1
|
Di Castro MA, Garofalo S, De Felice E, Meneghetti N, Di Pietro E, Mormino A, Mazzoni A, Caleo M, Maggi L, Limatola C. Environmental enrichment counteracts the effects of glioma in primary visual cortex. Neurobiol Dis 2022; 174:105894. [DOI: 10.1016/j.nbd.2022.105894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/25/2022] Open
|
2
|
The interactions of alcohol and cocaine regulate the expression of genes involved in the GABAergic, glutamatergic and endocannabinoid systems of male and female rats. Neuropharmacology 2021; 206:108937. [PMID: 34965406 DOI: 10.1016/j.neuropharm.2021.108937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 11/23/2022]
Abstract
Although the pharmacological and behavioural interactions between cocaine and alcohol are well established, less is known about how polyconsumption of these drugs affects the neurotransmitter systems involved in their psychoactive effects and in particular, in the process of addiction. Here, rats of both sexes at two stages of development were studied under a chronic regime of intravenous cocaine and/or alcohol administration. Brain samples from the medial prefrontal cortex, nucleus accumbens, hippocampus and amygdala were extracted to analyse the mRNA expression of genes encoding subunits of the GABA, NMDA and AMPA receptors, as well as the expression of the CB1 receptor, and that of enzymes related to the biosynthesis and degradation of endocannabinoids. Moreover, two synaptic scaffold proteins related to GABA and NMDA receptors, gephyrin and PSD-95, were quantified in Western blots. Significant interactions between cocaine and alcohol were common, affecting the GABAergic and endocannabinoid systems in the medial prefrontal cortex and amygdala of young adults, whereas such interactions were evident in the glutamatergic and endocannabinoid systems in adults, as well as a more pronounced sex effect. Significant interactions between these drugs affecting the scaffold proteins were evident in the medial prefrontal cortex and nucleus accumbens of young adults, and in the nucleus accumbens and amygdala of adults, but not in the hippocampus. These results highlight the importance of considering the interactions between cocaine and alcohol on neurotransmitter systems in the context of polyconsumption, specifically when treating problems of abuse of these two substances.
Collapse
|
3
|
Mechanisms of action of clozapine in the treatment of neuroleptic-resistant and neuroleptic-intolerant schizophrenia. Eur Psychiatry 2020; 10 Suppl 1:39s-46s. [DOI: 10.1016/0767-399x(96)80083-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
SummaryThe mechanisms of action which account for the effectiveness of clozapine as a pharmacotherapy for the treatment of neuroleptic non-responders and neuroleptic intolerant schizophrenic subjects remain elusive. We review recent data concerning the actions of clozapine in laboratory animals, and discuss the likely sites of action of clozapine and the receptors through which clozapine acts. We suggest that actions at dopamine D2 receptors in the caudate nucleus and putamen underlie the extrapyramidal side effects of conventional neuroleptics. In contrast, we propose that clozapine acts in the prefrontal cortex, specifically targeting an as yet unidentified DA receptor of the D2 family, to exert therapeutic actions in neuroleptic non-responders. We suggest that the ability of clozapine to augment extracellular dopamine levels in the prefrontal cortex may represent a key mechanism contributing to the therapeutic effects of this drug, and suggest some alternative approaches which might be expected to result in effects similar to those of clozapine.
Collapse
|
4
|
Abstract
Tardive dyskinesia is a disturbance in the balance between dopamine receptor stimulation and dopamine receptor blockade in the motor striatum, with hypothetically too much stimulation of supersensitive D2 receptors, resulting in "don't stop" signaling to motor output.
Collapse
|
5
|
Nimitvilai S, Lopez MF, Mulholland PJ, Woodward JJ. Ethanol Dependence Abolishes Monoamine and GIRK (Kir3) Channel Inhibition of Orbitofrontal Cortex Excitability. Neuropsychopharmacology 2017; 42:1800-1812. [PMID: 28139680 PMCID: PMC5520780 DOI: 10.1038/npp.2017.22] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 01/18/2017] [Accepted: 01/21/2017] [Indexed: 01/03/2023]
Abstract
Alcohol abuse disorders are associated with dysfunction of frontal cortical areas including the orbitofrontal cortex (OFC). The OFC is extensively innervated by monoamines, and drugs that target monoamine receptors have been used to treat a number of neuropsychiatric diseases, including alcoholism. However, little is known regarding how monoamines affect OFC neuron excitability or whether this modulation is altered by chronic exposure to ethanol. In this study, we examined the effect of dopamine, norepinephrine, and serotonin on lOFC neuronal excitability in naive mice and in those exposed to chronic intermittent ethanol (CIE) treatment. All three monoamines decreased current-evoked spike firing of lOFC neurons and this action required Giα-coupled D2, α2-adrenergic, and 5HT1A receptors, respectively. Inhibition of firing by dopamine or the D2 agonist quinpirole, but not norepinephrine or serotonin, was prevented by the GABAA receptor antagonist picrotoxin. GABA-mediated tonic current was enhanced by dopamine or the D1 agonist SKF81297 but not quinpirole, whereas the amplitude of spontaneous IPSCs was increased by quinpirole but not dopamine. Spiking was also inhibited by the direct GIRK channel activator ML297, whereas blocking these channels with barium increased firing and eliminated the inhibitory actions of monoamines. In the presence of ML297 or the G-protein blocker GDP-β-S, DA induced a further decrease in spike firing, suggesting the involvement of a non-GIRK channel mechanism. In neurons from CIE-treated mice, spike frequency was nearly doubled and inhibition of firing by monoamines or ML297 was lost. These effects occurred in the absence of significant changes in expression of Gi/o or GIRK channel proteins. Together, these findings show that monoamines are important modulators of lOFC excitability and suggest that disruption of this process could contribute to various deficits associated with alcohol dependence.
Collapse
Affiliation(s)
- Sudarat Nimitvilai
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Marcelo F Lopez
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Patrick J Mulholland
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA,Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - John J Woodward
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA,Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA,Department of Neuroscience, Medical University of South Carolina, 67 President Street, IOP456N, Charleston, SC 29425, USA, Tel: 843 792 5225, Fax: 843 792 7353, E-mail:
| |
Collapse
|
6
|
Abstract
In the past century, the finding of ventricular enlargement in structural brain imaging studies of schizophrenia has stimulated interest in the question of whether this disorder may involve an underlying neurodegenerative process. Recent microscopic investigations have revealed a subtle loss of neurons but no gliosis in several corticolimbic regions of schizophrenic brain, a pattern that is not consistent with a typical adult pattern of neuronal degeneration. The fact that a variety of histopathological changes have been found in cortical layer II of schizophrenic subjects has suggested that an early disturbance of neuronal migration may play an etiological role in this disorder. Overall, many investigators now consider schizophrenia to be a neurodevel opmental disorder in which a latent defect present from birth requires normal maturational changes in the brain to trigger the characteristic onset of illness during adolescence and early adulthood. The Neuroscientist 1:104-115, 1995
Collapse
Affiliation(s)
- Francine M. Benes
- Laboratory for Structural Neuroscience McLean Hospital
Belmont, Massachusetts Program in Neuroscience and Department of Psychiatry
Harvard Medical School Boston, Massachusetts
| |
Collapse
|
7
|
Locklear MN, Cohen AB, Jone A, Kritzer MF. Sex Differences Distinguish Intracortical Glutamate Receptor-Mediated Regulation of Extracellular Dopamine Levels in the Prefrontal Cortex of Adult Rats. Cereb Cortex 2016; 26:599-610. [PMID: 25260707 PMCID: PMC4712796 DOI: 10.1093/cercor/bhu222] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Executive functions of the prefrontal cortex (PFC) are sensitive to local dopamine (DA) levels. Although sex differences distinguish these functions and their dysfunction in disease, the basis for this is unknown. We asked whether sex differences might result from dimorphisms in the glutamatergic mechanisms that regulate PFC DA levels. Using antagonists selective for α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-d-aspartate (NMDA) receptors, we compared drug effects on in vivo microdialysis DA measurements in the PFC of adult male and female rats. We found that baseline DA levels were similar across sex, AMPA antagonism decreased PFC DA in both sexes, and NMDA antagonism increased DA in males but decreased DA in females. We also found that, at subseizure-producing drug levels, γ-aminobutyric acid (GABA)-A antagonism did not affect DA in either sex but that GABA-B antagonism transiently increased PFC DA in both sexes, albeit more so in females. Finally, when NMDA antagonism was coincident with GABA-B antagonism, PFC DA levels in males responded as if to GABA-B antagonism alone, whereas in females, DA effects mirrored those induced by NMDA antagonism. Taken together, these data suggest commonalities and fundamental differences in the intracortical amino acid transmitter mechanisms that regulate DA homeostasis in the male and female rat PFCs.
Collapse
Affiliation(s)
- M N Locklear
- Graduate Program in Neuroscience Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794-5230, USA
| | - A B Cohen
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794-5230, USA
| | - A Jone
- Graduate Program in Neuroscience Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794-5230, USA
| | - M F Kritzer
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794-5230, USA
| |
Collapse
|
8
|
Simulation of the capacity and precision of working memory in the hypodopaminergic state: Relevance to schizophrenia. Neuroscience 2015; 295:80-9. [DOI: 10.1016/j.neuroscience.2015.03.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 03/01/2015] [Accepted: 03/19/2015] [Indexed: 12/16/2022]
|
9
|
Seshadri S, Zeledon M, Sawa A. Synapse-specific contributions in the cortical pathology of schizophrenia. Neurobiol Dis 2013; 53:26-35. [PMID: 23336981 DOI: 10.1016/j.nbd.2013.01.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 01/06/2013] [Accepted: 01/10/2013] [Indexed: 12/22/2022] Open
Abstract
Schizophrenia (SZ) is often described as a disease of neuronal connectivity. Cognitive processes such as working memory, which are particularly dependent on the proper functioning of complex cortical circuitry, are disturbed in the disease. Reciprocal connections between pyramidal neurons and interneurons, as well as dopaminergic innervations, form the basis for higher cognition in the cortex. Nonetheless, only a few review articles are available which address how each synapse operates, and is possibly disturbed in SZ, at least in part by the mechanisms involving genetic susceptibility factors for SZ. In this review, we provide an overview of cortical glutamatergic, GABAergic, and dopaminergic circuitry, review SZ-associated deficits at each of these synapses, and discuss how genetic factors for SZ may contribute to SZ-related phenotype deficits in a synapse-specific manner. Pinpointing the spatially and temporally distinct sites of action of putative SZ susceptibility factors may help us better understand the pathological mechanisms of SZ, especially those associated with synaptic functioning and neuronal connectivity.
Collapse
Affiliation(s)
- Saurav Seshadri
- Department of Psychiatry, Johns Hopkins University, Baltimore, MD 21287, USA
| | | | | |
Collapse
|
10
|
Selective overexpression of Comt in prefrontal cortex rescues schizophrenia-like phenotypes in a mouse model of 22q11 deletion syndrome. Transl Psychiatry 2012; 2:e146. [PMID: 22872161 PMCID: PMC3432186 DOI: 10.1038/tp.2012.70] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The 22q11.2 microdeletion is one of the highest genetic risk factors for schizophrenia. It is not well understood which interactions of deleted genes in 22q11.2 regions are responsible for the pathogenesis of schizophrenia, but catechol-O-methytransferase (COMT) is among the candidates. Df1/+ mice are 22q11.2 deletion syndrome (22q11DS) model mice with a hemizygous deletion of 18 genes in the 22q11-related region. Df1/+ mice showed enhanced response to the dopamine D1 agonist, SKF38393, and the N-methyl-D-aspartate antagonist, MK801, which can be normalized by a GABA(A) receptor agonist, bretazenil, or a GABA(A) α2/α3 receptor agonist, SL651498. Here, we demonstrated the curing effects of virus-mediated reintroduction of Comt to the prefrontal cortex (PFC) in Df1/+ mice. In contrast, both Comt overexpression and Comt inhibition caused an abnormal responsiveness to Bretazenil, a GABA(A) receptor agonist in control mice. Comt overexpression increased MK801-induced interneuronal activation and GABA release in the PFC. The expression levels of GABA-related genes such as Gabrb2 (GABA(A)receptor β2), Gad2 (glutamic acid decarboxylase 65 (Gad65)) and Reln (Reelin) correlate with a Comt expression level in PFC. Our data suggest that Comt-mediated regulation of GABAergic system might be involved in the behavioral pathogenesis of Df1/+ mice.
Collapse
|
11
|
Altered dopamine modulation of inhibition in the prefrontal cortex of cocaine-sensitized rats. Neuropsychopharmacology 2010; 35:2292-304. [PMID: 20664581 PMCID: PMC2939941 DOI: 10.1038/npp.2010.107] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A functionally hypoactive prefrontal cortex (PFC) is thought to contribute to decreased cognitive inhibitory control over drug-seeking behavior in cocaine addicts. Alterations in PFC dopamine (DA) and γ-aminobutyric acid (GABA) transmission are involved in the development of behavioral sensitization to cocaine, and repeated exposure to cocaine decreases DA D2 receptor (D2R) function in the PFC. We used recordings in PFC slices from adult rats to investigate how repeated cocaine treatment followed by 2 weeks of withdrawal affects DA modulation of GABA transmission and interneuron firing. In agreement with previous results in drug-naïve animals we found that in saline-treated control animals DA (20 μM) modulated evoked inhibitory post-synaptic currents (eIPSCs) in a biphasic, time- and receptor-dependent manner. Activation of D2Rs transiently reduced, whereas D1 receptor activation persistently increased the amplitude of eIPSCs. In cocaine-sensitized animals the D2R-dependent modulation of eIPSCs was abolished and the time course of DA effects was altered. In both saline- and cocaine-treated animals the effects of DA on eIPSCs were paralleled by distinct changes in spontaneous IPSCs (sIPSCs). In cocaine-treated animals the alterations in DA modulation of eIPSCs and sIPSCs correlated with a lack of D2R-specific reduction in action potential-independent GABA release, which might normally oppose D1-dependent increases in GABA transmission. Recordings from interneurons furthermore show that D2R activation can increase current-evoked spike firing in saline, but not in cocaine-treated animals. Altered DA regulation of inhibition during cocaine withdrawal could disturb normal cortical processing and contribute to a hypoactive PFC.
Collapse
|
12
|
Dopaminergic modulation of endocannabinoid-mediated plasticity at GABAergic synapses in the prefrontal cortex. J Neurosci 2010; 30:7236-48. [PMID: 20505090 DOI: 10.1523/jneurosci.0736-10.2010] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Similar to dopamine (DA), cannabinoids strongly influence prefrontal cortical functions, such as working memory, emotional learning, and sensory perception. Although endogenous cannabinoid receptors (CB(1)Rs) are abundantly expressed in the prefrontal cortex (PFC), very little is known about endocannabinoid (eCB) signaling in this brain region. Recent behavioral and electrophysiological evidence has suggested a functional interplay between the dopamine and cannabinoid receptor systems, although the cellular mechanisms underlying this interaction remain to be elucidated. We examined this issue by combining neuroanatomical and electrophysiological techniques in PFC of rats and mice (both genders). Using immunoelectron microscopy, we show that CB(1)Rs and dopamine type 2 receptors (D(2)Rs) colocalize at terminals of symmetrical, presumably GABAergic, synapses in the PFC. Indeed, activation of either receptor can suppress GABA release onto layer 5 pyramidal cells. Furthermore, coactivation of both receptors via repetitive afferent stimulation triggers eCB-mediated long-term depression of inhibitory transmission (I-LTD). This I-LTD is heterosynaptic in nature, requiring glutamate release to activate group I metabotropic glutamate receptors. D(2)Rs most likely facilitate eCB signaling at the presynaptic site as disrupting postsynaptic D(2)R signaling does not diminish I-LTD. Facilitation of eCB-LTD may be one mechanism by which DA modulates neuronal activity in the PFC and regulates PFC-mediated behavior in vivo.
Collapse
|
13
|
Gottesmann C. The development of the science of dreaming. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2010; 92:1-29. [PMID: 20870060 DOI: 10.1016/s0074-7742(10)92001-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Although the main peripheral features of dreaming were identified two millennia ago, the neurobiological study of the basic and higher integrated processes underlying rapid eye movement (REM) sleep only began about 70 years ago. Today, the combined contributions of the successive and complementary methods of electrophysiology, imaging, pharmacology, and neurochemistry have provided a good level of knowledge of the opposite but complementary activating and inhibitory processes which regulate waking mentation and which are disturbed during REM sleep, inducing a schizophrenic-like mental activity.
Collapse
Affiliation(s)
- Claude Gottesmann
- Départment de Biologie, Faculté des Sciences, Université de Nice-Sophia Antipolis, Nice, France
| |
Collapse
|
14
|
Yokofujita J, Oda S, Igarashi H, Sato F, Kuroda M. Synaptic Characteristics Between Cortical Cells in the Rat Prefrontal Cortex and Axon Terminals from the Ventral Tegmental Area that Utilize Different Neurotransmitters. Int J Neurosci 2009; 118:1443-59. [DOI: 10.1080/00207450701870253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Abstract
AbstractAs modern neuroscience seeks to understand the neural bases for mental illness, it is becoming increasingly important to define how and when complex neural circuits may be altered in individuals who carry the genetic vulnerability for psychopathology. One factor that could potentially play a contributory role in mental illness is the stress response. A variety of studies suggest that stress can alter the activity of several key cortical neurotransmitters, including glutamate, γ-aminobutyric acid, dopamine, and serotonin. Specifically, exposure to neurotoxic levels of adrenal steroid hormone, particularly if this occurs early in life, could potentially induce permanent changes of these transmitter systems in corticolimbic regions, such as the hippocampal formation and cingulate gyrus, that have a high density of glucocorticoid receptors. Overall, exposure to severe stress during the perinatal period could potentially induce alterations in the circuitry of the anterior cingulate cortex and hippocampal formation and interfere with the normal mechanisms underlying attention and learning.
Collapse
|
16
|
Tierney PL, Thierry AM, Glowinski J, Deniau JM, Gioanni Y. Dopamine modulates temporal dynamics of feedforward inhibition in rat prefrontal cortex in vivo. Cereb Cortex 2008; 18:2251-62. [PMID: 18222936 DOI: 10.1093/cercor/bhm252] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Midbrain dopamine (DA) neurons project to pyramidal cells and interneurons of the prefrontal cortex (PFC). At the microcircuit level, interneurons gate inputs to a network and regulate/pattern its outputs. Whereas several in vitro studies have examined the role of DA on PFC interneurons, few in vivo data are available. In this study, we show that DA influences the timing of interneuron firing. In particular, DA had a reductive influence on interneuron spontaneous firing, which in the context of the excitatory response of interneurons to hippocampal electrical stimulation, lead to a temporal focalization of the interneuron response. This suggests that the reductive influence of DA on interneuron excitability is responsible for filtering out weak excitatory inputs. The increase in the temporal precision of interneuron firing is a mechanism by which DA can modulate the temporal dynamics of feedforward inhibition in PFC circuits and can thereby influence cognitive information processing.
Collapse
Affiliation(s)
- P L Tierney
- Massachusetts Institute of Technology, McGovern Institute for Brain Research, Cambridge, MA 02139, USA.
| | | | | | | | | |
Collapse
|
17
|
Benes FM, Gisabella B. Rat modeling for GABA defects in schizophrenia. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2006; 54:73-93. [PMID: 17175811 DOI: 10.1016/s1054-3589(06)54004-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Affiliation(s)
- Francine M Benes
- Program in Structural and Molecular Neuroscience, McLean Hospital, Belmont, Massachusetts, USA
| | | |
Collapse
|
18
|
|
19
|
Pantazopoulos H, Stone D, Walsh J, Benes FM. Differences in the cellular distribution of D1 receptor mRNA in the hippocampus of bipolars and schizophrenics. Synapse 2005; 54:147-55. [PMID: 15452863 DOI: 10.1002/syn.20076] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Several lines of evidence have pointed to a role of the dopamine system in the pathophysiology of schizophrenia. A recent postmortem study demonstrated a selective decrease of tyrosine hydroxylase fibers on pyramidal neurons in sector CA2 in the hippocampus of schizophrenics. Although both brain imaging and postmortem studies have examined the distribution of the D1 receptor in the prefrontal and cingulate cortex, no study to date has examined its expression of mRNA using a high-resolution autoradiographic approach. In order to further assess whether the regulation of the dopamine D1 receptor is altered in hippocampal neurons in this disorder, we used in situ hybridization (ISH) to measure the expression of messenger RNA for this receptor in the dentate gyrus and sectors CA1-4. Both the number of cells expressing D1 mRNA and the amount of expression per cell were measured in 15 schizophrenic, 15 bipolar disorder, and 15 normal control subjects. The results show a significant (21%) and selective decrease in D1 mRNA expression in sector CA3 of schizophrenic subjects. First-degree relatives of schizophrenics did not show any differences in either the expression of D1 mRNA per cell or the number of cells expressing this mRNA when compared to a separate group of normal controls matched for age and PMI. Subjects with bipolar disorder also showed a significant (25%) and selective increase of D1 mRNA expression in sector CA2. Other hippocampal sectors did not show significant changes. These findings in schizophrenics and bipolars were also associated with inverse changes in the overall number of neurons expressing D1 mRNA in sectors CA3 and CA2, respectively. This study shows diagnosis-specific changes in D1 mRNA expression in the hippocampus of schizophrenic versus bipolar subjects and suggests that this neuromodulatory system may show distinct changes in the pathophysiology of the two disorders.
Collapse
Affiliation(s)
- Harry Pantazopoulos
- Laboratory for Structural and Molecular Neuroscience, McLean Hospital, Belmont, Massachusetts 02478, USA
| | | | | | | |
Collapse
|
20
|
Seamans JK, Yang CR. The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog Neurobiol 2005; 74:1-58. [PMID: 15381316 DOI: 10.1016/j.pneurobio.2004.05.006] [Citation(s) in RCA: 1101] [Impact Index Per Article: 57.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2003] [Accepted: 05/04/2004] [Indexed: 12/17/2022]
Abstract
Mesocortical [corrected] dopamine (DA) inputs to the prefrontal cortex (PFC) play a critical role in normal cognitive process and neuropsychiatic pathologies. This DA input regulates aspects of working memory function, planning and attention, and its dysfunctions may underlie positive and negative symptoms and cognitive deficits associated with schizophrenia. Despite intense research, there is still a lack of clear understanding of the basic principles of actions of DA in the PFC. In recent years, there has been considerable efforts by many groups to understand the cellular mechanisms of DA modulation of PFC neurons. However, the results of these efforts often lead to contradictions and controversies. One principal feature of DA that is agreed by most researchers is that DA is a neuromodulator and is clearly not an excitatory or inhibitory neurotransmitter. The present article aims to identify certain principles of DA mechanisms by drawing on published, as well as unpublished data from PFC and other CNS sites to shed light on aspects of DA neuromodulation and address some of the existing controversies. Eighteen key features about DA modulation have been identified. These points directly impact on the end result of DA neuromodulation, and in some cases explain why DA does not yield identical effects under all experimental conditions. It will become apparent that DA's actions in PFC are subtle and depend on a variety of factors that can no longer be ignored. Some of these key factors include distinct bell-shaped dose-response profiles of postsynaptic DA effects, different postsynaptic responses that are contingent on the duration of DA receptor stimulation, prolonged duration effects, bidirectional effects following activation of D1 and D2 classes of receptors and membrane potential state and history dependence of subsequent DA actions. It is hoped that these factors will be borne in mind in future research and as a result a more consistent picture of DA neuromodulation in the PFC will emerge. Based on these factors, a theory is proposed for DA's action in PFC. This theory suggests that DA acts to expand or contract the breadth of information held in working memory buffers in PFC networks.
Collapse
Affiliation(s)
- Jeremy K Seamans
- Department of Physiology, MUSC, 173 Ashley Avenue, Suite 403, Charleston, SC 29425, USA.
| | | |
Collapse
|
21
|
Gottesmann C. Brain inhibitory mechanisms involved in basic and higher integrated sleep processes. ACTA ACUST UNITED AC 2004; 45:230-49. [PMID: 15210306 DOI: 10.1016/j.brainresrev.2004.04.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2004] [Indexed: 11/21/2022]
Abstract
Brain function is supported by central activating processes that are significant during waking, decrease during slow wave sleep following waking and increase again during paradoxical sleep during which brain activation is as high as, or higher than, during waking in nearly all structures. However, inhibitory mechanisms are crucial for sleep onset. They were first identified by behavioral, neuroanatomical and electrophysiological criteria, then by pharmacological and neurochemical ones. During slow wave sleep, they are supported by GABAergic mechanisms located at midbrain, mesopontine and pontine levels but are induced and sustained by forebrain and hindbrain influences. GABAergic processes are also responsible for paradoxical sleep occurrence, particularly by suppression of noradrenaline and serotonin (5-HT) inhibition of paradoxical sleep-generating structures. Hindbrain and forebrain modulate these structures situated at the mesopontine level. For sleep mentation, the noradrenergic and serotonergic silence is thought, today, to be directly, or indirectly, responsible for dopamine predominance and glutamate decrease in the nucleus accumbens, which could be the background of the well-known psychotic-like mental activity of dreaming.
Collapse
Affiliation(s)
- Claude Gottesmann
- Laboratoire de Neurobiologie Comportementale, Faculté des Sciences, Université de Nice-Sophia Antipolis, 06108 Nice cedex 2, France.
| |
Collapse
|
22
|
Brake WG, Zhang TY, Diorio J, Meaney MJ, Gratton A. Influence of early postnatal rearing conditions on mesocorticolimbic dopamine and behavioural responses to psychostimulants and stressors in adult rats. Eur J Neurosci 2004; 19:1863-74. [PMID: 15078560 DOI: 10.1111/j.1460-9568.2004.03286.x] [Citation(s) in RCA: 243] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
While many experiment with drugs, relatively few individuals develop a true addiction. We hypothesized that, in rats, such individual differences in the actions of addictive drugs might be determined by postnatal rearing conditions. To test this idea, we investigated whether stimulant- and stress-induced activation of nucleus accumbens dopamine transmission and dopamine-dependent behaviours might differ among adults rats that had been either repeatedly subjected to prolonged maternal separation or a brief handling procedure or left undisturbed (non-handled) during the first 14 days of life. We found that, in comparison with their handled counterparts, maternally separated and non-handled animals are hyperactive when placed in a novel setting, display a dose-dependent higher sensitivity to cocaine-induced locomotor activity and respond to a mild stressor (tail-pinch) with significantly greater increases in nucleus accumbens dopamine levels. In addition, maternally separated animals were found to sensitize to the locomotor stimulant action of amphetamine when repeatedly stressed under conditions that failed to sensitize handled and non-handled animals. Finally, quantitative receptor autoradiography revealed a lower density of nucleus accumbens-core and striatal dopamine transporter sites in maternally separated animals. Interestingly, we also found greatly reduced D(3) dopamine receptor binding and mRNA levels in the nucleus accumbens-shell of handled animals. Together, these findings provide compelling evidence that disruptions in early postnatal rearing conditions can lead to profound and lasting changes in the responsiveness of mesocorticolimbic dopamine neurons to stress and psychostimulants, and suggest a neurobiological basis for individual differences in vulnerability to compulsive drug taking.
Collapse
Affiliation(s)
- Wayne G Brake
- Department of Psychology, University of California Santa Barbara, CA 93106, USA
| | | | | | | | | |
Collapse
|
23
|
Abstract
The authors review the available literature on the preclinical and clinical studies involving GABAergic neurotransmission in mood disorders. Gamma-aminobutyric acid (GABA) is an inhibitory neurotransmitter present almost exclusively in the central nervous system (CNS), distributed across almost all brain regions, and expressed in interneurons modulating local circuits. The role of GABAergic dysfunction in mood disorders was first proposed 20 years ago. Preclinical studies have suggested that GABA levels may be decreased in animal models of depression, and clinical studies reported low plasma and CSF GABA levels in mood disorder patients. Also, antidepressants, mood stabilizers, electroconvulsive therapy, and GABA agonists have been shown to reverse the depression-like behavior in animal models and to be effective in unipolar and bipolar patients by increasing brain GABAergic activity. The hypothesis of reduced GABAergic activity in mood disorders may complement the monoaminergic and serotonergic theories, proposing that the balance between multiple neurotransmitter systems may be altered in these disorders. However, low GABAergic cortical function may probably be a feature of a subset of mood disorder patients, representing a genetic susceptibility. In this paper, we discuss the status of GABAergic hypothesis of mood disorders and suggest possible directions for future preclinical and clinical research in this area.
Collapse
Affiliation(s)
- P Brambilla
- Biological Psychiatry Unit, IRCCS S Giovanni di Dio, Fatebenefratelli, Brescia, Italy.
| | | | | | | | | |
Collapse
|
24
|
Gating of hippocampal-evoked activity in prefrontal cortical neurons by inputs from the mediodorsal thalamus and ventral tegmental area. J Neurosci 2003. [PMID: 12736363 DOI: 10.1523/jneurosci.23-09-03930.2003] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Projections from the hippocampus, the mediodorsal thalamus (MD), and the ventral tegmental area (VTA) form interconnected neural circuits that converge in the prefrontal cortex (PFC) to participate in the regulation of executive functions. The present study assessed the roles that the MD and VTA play in regulating the hippocampal-PFC pathway using extracellular single-unit recordings in urethane-anesthetized rats. MD stimulation inhibited PFC neuron firing (approximately 100 msec duration) evoked by fimbria/fornix (FF) stimulation in a majority of neurons tested. However, this effect was reduced if activation of thalamocortical inputs occurred almost simultaneously (10 msec) with stimulation of the FF. In a separate population of neurons, burst stimulation of the MD produced a short-term (approximately 100 msec) inhibition or facilitation of FF-evoked firing in 66 and 33% of PFC neurons, respectively. Moreover, tetanic stimulation of the MD caused a longer-lasting (approximately 5 min) potentiation of FF-evoked firing. Burst stimulation of the VTA inhibited FF-evoked firing in a frequency-dependent manner: firing evoked by higher-frequency trains of pulses to the FF was less inhibited than firing evoked by single-pulse stimulation. The inhibitory actions of VTA stimulation were augmented by D1 receptor antagonism and attenuated by D2 and D4 antagonists. Moreover, stimulation of the MD 10 msec before stimulation of the FF attenuated the VTA-mediated inhibition of evoked firing. Thus, both the MD and VTA exert a complex gating action over PFC neural activity, either facilitating or inhibiting firing in the hippocampal-PFC pathway depending on the frequency and relative timing of the arrival of afferent input.
Collapse
|
25
|
Del Arco A, Mora F. NMDA and AMPA/kainate glutamatergic agonists increase the extracellular concentrations of GABA in the prefrontal cortex of the freely moving rat: modulation by endogenous dopamine. Brain Res Bull 2002; 57:623-30. [PMID: 11927365 DOI: 10.1016/s0361-9230(01)00758-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Using microdialysis in the prefrontal cortex, this study investigated first the effects of the ionotropic glutamatergic agonists NMDA and AMPA on extracellular concentrations of GABA, and second, the modulation of these effects by increasing endogenous dopamine. NMDA (20, 100, and 500 microM) and AMPA (1, 20, and 100 microM), perfused through the microdialysis probe for 60 min, produced a dose-related increase of extracellular concentrations of GABA in the prefrontal cortex of the awake rat. NMDA 100 and 500 microM produced a maximal increase of extracellular GABA of 150 +/- 38% and 245 +/- 75% of baseline, respectively. AMPA 20 and 100 microM produced a maximal increase of extracellular GABA of 140 +/- 17% and 195 +/- 41% of baseline, respectively. NMDA and AMPA also increased extracellular concentrations of glutamate. Increases of extracellular GABA, and also of glutamate, produced by NMDA (500 microM) and AMPA (100 microM) were significantly blocked by the NMDA antagonist CPP (100 microM) and the AMPA/kainate antagonist DNQX (100 microM), respectively. To investigate whether dopamine modulates the increases of GABA produced by NMDA and AMPA, endogenous dopamine was increased with the dopamine uptake inhibitor nomifensine. Nomifensine (1, 100, and 1000 microM) produced a dose-related increase of dialysate dopamine (from 0.1 to 1.0 nM) but did not modify basal extracellular concentrations of GABA in the prefrontal cortex. However, increases of endogenous dopamine at 0.5-0.7 nM did potentiate the increases of extracellular GABA produced by AMPA (20 microM) (from 140% to 240% of baseline), but not by NMDA (100 microM), in this area of the brain. These effects were attenuated by the perfusion of (-)sulpiride (D2 antagonist), but not by the perfusion of SCH-23390 (D1 antagonist). These results suggest that glutamate, through the activation of both NMDA and AMPA/kainate ionotropic receptors, facilitates GABAergic transmission in the prefrontal cortex, and that dopamine can modulate the effects of glutamate through AMPA/kainate receptors on GABA transmission in this area of the brain.
Collapse
MESH Headings
- Animals
- Dopamine/metabolism
- Dopamine D2 Receptor Antagonists
- Dopamine Uptake Inhibitors/pharmacology
- Dose-Response Relationship, Drug
- Excitatory Amino Acid Agonists/pharmacology
- Extracellular Space/drug effects
- Extracellular Space/metabolism
- Glutamic Acid/metabolism
- Male
- N-Methylaspartate/pharmacology
- Neurons/drug effects
- Neurons/metabolism
- Prefrontal Cortex/drug effects
- Prefrontal Cortex/metabolism
- Rats
- Rats, Wistar
- Receptors, AMPA/agonists
- Receptors, AMPA/metabolism
- Receptors, Dopamine D1/antagonists & inhibitors
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/metabolism
- Receptors, Kainic Acid/agonists
- Receptors, Kainic Acid/metabolism
- Receptors, N-Methyl-D-Aspartate/agonists
- Receptors, N-Methyl-D-Aspartate/metabolism
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
- Up-Regulation/drug effects
- Up-Regulation/physiology
- alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology
- gamma-Aminobutyric Acid/metabolism
Collapse
Affiliation(s)
- Alberto Del Arco
- Department of Physiology, Faculty of Medicine, University Complutense, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | | |
Collapse
|
26
|
Beyer CE, Steketee JD. Characterization of the role of medial prefrontal cortex dopamine receptors in cocaine-induced locomotor activity. Behav Neurosci 2001; 115:1093-100. [PMID: 11584922 DOI: 10.1037/0735-7044.115.5.1093] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Medial prefrontal cortex (mPFC) dopamine (DA) modulates the motor-stimulant response to cocaine. The present study examined the specific mPFC DA receptor subtypes that mediate this behavioral response. Intra-mPFC injection of the DA D2-like receptor agonist quinpirole blocked cocaine-induced motor activity, an effect that was prevented by coadministration of the D2 receptor antagonist sulpiride. Intra-mPFC injection of the selective D4 receptor agonist PD 168,077 or the selective D1 receptor agonist SKF 81297 did not alter the motor-stimulant response to cocaine. Finally, it was found that an intermediate dose of quinpirole, which only attenuated cocaine-induced motor activity, was not altered by SKF 81297 coadministration, suggesting a lack of synergy between mPFC D1 and D2 receptors. These results suggest that D2 receptor mechanisms in the mPFC are at least partly responsible for mediating the acute motor-stimulant effects of cocaine.
Collapse
Affiliation(s)
- C E Beyer
- Department of Pharmacology and Therapeutics, School of Graduate Studies, Louisiana State University Health Sciences Center, USA
| | | |
Collapse
|
27
|
Gulledge AT, Jaffe DB. Multiple effects of dopamine on layer V pyramidal cell excitability in rat prefrontal cortex. J Neurophysiol 2001; 86:586-95. [PMID: 11495934 DOI: 10.1152/jn.2001.86.2.586] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanisms underlying the inhibitory effects of dopamine (DA) on layer V pyramidal neuron excitability in the prelimbic region of the rat medial prefrontal cortex were investigated. Under control conditions, DA depressed both action potential generation (driven by somatic current injection) and input resistance (R(N)). The presence of GABA(A) receptor antagonists blocked DA-induced depression of action potential generation and revealed a delayed increase in excitability that persisted for the duration of experimental recording, up to 20 min following the washout of DA. In contrast to spike generation, disinhibition did not affect the transient depression of R(N) produced by DA, suggesting independent actions of DA on spike generation and R(N). Consistent with the hypothesis that DA acts to decrease pyramidal cell output via a GABAergic mechanism, DA increased the frequency of spontaneous inhibitory postsynaptic currents in both the absence and presence of TTX. Furthermore focal application of GABA to a perisomatic region mimicked the inhibitory effect of DA on spike production without affecting R(N). Focal application of bicuculline to the same location reversed the inhibitory effect of bath-applied DA on spike generation, while again having no effect on R(N). The depression of R(N) by DA was both occluded and mimicked by the Na(+) channel blocker TTX, suggesting the involvement of a Na(+) conductance in reducing pyramidal cell R(N) during the acute presence of DA. Together these data demonstrate that the acute presence of DA decreases pyramidal neuron excitability by two independent mechanisms. At the same time DA triggers a delayed and longer-lasting increase in excitability that is partially masked by synaptic inhibition.
Collapse
Affiliation(s)
- A T Gulledge
- Division of Life Sciences, University of Texas at San Antonio, 78249, USA
| | | |
Collapse
|
28
|
Bidirectional dopamine modulation of GABAergic inhibition in prefrontal cortical pyramidal neurons. J Neurosci 2001. [PMID: 11331392 DOI: 10.1523/jneurosci.21-10-03628.2001] [Citation(s) in RCA: 304] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dopamine regulates the activity of neural networks in the prefrontal cortex that process working memory information, but its precise biophysical actions are poorly understood. The present study characterized the effects of dopamine on GABAergic inputs to prefrontal pyramidal neurons using whole-cell patch-clamp recordings in vitro. In most pyramidal cells, dopamine had a temporally biphasic effect on evoked IPSCs, producing an initial abrupt decrease in amplitude followed by a delayed increase in IPSC amplitude. Using receptor subtype-specific agonists and antagonists, we found that the initial abrupt reduction was D2 receptor-mediated, whereas the late, slower developing enhancement was D1 receptor-mediated. Linearly combining the effects of the two agonists could reproduce the biphasic dopamine effect. Because D1 agonists enhanced spontaneous (sIPSCs) but did not affect miniature (mIPSCs) IPSCs, it appears that D1 agonists caused larger evoked IPSCs by increasing the intrinsic excitability of interneurons and their axons. In contrast, D2 agonists had no effects on sIPSCs but did produce a significant reduction in mIPSCs, suggestive of a decrease in GABA release probability. In addition, D2 agonists reduced the postsynaptic response to a GABA(A) agonist. D1 and D2 receptors therefore regulated GABAergic activity in opposite manners and through different mechanisms in prefrontal cortex (PFC) pyramidal cells. This bidirectional modulation could have important implications for the computational properties of active PFC networks.
Collapse
|
29
|
Chefer VI, Morón JA, Hope B, Rea W, Shippenberg TS. Kappa-opioid receptor activation prevents alterations in mesocortical dopamine neurotransmission that occur during abstinence from cocaine. Neuroscience 2001; 101:619-27. [PMID: 11113311 DOI: 10.1016/s0306-4522(00)00417-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In vivo microdialysis was used to characterize basal dopamine dynamics and cocaine-evoked dopamine levels in the medial prefrontal cortex of male Sprague-Dawley rats that had previously received once daily injections of cocaine (days 1-5; 20mg/kg, i.p.) in combination with the selective kappa-opioid receptor agonist U-69593 (days 3-5; 0.32mg/kg, s.c.) or its vehicle. The influence of these treatments on [3H]dopamine uptake in medial prefrontal cortex synaptosomes was also determined. Three days following the cessation of drug treatment, animals with prior history of cocaine administration exhibited enhanced psychomotor stimulation in response to a subsequent cocaine challenge. This effect was not apparent in animals that had previously received the cocaine treatment regimen in combination with the kappa-opioid receptor agonist U-69593. Cocaine challenge increased prefrontal dopamine levels in all pretreatment groups, but cocaine-pre-exposed animals had lower cocaine-evoked dopamine levels and higher basal in vivo extraction fraction, indicative of an increase in basal dopamine uptake relative to controls. Pretreatment with U-69593 prevented these effects of cocaine. Measurement of [3H]dopamine uptake in synaptosomes revealed a significant increase in uptake three days after the cessation of cocaine treatment. No increase in uptake was observed in animals that had received the cocaine treatment regimen in combination with U-69593. These results demonstrate that the early phase of abstinence from cocaine is associated with marked alterations in medial prefrontal cortex dopamine neurotransmission and that these neuroadaptations are prevented by the activation of kappa-opioid receptors. Furthermore, they raise the possibility that mesocortical dopamine neurons may be an important neural substrate upon which kappa-opioid agonists act to prevent the development of cocaine-induced behavioral sensitization.
Collapse
Affiliation(s)
- V I Chefer
- Behavioral Neuroscience Laboratory, NIH/NIDA Intramural Research Program, 5500 Nathan Shock Drive, Baltimore, MD 21224, USA.
| | | | | | | | | |
Collapse
|
30
|
Abstract
The prefrontal cortex (PFC) has long been known to be involved in the mediation of complex behavioral responses. Considerable research efforts are directed towards refining the knowledge about the function of this brain area and the role it plays in cognitive performance and behavioral output. In the first part, this review provides, from a pharmacological perspective, an overview of anatomical, electrophysiological and neurochemical aspects of the function of the PFC, with an emphasis on the mesocortical dopamine system. Anatomy of the mesocortical system, basic physiological and pharmacological properties of neurotransmission within the PFC, and interactions between dopamine and glutamate as well as other transmitters within the mesocorticolimbic circuit are included. The coverage of these data is largely restricted to what is relevant for the second part of the review which focuses on behavioral studies that have examined the role of the PFC in a variety of phenomena, behaviors and paradigms. These include reward and addiction, locomotor activity and sensitization, learning, cognition, and schizophrenia. Although the focus of this review is on the mesocortical dopamine system, given the intricate interactions of dopamine with other transmitter systems within the PFC and the importance of the PFC as a source of glutamate in subcortical areas, these aspects are also covered in some detail where appropriate. Naturally, a topic as complex as this cannot be covered comprehensively in its entirety. Therefore this review is largely limited to data derived from studies using rats, and it is also specifically restricted to data concerning the medial PFC (mPFC). Since in several fields of research the findings concerning the function or role of the mPFC are relatively inconsistent, the question is addressed whether these inconsistencies might, at least in part, be related to the anatomical and functional heterogeneity of this brain area.
Collapse
Affiliation(s)
- T M Tzschentke
- Grünenthal GmbH, Research and Development, Department of Pharmacology, Postfach 500444, 52088, Aachen, Germany.
| |
Collapse
|
31
|
Suzuki T, Abe S, Yamaguchi M, Baba A, Hori T, Shiraishi H, Ito T. Effects of cocaine administration on receptor binding and subunits mRNA of GABA(A)-benzodiazepine receptor complexes. Synapse 2000; 38:198-215. [PMID: 11018794 DOI: 10.1002/1098-2396(200011)38:2<198::aid-syn11>3.0.co;2-k] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The effects of intermittent intraperitoneal (i.p.) administration of cocaine (20 mg/kg) on GABA(A)-benzodiazepine (BZD) receptors labeled by t-[(35)S]butylbicyclophosphorothionate (TBPS), and on several types of mRNA subunits were investigated in rat brain by in vitro quantitative receptor autoradiography and in situ hybridization. Phosphor screen imaging with high sensitivity and a wide linear range of response was utilized for imaging analysis. There was a significant decrease in the level of alpha 1, alpha 6, beta 2, beta 3, and gamma 2 subunits mRNA, with no alteration of [(35)S]TBPS binding in any regions in the brain of rats at 1 h following a single injection of cocaine. In chronically treated animals, the mean scores of stereotyped behavior were increased with the number of injections. The level of beta 3 subunit mRNA was decreased in the cortices and caudate putamen, at 24 h after a final injection of chronic administrations for 14 days. In the withdrawal from cocaine, the frontal cortex and hippocampal complexes showed a significant increase in [(35)S]TBPS binding and alpha1 and beta 3 subunit mRNA in the rats 1 week after a cessation of chronic administration of cocaine. These findings suggest that the disruption of GABA(A)-BZD receptor formation is closely involved in the development of cocaine-related behavioral disturbances. Further studies on the physiological functions on GABA(A)-BZD receptor complex will be necessary for an explanation of the precise mechanisms underlying the acute effects, development of hypersensitization, and withdrawal state of cocaine.
Collapse
Affiliation(s)
- T Suzuki
- Department of Psychiatry, Institute of Clinical Medicine, University of Tsukuba, Tennodai, Tsukuba, Japan.
| | | | | | | | | | | | | |
Collapse
|
32
|
Del Arco A, Mora F. Endogenous dopamine potentiates the effects of glutamate on extracellular GABA in the prefrontal cortex of the freely moving rat. Brain Res Bull 2000; 53:339-45. [PMID: 11113590 DOI: 10.1016/s0361-9230(00)00353-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Using microdialysis, the effects of endogenous dopamine on basal extracellular concentrations of gamma-aminobutyric acid (GABA) and on the increases of GABA produced by glutamate were investigated in the medial prefrontal cortex of the awake rat. The dopamine uptake inhibitor nomifensine (1, 100 and 1000 microM), used to increase extracellular dopamine, produced a dose-related increase of dialysate dopamine (0.1-1 nM) but did not change dialysate concentrations of GABA or glutamate at any dose used. The glutamate uptake inhibitor L-trans-pyrrolidine-2,4-dicarboxilic acid (PDC; 0.5 and 2 mM), used to increase extracellular glutamate, produced a dose-related increase of dialysate glutamate (1.5-5.5 microM) and increased dialysate GABA by 125%. When a simultaneous increase of endogenous dopamine and glutamate was produced, the increases of dialysate GABA were significantly higher (185% of baseline) than those produced by glutamate alone. These effects on dialysate GABA were attenuated by the D2 receptor antagonist (-) sulpiride, but not by the D1 receptor antagonist SCH-23390, all of which suggests that extracellular dopamine plays an important role in modulating endogenous glutamate-GABA interactions in the prefrontal cortex of the rat.
Collapse
Affiliation(s)
- A Del Arco
- Department of Physiology, Faculty of Medicine, University Complutense, Madrid, Spain
| | | |
Collapse
|
33
|
Maiorov VI, Moskvitin AA. Long-term potentiation of the late NMDA-dependent components of neuron responses in the cat motor cortex to stimulation of the direct cortical input from field 5 of the parietal cortex. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2000; 30:421-6. [PMID: 10981945 DOI: 10.1007/bf02463096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Bicuculline-filled microelectrodes were used to record responses to weak stimulation of the parietal cortex in field 5 of the motor cortex of anesthetized cats, and revealed late excitatory responses of neurons similar to those seen in the motor cortex of conscious cats in response to conditioned stimulation of the parietal cortex triggering a conditioned reflex consisting of placing the paw on a support. Tetanic stimulation of the parietal cortex (10-20 sec, 100 Hz) in the same conditions evoked long-term potentiation of late responses, resulting in the formation and enhancement of responses, along with decreases in the latent period of responses.
Collapse
Affiliation(s)
- V I Maiorov
- Department of Higher Nervous Activity, M.V. Lomonosov Moscow State University
| | | |
Collapse
|
34
|
Chen NN, Pan WH. Regulatory effects of D2 receptors in the ventral tegmental area on the mesocorticolimbic dopaminergic pathway. J Neurochem 2000; 74:2576-82. [PMID: 10820220 DOI: 10.1046/j.1471-4159.2000.0742576.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To investigate the regulatory effects of somatodendritic D2 receptors on the terminal's extracellular dopamine (DA) concentration, a D2 antagonist (eticlopride) was infused directly into the ventral tegmental area via a microdialysis probe in chloral hydrate-anesthetized rats. Extracellular DA changes in both the nucleus accumbens (N ACC) and the medial prefrontal cortex (mPFC) were monitored. Infusion of 10.0 fM eticlopride had no effect on DA in the mPFC (110.2 +/- 10.0% of baseline) but significantly increased DA in the N ACC (150.1 +/- 11.7%). Infusion of a higher dose of eticlopride (100.0 or 1,000.0 fM) significantly augmented the DA in the mPFC (121.1 +/- 7.6 and 180.7 +/- 25.8%, respectively) but surprisingly had no effect on DA in the N ACC (111.5 +/- 7.3 and 104.1 +/- 8.7%, respectively). To further investigate whether the bluntness of DA increase in the N ACC was due to DA receptor activation in the mPFC, eticlopride or SCH23390 was infused into the mPFC prior to and during intrategmental eticlopride infusion, and the change of DA in the N ACC was simultaneously monitored. During intra-mPFC 1.0 nM eticlopride infusion but not during 10.0 nM SCH23390 administration (95.5 +/- 6.1%), intrategmental 1,000.0 fM eticlopride infusion could further elevate DA in the N ACC (130.0 +/- 4.6%). Our results indicated that (1) the mesolimbic and the mesocortical pathways were under tonic inhibition by somatodendritic D2 receptors; (2) the DA concentration in the N ACC first increased and then returned to baseline while the intrategmental infusion dose of eticlopride increased; and (3) the bluntness of DA increase in the N ACC resulted from the D2 receptor activation in the mPFC.
Collapse
Affiliation(s)
- N N Chen
- Institute of Pharmacology, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan, R.O.C
| | | |
Collapse
|
35
|
Abstract
Atypical antipsychotic drugs (APDs) such as clozapine and olanzapine antagonize both D(1) and D(2) receptors; however, little is known regarding their pharmacologic effect on specific neuronal elements within the local circuitry of corticolimbic regions, such as medial prefrontal cortex (mPFC). To characterize the effect of short-term antagonism of the D(1) receptor a high-resolution autoradiographic technique was used to assess the density (B(max)) and affinity (K(d)) of this receptor on pyramidal cells (i.e., large neurons (LNs, >/=100 microm(2))), nonpyramidal cells (i.e., small neurons (SNs, <100 microm(2))) and in the surrounding neuropil (NPL) of layer VI in rat mPFC. Either normal saline or the selective D(1) antagonist SCH23390 (1.0 mg/kg/day) were administered for 48 h via Alzet osmotic pumps. Frozen sections were incubated in [(3)H]SCH23390 (1-8 nM) in the presence or absence of the competitive inhibitor SKF38393 (10 microM). A microscopic adaptation to Scatchard analysis revealed a significant increase (82%) in B(max) for neuronal cell bodies (P < 0.05), but not for neuropil of drug-treated animals. Further analysis indicated that the increase in B(max) was present on SNs (94%, P < 0.05), but not LNs in SCH23390-treated rats. In contrast, K(d) values for LNs, SNs, and NPL were not significantly altered by drug treatment. Since the vast majority of SNs are nonpyramidal in nature, short-term administration of a selective D(1) antagonist seems to be associated with a preferential upregulation of this receptor on interneurons. Overall, these results are consistent with the hypothesis that the mechanism of action of atypical antipsychotic medications involves changes in D(1) receptor activity associated with local circuit neurons in rat mPFC.
Collapse
Affiliation(s)
- S A Davidoff
- McLean Hospital, Belmont, Massachusetts 02178-9106, USA
| | | | | |
Collapse
|
36
|
Durstewitz D, Seamans JK, Sejnowski TJ. Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex. J Neurophysiol 2000; 83:1733-50. [PMID: 10712493 DOI: 10.1152/jn.2000.83.3.1733] [Citation(s) in RCA: 394] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The prefrontal cortex (PFC) is critically involved in working memory, which underlies memory-guided, goal-directed behavior. During working-memory tasks, PFC neurons exhibit sustained elevated activity, which may reflect the active holding of goal-related information or the preparation of forthcoming actions. Dopamine via the D1 receptor strongly modulates both this sustained (delay-period) activity and behavioral performance in working-memory tasks. However, the function of dopamine during delay-period activity and the underlying neural mechanisms are only poorly understood. Recently we proposed that dopamine might stabilize active neural representations in PFC circuits during tasks involving working memory and render them robust against interfering stimuli and noise. To further test this idea and to examine the dopamine-modulated ionic currents that could give rise to increased stability of neural representations, we developed a network model of the PFC consisting of multicompartment neurons equipped with Hodgkin-Huxley-like channel kinetics that could reproduce in vitro whole cell and in vivo recordings from PFC neurons. Dopaminergic effects on intrinsic ionic and synaptic conductances were implemented in the model based on in vitro data. Simulated dopamine strongly enhanced high, delay-type activity but not low, spontaneous activity in the model network. Furthermore the strength of an afferent stimulation needed to disrupt delay-type activity increased with the magnitude of the dopamine-induced shifts in network parameters, making the currently active representation much more stable. Stability could be increased by dopamine-induced enhancements of the persistent Na(+) and N-methyl-D-aspartate (NMDA) conductances. Stability also was enhanced by a reduction in AMPA conductances. The increase in GABA(A) conductances that occurs after stimulation of dopaminergic D1 receptors was necessary in this context to prevent uncontrolled, spontaneous switches into high-activity states (i.e., spontaneous activation of task-irrelevant representations). In conclusion, the dopamine-induced changes in the biophysical properties of intrinsic ionic and synaptic conductances conjointly acted to highly increase stability of activated representations in PFC networks and at the same time retain control over network behavior and thus preserve its ability to adequately respond to task-related stimuli. Predictions of the model can be tested in vivo by locally applying specific D1 receptor, NMDA, or GABA(A) antagonists while recording from PFC neurons in delayed reaction-type tasks with interfering stimuli.
Collapse
Affiliation(s)
- D Durstewitz
- Computational Neurobiology Laboratory, Howard Hughes Medical Institute, Salk Institute, La Jolla 92037, California
| | | | | |
Collapse
|
37
|
Au-Young SM, Shen H, Yang CR. Medial prefrontal cortical output neurons to the ventral tegmental area (VTA) and their responses to burst-patterned stimulation of the VTA: neuroanatomical and in vivo electrophysiological analyses. Synapse 1999; 34:245-55. [PMID: 10529719 DOI: 10.1002/(sici)1098-2396(19991215)34:4<245::aid-syn1>3.0.co;2-d] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
During a delayed period in a delayed-response task, prefrontal cortical neurons show a change in neuronal firing rate that is dependent on a functional mesocortical dopamine input. This change in firing rate has been attributed to be part of the cellular processes underlying working memory. However, it is unclear what neural mechanisms activate mesocortical dopamine neurons to provide an optimal level of dopamine to modulate the firing of the medial prefrontal cortical (mPFC) neurons. This study examined the possibility of whether mPFC neurons that project to the ventral tegmental area (VTA) might activate the ascending mesocortical dopamine neurons. To determine the locations of the mPFC-->VTA neurons, cholera toxin subunit B was microinjected into the VTA. Retrogradely labeled mPFC neurons mainly reside in the deep lamina V and VI. In vivo single unit recording in urethane-anesthetized rats were also used to determine the responses of some of these neurons to burst-patterned stimulation of the VTA. Single-pulse stimulation (1 Hz) of the VTA antidromically activated burst firing mPFC-->VTA neurons. In response to burst-patterned stimulation of the VTA, which mimicked burst firing of VTA dopamine neurons (4-10 pulses at 10-15 Hz cycled at 0.5-3 Hz), the temporal structure of spontaneous burst firing patterns of these neurons but not their mean firing rate were changed. However, the mean firing rate of the non-VTA projecting neurons (i.e., no antidromic response to VTA stimulations) was either increased or decreased by similar burst-patterned stimulation of the VTA. These data suggest that burst-patterned stimulation of the ascending VTA-->mPFC or putative mesocortical dopamine neurons might have released dopamine and/or other neuromodulators to modulate the temporal code, rather than the rate code, of mPFC-->VTA neurons. Medial PFC neurons that project elsewhere (e.g., nucleus accumbens or mediodorsal thalamus) may mediate the sustained firing rate changes during, e.g., short-term working memory.
Collapse
Affiliation(s)
- S M Au-Young
- Department of Diagnostic Neurophysiology and Department of Experimental Medicine, University of British Columbia, British Columbia Children's Hospital, Vancouver, BC, V6H 3V4 Canada
| | | | | |
Collapse
|
38
|
Brinley-Reed M, McDonald AJ. Evidence that dopaminergic axons provide a dense innervation of specific neuronal subpopulations in the rat basolateral amygdala. Brain Res 1999; 850:127-35. [PMID: 10629756 DOI: 10.1016/s0006-8993(99)02112-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Dopaminergic inputs from the ventral tegmental area and substantia nigra are involved in numerous emotional and behavioral functions mediated by the amygdala. Previous studies have shown that some dopaminergic axons selectively innervate subpopulations of neurons in the rat basolateral amygdala by forming dense pericellular arrays (baskets) that envelope the perikarya of these neurons. Because of the obvious functional significance of this innervation, a sequential two-color immunoperoxidase technique was used in the present study to determine which neuronal subpopulations are targeted. Pericellular baskets were seen in sections stained for tyrosine hydroxylase, but not for dopamine-beta-hydroxylase, suggesting that these axonal arrays are dopaminergic. Most baskets enveloped small ovoid or piriform perikarya, although a few in the anteroventral part of the basolateral nucleus were associated with larger pyramidal cells. Double-labeling immunohistochemistry revealed that all of the smaller baskets enveloped a subpopulation of parvalbumin-immunoreactive nonpyramidal neurons, but not nonpyramidal neurons containing vasoactive intestinal polypeptide or neuropeptide Y. Since these parvalbumin containing neurons are known to be GABAergic interneurons, the results of this study suggest that the actions of dopamine in the basolateral amygdala are mediated, in part, by a subpopulation of inhibitory interneurons.
Collapse
Affiliation(s)
- M Brinley-Reed
- Department of Biological and Physical Sciences, Columbia College, SC 29203, USA
| | | |
Collapse
|
39
|
Honey GD, Bullmore ET, Soni W, Varatheesan M, Williams SC, Sharma T. Differences in frontal cortical activation by a working memory task after substitution of risperidone for typical antipsychotic drugs in patients with schizophrenia. Proc Natl Acad Sci U S A 1999; 96:13432-7. [PMID: 10557338 PMCID: PMC23965 DOI: 10.1073/pnas.96.23.13432] [Citation(s) in RCA: 215] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antipsychotic drug treatment of schizophrenia may be complicated by side effects of widespread dopaminergic antagonism, including exacerbation of negative and cognitive symptoms due to frontal cortical hypodopaminergia. Atypical antipsychotics have been shown to enhance frontal dopaminergic activity in animal models. We predicted that substitution of risperidone for typical antipsychotic drugs in the treatment of schizophrenia would be associated with enhanced functional activation of frontal cortex. We measured cerebral blood oxygenation changes during periodic performance of a verbal working memory task, using functional MRI, on two occasions (baseline and 6 weeks later) in two cohorts of schizophrenic patients. One cohort (n = 10) was treated with typical antipsychotic drugs throughout the study. Risperidone was substituted for typical antipsychotics after baseline assessment in the second cohort (n = 10). A matched group of healthy volunteers (n = 10) was also studied on a single occasion. A network comprising bilateral dorsolateral prefrontal and lateral premotor cortex, the supplementary motor area, and posterior parietal cortex was activated by working memory task performance in both the patients and comparison subjects. A two-way analysis of covariance was used to estimate the effect of substituting risperidone for typical antipsychotics on power of functional response in the patient group. Substitution of risperidone increased functional activation in right prefrontal cortex, supplementary motor area, and posterior parietal cortex at both voxel and regional levels of analysis. This study provides direct evidence for significantly enhanced frontal function in schizophrenic patients after substitution of risperidone for typical antipsychotic drugs, and it indicates the potential value of functional MRI as a tool for longitudinal assessment of psychopharmacological effects on cerebral physiology.
Collapse
Affiliation(s)
- G D Honey
- Section of Cognitive Psychopharmacology, Institute of Psychiatry De Crespigny Park, London SE5 8AF, United Kingdom
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
The present review provides an overview of the distribution of dopaminergic fibers and dopaminoceptive elements within the avian telencephalon, the possible interactions of dopamine (DA) with other biochemically identified systems as revealed by immunocytochemistry, and the involvement of DA in behavioral processes in birds. Primary sensory structures are largely devoid of dopaminergic fibers, DA receptors and the D1-related phosphoprotein DARPP-32, while all these dopaminergic markers gradually increase in density from the secondary sensory to the multimodal association and the limbic and motor output areas. Structures of the avian basal ganglia are most densely innervated but, in contrast to mammals, show a higher D2 than D1 receptor density. In most of the remaining telencephalon D1 receptors clearly outnumber D2 receptors. Dopaminergic fibers in the avian telencephalon often show a peculiar arrangement where fibers coil around the somata and proximal dendrites of neurons like baskets, probably providing them with a massive dopaminergic input. Basket-like innervation of DARPP-32-positive neurons seems to be most prominent in the multimodal association areas. Taken together, these anatomical findings indicate a specific role of DA in higher order learning and sensory-motor processes, while primary sensory processes are less affected. This conclusion is supported by behavioral findings which show that in birds, as in mammals, DA is specifically involved in sensory-motor integration, attention and arousal, learning and working memory. Thus, despite considerable differences in the anatomical organization of the avian and mammalian forebrain, the organization of the dopaminergic system and its behavioral functions are very similar in birds and mammals.
Collapse
Affiliation(s)
- D Durstewitz
- AE Biopsychologie, Ruhr-Universität Bochum, Germany.
| | | | | |
Collapse
|
41
|
Doherty MD, Gratton A. Effects of medial prefrontal cortical injections of GABA receptor agonists and antagonists on the local and nucleus accumbens dopamine responses to stress. Synapse 1999; 32:288-300. [PMID: 10332804 DOI: 10.1002/(sici)1098-2396(19990615)32:4<288::aid-syn5>3.0.co;2-u] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Stress stimulates dopamine (DA) release in nucleus accumbens (NAcc) but will do so more strongly in medial prefrontal cortex (PFC). Evidence indicates, however, that the cortical DA response to stress acts to dampen the concurrent increase in NAcc DA release. In the present study, we used voltammetry to investigate the role of PFC GABA in regulating the NAcc DA response to stress. The results of Experiment 1 show that the NAcc stress response is inhibited following bilateral cortical microinjections of baclofen (GABAB receptor agonist). While phaclofen (GABAB receptor antagonist) blocked the effect of baclofen, it had no significant effect of its own. Intra-PFC injections of muscimol (GABAA receptor agonist) and bicuculline (GABAA receptor antagonist) had no effect on the DA stress response in NAcc. In Experiment 2, we explored the possibility that GABA influences the NAcc DA stress response indirectly by modulating stress-induced DA release in PFC. None of the drugs tested had an effect on the PFC stress response at a dose (1 nmol) that produced reliable effects on the NAcc stress response. At an order of magnitude higher dose, however, locally applied phaclofen and muscimol enhanced and attenuated, respectively, the DA stress response in PFC. These results were validated in Experiment 3 by showing that intra-PFC injections of GBR-12395 (DA uptake blocker) and quinpirole (D2/D3 receptor agonist) dose-dependently enhanced and inhibited, respectively, the local DA stress response. Together, these findings indicate that increased GABA transmission in PFC exerts an inhibitory influence on the NAcc DA response to stress, and that this action is mediated primarily but not exclusively by GABAB receptors which may be located both on cortical output neurons and on DA terminals.
Collapse
Affiliation(s)
- M D Doherty
- Douglas Hospital Research Center, Department of Psychiatry, McGill University, Verdun, Québec, Canada
| | | |
Collapse
|
42
|
Abstract
The dopaminergic modulation of neural activity in the prefrontal cortex (PFC) is essential for working memory. Delay-activity in the PFC in working memory tasks persists even if interfering stimuli intervene between the presentation of the sample and the target stimulus. Here, the hypothesis is put forward that the functional role of dopamine in working memory processing is to stabilize active neural representations in the PFC network and thereby to protect goal-related delay-activity against interfering stimuli. To test this hypothesis, we examined the reported dopamine-induced changes in several biophysical properties of PFC neurons to determine whether they could fulfill this function. An attractor network model consisting of model neurons was devised in which the empirically observed effects of dopamine on synaptic and voltage-gated membrane conductances could be represented in a biophysically realistic manner. In the model, the dopamine-induced enhancement of the persistent Na+ and reduction of the slowly inactivating K+ current increased firing of the delay-active neurons, thereby increasing inhibitory feedback and thus reducing activity of the "background" neurons. Furthermore, the dopamine-induced reduction of EPSP sizes and a dendritic Ca2+ current diminished the impact of intervening stimuli on current network activity. In this manner, dopaminergic effects indeed acted to stabilize current delay-activity. Working memory deficits observed after supranormal D1-receptor stimulation could also be explained within this framework. Thus, the model offers a mechanistic explanation for the behavioral deficits observed after blockade or after supranormal stimulation of dopamine receptors in the PFC and, in addition, makes some specific empirical predictions.
Collapse
|
43
|
Vanhoutte P, Barnier JV, Guibert B, Pagès C, Besson MJ, Hipskind RA, Caboche J. Glutamate induces phosphorylation of Elk-1 and CREB, along with c-fos activation, via an extracellular signal-regulated kinase-dependent pathway in brain slices. Mol Cell Biol 1999; 19:136-46. [PMID: 9858538 PMCID: PMC83872 DOI: 10.1128/mcb.19.1.136] [Citation(s) in RCA: 258] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/1998] [Accepted: 09/30/1998] [Indexed: 01/17/2023] Open
Abstract
In cell culture systems, the TCF Elk-1 represents a convergence point for extracellular signal-related kinase (ERK) and c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) subclasses of mitogen-activated protein kinase (MAPK) cascades. Its phosphorylation strongly potentiates its ability to activate transcription of the c-fos promoter through a ternary complex assembled on the c-fos serum response element. In rat brain postmitotic neurons, Elk-1 is strongly expressed (V. Sgambato, P. Vanhoutte, C. Pagès, M. Rogard, R. A. Hipskind, M. J. Besson, and J. Caboche, J. Neurosci. 18:214-226, 1998). However, its physiological role in these postmitotic neurons remains to be established. To investigate biochemically the signaling pathways targeting Elk-1 and c-fos in mature neurons, we used a semi-in vivo system composed of brain slices stimulated with the excitatory neurotransmitter glutamate. Glutamate treatment leads to a robust, progressive activation of the ERK and JNK/SAPK MAPK cascades. This corresponds kinetically to a significant increase in Ser383-phosphorylated Elk-1 and the appearance of c-fos mRNA. Glutamate also causes increased levels of Ser133-phosphorylated cyclic AMP-responsive element-binding protein (CREB) but only transiently relative to Elk-1 and c-fos. ERK and Elk-1 phosphorylation are blocked by the MAPK kinase inhibitor PD98059, indicating the primary role of the ERK cascade in mediating glutamate signaling to Elk-1 in the rat striatum in vivo. Glutamate-mediated CREB phosphorylation is also inhibited by PD98059 treatment. Interestingly, KN62, which interferes with calcium-calmodulin kinase (CaM-K) activity, leads to a reduction of glutamate-induced ERK activation and of CREB phosphorylation. These data indicate that ERK functions as a common component in two signaling pathways (ERK/Elk-1 and ERK/?/CREB) converging on the c-fos promoter in postmitotic neuronal cells and that CaM-Ks act as positive regulators of these pathways.
Collapse
Affiliation(s)
- P Vanhoutte
- Laboratoire de Neurochimie-Anatomie, Institut des Neurosciences-Unité Mixte de Recherche 7624, CNRS-Universtité Pierre et Marie Curie, 75005 Paris, France
| | | | | | | | | | | | | |
Collapse
|
44
|
Meshul CK, Noguchi K, Emre N, Ellison G. Cocaine-induced changes in glutamate and GABA immunolabeling within rat habenula and nucleus accumbens. Synapse 1998; 30:211-20. [PMID: 9723791 DOI: 10.1002/(sici)1098-2396(199810)30:2<211::aid-syn11>3.0.co;2-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We previously reported that subchronic administration of cocaine for 5 days via slow-release pellets results in pronounced degeneration in the lateral habenula (LHB) and its primary efferent tract, the fasciculus retroflexus [Ellison (1992): Brain Res 598:353-356; Ellison and Switzer (1993): Neuroreport 5:17-20]. The lateral habenula receives both GABA and glutamate afferents. In order to test the hypothesis that the cocaine-induced degeneration of the fasciculus retroflexus may be related to changes in synaptic activity of either GABA or glutamate nerve terminals within the LHB, the density of nerve terminal immunolabeling of either neurotransmitter was quantified after 5 days of chronic drug administration followed by either 1 or 14 days off the drug. The shell of the nucleus accumbens (NACs) was also analyzed, since this area is thought to be associated with the reward aspects of addictive stimulant drug administration and was previously shown not to be associated with fiber degeneration. We found that cocaine treatment resulted in a significant decrease in the density of nerve-terminal GABA immunolabeling located within the LHB in animals taken off the drug for either 1 or 14 days, while there was no change in the density of glutamate immunolabeling. In the NACs, there was a decrease in the density of glutamate immunolabeling within nerve terminals 1 day but not 14 days after cocaine administration. There was no change in the density of GABA immunolabeling within the NACs following the 1 or 14 day-off period. These results suggest that there are long-term changes in the density of GABA immunolabeling within the LHB and that the effects seen in glutamate synapses within the NACs are transitory. The long-term decrease in GABA immunolabeling within the LHB is consistent with the hypothesis that a decrease in inhibitory synaptic activity, leading to increased excitatory influence on LHB neurons, may result in neurotoxicity and the subsequent degeneration of the fasciculus retroflexus.
Collapse
Affiliation(s)
- C K Meshul
- Research Services, VA Medical Center, Department of Pathology, Oregon Health Sciences University, Portland 97201, USA.
| | | | | | | |
Collapse
|
45
|
Durstewitz D, Kröner S, Hemmings HC, Güntürkün O. The dopaminergic innervation of the pigeon telencephalon: distribution of DARPP-32 and co-occurrence with glutamate decarboxylase and tyrosine hydroxylase. Neuroscience 1998; 83:763-79. [PMID: 9483560 DOI: 10.1016/s0306-4522(97)00450-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dopaminergic axons arising from midbrain nuclei innervate the mammalian and avian telencephalon with heterogeneous regional and laminar distributions. In primate, rodent, and avian species, the neuromodulator dopamine is low or almost absent in most primary sensory areas and is most abundant in the striatal parts of the basal ganglia. Furthermore, dopaminergic fibres are present in most limbic and associative structures. Herein, the distribution of DARPP-32, a phosphoprotein related to the dopamine D1-receptor, was investigated in the pigeon telencephalon by immunocytochemical techniques. Furthermore, co-occurrence of DARPP-32-positive perikarya with tyrosine hydroxylase-positive pericellular axonal "baskets" or glutamate decarboxylase-positive neurons, as well as co-occurrence of tyrosine hydroxylase and glutamate decarboxylase were examined. Specificity of the anti-DARPP-32 monoclonal antibody in pigeon brain was determined by immunoblotting. The distribution of DARPP-32 shared important features with the distribution of D1-receptors and dopaminergic fibres in the pigeon telencephalon as described previously. In particular, DARPP-32 was highly abundant in the avian basal ganglia, where a high percentage of neurons were labelled in the "striatal" parts (paleostriatum augmentatum, lobus parolfactorius), while only neuropil staining was observed in the "pallidal" portions (paleostriatum primitivum). In contrast, DARPP-32 was almost absent or present in comparatively lower concentrations in most primary sensory areas. Secondary sensory and tertiary areas of the neostriatum contained numbers of labelled neurons comparable to that of the basal ganglia and intermediate levels of neuropil staining. Approximately up to one-third of DARPP-32-positive neurons received a basket-type innervation from tyrosine hydroxylase-positive fibres in the lateral and caudal neostriatum, but only about half as many did in the medial and frontal neostriatum, and even less so in the hyperstriatum. No case of colocalization of glutamate decarboxylase and DARPP-32 and no co-occurrence of glutamate decarboxylase-positive neurons and tyrosine hydroxylase-basket-like structures could be detected out of more than 2000 glutamate decarboxylase-positive neurons examined, although the high DARPP-32 and high tyrosine hydroxylase staining density hampered this analysis in the basal ganglia. In conclusion, the pigeon dopaminergic system seems to be organized similar to that of mammals. Apparently, in the telencephalon, dopamine has its primary function in higher level sensory, associative and motor processes, since primary areas showed only weak or no anatomical cues of dopaminergic modulation. Dopamine might exert its effects primarily by modulating the physiological properties of non-GABAergic and therefore presumably excitatory units.
Collapse
Affiliation(s)
- D Durstewitz
- AE Biopsychologie, Fakultät für Psychologie, Ruhr-Universität Bochum, Germany
| | | | | | | |
Collapse
|
46
|
Harsing LG, Zigmond MJ. Postsynaptic integration of cholinergic and dopaminergic signals on medium-sized GABAergic projection neurons in the neostriatum. Brain Res Bull 1998; 45:607-13. [PMID: 9566505 DOI: 10.1016/s0361-9230(97)00460-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The effects of cholinergic drugs and the interaction between cholinergic and dopaminergic compounds were studied on electrically evoked [3H]gamma-aminobutyric acid (GABA) overflow in slices of the rat neostriatum. Slices were prepared and loaded with [3H]GABA in the presence of beta-alanine and then superfused with Krebs-bicarbonate buffer containing aminooxyacetic acid and nipecotic acid to inhibit GABA uptake and metabolism, respectively. The nonselective muscarinic agonist oxotremorine (0.1-10 microM) increased the release of [3H]GABA and the selective M1 receptor agonist McN-A-343 (0.1-10 microM) exerted similar effect. The stimulatory effect of oxotremorine (10 microM) on [3H][GABA overflow was antagonized by the nonselective muscarinic antagonist atropine (1 microM) and the selective M1 receptor antagonist pirenzepine (0.1-1.0 microM). The M2 receptor antagonist methoctramine (1.0 microM) did not alter the stimulatory effect of oxotremorine. Of the muscarinic receptor antagonists atropine, pirenzepine, and methoctramine (1.0 microM) failed to affect [3H]GABA overflow. The M3 receptor antagonist p-F-HHSiD (1 microM) increased [3H]GABA overflow and p-F-HHSiD and oxotremorine were found to be additive in increasing this effect. The D2 dopamine receptor antagonist sulpiride (10 microM) increased the electrical stimulation-induced [3H]GABA overflow, and this stimulation was counteracted by concomitant administration of atropine (1 microM). McN-A-343 and sulpiride also increased the KCl-induced [3H]GABA overflow from superfused neostriatal slices and tetrodotoxin (1 microM) did not affect these stimulations. These data indicate that the release of GABA in the neostriatum is under the control of M1 stimulatory and M3 inhibitory muscarinic receptors. Dopamine, which exerts inhibition on GABA release via D2 receptors, may counteract the M1 facilitation, and M1 and D2 receptors involved in the cholinergic-dopaminergic interaction may be located postsynaptically on medium-sized spiny GABAergic projection neurons.
Collapse
Affiliation(s)
- L G Harsing
- Department of Neuroscience, University of Pittsburgh, PA, USA. h 13768
| | | |
Collapse
|
47
|
Abstract
Substantial progress, in part owing to recent refinements in methodology, has been made in unraveling the anatomic correlates of schizophrenia. Subtle pathomorphologic changes, distinct from those of well-known degenerative brain disorders, have been observed. Neurochemical characterization has illuminated the nature of these morphologic abnormalities and has pointed to complex dysregulation of neurotransmitters and G proteins. New biochemical hypotheses such as the glutamate hypothesis have replaced and revitalized more established concepts in the neurochemistry of schizophrenia.
Collapse
Affiliation(s)
- C S Weickert
- NIMH Neuroscience Center at St. Elizabeths, Washington, DC 20032, USA
| | | |
Collapse
|
48
|
Yonezawa Y, Kuroki T, Kawahara T, Tashiro N, Uchimura H. Involvement of gamma-aminobutyric acid neurotransmission in phencyclidine-induced dopamine release in the medial prefrontal cortex. Eur J Pharmacol 1998; 341:45-56. [PMID: 9489855 DOI: 10.1016/s0014-2999(97)01435-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The present study was designed to examine the possible involvement of gamma-aminobutyric acid (GABA) neurotransmission in the mechanism of phencyclidine (1-(1-phenylcyclohexyl)piperidine; PCP)-induced dopamine release in the medial prefrontal cortex, using in vivo microdialysis in awake, freely moving rats. Local perfusion via the dialysis probe into the medial prefrontal cortex with PCP (100 and 500 microM) and dizocilpine ((+)-5-methyl-10,11-dihydroxy-5-H-dibenzo(a,d)cyclo-heptan-5,10-im ine; MK-801, 10 and 50 microM), a selective non-competitive NMDA receptor antagonist, was found to increase extracellular dopamine levels. Co-perfusion with NMDA (1 mM) or the GABAA receptor agonist muscimol (50 microM) attenuated the effects of PCP (500 microM) and MK-801 (50 microM) on extracellular dopamine levels. The dopamine reuptake inhibitor nomifensine (50 microM) also produced an increase in extracellular dopamine levels in the medial prefrontal cortex, but this effect was not affected by co-perfusion with muscimol (50 microM). On the other hand, local perfusion with PCP (100 and 500 microM) and MK-801 (10 and 50 microM), but not nomifensine (50 microM), reduced extracellular GABA levels in the medial prefrontal cortex. Co-perfusion with NMDA (1 mM) reduced the effects of PCP (500 microM) and MK-801 (50 microM) on extracellular GABA levels. These results suggest that PCP may facilitate dopamine release in the medial prefrontal cortex, at least in part, by the inhibition of GABA release via the antagonism of NMDA receptors.
Collapse
Affiliation(s)
- Y Yonezawa
- Department of Neuropsychiatry, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
49
|
Porras A, Sanz B, Mora F. Dopamine-glutamate interactions in the prefrontal cortex of the conscious rat: studies on ageing. Mech Ageing Dev 1997; 99:9-17. [PMID: 9430101 DOI: 10.1016/s0047-6374(97)00084-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effects of apomorphine, a D1-D2 dopamine receptor agonist, on the extracellular concentration of glutamate were investigated in the medial prefrontal cortex of young, middle-aged and aged rats. In vivo intracerebral perfusions were undertaken in the conscious rat using a concentric push-pull cannula system. Glutamate concentration in the samples were determined by HPLC with fluorometric detection. Apomorphine produced an increase in extracellular concentration of glutamate in medial prefrontal cortex of young rats (178% of baseline) only at 10 microM, but not at 5 and 20 microM. This increase in glutamate concentration induced by apomorphine was significantly attenuated by blockade of D1-D2 dopamine receptors with haloperidol. Apomorphine, at 10 microM, failed to induce an increase in extracellular concentration of glutamate in the prefrontal cortex of middle-aged and aged rats. However, at 20 microM, apomorphine induced an increase in glutamate concentration in the prefrontal cortex of middle-aged rats, but not in aged rats. These data indicate that an interaction between dopamine and glutamate exists in the medial prefrontal cortex and that this interaction deteriorates with age.
Collapse
Affiliation(s)
- A Porras
- Department of Physiology, Faculty of Medicine, Complutense University of Madrid, Spain
| | | | | |
Collapse
|
50
|
Supranormal stimulation of D1 dopamine receptors in the rodent prefrontal cortex impairs spatial working memory performance. J Neurosci 1997. [PMID: 9334425 DOI: 10.1523/jneurosci.17-21-08528.1997] [Citation(s) in RCA: 541] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Although previous research has emphasized the beneficial effects of dopamine (DA) on functions of the prefrontal cortex (PFC), recent studies of animals exposed to mild stress indicate that excessive DA receptor stimulation may be detrimental to the spatial working memory functions of the PFC (Arnsten and Goldman-Rakic, 1990; Murphy et al., 1994, 1996a,b, 1997). In particular, these studies have suggested that supranormal stimulation of D1 receptors may contribute to the detrimental actions of DA in the PFC (Murphy et al., 1994, 1996a). The current study directly tested this hypothesis by examining the effects of infusing a full D1 receptor agonist, SKF 81297, into the PFC of rats performing a spatial working memory task, delayed alternation. SKF 81297 produced a dose-related impairment in delayed-alternation performance. The impairment was reversed by pretreatment with a D1 receptor antagonist, SCH 23390, consistent with drug actions at D1 receptors. SCH 23390 by itself had no effect on performance, although slightly higher doses impaired performance (Murphy et al., 1994, 1996a). There was a significant relationship between infusion location and drug efficacy; animals with cannulae anterior to the PFC were not impaired by SKF 81297 infusions. Taken together, these results demonstrate that supranormal D1 receptor stimulation in the PFC is sufficient to impair PFC working memory function. These cognitive data are consistent with recent electrophysiological studies of D1 receptor mechanisms affecting the PFC (Williams and Goldman-Rakic, 1995; Yang and Seamans, 1996). Increased D1 receptor stimulation during stress may serve to take the PFC "off-line" to allow posterior cortical and subcortical structures to regulate behavior, but may contribute to the vulnerability of the PFC in many neuropsychiatric disorders.
Collapse
|