1
|
Zhao HB, Liu LM, Mei L, Quinonez AT, Roberts RA, Lu X. Prevention and treatment of noise-induced hearing loss and cochlear synapse degeneration by potassium channel blockers in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597382. [PMID: 38895254 PMCID: PMC11185602 DOI: 10.1101/2024.06.04.597382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Noise can induce hearing loss. In particularly, noise can induce cochlear synapse degeneration leading to hidden hearing loss, which is the most common type of hearing disorders in the clinic. Currently, there is no pharmacological treatment, particularly, no post-exposure (i.e., therapeutic) treatment available in the clinic. Here, we report that systematic administration of K + channel blockers before or after noise exposure could significantly attenuate NIHL and synapse degeneration. After systematic administration of a general K-channel blocker tetraethylammonium (TEA), the elevation of auditory brainstem response (ABR) thresholds after noise-exposure significantly reduced, and the active cochlear mechanics significantly improved. The therapeutic effect was further improved as the post-exposure administration time extending to 3 days. BK channel is a predominant K + channel in the inner hair cells. Systematic administration of a BK channel blocker GAL-021 after noise exposure also ameliorated hearing loss and improved hearing behavioral responses tested by acoustic startle response (ASR). Finally, both TEA and GAL-021 significantly attenuated noise-induced ribbon synapse degeneration. These data demonstrate that K + -channel blockers can prevent and treat NIHL and cochlear synapse degeneration. Our finding may aid in developing therapeutic strategies for post-exposure treatment of NIHL and synapse degeneration. Significance Statement Noise is a common deafness factor affecting more 100 million people in the United States. So far, there is no pharmacological treatment available. We show here that administration of K + channel blockers after noise exposure could attenuate noise-induced hearing loss and synapse degeneration, and improved behavioral responses. This is the first time to real the K + channel blockers that could treat noise-induced hearing loss and cochlear synaptopathy after noise exposure.
Collapse
|
2
|
Lozier NR, Muscio S, Pal I, Cai HM, Rubio ME. Sex differences in glutamate AMPA receptor subunits mRNA with fast gating kinetics in the mouse cochlea. Front Syst Neurosci 2023; 17:1100505. [PMID: 36936507 PMCID: PMC10017478 DOI: 10.3389/fnsys.2023.1100505] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/30/2023] [Indexed: 03/06/2023] Open
Abstract
Evidence shows that females have increased supra-threshold peripheral auditory processing compared to males. This is indicated by larger auditory brainstem responses (ABR) wave I amplitude, which measures afferent spiral ganglion neuron (SGN)-auditory nerve synchrony. However, the underlying molecular mechanisms of this sex difference are mostly unknown. We sought to elucidate sex differences in ABR wave I amplitude by examining molecular markers known to affect synaptic transmission kinetics. Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) mediate fast excitatory transmission in mature SGN afferent synapses. Each AMPAR channel is a tetramer composed of GluA2, 3, and 4 subunits (Gria2, 3, and 4 genes), and those lacking GluA2 subunits have larger currents, are calcium-permeable, and have faster gating kinetics. Moreover, alternatively spliced flip and flop isoforms of each AMPAR subunit affect channel kinetics, having faster kinetics those AMPARs containing Gria3 and Gria4 flop isoforms. We hypothesized that SGNs of females have more fast-gating AMPAR subunit mRNA than males, which could contribute to more temporally precise synaptic transmission and increased SGN synchrony. Our data show that the index of Gria3 relative to Gria2 transcripts on SGN was higher in females than males (females: 48%; males: 43%), suggesting that females have more SGNs with higher Gria3 mRNA relative to Gria2. Analysis of the relative abundance of the flip and flop alternatively spliced isoforms showed that females have a 2-fold increase in fast-gating Gria3 flop mRNA, while males have more slow-gating (2.5-fold) of the flip. We propose that Gria3 may in part mediate greater SGN synchrony in females. Significance Statement: Females of multiple vertebrate species, including fish and mammals, have been reported to have enhanced sound-evoked synchrony of afferents in the auditory nerve. However, the underlying molecular mediators of this physiologic sex difference are unknown. Elucidating potential molecular mechanisms related to sex differences in auditory processing is important for maintaining healthy ears and developing potential treatments for hearing loss in both sexes. This study found that females have a 2-fold increase in Gria3 flop mRNA, a fast-gating AMPA-type glutamate receptor subunit. This difference may contribute to greater neural synchrony in the auditory nerve of female mice compared to males, and this sex difference may be conserved in all vertebrates.
Collapse
Affiliation(s)
- Nicholas R. Lozier
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Steven Muscio
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Indra Pal
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Hou-Ming Cai
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - María E. Rubio
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, United States
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
3
|
Shagufta, Ahmad I. Therapeutic significance of molecular hybrids for breast cancer research and treatment. RSC Med Chem 2023; 14:218-238. [PMID: 36846377 PMCID: PMC9945856 DOI: 10.1039/d2md00356b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Worldwide, breast cancer is still a leading cause of cancer death in women. Indeed, over the years, several anti-breast cancer drugs have been developed; however, the complex heterogeneous nature of breast cancer disease reduces the applicability of conventional targeted therapies with the upsurge in side effects and multi-drug resistance. Molecular hybrids generated by a combination of two or more active pharmacophores emerged as a promising approach in recent years for the design and synthesis of anti-breast cancer drugs. The hybrid anti-breast cancer molecules are well known for their several advantages compared to the parent moiety. These hybrid forms of anti-breast cancer molecules demonstrated remarkable effects in blocking different pathways contributing to the pathogenies of breast cancer and improved specificity. In addition, these hybrids are patient compliant with reduced side effects and multi-drug resistance. The literature revealed that molecular hybrids are applied to discover and develop novel hybrids for various complex diseases. This review article highlights the recent progress (∼2018-2022) in developing molecular hybrids, including linked, merged, and fused hybrids, as promising anti-breast cancer agents. Furthermore, their design principles, biological potential, and future perspective are discussed. The provided information will lead to the development of novel anti-breast cancer hybrids with excellent pharmacological profiles in the future.
Collapse
Affiliation(s)
- Shagufta
- Department of Mathematics and Natural Sciences, School of Arts and Sciences, American University of Ras Al Khaimah Ras Al Khaimah United Arab Emirates
| | - Irshad Ahmad
- Department of Mathematics and Natural Sciences, School of Arts and Sciences, American University of Ras Al Khaimah Ras Al Khaimah United Arab Emirates
| |
Collapse
|
4
|
Saleh EAM, Kotian SY, Al Dawsari AM, Hassan I, Husain K, Abishad PC, Byrappa K, Sharabi RSSAL, Rai KML. Synthesis, Antioxidant, and Antibacterial Activities of Two Novel Series of 3,5-Disubstituted Isoxazole Ether-Linked Isoxazolines and 3,5-Disubstituted Pyrazole Ether-Linked Isoxazolines Mediated by Chloramine-T. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022050181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Wang J, Serratrice N, Lee CJ, François F, Sweedler JV, Puel JL, Mothet JP, Ruel J. Physiopathological Relevance of D-Serine in the Mammalian Cochlea. Front Cell Neurosci 2022; 15:733004. [PMID: 34975405 PMCID: PMC8718999 DOI: 10.3389/fncel.2021.733004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/29/2021] [Indexed: 12/02/2022] Open
Abstract
NMDA receptors (NMDARs) populate the complex between inner hair cell (IHC) and spiral ganglion neurons (SGNs) in the developing and mature cochlea. However, in the mature cochlea, activation of NMDARs is thought to mainly occur under pathological conditions such as excitotoxicity. Ototoxic drugs such as aspirin enable cochlear arachidonic-acid-sensitive NMDAR responses, and induced chronic tinnitus was blocked by local application of NMDAR antagonists into the cochlear fluids. We largely ignore if other modulators are also engaged. In the brain, D-serine is the primary physiological co-agonist of synaptic NMDARs. Whether D-serine plays a role in the cochlea had remained unexplored. We now reveal the presence of D-serine and its metabolic enzymes prior to, and at hearing onset, in the sensory and non-neuronal cells of the cochlea of several vertebrate species. In vivo intracochlear perfusion of D-serine in guinea pigs reduces sound-evoked activity of auditory nerve fibers without affecting the receptor potentials, suggesting that D-serine acts specifically on the postsynaptic auditory neurons without altering the functional state of IHC or of the stria vascularis. Indeed, we demonstrate in vitro that agonist-induced activation of NMDARs produces robust calcium responses in rat SGN somata only in the presence of D-serine, but not of glycine. Surprisingly, genetic deletion in mice of serine racemase (SR), the enzyme that catalyzes D-serine, does not affect hearing function, but offers protection against noise-induced permanent hearing loss as measured 3 months after exposure. However, the mechanisms of activation of NMDA receptors in newborn rats may be different from those in adult guinea pigs. Taken together, these results demonstrate for the first time that the neuro-messenger D-serine has a pivotal role in the cochlea by promoting the activation of silent cochlear NMDAR in pathological situations. Thus, D-serine and its signaling pathway may represent a new druggable target for treating sensorineural hearing disorders (i.e., hearing loss, tinnitus).
Collapse
Affiliation(s)
- Jing Wang
- Institute for Neurosciences of Montpellier (INM), University Montpellier, Institut National de la Santé et de la Recherche Médicale (INSERM), Montpellier, France.,ENT Department, Hospital and University of Montpellier, Montpellier, France
| | - Nicolas Serratrice
- Institute for Neurosciences of Montpellier (INM), University Montpellier, Institut National de la Santé et de la Recherche Médicale (INSERM), Montpellier, France
| | - Cindy J Lee
- Department of Chemistry, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Florence François
- Institute for Neurosciences of Montpellier (INM), University Montpellier, Institut National de la Santé et de la Recherche Médicale (INSERM), Montpellier, France
| | - Jonathan V Sweedler
- Department of Chemistry, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Jean-Luc Puel
- Institute for Neurosciences of Montpellier (INM), University Montpellier, Institut National de la Santé et de la Recherche Médicale (INSERM), Montpellier, France
| | - Jean-Pierre Mothet
- Laboratoire LuMin, Biophotonics and Synapse Physiopathology Team, Université Paris-Saclay, Centre National de la Recherche Scientifique (CNRS), ENS Paris Saclay, Centrale Supélec, Gif-sur-Yvette, France
| | - Jérôme Ruel
- Institute for Neurosciences of Montpellier (INM), University Montpellier, Institut National de la Santé et de la Recherche Médicale (INSERM), Montpellier, France.,Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Laboratoire de Neurosciences Cognitives, Marseille, France
| |
Collapse
|
6
|
Boero LE, Payne S, Gómez-Casati ME, Rutherford MA, Goutman JD. Noise Exposure Potentiates Exocytosis From Cochlear Inner Hair Cells. Front Synaptic Neurosci 2021; 13:740368. [PMID: 34658832 PMCID: PMC8511412 DOI: 10.3389/fnsyn.2021.740368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/10/2021] [Indexed: 11/19/2022] Open
Abstract
Noise-induced hearing loss has gained relevance as one of the most common forms of hearing impairment. The anatomical correlates of hearing loss, principally cell damage and/or death, are relatively well-understood histologically. However, much less is known about the physiological aspects of damaged, surviving cells. Here we addressed the functional consequences of noise exposure on the capacity of inner hair cells (IHCs) to release synaptic vesicles at synapses with spiral ganglion neurons (SGNs). Mice of either sex at postnatal day (P) 15–16 were exposed to 1–12 kHz noise at 120 dB sound pressure level (SPL), for 1 h. Exocytosis was measured by tracking changes in membrane capacitance (ΔCm) from IHCs of the apical cochlea. Upon IHC depolarization to different membrane potentials, ΔCm showed the typical bell-shaped curve that mirrors the voltage dependence of Ca2+ influx, in both exposed and unexposed cells. Surprisingly, from IHCs at 1-day after exposure (d.a.e.), we found potentiation of exocytosis at the peak of the bell-shaped curve. The increase in exocytosis was not accompanied by changes in whole-cell Ca2+ influx, suggesting a modification in coupling between Ca2+ channels and synaptic vesicles. Consistent with this notion, noise exposure also changed the Ca2+-dependence of exocytosis from linear to supralinear. Noise exposure did not cause loss of IHCs, but did result in a small reduction in the number of IHC-SGN synapses at 1-d.a.e. which recovered by 14-d.a.e. In contrast, a strong reduction in auditory brainstem response wave-I amplitude (representing synchronous firing of SGNs) and distortion product otoacoustic emissions (reflecting outer hair cell function) indicated a profound hearing loss at 1- and 14-d.a.e. To determine the role of glutamate release in the noise-induced potentiation of exocytosis, we evaluated vesicular glutamate transporter-3 (Vglut3) knock-out (KO) mice. Unlike WT, IHCs from Vglut3KO mice showed a noise-induced reduction in ΔCm and Ca2+ influx with no change in the Ca2+-dependence of exocytosis. Together, these results indicate that traumatic noise exposure triggers changes of IHC synaptic function including a Vglut3-dependent potentiation of exocytosis.
Collapse
Affiliation(s)
- Luis E Boero
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Buenos Aires, Argentina.,Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Shelby Payne
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, United States
| | | | - Mark A Rutherford
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, United States
| | - Juan D Goutman
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Buenos Aires, Argentina
| |
Collapse
|
7
|
Brun NR, Panlilio JM, Zhang K, Zhao Y, Ivashkin E, Stegeman JJ, Goldstone JV. Developmental exposure to non-dioxin-like polychlorinated biphenyls promotes sensory deficits and disrupts dopaminergic and GABAergic signaling in zebrafish. Commun Biol 2021; 4:1129. [PMID: 34561524 PMCID: PMC8463681 DOI: 10.1038/s42003-021-02626-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/25/2021] [Indexed: 11/09/2022] Open
Abstract
The most abundant polychlorinated biphenyl (PCB) congeners found in the environment and in humans are neurotoxic. This is of particular concern for early life stages because the exposure of the more vulnerable developing nervous system to neurotoxic chemicals can result in neurobehavioral disorders. In this study, we uncover currently unknown links between PCB target mechanisms and neurobehavioral deficits using zebrafish as a vertebrate model. We investigated the effects of the abundant non-dioxin-like (NDL) congener PCB153 on neuronal morphology and synaptic transmission linked to the proper execution of a sensorimotor response. Zebrafish that were exposed during development to concentrations similar to those found in human cord blood and PCB contaminated sites showed a delay in startle response. Morphological and biochemical data demonstrate that even though PCB153-induced swelling of afferent sensory neurons, the disruption of dopaminergic and GABAergic signaling appears to contribute to PCB-induced motor deficits. A similar delay was observed for other NDL congeners but not for the potent dioxin-like congener PCB126. The effects on important and broadly conserved signaling mechanisms in vertebrates suggest that NDL PCBs may contribute to neurodevelopmental abnormalities in humans and increased selection pressures in vertebrate wildlife.
Collapse
Affiliation(s)
- Nadja R Brun
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| | - Jennifer M Panlilio
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Kun Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Yanbin Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Evgeny Ivashkin
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA.,A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - John J Stegeman
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| | - Jared V Goldstone
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| |
Collapse
|
8
|
Zhao HB, Zhu Y, Liu LM. Excess extracellular K + causes inner hair cell ribbon synapse degeneration. Commun Biol 2021; 4:24. [PMID: 33398038 PMCID: PMC7782724 DOI: 10.1038/s42003-020-01532-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 11/30/2020] [Indexed: 11/16/2022] Open
Abstract
Inner hair cell (IHC) ribbon synapses are the first synapse in the auditory system and can be degenerated by noise and aging, thereby leading to hidden hearing loss (HHL) and other hearing disorders. However, the mechanism underlying this cochlear synaptopathy remains unclear. Here, we report that elevation of extracellular K+, which is a consequence of noise exposure, could cause IHC ribbon synapse degeneration and swelling. Like intensity dependence in noise-induced cochlear synaptopathy, the K+-induced degeneration was dose-dependent, and could be attenuated by BK channel blockers. However, application of glutamate receptor (GluR) agonists caused ribbon swelling but not degeneration. In addition, consistent with synaptopathy in HHL, both K+ and noise exposure only caused IHC but not outer hair cell ribbon synapse degeneration. These data reveal that K+ excitotoxicity can degenerate IHC ribbon synapses in HHL, and suggest that BK channel may be a potential target for prevention and treatment of HHL.
Collapse
Affiliation(s)
- Hong-Bo Zhao
- Dept. of Otolaryngology, University of Kentucky Medical School, 800 Rose Street, Lexington, KY, 40536, USA.
| | - Yan Zhu
- Dept. of Otolaryngology, University of Kentucky Medical School, 800 Rose Street, Lexington, KY, 40536, USA
| | - Li-Man Liu
- Dept. of Otolaryngology, University of Kentucky Medical School, 800 Rose Street, Lexington, KY, 40536, USA
| |
Collapse
|
9
|
Kumari P, Mishra VS, Narayana C, Khanna A, Chakrabarty A, Sagar R. Design and efficient synthesis of pyrazoline and isoxazole bridged indole C-glycoside hybrids as potential anticancer agents. Sci Rep 2020; 10:6660. [PMID: 32313038 PMCID: PMC7170901 DOI: 10.1038/s41598-020-63377-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/23/2020] [Indexed: 01/26/2023] Open
Abstract
C-glycosides are important class of molecules exhibit diverse biological activities and present as structural motif in many natural products. Two series of new pyrazoline and isoxazole bridged indole C-glycoside molecular hybrids (n = 36) were efficiently synthesized starting from diverse indole 3-carboxaldehydes derived α, β-unsaturated ketone derivatives of β-D-glucosyl-propan-2-one, β-D-galactosyl-propan-2-one and β-D-mannosyl-propan-2-one, reacting with hydrazine hydrate and hydroxyl amine hydrochloride in shorter reaction time (15 min) under microwave assisted condition. Anticancer activity of these newly synthesized pyrazoline and isoxazole bridged indoles C-glycoside hybrids were determined in details through cellular assays against MCF-7, MDA-MB-453 and MDA-MB-231 cancer cell lines. The selected library members displayed low micromolar (IC50 = 0.67–4.67 µM) and selective toxicity against breast cancer cell line (MCF-7). Whereas these compounds were nontoxic towards normal cell line (MCF-10A). Mechanistic studies showed that, active compounds inhibit COX-2 enzyme, which was also supported by molecular docking studies. These findings are expected to provide new leads towards anticancer drug discovery.
Collapse
Affiliation(s)
- Priti Kumari
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University (SNU), NH91, Tehsil-Dadri, Gautam Buddha Nagar, Uttar Pradesh, 201314, India
| | - Vishnu S Mishra
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University (SNU), NH91, Tehsil-Dadri, Gautam Buddha Nagar, Uttar Pradesh, 201314, India
| | - Chintam Narayana
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University (SNU), NH91, Tehsil-Dadri, Gautam Buddha Nagar, Uttar Pradesh, 201314, India
| | - Ashish Khanna
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Anindita Chakrabarty
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University (SNU), NH91, Tehsil-Dadri, Gautam Buddha Nagar, Uttar Pradesh, 201314, India
| | - Ram Sagar
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University (SNU), NH91, Tehsil-Dadri, Gautam Buddha Nagar, Uttar Pradesh, 201314, India. .,Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
10
|
Fernandez KA, Guo D, Micucci S, De Gruttola V, Liberman MC, Kujawa SG. Noise-induced Cochlear Synaptopathy with and Without Sensory Cell Loss. Neuroscience 2019; 427:43-57. [PMID: 31887361 DOI: 10.1016/j.neuroscience.2019.11.051] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 11/28/2022]
Abstract
Prior work has provided extensive documentation of threshold sensitivity and sensory hair cell losses after noise exposure. It is now clear, however, that cochlear synaptic loss precedes such losses, at least at low-moderate noise doses, silencing affected neurons. To address questions of whether, and how, cochlear synaptopathy and underlying mechanisms change as noise dose is varied, we assessed cochlear physiologic and histologic consequences of a range of exposures varied in duration from 15 min to 8 h and in level from 85 to 112 dB SPL. Exposures delivered to adult CBA/CaJ mice produced acute elevations in hair cell- and neural-based response thresholds ranging from trivial (∼5 dB) to large (∼50 dB), followed by varying degrees of recovery. Males appeared more noise vulnerable for some conditions of exposure. There was little to no inner hair cell (IHC) loss, but outer hair cell (OHC) loss could be substantial at highest frequencies for highest noise doses. Synapse loss was an early manifestation of noise injury and did not scale directly with either temporary or permanent threshold shift. With increasing noise dose, synapse loss grew to ∼50%, then declined for exposures yielding permanent hair cell injury/loss. All synaptopathic, but no non-synaptopathic exposures produced persistent neural response amplitude declines; those additionally yielding permanent OHC injury/loss also produced persistent reductions in OHC-based responses and exaggerated neural amplitude declines. Findings show that widespread cochlear synaptopathy can be present with and without noise-induced sensory cell loss and that differing patterns of cellular injury influence synaptopathic outcomes.
Collapse
Affiliation(s)
- Katharine A Fernandez
- Eaton-Peabody Laboratories, Massachusetts Eye & Ear, Boston, MA 02114, USA; Department of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Dan Guo
- Eaton-Peabody Laboratories, Massachusetts Eye & Ear, Boston, MA 02114, USA; Department of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Steven Micucci
- Eaton-Peabody Laboratories, Massachusetts Eye & Ear, Boston, MA 02114, USA
| | - Victor De Gruttola
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA
| | - M Charles Liberman
- Eaton-Peabody Laboratories, Massachusetts Eye & Ear, Boston, MA 02114, USA; Department of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Sharon G Kujawa
- Eaton-Peabody Laboratories, Massachusetts Eye & Ear, Boston, MA 02114, USA; Department of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Carricondo F, Romero-Gómez B. The Cochlear Spiral Ganglion Neurons: The Auditory Portion of the VIII Nerve. Anat Rec (Hoboken) 2018; 302:463-471. [DOI: 10.1002/ar.23815] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/08/2017] [Accepted: 10/08/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Francisco Carricondo
- Laboratory of Neurobiology of Hearing, Dept. of Immunology, Ophthalmology and Otorhinolaryngology, Faculty of Medicine; Complutense University of Madrid (Spain)
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos" (IdISSC); Madrid Spain
| | - Bárbara Romero-Gómez
- Laboratory of Neurobiology of Hearing, Dept. of Immunology, Ophthalmology and Otorhinolaryngology, Faculty of Medicine; Complutense University of Madrid (Spain)
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos" (IdISSC); Madrid Spain
| |
Collapse
|
12
|
Pre- and postsynaptic ionotropic glutamate receptors in the auditory system of mammals. Hear Res 2018; 362:1-13. [DOI: 10.1016/j.heares.2018.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 02/16/2018] [Accepted: 02/21/2018] [Indexed: 01/22/2023]
|
13
|
Valero MD, Burton JA, Hauser SN, Hackett TA, Ramachandran R, Liberman MC. Noise-induced cochlear synaptopathy in rhesus monkeys (Macaca mulatta). Hear Res 2017; 353:213-223. [PMID: 28712672 PMCID: PMC5632522 DOI: 10.1016/j.heares.2017.07.003] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 06/02/2017] [Accepted: 07/06/2017] [Indexed: 12/21/2022]
Abstract
Cochlear synaptopathy can result from various insults, including acoustic trauma, aging, ototoxicity, or chronic conductive hearing loss. For example, moderate noise exposure in mice can destroy up to ∼50% of synapses between auditory nerve fibers (ANFs) and inner hair cells (IHCs) without affecting outer hair cells (OHCs) or thresholds, because the synaptopathy occurs first in high-threshold ANFs. However, the fiber loss likely impairs temporal processing and hearing-in-noise, a classic complaint of those with sensorineural hearing loss. Non-human primates appear to be less vulnerable to noise-induced hair-cell loss than rodents, but their susceptibility to synaptopathy has not been studied. Because establishing a non-human primate model may be important in the development of diagnostics and therapeutics, we examined cochlear innervation and the damaging effects of acoustic overexposure in young adult rhesus macaques. Anesthetized animals were exposed bilaterally to narrow-band noise centered at 2 kHz at various sound-pressure levels for 4 h. Cochlear function was assayed for up to 8 weeks following exposure via auditory brainstem responses (ABRs) and otoacoustic emissions (OAEs). A moderate loss of synaptic connections (mean of 12-27% in the basal half of the cochlea) followed temporary threshold shifts (TTS), despite minimal hair-cell loss. A dramatic loss of synapses (mean of 50-75% in the basal half of the cochlea) was seen on IHCs surviving noise exposures that produced permanent threshold shifts (PTS) and widespread hair-cell loss. Higher noise levels were required to produce PTS in macaques compared to rodents, suggesting that primates are less vulnerable to hair-cell loss. However, the phenomenon of noise-induced cochlear synaptopathy in primates is similar to that seen in rodents.
Collapse
Affiliation(s)
- M D Valero
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA; Department of Otolaryngology, Harvard Medical School, Boston, MA 02115, USA.
| | - J A Burton
- Vanderbilt University Medical Center, Dept. of Hearing and Speech Sciences, Nashville, TN 37232, USA
| | - S N Hauser
- Vanderbilt University Medical Center, Dept. of Hearing and Speech Sciences, Nashville, TN 37232, USA
| | - T A Hackett
- Vanderbilt University Medical Center, Dept. of Hearing and Speech Sciences, Nashville, TN 37232, USA
| | - R Ramachandran
- Vanderbilt University Medical Center, Dept. of Hearing and Speech Sciences, Nashville, TN 37232, USA
| | - M C Liberman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA; Department of Otolaryngology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
14
|
Ca 2+-Permeable AMPARs Mediate Glutamatergic Transmission and Excitotoxic Damage at the Hair Cell Ribbon Synapse. J Neurosci 2017; 37:6162-6175. [PMID: 28539424 DOI: 10.1523/jneurosci.3644-16.2017] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 04/20/2017] [Accepted: 04/24/2017] [Indexed: 01/21/2023] Open
Abstract
We report functional and structural evidence for GluA2-lacking Ca2+-permeable AMPARs (CP-AMPARs) at the mature hair cell ribbon synapse. By using the methodological advantages of three species (of either sex), we demonstrate that CP-AMPARs are present at the hair cell synapse in an evolutionarily conserved manner. Via a combination of in vivo electrophysiological and Ca2+ imaging approaches in the larval zebrafish, we show that hair cell stimulation leads to robust Ca2+ influx into afferent terminals. Prolonged application of AMPA caused loss of afferent terminal responsiveness, whereas blocking CP-AMPARs protects terminals from excitotoxic swelling. Immunohistochemical analysis of AMPAR subunits in mature rat cochlea show regions within synapses lacking the GluA2 subunit. Paired recordings from adult bullfrog auditory synapses demonstrate that CP-AMPARs mediate a major component of glutamatergic transmission. Together, our results support the importance of CP-AMPARs in mediating transmission at the hair cell ribbon synapse. Further, excess Ca2+ entry via CP-AMPARs may underlie afferent terminal damage following excitotoxic challenge, suggesting that limiting Ca2+ levels in the afferent terminal may protect against cochlear synaptopathy associated with hearing loss.SIGNIFICANCE STATEMENT A single incidence of noise overexposure causes damage at the hair cell synapse that later leads to neurodegeneration and exacerbates age-related hearing loss. A first step toward understanding cochlear neurodegeneration is to identify the cause of initial excitotoxic damage to the postsynaptic neuron. Using a combination of immunohistochemical, electrophysiological, and Ca2+ imaging approaches in evolutionarily divergent species, we demonstrate that Ca2+-permeable AMPARs (CP-AMPARs) mediate glutamatergic transmission at the adult auditory hair cell synapse. Overexcitation of the terminal causes Ca2+ accumulation and swelling that can be prevented by blocking CP-AMPARs. We demonstrate that CP-AMPARs mediate transmission at this first-order sensory synapse and that limiting Ca2+ accumulation in the terminal may protect against hearing loss.
Collapse
|
15
|
Abstract
Sensorineural hearing impairment is the most common form of hearing loss, and encompasses pathologies of the cochlea and the auditory nerve. Hearing impairment caused by abnormal neural encoding of sound stimuli despite preservation of sensory transduction and amplification by outer hair cells is known as 'auditory neuropathy'. This term was originally coined for a specific type of hearing impairment affecting speech comprehension beyond changes in audibility: patients with this condition report that they "can hear but cannot understand". This type of hearing impairment can be caused by damage to the sensory inner hair cells (IHCs), IHC ribbon synapses or spiral ganglion neurons. Human genetic and physiological studies, as well as research on animal models, have recently shown that disrupted IHC ribbon synapse function--resulting from genetic alterations that affect presynaptic glutamate loading of synaptic vesicles, Ca(2+) influx, or synaptic vesicle exocytosis--leads to hearing impairment termed 'auditory synaptopathy'. Moreover, animal studies have demonstrated that sound overexposure causes excitotoxic loss of IHC ribbon synapses. This mechanism probably contributes to hearing disorders caused by noise exposure or age-related hearing loss. This Review provides an update on recently elucidated sensory, synaptic and neural mechanisms of hearing impairment, their corresponding clinical findings, and discusses current rehabilitation strategies as well as future therapies.
Collapse
Affiliation(s)
- Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37099 Göttingen, Germany
| | - Arnold Starr
- Center for Hearing Research, University of California, Irvine, California 92697, USA
| |
Collapse
|
16
|
Xu YP, Shan XD, Liu YY, Pu Y, Wang CY, Tao QL, Deng Y, Cheng Y, Fan JP. Olfactory epithelium neural stem cell implantation restores noise-induced hearing loss in rats. Neurosci Lett 2016; 616:19-25. [PMID: 26777425 DOI: 10.1016/j.neulet.2016.01.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 12/15/2022]
Abstract
OBJECTIVE In this study, we aimed to elucidate the restorative effects of olfactory epithelium neural stem cells (oe-NSCs) implantation on noise-induced hearing loss and establish their mechanism of action. METHODS To model hearing loss, rats were subjected to consecutive seven-day noise exposure. Then, oe-NSCs were implanted into cochlear tissue by retroauricular approach. Auditory brainstem response (ABR) method was used to evaluate the hearing function. Immunohistochemical staining was utilized to determine cell survival and migration of oe-NSCs. After IL-1β stimulation, nerve growth factor (NGF), neurotrophin-3 (NT-3), and NT-4 levels were evaluated in oe-NSCs. The protective action of oe-NSCs against hydrogen peroxide-induced cell injury was detected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL). RESULTS oe-NSCs implantation into cochlear tissues ameliorated the noise-induced hearing impairment (p<0.05). After implantation, green fluorescent cells were observed in an even suspension in the lymph fluid of the cochlea, and 65% of the GFP(+) cells reached the cochlear duct wall three days after implantation, but did not expand to the Corti-organ. After IL-1β stimulation, olfactory epithelial stem cell increased their secretion of NGF and NT-3 (p<0.05), but not that of NT-4. TUNEL assay results revealed that oe-NSCs co-culturing with injured neurons reduced the apoptotic cell death induced by hydrogen peroxide. CONCLUSION After transplantation into the inner ear, oe-NSCs not only survived, but also migrated around the spiral ganglion neurons (SGNs) in Rosenthal's canal (RC). Hearing loss induced by noise exposure was restored after oe-NSCs implantation. Mechanically, oe-NSCs secreted NGF and NT-3, which likely contributed to the prevention of neuronal injury. This study provides novel data in support of the effective action of implanted oe-NSCs in the restoration of noise-induced hearing loss in a rat model.
Collapse
Affiliation(s)
- Ya-Ping Xu
- Department of Otolaryngology Head and Neck Surgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xiao-Dong Shan
- Department of Otolaryngology Head and Neck Surgery, No. 463 Military Hospital, Shenyang, China
| | - Yue-Yang Liu
- Department of Otolaryngology Head and Neck Surgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yu Pu
- Department of Otolaryngology Head and Neck Surgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Cheng-Yu Wang
- Department of Otolaryngology Head and Neck Surgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Qi-Lei Tao
- Department of Otolaryngology Head and Neck Surgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yue Deng
- Department of Otolaryngology Head and Neck Surgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yin Cheng
- Department of Otolaryngology Head and Neck Surgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jing-Ping Fan
- Department of Otolaryngology Head and Neck Surgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
17
|
Sundaresan S, Kong JH, Fang Q, Salles FT, Wangsawihardja F, Ricci AJ, Mustapha M. Thyroid hormone is required for pruning, functioning and long-term maintenance of afferent inner hair cell synapses. Eur J Neurosci 2015; 43:148-61. [PMID: 26386265 DOI: 10.1111/ejn.13081] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 09/09/2015] [Accepted: 09/14/2015] [Indexed: 12/16/2022]
Abstract
Functional maturation of afferent synaptic connections to inner hair cells (IHCs) involves pruning of excess synapses formed during development, as well as the strengthening and survival of the retained synapses. These events take place during the thyroid hormone (TH)-critical period of cochlear development, which is in the perinatal period for mice and in the third trimester for humans. Here, we used the hypothyroid Snell dwarf mouse (Pit1(dw)) as a model to study the role of TH in afferent type I synaptic refinement and functional maturation. We observed defects in afferent synaptic pruning and delays in calcium channel clustering in the IHCs of Pit1(dw) mice. Nevertheless, calcium currents and capacitance reached near normal levels in Pit1(dw) IHCs by the age of onset of hearing, despite the excess number of retained synapses. We restored normal synaptic pruning in Pit1(dw) IHCs by supplementing with TH from postnatal day (P)3 to P8, establishing this window as being critical for TH action on this process. Afferent terminals of older Pit1(dw) IHCs showed evidence of excitotoxic damage accompanied by a concomitant reduction in the levels of the glial glutamate transporter, GLAST. Our results indicate that a lack of TH during a critical period of inner ear development causes defects in pruning and long-term homeostatic maintenance of afferent synapses.
Collapse
Affiliation(s)
- Srividya Sundaresan
- Department of Otolaryngology-Head & Neck Surgery, Stanford University, 300 Pasteur Drive, Room R111A, Stanford, CA, 94035, USA
| | - Jee-Hyun Kong
- Department of Otolaryngology-Head & Neck Surgery, Stanford University, 300 Pasteur Drive, Room R111A, Stanford, CA, 94035, USA
| | - Qing Fang
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Felipe T Salles
- Department of Otolaryngology-Head & Neck Surgery, Stanford University, 300 Pasteur Drive, Room R111A, Stanford, CA, 94035, USA
| | - Felix Wangsawihardja
- Department of Otolaryngology-Head & Neck Surgery, Stanford University, 300 Pasteur Drive, Room R111A, Stanford, CA, 94035, USA
| | - Anthony J Ricci
- Department of Otolaryngology-Head & Neck Surgery, Stanford University, 300 Pasteur Drive, Room R111A, Stanford, CA, 94035, USA
| | - Mirna Mustapha
- Department of Otolaryngology-Head & Neck Surgery, Stanford University, 300 Pasteur Drive, Room R111A, Stanford, CA, 94035, USA
| |
Collapse
|
18
|
Neuronal erythropoietin overexpression protects mice against age-related hearing loss (presbycusis). Neurobiol Aging 2015; 36:3278-3287. [PMID: 26364734 DOI: 10.1016/j.neurobiolaging.2015.08.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 08/12/2015] [Accepted: 08/13/2015] [Indexed: 11/21/2022]
Abstract
So far, typical causes of presbycusis such as degeneration of hair cells and/or primary auditory (spiral ganglion) neurons cannot be treated. Because erythropoietin's (Epo) neuroprotective potential has been shown previously, we determined hearing thresholds of juvenile and aged mice overexpressing Epo in neuronal tissues. Behavioral audiometry revealed in contrast to 5 months of age, that 11-month-old Epo-transgenic mice had up to 35 dB lower hearing thresholds between 1.4 and 32 kHz, and at the highest frequencies (50-80 kHz), thresholds could be obtained in aged Epo-transgenic only but not anymore in old C57BL6 control mice. Click-evoked auditory brainstem response showed similar results. Numbers of spiral ganglion neurons in aged C57BL6 but not Epo-transgenic mice were dramatically reduced mainly in the basal turn, the location of high frequencies. In addition, there was a tendency to better preservation of inner and outer hair cells in Epo-transgenic mice. Hence, Epo's known neuroprotective action effectively suppresses the loss of spiral ganglion cells and probably also hair cells and, thus, development of presbycusis in mice.
Collapse
|
19
|
Jensen JB, Lysaght AC, Liberman MC, Qvortrup K, Stankovic KM. Immediate and delayed cochlear neuropathy after noise exposure in pubescent mice. PLoS One 2015; 10:e0125160. [PMID: 25955832 PMCID: PMC4425526 DOI: 10.1371/journal.pone.0125160] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 03/20/2015] [Indexed: 12/12/2022] Open
Abstract
Moderate acoustic overexposure in adult rodents is known to cause acute loss of synapses on sensory inner hair cells (IHCs) and delayed degeneration of the auditory nerve, despite the completely reversible temporary threshold shift (TTS) and morphologically intact hair cells. Our objective was to determine whether a cochlear synaptopathy followed by neuropathy occurs after noise exposure in pubescence, and to define neuropathic versus non-neuropathic noise levels for pubescent mice. While exposing 6 week old CBA/CaJ mice to 8-16 kHz bandpass noise for 2 hrs, we defined 97 dB sound pressure level (SPL) as the threshold for this particular type of neuropathic exposure associated with TTS, and 94 dB SPL as the highest non-neuropathic noise level associated with TTS. Exposure to 100 dB SPL caused permanent threshold shift although exposure of 16 week old mice to the same noise is reported to cause only TTS. Amplitude of wave I of the auditory brainstem response, which reflects the summed activity of the cochlear nerve, was complemented by synaptic ribbon counts in IHCs using confocal microscopy, and by stereological counts of peripheral axons and cell bodies of the cochlear nerve from 24 hours to 16 months post exposure. Mice exposed to neuropathic noise demonstrated immediate cochlear synaptopathy by 24 hours post exposure, and delayed neurodegeneration characterized by axonal retraction at 8 months, and spiral ganglion cell loss at 8-16 months post exposure. Although the damage was initially limited to the cochlear base, it progressed to also involve the cochlear apex by 8 months post exposure. Our data demonstrate a fine line between neuropathic and non-neuropathic noise levels associated with TTS in the pubescent cochlea.
Collapse
Affiliation(s)
- Jane Bjerg Jensen
- Eaton-Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA, 02114, United States of America
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA, 02115, United States of America
- Department of Biomedical Sciences, CFIM, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Andrew C. Lysaght
- Eaton-Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA, 02114, United States of America
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA, 02115, United States of America
- Program in Speech and Hearing Bioscience and Technology, Division of Health Science and Technology, Harvard and Massachusetts Institute of Technology, Boston, MA, 02139, United States of America
| | - M. Charles Liberman
- Eaton-Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA, 02114, United States of America
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA, 02115, United States of America
- Program in Speech and Hearing Bioscience and Technology, Division of Health Science and Technology, Harvard and Massachusetts Institute of Technology, Boston, MA, 02139, United States of America
| | - Klaus Qvortrup
- Department of Biomedical Sciences, CFIM, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Konstantina M. Stankovic
- Eaton-Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA, 02114, United States of America
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA, 02115, United States of America
- Program in Speech and Hearing Bioscience and Technology, Division of Health Science and Technology, Harvard and Massachusetts Institute of Technology, Boston, MA, 02139, United States of America
- * E-mail:
| |
Collapse
|
20
|
Nouvian R, Eybalin M, Puel JL. Cochlear efferents in developing adult and pathological conditions. Cell Tissue Res 2015; 361:301-9. [DOI: 10.1007/s00441-015-2158-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/19/2015] [Indexed: 10/23/2022]
|
21
|
Hu Y, Zhou LQ, Lu HT, Yuan K, Gong SS. Excitotoxic effects of glutamate on cochlear organotypic cultures. ACTA ACUST UNITED AC 2015; 35:117-121. [PMID: 25673204 DOI: 10.1007/s11596-015-1399-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 12/30/2014] [Indexed: 11/30/2022]
Abstract
Glutamate (Glu) is the major afferent excitatory neurotransmitter in the auditory system, and excessive Glu may play an important role in cochlear dysfunction. It is unclear how excessive Glu plays roles in cochlear dysfunction in cochlear organotypic cultures. In this study neonatal rat cochlear organotypic cultures were prepared, and then the cochlear tissues were incubated with a new medium containing specific concentrations of Glu (0.1, 0.5, 1, 10 or 20 mmol/L) for 24 h, or incubated with the medium containing a concentration of 20 mmol/L Glu for 6, 12, 24 or 72 h, respectively. It was found that when the cochlear tissues were cultured for 24 h, the inner hair cells (IHCs) were damaged at the concentration of 0.5 mmol/L Glu, and with the increases of the concentrations, the injury was gradually aggravated, and 20 mmol/L Glu resulted in the significant loss of IHCs. In the 20 mmol/L Glu groups, the stereocilia bundles were missing or disarrayed on a few IHCs after culture for 6 h and the damage effect was time-dependent. The missing of IHCs was more significant in the basal turn of the cochlea than in the middle turn of the cochlea under the same concentration of Glu exposure. These results suggest that excessive exogenous Glu affects the morphology of IHCs, but not affects the outer hair cells (OHCs) in cochlear organotypic cultures, and the excitotoxic effects are different on IHCs of different parts of the cochlea under the same concentration of Glu exposure.
Collapse
Affiliation(s)
- Yao Hu
- Department of Otolaryngology-Head and Neck Surgery, Wuhan Central Hospital, Wuhan, 430014, China
| | - Liu-Qing Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hai-Tao Lu
- Department of Otorhinolaryngology, Jingzhou Central Hospital, Jingzhou, 434020, China
| | - Kun Yuan
- Department of Otolaryngology-Head and Neck Surgery, Wuhan Central Hospital, Wuhan, 430014, China.
| | - Shu-Sheng Gong
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Beijing Tongren Hospital of Capital Medical University and Beijing Institute of Otolaryngology, Beijing, 100069, China.
| |
Collapse
|
22
|
Postnatal expression of neurotrophic factors accessible to spiral ganglion neurons in the auditory system of adult hearing and deafened rats. J Neurosci 2014; 34:13110-26. [PMID: 25253857 DOI: 10.1523/jneurosci.1014-14.2014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Spiral ganglion neurons (SGNs) receive input from cochlear hair cells and project from the cochlea to the cochlear nucleus. After destruction of hair cells with aminoglycoside antibiotics or noise, SGNs gradually die. It has been assumed that SGN death is attributable to loss of neurotrophic factors (NTFs) derived from hair cells or supporting cells in the organ of Corti (OC). We used quantitative PCR (qPCR) to assay NTF expression-neurotrophin-3 (NT-3), BDNF, GDNF, neurturin, artemin, and CNTF-in the OC and cochlear nucleus at various ages from postnatal day 0 (P0) to P90 in control hearing and neonatally deafened rats. NT-3, neurturin, and CNTF were most abundant in the postnatal hearing OC; CNTF and neurturin most abundant in the cochlear nucleus. In the OC, NT-3 and CNTF showed a postnatal increase in expression approximately concomitant with hearing onset. In rats deafened by daily kanamycin injections (from P8 to P16), surviving inner hair cells were evident at P16 but absent by P19, with most postsynaptic boutons lost before P16. NT-3 and CNTF, which normally increase postnatally, had significantly reduced expression in the OC of deafened rats, although CNTF was expressed throughout the time that SGNs were dying. In contrast, neurturin expression was constant, unaffected by deafening or by age. CNTF and neurturin expression in the cochlear nucleus was unaffected by deafening or age. Thus, NTFs other than NT-3 are available to SGNs even as they are dying after deafening, apparently conflicting with the hypothesis that SGN death is attributable to lack of NTFs.
Collapse
|
23
|
Abstract
OBJECTIVE To review new insights into the pathophysiology of sensorineural hearing impairment. Specifically, we address defects of the ribbon synapses between inner hair cells and spiral ganglion neurons that cause auditory synaptopathy. DATA SOURCES AND STUDY SELECTION Here, we review original publications on the genetics, animal models, and molecular mechanisms of hair cell ribbon synapses and their dysfunction. CONCLUSION Hair cell ribbon synapses are highly specialized to enable indefatigable sound encoding with utmost temporal precision. Their dysfunctions, which we term auditory synaptopathies, impair audibility of sounds to varying degrees but commonly affect neural encoding of acoustic temporal cues essential for speech comprehension. Clinical features of auditory synaptopathies are similar to those accompanying auditory neuropathy, a group of genetic and acquired disorders of spiral ganglion neurons. Genetic auditory synaptopathies include alterations of glutamate loading of synaptic vesicles, synaptic Ca influx or synaptic vesicle turnover. Acquired synaptopathies include noise-induced hearing loss because of excitotoxic synaptic damage and subsequent gradual neural degeneration. Alterations of ribbon synapses likely also contribute to age-related hearing loss.
Collapse
|
24
|
Sahley TL, Hammonds MD, Musiek FE. Endogenous dynorphins, glutamate and N-methyl-d-aspartate (NMDA) receptors may participate in a stress-mediated Type-I auditory neural exacerbation of tinnitus. Brain Res 2013; 1499:80-108. [DOI: 10.1016/j.brainres.2013.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 01/03/2013] [Accepted: 01/04/2013] [Indexed: 12/12/2022]
|
25
|
Momin SR, Melki SJ, Obokhare JO, Fares SA, Semaan MT, Megerian CA. Hearing preservation in Guinea pigs with long-standing endolymphatic hydrops. Otol Neurotol 2011; 32:1583-9. [PMID: 22015942 PMCID: PMC3220888 DOI: 10.1097/mao.0b013e3182382a64] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
HYPOTHESIS Interruption of the excitotoxic and inflammatory pathways implicated in endolymphatic hydrops (ELH)-associated hearing loss (HL) should afford hearing protection at the neuronal level. BACKGROUND Previous work in our laboratory in the mouse model of ELH shows that dimethyl sulfoxide (DMSO), an anti-inflammatory solvent, can slow the progression of HL before neuronal degeneration occurs. Riluzole, a glutamate release inhibitor, may provide synergistic benefit. This study was designed to quantify the effects of DMSO and riluzole in a long-term model. METHODS Guinea pigs with surgically induced ELH were sorted into 3 groups: riluzole+DMSO (Group 1), DMSO alone (Group 2), and untreated controls (Group 3). Animals in Groups 1 and 2 received daily injections of the study drug(s). All animals underwent auditory-evoked brainstem response evaluation every 4 weeks until 24 weeks, when they were sacrificed. Cochleae were preserved; spiral ganglion density was quantified. Animals without hydrops were excluded from the study as surgical failures. RESULTS Animals from all groups developed unilateral HL. At the end of the experiment, HL was significantly lower in Group 1 relative to Group 3 (p = 0.049) and trended toward lower in Group 2 relative to Group 3 (p = 0.097). Groups 1 and 2 were not different (p = 0.311). At the cellular level, there is no evidence of neuronal degeneration in either treated group, whereas there is a significant neuronal degeneration in the untreated group. CONCLUSION These results confirm the hearing protection observed with DMSO in short-term studies. However, unlike the previous study, which showed no additive benefit to riluzole, the combined treatment group in this study showed a hearing-protective effect at 24 weeks. This indicates a potential additive benefit conferred by riluzole toward long-term hearing protection. The study also finds evidence of statistically significant neuronal protection with both treatment groups. Overall, study provides additional evidence that DMSO and riluzole may preserve or slow the long-term progression of ELH-associated HL.
Collapse
Affiliation(s)
- Suhael R. Momin
- Department of Otolaryngology-Head and Neck Surgery, University Hospitals Case Medical Center
| | - Sami J. Melki
- Department of Otolaryngology-Head and Neck Surgery, University Hospitals Case Medical Center
| | - Joy O. Obokhare
- Department of Otolaryngology-Head and Neck Surgery, University Hospitals Case Medical Center
| | - Souha A. Fares
- Department of Biostatistics and Epidemiology, Case Western Reserve University Cleveland, Ohio
| | - Maroun T. Semaan
- Department of Otolaryngology-Head and Neck Surgery, University Hospitals Case Medical Center
| | - Cliff A. Megerian
- Department of Otolaryngology-Head and Neck Surgery, University Hospitals Case Medical Center
| |
Collapse
|
26
|
|
27
|
Le Prell CG, Yamashita D, Minami SB, Yamasoba T, Miller JM. Mechanisms of noise-induced hearing loss indicate multiple methods of prevention. Hear Res 2007; 226:22-43. [PMID: 17141991 PMCID: PMC1995566 DOI: 10.1016/j.heares.2006.10.006] [Citation(s) in RCA: 239] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2006] [Revised: 10/05/2006] [Accepted: 10/24/2006] [Indexed: 12/20/2022]
Abstract
Recent research has shown the essential role of reduced blood flow and free radical formation in the cochlea in noise-induced hearing loss (NIHL). The amount, distribution, and time course of free radical formation have been defined, including a clinically significant late formation 7-10 days following noise exposure, and one mechanism underlying noise-induced reduction in cochlear blood flow has finally been identified. These new insights have led to the formulation of new hypotheses regarding the molecular mechanisms of NIHL; and, from these, we have identified interventions that prevent NIHL, even with treatment onset delayed up to 3 days post-noise. It is essential to now assess the additive effects of agents intervening at different points in the cell death pathway to optimize treatment efficacy. Finding safe and effective interventions that attenuate NIHL will provide a compelling scientific rationale to justify human trials to eliminate this single major cause of acquired hearing loss.
Collapse
Affiliation(s)
- Colleen G Le Prell
- Kresge Hearing Research Institute, University of Michigan, 1301 East Ann Street, Ann Arbor, MI 48109-0506, USA.
| | | | | | | | | |
Collapse
|
28
|
Ruel J, Wang J, Rebillard G, Eybalin M, Lloyd R, Pujol R, Puel JL. Physiology, pharmacology and plasticity at the inner hair cell synaptic complex. Hear Res 2006; 227:19-27. [PMID: 17079104 DOI: 10.1016/j.heares.2006.08.017] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Revised: 04/14/2006] [Accepted: 08/30/2006] [Indexed: 02/07/2023]
Abstract
This report summarizes recent neuropharmacological data at the IHC afferent/efferent synaptic complex: the type of Glu receptors and transporter involved and the modulation of this fast synaptic transmission by the lateral efferents. Neuropharmacological data were obtained by coupling the recording of cochlear potentials and single unit of the auditory nerve with intra-cochlear applications of drugs (multi-barrel pipette). We also describe the IHC afferent/efferent functioning in pathological conditions. After acoustic trauma or ischemia, acute disruption of IHC-auditory dendrite synapses are seen. However, a re-growth of the nerve fibres and a re-afferentation of the IHC were completely done 5 days after injury. During this synaptic repair, multiple presynaptic bodies were commonly found, either linked to the membrane or "floating" in ectopic positions. In the meantime, the lateral efferents directly contact the IHCs. The demonstration that NMDA receptors blockade delayed the re-growth of neurites suggests a neurotrophic role of NMDA receptors in pathological conditions.
Collapse
Affiliation(s)
- Jérôme Ruel
- INSERM U583-INM, Hôpital Saint Eloi, 80 Avenue Augustin Fliche, BP 74103, 34091 Montpellier cedex 5, France
| | | | | | | | | | | | | |
Collapse
|
29
|
Megerian CA. Diameter of the Cochlear Nerve in Endolymphatic Hydrops: Implications for the Etiology of Hearing Loss in Ménière's Disease. Laryngoscope 2005; 115:1525-35. [PMID: 16148690 DOI: 10.1097/01.mlg.0000167804.82950.9e] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE/HYPOTHESIS Endolymphatic hydrops (ELH) is an important histopathological hallmark of Ménière's disease. Experimental data from human temporal bones as well as animal models of the disorder have generally failed to determine the mechanism by which ELH or related pathology causes hearing loss. Hair cell and spiral ganglion cell counts in both human and animal case studies have not, for the most part, shown severe enough deterioration to explain associated severe sensorineural hearing loss. However a limited number of detailed ultrastructural studies have demonstrated significant reductions in dendritic innervation densities, raising the possibility that neurotoxicity plays an important role in the pathology of Ménière's disease (MD) as well as experimental endolymphatic hydrops (ELH). This study tests the hypothesis that neurotoxicity is an important primary mediator of injury to the hydropic ear and is reflected in measurable deterioration of the cochlear nerve in the animal model of ELH. This study also explores the previously presented hypothesis that cochlear injury in ELH is mediated through the actions of nitric oxide (NO) by evaluating whether hearing loss or various measures of cochlear damage can be ameliorated by administration of an agent that limits excess production of NO. STUDY DESIGN Part one of the project involves the surgical induction of endolymphatic hydrops and correlation of long term hearing loss with histological parameters of ELH severity as well as cochlear nerve and eighth cranial nerve diameter measurements. In part two, aminoguanidine is administered orally to a separate set of hydropic animals in an attempt to limit cochlear injury presumably mediated by NO. METHODS Guinea pigs are subjected to surgical induction of unilateral endolymphatic hydrops after establishing baseline ABR thresholds at 2, 4, 8, 16, and 32 kHz. Threshold shifts are established prior to sacrifice at 4 to 6 months and temporal bones processed for light microscopy. Measurements of cochlear nerve and eighth cranial nerve maximal diameters as well as average maximal diameters are carried out and correlated to hearing loss and a semi-quantitative measure of hydrops severity. The identical experiments are carried out in animals treated with aminoguanidine, an inhibitor of inducible nitric oxide synthase. RESULTS : The mean maximal diameter (n = 14) of the hydropic cochlear nerve was significantly reduced (432.14 +/- 43.18 vs. 479.28 +/- 49.22 microns, P = .0025) as compared to the control nerve. This was also seen in measures of the eighth cranial nerve (855.71 +/- 108.82 vs. 929 +/- 81.53 microns, P = 0.0003). Correlation studies failed to show correlation between hydrops severity and a cochlear nerve deterioration index (r = -0.0614, P = .8348). Similarly, hearing loss severity failed to correlate with cochlear nerve deterioration (r = 0.1300, P = .6577). There was a significant correlation between hearing loss and hydrops severity (r = 0.6148, P = .0193). Aminoguanidine treated animals (n = 5) also sustained nerve deterioration to the same degree as non-treated animals and there appeared to be no protective effect (at the dosage administered) against ELH related hearing loss, hydrops formation, or nerve deterioration. CONCLUSION ELH results in significant deterioration of cochlear nerve and eighth cranial nerve maximal diameters in the guinea pig model. These findings are in accord with previous studies which detected ultrastructural evidence of dendritic damage and indicate that neural injury is of sufficient severity to result in light microscopic evidence of cochlear nerve and eighth cranial nerve deterioration. These data support the concept that the principle pathological insult in ELH is a form of neurotoxicity, especially in light of previous studies which indicate relative preservation of hair cells at similar points in time. The lack of correlation between the severity of hydrops and nerve deterioration suggests that nerve deterioration is independent of hydrops severity.
Collapse
Affiliation(s)
- Cliff A Megerian
- Department of Otolaryngology-Head Neck Surgery, University Hospitals of Cleveland, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH 44106, USA
| |
Collapse
|
30
|
Seidman MD, Vivek P. Intratympanic treatment of hearing loss with novel and traditional agents. Otolaryngol Clin North Am 2005; 37:973-90. [PMID: 15474105 DOI: 10.1016/j.otc.2004.03.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
As knowledge of the cellular and molecular pathophysiology behind otopathologies expands, the possibility exists of preventing sensorineural hearing loss and perhaps reversing the loss. Cellular and molecular mechanisms seem to be similar in hearing loss secondary to aging, drug ototoxicity, noise, or other mechanisms. A final common pathway may hinge upon apoptosis. It is likely that anti-apoptotic factors will increasingly be realized as an important intervention strategy for sensorineural hearing loss. Furthermore, it is also possible that mounting a staged attack at the various regions in the pathway leading to cellular damage using a combination of several protective substances such as steroids, antioxidants, neurotrophic factors, anti-apoptotic compounds, and mitochondrial enhancers may prevent hearing loss and even reverse it in some situations. This article has presented some of the molecular and cellular mechanisms for hearing loss and potential ways of treating them. In theory, the delivery of these medications to the inner ear transtympanically would decrease systemic side effects and be more target specific. Because most of the studies conducted to date have been animal studies, randomized, double-blind, placebo-controlled clinical trials would be necessary before the use of these therapies becomes common practice.
Collapse
Affiliation(s)
- Michael D Seidman
- Department of Otolaryngology-Head and Neck Surgery, Henry Ford Medical Center, 2799 West Grand Boulevard, Detroit, MI 48202, USA.
| | | |
Collapse
|
31
|
Irons-Brown SR, Jones TA. Effects of selected pharmacological agents on avian auditory and vestibular compound action potentials. Hear Res 2005; 195:54-66. [PMID: 15350279 DOI: 10.1016/j.heares.2004.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2004] [Accepted: 02/27/2004] [Indexed: 11/24/2022]
Abstract
Glutamate is currently the consensus candidate for the hair cell transmitter in the inner ear of vertebrates. However, other candidate transmitter systems have been proposed and there may be differences in this regard for auditory and vestibular neuroepithelia. In the present study, perilymphatic perfusion was used to deliver prescribed concentrations of ten drugs to the interstitial fluids of the inner ear of hatchling chickens (n = 124). Dose-response curves were obtained for four of these pharmacological agents. The work was carried out in part to distinguish further the neuroepithelial chemical receptors mediating auditory and vestibular compound action potentials (CAPs). Kainic acid (KA) eliminated both auditory and vestibular responses. D-alpha-Aminoadipic acid (DAA) and dizocilpine maleate (MK-801), both NMDA-specific antagonists, failed to alter vestibular CAPs at any concentration. MK-801 significantly and selectively reduced auditory CAPs at concentrations equal to or greater than 1 mM. Similarly, kynurenic acid (4-hydroxyquinoline-2-carboxylic acid, 1 mM), a glutamate antagonist, significantly reduced auditory but not vestibular CAPs. A non-NMDA glutamate receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), reduced vestibular CAPs significantly but only at the highest concentration tested (1 mM). In contrast, CNQX reduced auditory responses at concentration as low as 1 microM. The CNQX concentration effective in reducing auditory CAPs by 50% (EC(50)) was approximately 20 microM. Glutamate (1 mM) as well as alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA), a glutamate agonist, significantly reduced auditory CAPs (AMPA EC(50)=100 microM). Bicuculline, a GABA(A) receptor antagonist, and L-NAME, a nitric oxide synthase inhibitor, failed to alter responses from either modality. These findings support the hypothesis that glutamate receptors mediate auditory CAPs in birds. However, the results underscore a remarkable difference in sensitivity of the vestibular neuroepithelium (here gravity receptors) to non-NMDA receptor antagonists. The basis of the vestibular insensitivity to glutamate blockers is unknown but it may reflect differences in receptors themselves, differences in the transmission modes available to vestibular synapses or differences in the access of compounds to vestibular neuroepithelial receptors from the interstitial-perilymphatic fluid spaces.
Collapse
Affiliation(s)
- Shunda R Irons-Brown
- Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, Columbia, MO 65212, USA
| | | |
Collapse
|
32
|
Le Prell CG, Yagi M, Kawamoto K, Beyer LA, Atkin G, Raphael Y, Dolan DF, Bledsoe SC, Moody DB. Chronic excitotoxicity in the guinea pig cochlea induces temporary functional deficits without disrupting otoacoustic emissions. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2004; 116:1044-56. [PMID: 15376671 DOI: 10.1121/1.1772395] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Brief cochlear excitotoxicity produces temporary neural swelling and transient deficits in auditory sensitivity; however, the consequences of long-lasting excitotoxic insult have not been tested. Chronic intra-cochlear infusion of the glutamate agonist AMPA (a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) resulted in functional deficits in the sound-evoked auditory brainstem response, as well as in behavioral measures of hearing. The electrophysiological deficits were similar to those observed following acute infusion of AMPA into the cochlea; however, the concentration-response curve was significantly shifted as a consequence of the slower infusion rate used with chronic cochlear administration. As observed following acute excitotoxic insult, complete functional recovery was evident within 7 days of discontinuing the AMPA infusion. Distortion product otoacoustic emissions were not affected by chronic AMPA infusion, suggesting that trauma to outer hair cells did not contribute to AMPA-induced deficits in acoustic sensitivity. Results from the current experiment address the permanence of deficits induced by chronic (14 day) excitotoxic insult as well as deficits in psychophysical detection of longer duration acoustic signals.
Collapse
Affiliation(s)
- Colleen G Le Prell
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0506, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kopke RD, Coleman JKM, Liu J, Campbell KCM, Riffenburgh RH. Candidate's thesis: enhancing intrinsic cochlear stress defenses to reduce noise-induced hearing loss. Laryngoscope 2002; 112:1515-32. [PMID: 12352659 DOI: 10.1097/00005537-200209000-00001] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVES/HYPOTHESIS Oxidative stress plays a substantial role in the genesis of noise-induced cochlear injury that causes permanent hearing loss. We present the results of three different approaches to enhance intrinsic cochlear defense mechanisms against oxidative stress. This article explores, through the following set of hypotheses, some of the postulated causes of noise-induced cochlear oxidative stress (NICOS) and how noise-induced cochlear damage may be reduced pharmacologically. 1) NICOS is in part related to defects in mitochondrial bioenergetics and biogenesis. Therefore, NICOS can be reduced by acetyl-L carnitine (ALCAR), an endogenous mitochondrial membrane compound that helps maintain mitochondrial bioenergetics and biogenesis in the face of oxidative stress. 2) A contributing factor in NICOS injury is glutamate excitotoxicity, which can be reduced by antagonizing the action of cochlear -methyl-D-aspartate (NMDA) receptors using carbamathione, which acts as a glutamate antagonist. 3) Noise-induced hearing loss (NIHL) may be characterized as a cochlear-reduced glutathione (GSH) deficiency state; therefore, strategies to enhance cochlear GSH levels may reduce noise-induced cochlear injury. The objective of this study was to document the reduction in noise-induced hearing and hair cell loss, following application of ALCAR, carbamathione, and a GSH repletion drug D-methionine (MET), to a model of noise-induced hearing loss. STUDY DESIGN This was a prospective, blinded observer study using the above-listed agents as modulators of the noise-induced cochlear injury response in the species chinchilla langier. METHODS Adult chinchilla langier had baseline-hearing thresholds determined by auditory brainstem response (ABR) recording. The animals then received injections of saline or saline plus active experimental compound starting before and continuing after a 6-hour 105 dB SPL continuous 4-kHz octave band noise exposure. ABRs were obtained immediately after noise exposure and weekly for 3 weeks. After euthanization, cochlear hair cell counts were obtained and analyzed. RESULTS ALCAR administration reduced noise-induced threshold shifts. Three weeks after noise exposure, no threshold shift at 2 to 4 kHz and <10 dB threshold shifts were seen at 6 to 8 kHz in ALCAR-treated animals compared with 30 to 35 dB in control animals. ALCAR treatment reduced both inner and outer hair cell loss. OHC loss averaged <10% for the 4- to 10-kHz region in ALCAR-treated animals and 60% in saline-injected-noise-exposed control animals. Noise-induced threshold shifts were also reduced in carbamathione-treated animals. At 3 weeks, threshold shifts averaged 15 dB or less at all frequencies in treated animals and 30 to 35 dB in control animals. Averaged OHC losses were 30% to 40% in carbamathione-treated animals and 60% in control animals. IHC losses were 5% in the 4- to 10-kHz region in treated animals and 10% to 20% in control animals. MET administration reduced noise-induced threshold shifts. ANOVA revealed a significant difference (P <.001). Mean OHC and IHC losses were also significantly reduced (P <.001). CONCLUSIONS These data lend further support to the growing body of evidence that oxidative stress, generated in part by glutamate excitotoxicity, impaired mitochondrial function and GSH depletion causes cochlear injury induced by noise. Enhancing the cellular oxidative stress defense pathways in the cochlea eliminates noise-induced cochlear injury. The data also suggest strategies for therapeutic intervention to reduce NIHL clinically.
Collapse
Affiliation(s)
- Richard D Kopke
- Department of Defence Spatial Orientation Center, Naval Medical Center San Diego, California 92134, USA.
| | | | | | | | | |
Collapse
|
34
|
Hoya N, Ogawa K, Inoue Y, Takiguchi Y, Kanzaki J. The glutamate receptor agonist, AMPA, induces acetylcholine release in guinea pig cochlea; a microdialysis study. Neurosci Lett 2001; 311:206-8. [PMID: 11578830 DOI: 10.1016/s0304-3940(01)02165-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Acetylcholine (Ach) has been considered a major neurotransmitter in the inner ear efferent nerve endings. A bioassay analysis has shown that the electrical stimulation of the crossed olivocochlear bundle increased the Ach-like activity in the perilymph. Applying in vivo microdialysis techniques and high-performance liquid chromatography to the perilymph, the change of Ach level was thus measured before and after alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA), a glutamate receptor agonist, was added to the perfusate. Ach was only detectable when the perfusate contained an acetylcholinesterase inhibitor. The level of Ach increased 2-3-fold immediately after AMPA was administered. Our data suggest that the afferent stimulation, such as the administration of AMPA, may therefore induce the release of Ach from the efferent nerve endings.
Collapse
Affiliation(s)
- N Hoya
- Department of Otolaryngology, School of Medicine Keio University, 35 Shinanomachi, Shinjuku-Ku, Tokyo 160-5258, Japan.
| | | | | | | | | |
Collapse
|
35
|
Ruel J, Nouvian R, Gervais d'Aldin C, Pujol R, Eybalin M, Puel JL. Dopamine inhibition of auditory nerve activity in the adult mammalian cochlea. Eur J Neurosci 2001; 14:977-86. [PMID: 11595036 DOI: 10.1046/j.0953-816x.2001.01721.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Efferent feedback systems provide a means for modulating the input to the central nervous system. The lateral olivocochlear efferents modulate auditory nerve activity via synapses with afferent dendrites below sensory inner hair cells. We examined the effects of dopamine, one of the lateral olivocochlear neurotransmitters, by recording compound and single unit activity from the auditory nerve in adult guinea pigs. Intracochlear application of dopamine reduced the compound action potential (CAP) of the auditory nerve, increased the thresholds and decreased the spontaneous and driven discharge rates of the single unit fibres without changing their frequency-tuning properties. Surprisingly, dopamine antagonists SCH-23390 and eticlopride decreased CAP amplitude as did dopamine. In some units, both SCH-23390 and eticlopride increased the basal activity of auditory nerve fibres leading to an improvement of threshold sensitivity and a decrease of the maximum driven discharge rates to sound. In other units, the increase in firing rate was immediately followed by a marked reduction to values below predrug rates. Because CAP reflects the summed activity of auditory nerve fibres discharging in synchrony, both the decrease in sound-driven discharge rate and the postexcitatory reduction account for the reduction in CAP. Ultrastructural examination of the cochleas perfused with eticlopride showed that some of the afferent dendrites were swollen, suggesting that the marked reduction in firing rate may reflect early signs of excitotoxicity. Results suggest that dopamine may exert a tonic inhibition of the auditory nerve activity. Removal of this tonic inhibition results in the development of early signs of excitotoxicity.
Collapse
Affiliation(s)
- J Ruel
- INSERM UMR. 254 and Université de Montpellier 1, Laboratoire de Neurobiologie de l'Audition, 71 rue de Navacelles, 34090 Montpellier, France
| | | | | | | | | | | |
Collapse
|
36
|
Hyodo J, Hakuba N, Koga K, Watanabe F, Shudou M, Taniguchi M, Gyo K. Hypothermia reduces glutamate efflux in perilymph following transient cochlear ischemia. Neuroreport 2001; 12:1983-7. [PMID: 11435934 DOI: 10.1097/00001756-200107030-00041] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The effect of hypothermia on ischemic injury of the cochlea in gerbils was studied with particular regard to glutamate efflux in the perilymph. Under normothermic conditions interruption of the blood supply to the cochlea for 15 min caused a remarkable elevation of the compound action potential (CAP) threshold, and an increase in perilymphatic glutamate. The CAP threshold recovered to some extent with reperfusion, but not to preischemic levels. CAP thresholds, under hypothermic conditions and with reperfusion, recovered promptly to near pre-ischemic levels, while glutamate concentration did not change. These results, together with electron microscopy studies, suggest that hypothermia prevents hearing loss primarily through reduction of glutamate efflux at the synopses between inner hair cells and primary afferent auditory neurons.
Collapse
MESH Headings
- Animals
- Cochlea/pathology
- Cochlea/physiopathology
- Cochlea/ultrastructure
- Cochlear Diseases/pathology
- Cochlear Diseases/physiopathology
- Cochlear Diseases/therapy
- Deafness/metabolism
- Deafness/physiopathology
- Deafness/therapy
- Disease Models, Animal
- Female
- Gerbillinae
- Glutamic Acid/metabolism
- Hair Cells, Auditory, Inner/metabolism
- Hair Cells, Auditory, Inner/pathology
- Hair Cells, Auditory, Inner/ultrastructure
- Hypothermia, Induced
- Ischemic Attack, Transient/metabolism
- Ischemic Attack, Transient/physiopathology
- Ischemic Attack, Transient/therapy
- Microscopy, Electron
- Neurons, Afferent/metabolism
- Neurons, Afferent/pathology
- Neurons, Afferent/ultrastructure
- Perilymph/metabolism
- Reperfusion Injury/metabolism
- Reperfusion Injury/physiopathology
- Reperfusion Injury/therapy
- Synapses/metabolism
- Synapses/pathology
- Synapses/ultrastructure
- Vertebrobasilar Insufficiency/metabolism
- Vertebrobasilar Insufficiency/physiopathology
- Vertebrobasilar Insufficiency/therapy
Collapse
Affiliation(s)
- J Hyodo
- Department of Otolaryngology, Ehime University School of Medicine, Shigenobu-cho, Onsen-gun, Ehime 791-0295, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Carricondo F, Gil-Loyzaga P, Sanjuán-Juaristi J, Poch-Broto J. Cochlear microphonic potentials: a new recording technique. Ann Otol Rhinol Laryngol 2001; 110:565-73. [PMID: 11407849 DOI: 10.1177/000348940111000612] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A new instrumentation and a particular method for detecting and recording cochlear microphonic potentials (CMPs) are described here. The CMPs were recorded in rats by means of pure tones (4,000, 2,000, 1,000, 500, and 250 Hz) and intraepidermic electrodes; the electrocochleography technique was avoided. An experimental design that included the use of a glutamatergic agonist (kainic acid [KA]) and an aminoglycoside antibiotic (kanamycin [KANA]) was carried out to demonstrate the origin of the recorded potential. Morphological studies showed that KA selectively eliminated the afferent type I dendrites of the spiral ganglion, while the administration of KANA resulted in the absence of outer hair cells. When CMPs were recorded after KA administration, no alterations were detected. In contrast, KANA administration resulted in the absence of any selective electrophysiological activity corresponding to CMPs. All these results were compared with the recording of the compound action potential of the eighth nerve obtained by electrocochleography. These findings and the great specificity of the reproduction of the sound stimulus confirm that the CMPs can be recorded by the new equipment.
Collapse
Affiliation(s)
- F Carricondo
- Department of Surgery II (Otorhinolaryngology), Faculty of Medicine, Complutense University of Madrid, Spain
| | | | | | | |
Collapse
|
38
|
Reng D, Müller M, Smolders JW. Functional recovery of hearing following ampa-induced reversible disruption of hair cell afferent synapses in the avian inner ear. Audiol Neurootol 2001; 6:66-78. [PMID: 11385180 DOI: 10.1159/000046812] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Hair cells in the avian inner ear can regenerate after acoustic trauma or ototoxic insult, and significant functional recovery from hearing loss occurs. However, small residual deficits remain, possibly as a result of incomplete reestablishment of the hair cell neural synaptic contacts. The aim of the present study was to determine if intracochlear application of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA), an excitotoxic glutamate agonist, causes reversible disruption of hair cell neural contacts in the bird, and to what extent functional recovery occurs if synaptic contacts are reestablished. Compound action potential (CAP) responses to tone bursts were recorded to determine hearing thresholds during a recovery period of up to 4 months. Subsequently, the response properties of single auditory nerve fibers were analyzed in the same animals. Instillation of AMPA into the perilymph of the scala tympani led to immediate abolition of CAP thresholds. Partial recovery occurred over a period of 2-3 weeks, without further improvement of thresholds thereafter. High-frequency thresholds did not reach control values even after 3-4 months of recovery. Single-ganglion cell response properties, obtained 3-4 months after AMPA treatment, showed elevated thresholds at the fiber's characteristic frequency (CF) for units with CF above 0.3 kHz. Sharpness of tuning (Q(10 dB)) was reduced in units with CF above 0.4 kHz. The spontaneous firing rate was higher in units with CF above 0.18 kHz. The maximum sound-evoked discharge rate was also increased. Transmission electron micrographs of the basilar papilla showed that, following AMPA treatment, the nerve endings went through a sequence of swelling, degeneration and recovery over a period of 3-7 days. The process of neosynaptogenesis was completed 14 days after exposure. The present findings are strong evidence for a role of glutamate or a related excitatory amino acid as the afferent transmitter in the avian inner ear. In addition they show that functional recovery after disruption and regeneration of hair cell neural synapses, without apparent damage to the hair cells, is incomplete.
Collapse
Affiliation(s)
- D Reng
- Physiologisches Institut II, Klinikum der J.W.-Goethe-Universität, Frankfurt am Main, Deutschland
| | | | | |
Collapse
|
39
|
Abstract
Acoustic overstimulation is one of the major causes of hearing loss. Glutamate is the most likely candidate neurotransmitter for afferent synapses in the peripheral auditory system, so it was proposed that glutamate excitotoxicity may be involved in noise trauma. However, there has been no direct evidence that noise trauma is caused by excessive release of glutamate from the inner hair cells (IHCs) during sound exposure because studies have been hampered by powerful glutamate uptake systems in the cochlea. GLAST is a glutamate transporter highly expressed in the cochlea. Here we show that after acoustic overstimulation, GLAST-deficient mice show increased accumulation of glutamate in perilymphs, resulting in exacerbation of hearing loss. These results suggest that GLAST plays an important role in keeping the concentration of glutamate in the perilymph at a nontoxic level during acoustic overstimulation. These findings also provide further support for the hypothesis that IHCs use glutamate as a neurotransmitter.
Collapse
|
40
|
Abstract
Kainic acid (KA) selectively damages afferent synapses that innervate, in chickens, mainly tall hair cells. To better understand the nature of KA-induced excitotoxic damage to the cochlear afferent neurons, KA, at two different concentrations (0.3 or 5 mM), was injected directly into the inner ear of adult chickens. Pathologic changes in the afferent nerve ending and cell body were evaluated with light and transmission electron microscopy at various time points after KA application. The compound action potential (CAP) and cochlear microphonic (CM) potential were recorded to monitor the physiologic status of the afferent neurons and hair cells, respectively. Hair cell morphology and function were essentially normal after KA treatment. However, afferent synapses beneath tall hair cells were swollen within 30 minutes after KA at both low (KA-L) and high (KA-H) doses. In the KA-L group, the swelling disappeared within 1 day and the morphology of the postsynaptic region returned to near normal condition. In the KA-H group, by contrast, the vacant region beneath tall hair cells remained evident even 20 weeks after KA. The number of cochlear ganglion neurons in the KA-H group decreased progressively from 1 to 8-20 weeks, whereas hair cells in the basilar papilla remained morphologically intact out to 20 weeks after KA. There was no significant change in neuron number in the KA-L group. Temporal changes in the CAP amplitude paralleled the anatomic changes, although the CAP only partially recovered. These results suggest that KA induces partially reversible damage to cochlear afferent neurons with low KA concentration; above this level, KA triggers irreversible, progressive neurodegeneration.
Collapse
Affiliation(s)
- H Sun
- Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | | | | | | |
Collapse
|
41
|
Abstract
The superior olivary complex (SOC), a group of interrelated brainstem nuclei, sends efferents to a variety of neuronal structures including the cochlea and the inferior colliculus. The present review describes data obtained from rodents providing evidence that the gaseous, short-living neuroactive substance nitric oxide (NO) is produced in the SOC. The NO-synthesizing enzyme neuronal NO-synthase (nNOS) has been localized by means of several methods including histochemistry and immunohistochemistry. Perikarya containing nNOS were found in several nuclei of the SOC. Their largest numbers and percentages of total cells were observed in the medial nucleus of the trapezoid body. Stained terminals were observed mainly in the lateral superior olivary nucleus and in the superior paraolivary nucleus. While retrograde neuronal tracing identified a considerable number of nNOS-immunoreactive neurons as to be part of the olivo-cochlear pathway, the projection patterns of other nNOS-immunoreactive SOC cell groups remain to be investigated. We also review other putative sources of cochlear NO, and discuss the possible role of NO in the lower auditory brainstem and organ of Corti with regard to physiological and pathophysiological mechanisms.
Collapse
Affiliation(s)
- S Reuss
- Department of Anatomy, Johannes Gutenberg-University, D-55099 Mainz, Germany.
| | | |
Collapse
|
42
|
Ruel J, Bobbin RP, Vidal D, Pujol R, Puel JL. The selective AMPA receptor antagonist GYKI 53784 blocks action potential generation and excitotoxicity in the guinea pig cochlea. Neuropharmacology 2000; 39:1959-73. [PMID: 10963740 DOI: 10.1016/s0028-3908(00)00069-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The role of AMPA receptors in cochlear synaptic transmission and excitotoxicity was investigated by comparing the actions of a selective AMPA antagonist GYKI 53784 (LY303070) with additional AMPA/kainate antagonists, GYKI 52466 and DNQX, and the NMDA antagonist, D-AP5, in several electrophysiological, neurotoxicological and histochemical tests. GYKI 53784 had the same potency as DNQX and was 10 times more potent than GYKI 52466 in reducing auditory nerve activity. The NMDA antagonist D-AP5 had no effect on auditory nerve activity. When single-fiber activity was blocked with GYKI 53784, the effects of AMPA or kainate were also antagonized. GYKI 53784 completely blocked excitotoxicity (i.e. destruction of the afferent nerve endings) induced by AMPA and kainate. The histochemical detection of Co(2+) uptake was used to study Ca(2+) influx within the primary auditory nerve cells. Application of AMPA induced no significant Co(2+) uptake into the cells, suggesting that these receptors normally have a very low permeability to Ca(2+). Application of kainate induced significant Co(2+) uptake that was blocked by the AMPA receptor antagonist GYKI 53784 suggesting that kainate stimulated Ca(2+) entry through AMPA receptor channels. Results suggest that AMPA-preferring receptors are functionally located at the sensory cell-afferent synapse whereas NMDA and kainate receptors are not.
Collapse
Affiliation(s)
- J Ruel
- INSERM-UR 254 et Université Montpellier I, Laboratoire de Neurobiologie de l'Audition, 71 rue de Navacelles, 34090 Montpellier, France
| | | | | | | | | |
Collapse
|
43
|
Bailey GP, Sewell WF. Contribution of glutamate receptors to spontaneous and stimulus-evoked discharge in afferent fibers innervating hair cells of the Xenopus lateral line organ. Hear Res 2000; 144:8-20. [PMID: 10831861 DOI: 10.1016/s0378-5955(00)00023-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The relative contributions of NMDA (N-methyl-D-aspartate) and non-NMDA glutamate receptors to spontaneous and stimulus-evoked transmission at the hair cell/afferent fiber synapse were determined in the Xenopus laevis lateral line organ. The non-NMDA receptor antagonist, CNQX (6-cyano-7-nitroquinoxaline-2,3-dione), reversibly reduced both spontaneous and stimulus-evoked discharge rate with an EC(50) of 0.5 microM. NMDA receptor antagonism with the combination of chlorokynurenic acid (100 microM) and elevated magnesium (1.1 mM), or elevated magnesium alone, blocked responses to NMDA without significantly altering spontaneous or stimulus-evoked discharge rate or the responses to kainate. All non-NMDA receptor agonists tested increased discharge rate at low concentrations and, at higher concentrations, increased, then suppressed discharge rate. The EC(50)s were: domoic acid (2.4 mcM)<quisqualic acid (6 mcM)<kainic acid (18 mcM)<AMPA (82 mcM)<<glutamate (1150 mcM). NMDA and ibotenic acid also produced an increase in discharge followed by a suppression, but the suppressive phase of the response predominated and maximum increases in discharge rates were low compared to effects of the non-NMDA agonists. The EC(50)s were: NMDA (148 mcM)<ibotenic acid (463 mcM). The EC(50) for the suppression of afferent discharge that followed the initial excitatory effect was similar to the EC(50) for excitation. Perfusion with active concentrations of kainate, AMPA, or NMDA did not alter the threshold for electrical stimulation of these nerve fibers. We conclude that most of the postsynaptic signal normally seen in afferent fibers is mediated by non-NMDA receptors.
Collapse
Affiliation(s)
- G P Bailey
- Eaton-Peabody Laboratory of Auditory Physiology, Massachusetts Eye and Ear Infirmary, Boston 02114, USA
| | | |
Collapse
|
44
|
Sun H, Salvi RJ, Ding DL, Hashino DE, Shero M, Zheng XY. Excitotoxic effect of kainic acid on chicken otoacoustic emissions and cochlear potentials. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2000; 107:2136-2142. [PMID: 10790039 DOI: 10.1121/1.428495] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Kainic acid (KA) is a potent glutamate analog that can temporarily or permanently damage glutamatergic neurons. The purpose of the present study was to determine the short- and long-term effects of KA on chicken otoacoustic emissions and cochlear potentials. A chronic electrode was used to record the compound action potential (CAP), cochlear microphonic (CM), and the slow, positive neural potential (SPNP), a predominantly dc response. The CM, CAP, SPNP, and distortion product otoacoustic emissions (DPOAEs) were recorded before and after infusing 10 microl of a low dose (KA-L, 0.3 mM) or high dose (KA-H, 5 mM) of KA into scala tympani. KA caused a rapid and large reduction in CAP and SPNP amplitude in both the KA-H and KA-L groups; however, the CM and DPOAEs were largely unchanged. The amplitude of the CAP and SPNP in the KA-L group began to recover around 1 week post-KA, but was approximately 50% below normal at 4 weeks post-KA. In contrast, the CAP and SPNP showed no signs of recovery in the KA-H group. The results suggest that KA has no effect on the CM and DPOAEs generated by the hair cells, but selectively damages the CAP generated by the cochlear ganglion neurons. The reduction in the avian SPNP suggests that the response originates in the cochlear afferent neurons, unlike the summating potential (SP) in mammals that is generated in hair cells.
Collapse
Affiliation(s)
- H Sun
- Center for Hearing and Deafness, SUNY State University at Buffalo, New York 14214, USA
| | | | | | | | | | | |
Collapse
|
45
|
Hakuba N, Koga K, Shudou M, Watanabe F, Mitani A, Gyo K. Hearing loss and glutamate efflux in the perilymph following transient hindbrain ischemia in gerbils. J Comp Neurol 2000; 418:217-26. [PMID: 10701445 DOI: 10.1002/(sici)1096-9861(20000306)418:2<217::aid-cne7>3.0.co;2-l] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The mechanism underlying ischemia-induced hearing loss was studied in gerbils with transient hindbrain ischemia. Occlusion of the vertebral arteries caused an increase in the concentration of glutamate in the perilymph and elevated the compound action potential (CAP) threshold to 24.6 dB at 5 minutes. the CAP threshold subsequently recovered on reperfusion, gradually reaching 8.3 dB 120 minutes after reperfusion. Under electron microscopy, afferent dendrites of the cochlear nerve in contact with inner hair cells exhibited abnormal swelling 5 minutes after ischemia/reperfusion. These morphological changes were not observed in cochleas treated with an alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)/kainate-type glutamate receptor antagonist, 6-7-dinitroquinoxaline-2,3-dione (DNQX), before hindbrain ischemia; an N-methyl-D-aspartate (NMDA)-type receptor antagonist, D-2-amino-5-phosphonopentanoate (D-AP5), was ineffective. Moreover, the histopathological alterations noted 5 minutes after reperfusion were spontaneously ameliorated 120 minutes after ischemia/reperfusion. These findings suggest that the ischemia-induced increase in extracellular glutamate concentration with subsequent activation of AMPA/kainate receptors is responsible for neurite degeneration and hearing loss in the early stages following transient hindbrain ischemia.
Collapse
Affiliation(s)
- N Hakuba
- Department of Otolaryngology, Ehime University School of Medicine, Japan.
| | | | | | | | | | | |
Collapse
|
46
|
Takumida M, Anniko M, Popa R, Zhang DM. Lipopolysaccharide-induced expression of inducible nitric oxide synthase in the guinea pig organ of Corti. Hear Res 2000; 140:91-8. [PMID: 10675637 DOI: 10.1016/s0378-5955(99)00188-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The purpose of the investigation was to ascertain whether inoculation of bacterial lipopolysaccharide (LPS) into the cochlea of the guinea pig could elicit formation of inducible nitric oxide synthase (iNOS). Immunohistochemical study revealed that immunoreactivity to iNOS was seen below outer hair cells representing nerve fibers and synaptic nerve endings. iNOS-staining could also be observed in phalangeal dendrites of Deiter's cells pointing to the cuticular membrane, Hensen's cells and on stria vascularis 48 h after inoculation with LPS. Immunohistochemical investigation with a specific anti-nitrotyrosine antibody also revealed intense immunoreactivity identical to that of iNOS, suggesting formation of peroxynitrite in the organ of Corti by the reaction of NO with O(2)(-). On the basis of these findings, it can be concluded that NO together with O(2)(-), which form the more reactive peroxynitrite, are the most important pathogenic agents in LPS-induced damage of cochlea in the guinea pig.
Collapse
Affiliation(s)
- M Takumida
- Department of Otolaryngology, Hiroshima University School of Medicine, 1-2-3 Kasumicho, Minamiku, Hiroshima, Japan.
| | | | | | | |
Collapse
|
47
|
Zheng XY, Salvi RJ, McFadden SL, Ding DL, Henderson D. Recovery of kainic acid excitotoxicity in chinchilla cochlea. Ann N Y Acad Sci 1999; 884:255-69. [PMID: 10842599 DOI: 10.1111/j.1749-6632.1999.tb08647.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The present study examines the recovery of the inner hair cell (IHC)/auditory nerve synapse following cochlear excitotoxicity induced by kainic acid (KA). Three hours after KA treatment, there was massive swelling of type I afferent endings under the IHCs. Five to ten days later, the pattern of IHC innervation appeared to be normal. Distortion-product otoacoustic emissions were normal during the whole experiment. The amplitude of the auditory nerve compound action potential (CAP) was significantly reduced immediately after KA treatment and then recovered over a 30-day period. However, it only took five days for the evoked response from the inferior colliculus (IC) to recover from a substantial depression. In contrast to amplitudes, thresholds for the CAP and IC recovered at the same rate and returned to normal within 5 days after KA. Single auditory nerve fibers were also assessed at various times after the KA treatment. Ten days after KA, these fibers had almost normal thresholds, tuning, spontaneous, and driven discharge rates. The results indicate that (1) excitotoxically damaged cochlear afferent neurons can rapidly regenerate and establish viable synapses with the IHCs, and (2) the central auditory system recovers more rapidly than the periphery.
Collapse
Affiliation(s)
- X Y Zheng
- Center for Hearing and Deafness, State University of New York, Buffalo 14214, USA.
| | | | | | | | | |
Collapse
|
48
|
Ruel J, Chen C, Pujol R, Bobbin RP, Puel JL. AMPA-preferring glutamate receptors in cochlear physiology of adult guinea-pig. J Physiol 1999; 518 ( Pt 3):667-80. [PMID: 10420005 PMCID: PMC2269473 DOI: 10.1111/j.1469-7793.1999.0667p.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
1. The present study was designed to determine which glutamate (Glu) receptors are involved in excitatory neurotransmission at the first auditory synapse between the inner hair cells and the spiral ganglion neurons. 2. The Glu receptors present at the membrane level were investigated on isolated spiral ganglion neuron somata from guinea-pigs by whole-cell voltage-clamp measurements. Glu and AMPA induced a fast onset inward current that was rapidly desensitized, while kainate induced only a non-desensitizing, steady-state current. NMDA induced no detectable current. 3. To further discriminate between the AMPA and kainate receptors present, we used the receptor-specific desensitization blockers, cyclothiazide and concanavalin A. While no effect was observed with concanavalin A, cyclothiazide greatly enhanced the Glu-, AMPA- and kainate-induced steady-state currents and potentiated Glu-induced membrane depolarization. 4. To extrapolate the results obtained from the somata to the events occurring in situ at the dendrites, the effects of these drugs were evaluated in vivo. Cyclothiazide reversibly increased spontaneous activity of single auditory nerve fibres, while concanavalin A had no effect, suggesting that the functional Glu receptors on the somata may be the same as those at the dendrites. 5. The combination of a moderate-level sound together with cyclothiazide increased and subsequently abolished the spontaneous and the sound-evoked activity of the auditory nerve fibres. Histological examination revealed destruction of the dendrites, suggesting that cyclothiazide potentiates sound-induced Glu excitotoxicity via AMPA receptors. 6. Our results reveal that fast synaptic transmission in the cochlea is mainly mediated by desensitizing AMPA receptors.
Collapse
Affiliation(s)
- J Ruel
- Department of Otorhinolaryngology, Louisiana State University Medical Center, 2020 Gravier Street, Suite A, New Orleans, LA 70112, USA
| | | | | | | | | |
Collapse
|
49
|
Shero M, Salvi RJ, Chen L, Hashino E. Excitotoxic effect of kainic acid on chicken cochlear afferent neurons. Neurosci Lett 1998; 257:81-4. [PMID: 9865932 DOI: 10.1016/s0304-3940(98)00821-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The excitotoxic effects of kainic acid, a glutamate analog, on the auditory neurons in the chicken cochlea were assessed by light and transmission electron microscopy. Kainic acid was directly applied onto the round window of adult chickens and their cochleas were harvested 3 h after application. Transverse microscopic sections of the basilar papilla revealed swelling of afferent dendrites without any morphological changes in efferent endings. The regions of the basilar papilla damaged by kainic acid were localized in the apical 80% and primarily on the neural side where tall hair cells are located. The basal, abneural short hair cell region was devoid of damage. These results imply that glutamate is a primary neurotransmitter in chicken auditory afferent neurons that synapse on tall hair cells.
Collapse
Affiliation(s)
- M Shero
- Center for Hearing and Deafness, State University of New York at Buffalo, 14214, USA
| | | | | | | |
Collapse
|
50
|
Sobkowicz HM, August BK, Slapnick SM, Luthy DF. Terminal dendritic sprouting and reactive synaptogenesis in the postnatal organ of Corti in culture. J Comp Neurol 1998; 397:213-30. [PMID: 9658285 DOI: 10.1002/(sici)1096-9861(19980727)397:2<213::aid-cne5>3.0.co;2-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Synaptogenesis in the organ of Corti between the primary receptors, the inner hair cells, and the peripheral processes of their afferent spiral ganglion neurons in the mouse lasts for 5 days postnatally (Sobkowicz et al. [1986] J. Neurocytol. 15:693-714). The transplantation of the organ into culture at the fifth postnatal day induces a reactive sprouting of dendritic terminals and an extensive formation of new ribbon synapses within 24 hours. This reactive synaptogenesis differs strikingly from the primary synaptogenesis and has been seen thus far only in the inner hair cells. The synaptically engaged neuronal endings sprout a multitude of filopodia that intussuscept the inner hair cells. The filopodial tips contain a heavy electron-dense matter that appears to attract the synaptic ribbons, which form new synaptic contacts with the growing processes. The intensity of the filopodial growth and synaptogenesis subsides in about 3 days; the filopodia undergo resorption, leaving behind fibrous cytoplasmic plaques mostly stored in the supranuclear part of the hair cells. However, occasional filopodial growth and formation of new synaptic connections continued. The data demonstrate that any disruption or disturbance of the initial synaptic contacts between the inner hair cells and their afferent neurons caused by transplantation results in prompt synaptic reacquisition. Furthermore, we suggest that the transitory phase of terminal sprouting and multiribbon synapse formation manifests a trophic dependence that develops postnatally between the synaptic cells.
Collapse
Affiliation(s)
- H M Sobkowicz
- Department of Neurology, University of Wisconsin, Madison 53706, USA.
| | | | | | | |
Collapse
|