol. Chem. 270, 14201-14208). In particular, stably transfected with the BM88 cDNA, Neuro 2a cells over-expressing the BM88 antigen are morphologically distinct from their non-transfected counterparts; they exhibit enhanced process outgrowth and a slower rate of division. Moreover, they respond differentially to growth factors [10] (Gomez J., Boutou E., Hurel C., Mamalaki A., Kentroti S. , Vernadakis A. and Matsas R. (1998) Overexpression of the neuron-specific molecule BM88 in mouse neuroblastoma cells: Altered responsiveness to growth factors. J. Neurosci. Res. 51, 119-128). In order to further elucidate the role of the BM88 antigen in the differentiation of developing neurons we used the in vitro system of differentiating P19 cells which closely resembles early murine development in vivo. In this study, P19 cells were driven to the neuronal pathway with retinoic acid. We examined by immunofluorescence studies the expression of the BM88 antigen in these cells and we found that it correlates well with the expression of the polysialylated form of the neural cell adhesion molecule (PSA-NCAM) which characterizes early differentiating post-mitotic neurons. In contrast, very few of the BM88 antigen-positive/PSA-NCAM-positive cells expressed neurofilament protein, a marker of more mature neurons. Our findings, in accordance with previously reported data, strongly suggest that the BM88 antigen is involved in the early stages of differentiation of neuronal cells.
Collapse
Affiliation(s)
- E Boutou
- Department of Biochemistry, Hellenic Pasteur Institute, 127 Vassilissis Sofias Avenue, 115 21, Athens, Greece
| | | | | |
Collapse
|
12
|
Matsas R. Genes controlling neural fate and differentiation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1997; 429:3-17. [PMID: 9413562 DOI: 10.1007/978-1-4757-9551-6_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- R Matsas
- Department of Biochemistry, Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
13
|
Mamalaki A, Boutou E, Hurel C, Patsavoudi E, Tzartos S, Matsas R. The BM88 antigen, a novel neuron-specific molecule, enhances the differentiation of mouse neuroblastoma cells. J Biol Chem 1995; 270:14201-8. [PMID: 7775480 DOI: 10.1074/jbc.270.23.14201] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The BM88 antigen is a neuron-specific molecule widely distributed in the mammalian nervous system. It is a 22-kDa, apparently not glycosylated, integral membrane protein, which appears early during brain development and remains at high levels in the mature animal. Here, we describe the cDNA cloning of the porcine BM88 antigen and present evidence that this protein is involved in neuroblastoma cell differentiation. The deduced protein is a novel molecule consisting of 140 amino acids and bears a putative transmembrane domain at the COOH-terminal region. The mRNA of this protein is expressed only in neural tissues, where it is restricted to neurons. Stably transfected Neuro-2a cells overexpressing the BM88 antigen exhibited a significant change in morphology, reflected by enhanced process outgrowth, and a slower rate of division. Moreover, in the presence of differentiation agents, such as sucrose and retinoic acid, an accelerated differentiation of the transfected Neuro-2a cells was observed. Especially in the presence of sucrose, the consequent overexpression of the BM88 antigen in the transfected cells resulted in their enhanced morphological differentiation accompanied by the induction of neurofilament protein expression. Our results suggest that the BM88 antigen plays a role in the differentiation of neuroblastoma cells.
Collapse
Affiliation(s)
- A Mamalaki
- Department of Biochemistry, Hellenic Pasteur Institute, Athens, Greece
| | | | | | | | | | | |
Collapse
|
14
|
Patsavoudi E, Merkouri E, Thomaidou D, Sandillon F, Alonso G, Matsas R. Characterization and localization of the BM88 antigen in the developing and adult rat brain. J Neurosci Res 1995; 40:506-18. [PMID: 7616611 DOI: 10.1002/jnr.490400410] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Monoclonal antibody BM88 identifies a neuron-specific antigen (BM88 antigen) present in the central and peripheral nervous system of the pig (Patsavoudi et al.: Neuroscience 30:463-478, 1989; J Neurochem 56:782-788, 1991). We have previously shown that the antigen is also expressed by cultured neurons derived from newborn rat brain. In the present study we have used the monoclonal antibody BM88 and a specific polyclonal antibody in order to identify the nature of the cross-reactive antigen in rat brain and to investigate its expression and cellular localization in the developing and adult rat nervous system. Western blot analysis and immunocytochemistry revealed that the rat BM88 antigen displays very similar biochemical properties with its porcine homologue. It is a neuron-specific integral membrane protein, apparently not glycosylated, consisting of two 23 kD polypeptide chains. Immunoperoxidase staining demonstrated that the BM88 antigen is widely distributed in the brain of 19-day-old rat embryos. At this stage, immunoreactivity was particularly prominent in differentiated cellular areas and developing fiber tracts of the embryonic rat brain, but was also present in the neuroepithelium. A similar wide distribution of the BM88 antigen was observed in the adult rat brain. Here, immunoreactivity was detected in the neuropil and neuronal perikarya. Immunocytochemical analysis of the expression of the BM88 antigen during postnatal development of the cerebellar cortex showed that this molecule is particularly concentrated in the Purkinje cells between postnatal days 10 to 15; their somata and developing dendrites were distinctly immunopositive during this period. An age-dependent increase in the expression of the BM88 antigen both in brain and in the cerebellum was noted. Electron microscopy confirmed the presence of the BM88 reaction product within the perikarya, axons and dendrites of labeled neurons in the adult brain. The BM88 reaction product was preferentially associated with the limiting membrane of mitochondria, endoplasmic reticulum and small electron-lucent vesicles, but was also present in the plasma membrane, especially at the level of synaptic densities. Our results show that the BM88 antigen participates in an activity common to all or most neurons, and demonstrate that the expression of this antigen is elevated upon neuronal differentiation and maturation.
Collapse
Affiliation(s)
- E Patsavoudi
- Department of Biochemistry, Hellenic Pasteur Institute, Athens, Greece
| | | | | | | | | | | |
Collapse
|
15
|
Sánchez-Ferrer A, Bru R, García-Carmona F. Phase separation of biomolecules in polyoxyethylene glycol nonionic detergents. Crit Rev Biochem Mol Biol 1994; 29:275-313. [PMID: 8001397 DOI: 10.3109/10409239409083483] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The advantage of aqueous two-phase systems based on polyoxyethylene detergents over other liquid-liquid two-phase systems lies in their capacity to fractionate membrane proteins simply by heating the solution over a biocompatible range of temperatures (20 to 37 degrees C). This permits the peripheral membrane proteins to be effectively separated from the integral membrane proteins, which remain in the detergent-rich phase due to the interaction of their hydrophobic domains with detergent micelles. Since the first reports of this special characteristic of polyoxyethylene glycol detergents in 1981, numerous reports have consolidated this procedure as a fundamental technique in membrane biochemistry and molecular biology. As examples of their use in these two fields, this review summarizes the studies carried out on the topology, diversity, and anomalous behavior of transmembrane proteins on the distribution of glycosyl-phosphatidylinositol-anchored membrane proteins, and on a mechanism to describe the pH-induced translocation of viruses, bacterial endotoxins, and soluble cytoplasmic proteins related to membrane fusion. In addition, the phase separation capacity of these polyoxyethylene glycol detergents has been used to develop quick fractionation methods with high recoveries, on both a micro- and macroscale, and to speed up or increase the efficiency of bioanalytical assays.
Collapse
Affiliation(s)
- A Sánchez-Ferrer
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia, Spain
| | | | | |
Collapse
|
16
|
Thomaidou D, Patsavoudi E. Identification of a novel neuron-specific surface antigen in the developing nervous system, by monoclonal antibody 4C5. Neuroscience 1993; 53:813-27. [PMID: 8487957 DOI: 10.1016/0306-4522(93)90626-q] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Monoclonal antibody 4C5 was obtained after immunization of Balb/c mice with a crude membrane preparation derived from the brains of 15-day-old rat embryos. As revealed by immunocytochemistry on primary cell cultures from embryonic rat brain, it was shown that the antigen recognized by monoclonal antibody 4C5 (4C5 antigen) is localized on the cell surface of the neurons. Preliminary biochemical characterization showed that it is a peripheral protein with a molecular weight of 94,000. The 4C5 antigen does not appear to be linked with other polypeptides by S--S bonds and contains few or no disulphide intramolecular bridges. N-Glycanase digestion indicated that the protein is probably not glycosylated. Monoclonal antibody 4C5 crossreacts with membrane fractions from rat, rabbit, pig and human developing brain. It was shown by immunohistochemistry that the 4C5 antigen is widely distributed in the embryonic and adult rat brain. In the peripheral nervous system 4C5 immunoreactivity was present in dorsal root ganglion neurons. Immunoblotting and immunohistochemistry on dissociated cells from rat brain and on tissue sections of brain and dorsal root ganglia revealed an age-dependent decline in the expression of the epitope recognized by monoclonal antibody 4C5, in the central and peripheral nervous system. In particular, intense 4C5 immunoreactivity was observed during the embryonic and early postnatal ages. By the second postnatal week, expression of the protein was greatly reduced, becoming very weak at later stages of development and in the adult animal. In PC12 cell cultures, expression of the 4C5 antigen was intense in proliferating cells while being greatly reduced after nerve growth factor induced differentiation of these cells. The increased expression of the 4C5 antigen in proliferating PC12 cells and the prominent presence of this molecule during a time of neuronal migration suggest that it is involved in these developmental events.
Collapse
Affiliation(s)
- D Thomaidou
- Department of Biochemistry, Hellenic Pasteur Institute, Athens, Greece
| | | |
Collapse
|
17
|
Merkouri E, Matsas R. Monoclonal antibody BM89 recognizes a novel cell surface glycoprotein of the L2/HNK-1 family in the developing mammalian nervous system. Neuroscience 1992; 50:53-68. [PMID: 1383871 DOI: 10.1016/0306-4522(92)90381-b] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A monoclonal antibody, BM89, obtained with Triton X-114-treated pig synaptic membranes as an immunogen, recognizes a neuronal antigen in the newborn porcine nervous system. By immunohistochemistry, BM89 staining was observed within the neuropil of all areas of the forebrain and spinal cord tested. In addition, BM89 labeled the cell bodies and proximal dendrites of spinal cord neurons. In the peripheral nervous system, BM89 immunoreactivity was present in a subpopulation of dorsal root ganglion neurons and was predominantly associated with non-myelinated axons in peripheral nerves. Initial biochemical characterization of the antigen in pig brain showed that it is an integral membrane glycoprotein with a molecular weight of 41,000. Moreover, it cross-reacts with the L2/HNK-1 carbohydrate epitope expressed by members of a large family of glycoproteins. Homologous antigens with molecular weights of 41,000-43,000 were identified in the rat, rabbit and fetal human brain. Immunoblotting and immunohistochemistry revealed that the epitope recognized by BM89 is developmentally regulated in the rat nervous system. In cryostat sections from rat cerebellum, spinal cord and dorsal root ganglia, an age-dependent decline of BM89 immunoreactivity was observed during postnatal development. In the cerebellum, the BM89 epitope was very abundant in cells of the external and the internal granular layers between postnatal days 5 and 15. During this period some staining was also identified in the developing molecular layer and the prospective white matter. Subsequently, and in the adult, overall staining was greatly reduced and remaining immunoreactivity was associated only with the internal granular layer. In the spinal cord and dorsal root ganglia, staining was very prominent at postnatal day 5; it decreased considerably thereafter and was barely detectable in the adult. Immunostaining of rat brain and dorsal root ganglion cultures revealed that the BM89 antigen is a cell surface molecule expressed by a subpopulation of central and peripheral nervous system neurons. The biochemical properties in conjunction with the topographical location and the developmental profile of the antigen recognized by BM89 suggest that it may represent a developmentally important recognition molecule.
Collapse
Affiliation(s)
- E Merkouri
- Department of Biochemistry, Hellenic Pasteur Institute, Athens, Greece
| | | |
Collapse
|
18
|
Kioussi C, Crine P, Matsas R. Endopeptidase-24.11 is suppressed in myelin-forming but not in non-myelin-forming Schwann cells during development of the rat sciatic nerve. Neuroscience 1992; 50:69-83. [PMID: 1407560 DOI: 10.1016/0306-4522(92)90382-c] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Endopeptidase-24.11, which is identical with the common acute lymphoblastic leukemia antigen (CALLA), is a cell surface zinc metalloprotease that has the ability to hydrolyse a variety of physiologically active peptides. Interest in this enzyme is based on the view that it may play a role in the regulation of peptide signals in different tissues, including the nervous and immune systems. We have previously shown that endopeptidase-24.11 is present in Schwann cells in the peripheral nervous system of newborn pigs [Kioussi C. and Matsas R. (1991) J. Neurochem. 57, 431-440]. In the present study we have investigated the developmental expression of the endopeptidase by Schwann cells in the rat sciatic nerve, from embryonic day 16 to maturity. Endopeptidase-24.11 was monitored enzymatically as well as by immunoblotting and immunocytochemistry using the monoclonal anti-endopeptidase antibody 23B11. We found an age-dependent decline in both the enzyme activity and the levels of immunoreactive protein. Endopeptidase-24.11 was first detected at embryonic day 18 and was present in all neonatal and early postnatal Schwann cells. However, as myelination proceeded the endopeptidase was gradually suppressed in the majority of cells that form myelin but retained in non-myelin-forming cells in the adult animal. At this stage, only very few large diameter myelinated fibers expressed weakly endopeptidase-24.11. Schwann cells dissociated from postnatal day 5 nerves and cultured up to one week in the absence of axons expressed endopeptidase-24.11. These results show that the endopeptidase has a distinct developmental profile in the rat sciatic nerve, similar to that of a group of other Schwann cell surface antigens, including the cell adhesion molecules N-CAM and L1 and the nerve growth factor receptor. We suggest that, as is the case with these antigens, endopeptidase-24.11 may play a role in nerve development and/or regeneration. In addition, persistence of endopeptidase-24.11 in a minority of adult myelin-forming Schwann cells suggests a possible role for the enzyme in axon-myelin apposition and maintenance, especially of larger diameter axons.
Collapse
Affiliation(s)
- C Kioussi
- Department of Biochemistry, Hellenic Pasteur Institute, Athens, Greece
| | | | | |
Collapse
|
19
|
Kioussi C, Matsas R. Endopeptidase-24.11, a cell-surface peptidase of central nervous system neurons, is expressed by Schwann cells in the pig peripheral nervous system. J Neurochem 1991; 57:431-40. [PMID: 2072094 DOI: 10.1111/j.1471-4159.1991.tb03770.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Endopeptidase-24.11 is a 90-kDa surface glycoprotein with the ability to hydrolyze a variety of biologically active peptides. Interest in this enzyme is based on the consensus that it may play a role in the termination of peptide signals in the central nervous system. In the present study, we have investigated the distribution of endopeptidase-24.11 in two nerves of the peripheral nervous system of newborn pigs: the sciatic, composed of a mixture of myelinated and nonmyelinated axons, and cervical sympathetic trunk in which greater than 99% of the axons are nonmyelinated. The endopeptidase was monitored enzymatically, as well as by immunoblotting and immunocytochemistry using mono- and polyclonal anti-endopeptidase antibodies. Endopeptidase-24.11 was detected in both the sciatic nerve and the cervical sympathetic trunk. Membrane preparations from sciatic nerve hydrolyzed 125I-insulin B-chain, and more than 50% of the activity was inhibited by phosphoramidon with an IC50 concentration of 3.2 nM. Moreover, a 90-kDa polypeptide was detected by immunoblotting of sciatic nerve membranes. The type of cells expressing the endopeptidase was determined by immunohistochemistry. In teased nerve preparations, these cells were identified morphologically as myelin- and non-myelin-forming Schwann cells. Endopeptidase-24.11 was also expressed by cultured Schwann cells from sciatic nerve and cervical sympathetic trunk maintained for 3 h in vitro. The presence of endopeptidase-24.11 on the Schwann cell surface raises the possibility of a potential role for the enzyme in nerve development and/or regeneration.
Collapse
Affiliation(s)
- C Kioussi
- Department of Biochemistry, Hellenic Pasteur Institute, Athens, Greece
| | | |
Collapse
|
20
|
Patsavoudi E, Hurel C, Matsas R. Purification and characterization of neuron-specific surface antigen defined by monoclonal antibody BM88. J Neurochem 1991; 56:782-8. [PMID: 1704420 DOI: 10.1111/j.1471-4159.1991.tb01992.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Monoclonal antibody BM88 recognizes a neurospecific surface antigen in the CNS and the PNS. In the present study, the antigen recognized by BM88 was immunopurified from pig brain and shown to be a 22-kDa polypeptide by reducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Under nonreducing conditions a protein of 40 kDa was obtained, a result indicating that the antigen is composed of two polypeptide chains of equal molecular weight linked by disulfide bridges. Gel filtration of the purified antigen in the presence of Emulphogene suggested that it may be either a monomeric or a dimeric protein. However, in the presence of Triton X-100 a monomeric structure was implied. N-Glycanase digestion indicated that the protein is probably not glycosylated. The purified antigen was characterized as an integral membrane protein by hydrophobic chromatography and phase-separation experiments with Triton X-114. The antigen, or at least the antibody binding region of the molecule, is very susceptible to protease attack, as judged by protease digestion experiments on brain membranes. By using very low concentrations of papain combined with short incubation times, the antigen was converted to a 16.3-kDa membrane-associated polypeptide as assessed by immunoblotting. This polypeptide contained the BM88 binding epitope. Soluble BM88 immunoreactive polypeptides were not obtained. Bacillus cereus phospholipase C was also unable to solubilize the antigen from the membrane. Our results suggest that the molecule, possessing at least one small extramembranous domain, is attached to the membrane via a polypeptide chain.
Collapse
Affiliation(s)
- E Patsavoudi
- Department of Biochemistry, Hellenic Pasteur Institute, Athens, Greece
| | | | | |
Collapse
|
21
|
Voyiatzaki CS, Soteriadou KP. Evidence of transferrin binding sites on the surface of Leishmania promastigotes. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)45716-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
22
|
Matsas R, Kenny AJ. Immunocytochemical localization of endopeptidase-24.11 in cultured neurons from pig striatum. Neuroscience 1989; 31:237-46. [PMID: 2771059 DOI: 10.1016/0306-4522(89)90046-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Endopeptidase-24.11 ("enkephalinase") appears to play a key role in the metabolism of a number of neuropeptides at cell surfaces. It has been previously mapped in the central nervous system, but some doubt has been expressed concerning the identity of the cell type expressing this peptidase. Primary cell cultures derived from striata of new-born piglets were set up and cells were characterized by immunocytochemistry using antibodies to neurofilament protein, a glial fibrillary acidic protein and a neuronal antigen recognized by a monoclonal antibody BM88 and by histochemistry for acetylcholinesterase. Some cultures were set up in which neurons were selectively enriched. Cells which were thus morphologically defined as neurons were recognized by an affinity-purified polyclonal antibody to endopeptidase-24.11. The staining for the peptidase, which was punctate in appearance, was shown to be at the cell surface and extended to the perikaryon and all neurites. Compared with the number of neurofilament protein-positive cells, relatively few cells were positive for endopeptidase-24.11. No glial cells, immunochemically defined by glial fibrillary acidic protein, were stained by the antibody to endopeptidase-24.11. We conclude that endopeptidase-24.11 is expressed on the surface of a set of neurons derived from the striatum in primary culture and not by any glial cells in these cultures.
Collapse
Affiliation(s)
- R Matsas
- Hellenic Pasteur Institute, Department of Biochemistry, Athens, Greece
| | | |
Collapse
|