1
|
Shuvaev SA, Tran NB, Stephenson-Jones M, Li B, Koulakov AA. Neural Networks With Motivation. Front Syst Neurosci 2021; 14:609316. [PMID: 33536879 PMCID: PMC7848953 DOI: 10.3389/fnsys.2020.609316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/08/2020] [Indexed: 11/13/2022] Open
Abstract
Animals rely on internal motivational states to make decisions. The role of motivational salience in decision making is in early stages of mathematical understanding. Here, we propose a reinforcement learning framework that relies on neural networks to learn optimal ongoing behavior for dynamically changing motivation values. First, we show that neural networks implementing Q-learning with motivational salience can navigate in environment with dynamic rewards without adjustments in synaptic strengths when the needs of an agent shift. In this setting, our networks may display elements of addictive behaviors. Second, we use a similar framework in hierarchical manager-agent system to implement a reinforcement learning algorithm with motivation that both infers motivational states and behaves. Finally, we show that, when trained in the Pavlovian conditioning setting, the responses of the neurons in our model resemble previously published neuronal recordings in the ventral pallidum, a basal ganglia structure involved in motivated behaviors. We conclude that motivation allows Q-learning networks to quickly adapt their behavior to conditions when expected reward is modulated by agent's dynamic needs. Our approach addresses the algorithmic rationale of motivation and makes a step toward better interpretability of behavioral data via inference of motivational dynamics in the brain.
Collapse
Affiliation(s)
- Sergey A. Shuvaev
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - Ngoc B. Tran
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - Marcus Stephenson-Jones
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
- Sainsbury Wellcome Centre, University College London, London, United Kingdom
| | - Bo Li
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | | |
Collapse
|
2
|
Goshadrou F, Sadeghi B. Nucleus basalis of Meynert modulates signal processing in rat layer 5 somatosensory cortex but leads to memory impairment and tactile discrimination deficits following lesion. Behav Brain Res 2020; 386:112608. [DOI: 10.1016/j.bbr.2020.112608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/27/2020] [Accepted: 03/12/2020] [Indexed: 11/25/2022]
|
3
|
Treviño M, Fregoso E, Sahagún C, Lezama E. An Automated Water Task to Test Visual Discrimination Performance, Adaptive Strategies and Stereotyped Choices in Freely Moving Mice. Front Behav Neurosci 2018; 12:251. [PMID: 30467467 PMCID: PMC6235986 DOI: 10.3389/fnbeh.2018.00251] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/08/2018] [Indexed: 12/13/2022] Open
Abstract
We describe an automated training/testing system for adult mice that allows reliable quantification of visual discrimination capacities, adaptive swimming strategies, and stereotyped choices with minimal human intervention. The experimental apparatus consists of a hexagonal swimming pool with an internal decision zone leading to three interior arms with two software-controlled platforms inside of each arm. Each experimental trial consists in projecting a "positive" conditioned discriminative stimulus (SD) in one randomly chosen arm, whereas the other two arms project non-reinforced stimuli (the delta stimuli, SΔ). By employing a classical behavioral training schedule, the mice learn to swim toward the arm that displays the SD, because it predicts the presence of two elevated platforms located symmetrically to the left and right side of the projecting monitor. Separate behavioral components for discriminative and stereotyped choice behavior can be identified through this geometric arrangement. In addition, the projection in real-time of either static or dynamic visual stimuli allows the usage of training programs contingent on current behavioral performance. We validated the system by characterizing the visual acuity and contrast sensitivities in a group of trained mice. By employing pharmacological manipulations, we found that the mice required an intact functioning of the primary visual cortex (V1) to solve the hexagonal pool. Overall, the automated training system constitutes a reliable, rapid, and inexpensive method to quantify visual capacities of mice. It can be used to characterize visual and non-visual factors of choice behavior. It can also be combined with manipulations of visual experience and pharmacological micro-infusions to investigate integrated brain function and learning processes in adult mice over consecutive days.
Collapse
Affiliation(s)
- Mario Treviño
- Laboratorio de Plasticidad Cortical y Aprendizaje Perceptual, Instituto de Neurociencias, Universidad de Guadalajara, Guadalajara, Mexico
| | | | | | | |
Collapse
|
4
|
Turovskaya MV, Zinchenko VP, Babaev AA, Epifanova EA, Tarabykin VS, Turovsky EA. Mutation in the Sip1 transcription factor leads to a disturbance of the preconditioning of AMPA receptors by episodes of hypoxia in neurons of the cerebral cortex due to changes in their activity and subunit composition. The protective effects of interleukin-10. Arch Biochem Biophys 2018; 654:126-135. [PMID: 30056076 DOI: 10.1016/j.abb.2018.07.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 10/28/2022]
Abstract
The Sip1 mutation plays the main role in pathogenesis of the Mowat-Wilson syndrome, which is characterized by the pronounced epileptic symptoms. Cortical neurons of homozygous mice with Sip1 mutation are resistant to AMPA receptor activators. Disturbances of the excitatory signaling components are also observed on such a phenomenon of neuroplasticity as hypoxic preconditioning. In this work, the mechanisms of loss of the AMPA receptor's ability to precondition by episodes of short-term hypoxia were investigated on cortical neurons derived from the Sip1 homozygous mice. The preconditioning effect was estimated by the level of suppression of the AMPA receptors activity with hypoxia episodes. Using fluorescence microscopy, we have shown that cortical neurons from the Sip1fl/fl mice are characterized by the absence of hypoxic preconditioning effect, whereas the amplitude of Ca2+-responses to the application of the AMPA receptor agonist, 5-Fluorowillardiine, in neurons from the Sip1 mice brainstem is suppressed by brief episodes of hypoxia. The mechanism responsible for this process is hypoxia-induced desensitization of the AMPA receptors, which is absent in the cortex neurons possessing the Sip1 mutation. However, the appearance of preconditioning in these neurons can be induced by phosphoinositide-3-kinase activation with a selective activator or an anti-inflammatory cytokine interleukin-10.
Collapse
Affiliation(s)
| | | | - Alexei A Babaev
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhniy Novgorod, Russia
| | - Ekaterina A Epifanova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhniy Novgorod, Russia
| | - Victor S Tarabykin
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhniy Novgorod, Russia
| | - Egor A Turovsky
- Institute of Cell Biophysics, Russian Academy of Sciences, Russia.
| |
Collapse
|
5
|
Fernandes CEM, Serafim KR, Gianlorenco ACL, Mattioli R. Intra-vermis H4 receptor agonist impairs performance in anxiety- and fear-mediated models. Brain Res Bull 2017; 135:179-184. [PMID: 29097243 DOI: 10.1016/j.brainresbull.2017.10.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/26/2017] [Accepted: 10/27/2017] [Indexed: 11/26/2022]
Abstract
The neural histaminergic system modulates cognitive performance in various animal models. However, little is known about the effects of the H4 histaminergic receptor in the central nervous system. The purpose of this study was to investigate the effect of histaminergic H4 agonist VUF-8430 microinjection into the cerebellar vermis on the consolidation of emotional memory in mice subjected to the elevated plus maze (EPM) and inhibitory avoidance task (IAT). All experiments were performed on two consecutive days: exposure (T1 and D1) and 24h after, which we called re-exposure (T2 and D2). The animals received saline (SAL) or VUF (0.15 nmol; 0.49 nmol; 1.48 nmol/0.1μl) administered post-exposure. Experiment 1 was conducted in the EPM, and the animals were free to explore the maze for 5min. In T1, immediately after exposure, the pharmacological treatment was given; in T2, there was only re-exposure to the EPM. Experiment 2 involved the IAT, and the pharmacological treatment was provided post-D1; in D2, the animals were only re-exposed to the IAT. In Experiment 1, increased open arm exploration (% open arm entries and% open arms time) for 0.49 and 1.48nmol of VUF were recorded in T2 compared to T1. In Experiment 2, a significant decrease in consolidation latency was recorded for the group that received 1.48nmol of VUF compared to the SAL group in D2. These results indicate that a 1.48nmol VUF microinjection into the cerebellar vermis impaired performance in both models, even though one model was anxiety-mediated (EPM) and the other was fear-mediated (IAT).
Collapse
Affiliation(s)
- C E M Fernandes
- Laboratory of Neuroscience, Physiotherapy Department, Center of Biological Sciences and Health, Federal University of Sao Carlos, Rod. Washington Luis, Km 235, 13565-905 Sao Carlos, Brazil.
| | - K R Serafim
- Laboratory of Neuroscience, Physiotherapy Department, Center of Biological Sciences and Health, Federal University of Sao Carlos, Rod. Washington Luis, Km 235, 13565-905 Sao Carlos, Brazil.
| | - A C L Gianlorenco
- Laboratory of Neuroscience, Physiotherapy Department, Center of Biological Sciences and Health, Federal University of Sao Carlos, Rod. Washington Luis, Km 235, 13565-905 Sao Carlos, Brazil.
| | - R Mattioli
- Laboratory of Neuroscience, Physiotherapy Department, Center of Biological Sciences and Health, Federal University of Sao Carlos, Rod. Washington Luis, Km 235, 13565-905 Sao Carlos, Brazil.
| |
Collapse
|
6
|
Intra-amygdala microinjections of chlorpheniramine impair memory formation or memory retrieval in anxiety- and fear-mediated models. Brain Res Bull 2016; 125:127-33. [PMID: 27344002 DOI: 10.1016/j.brainresbull.2016.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 06/09/2016] [Accepted: 06/14/2016] [Indexed: 11/23/2022]
Abstract
H1 receptor histaminergic antagonist, chlorpheniramine (CPA) participates in cognitive performance in various animal models. However, little is known regarding the effects of CPA microinjection into the amygdala on emotional behavior. The purpose of this study was to investigate whether CPA microinjection into the amygdala has the same effect on two models, one anxiety- and the other fear-mediated, in various memory stages using the elevated plus maze (EPM) and the inhibitory avoidance task (IAT) tests. Two experiments were performed with seventy-two adult male Swiss mice. Behavioral testing was performed on two consecutive days, and in both experiments, before each trial, the animals received bilateral microinjections of saline (SAL) or CPA (0.16 nmol). The animals were re-exposed to the EPM or IAT 24h after the first trial. Four experimental groups were tested: SAL-SAL, SAL-CPA, CPA-SAL and CPA-CPA. In experiment 1, a decreased open arm exploration (% open arm entries, %OAE and% open arms time, %OAT) for SAL-SAL and SAL-CPA was showed, while these measures did not decrease for the CPA-SAL and CPA-CPA groups in Trial 2. In experiment 2, an increase of retention latency in relation to training 2 for the groups SAL-SAL and CPA-SAL and a significant decrease in latency for the group SAL-CPA was revealed. These results indicate that chlorpheniramine microinjection into the amygdala impairs emotional memory acquisition and/or consolidation in the EPM and retrieval of IAT.
Collapse
|
7
|
Role of GABA(B) receptors in learning and memory and neurological disorders. Neurosci Biobehav Rev 2016; 63:1-28. [PMID: 26814961 DOI: 10.1016/j.neubiorev.2016.01.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/31/2015] [Accepted: 01/21/2016] [Indexed: 01/13/2023]
Abstract
Although it is evident from the literature that altered GABAB receptor function does affect behavior, these results often do not correspond well. These differences could be due to the task protocol, animal strain, ligand concentration, or timing of administration utilized. Because several clinical populations exhibit learning and memory deficits in addition to altered markers of GABA and the GABAB receptor, it is important to determine whether altered GABAB receptor function is capable of contributing to the deficits. The aim of this review is to examine the effect of altered GABAB receptor function on synaptic plasticity as demonstrated by in vitro data, as well as the effects on performance in learning and memory tasks. Finally, data regarding altered GABA and GABAB receptor markers within clinical populations will be reviewed. Together, the data agree that proper functioning of GABAB receptors is crucial for numerous learning and memory tasks and that targeting this system via pharmaceuticals may benefit several clinical populations.
Collapse
|
8
|
Raver SM, Lin SC. Basal forebrain motivational salience signal enhances cortical processing and decision speed. Front Behav Neurosci 2015; 9:277. [PMID: 26528157 PMCID: PMC4600917 DOI: 10.3389/fnbeh.2015.00277] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 09/28/2015] [Indexed: 12/21/2022] Open
Abstract
The basal forebrain (BF) contains major projections to the cerebral cortex, and plays a well-documented role in arousal, attention, decision-making, and in modulating cortical activity. BF neuronal degeneration is an early event in Alzheimer’s disease (AD) and dementias, and occurs in normal cognitive aging. While the BF is best known for its population of cortically projecting cholinergic neurons, the region is anatomically and neurochemically diverse, and also contains prominent populations of non-cholinergic projection neurons. In recent years, increasing attention has been dedicated to these non-cholinergic BF neurons in order to better understand how non-cholinergic BF circuits control cortical processing and behavioral performance. In this review, we focus on a unique population of putative non-cholinergic BF neurons that encodes the motivational salience of stimuli with a robust ensemble bursting response. We review recent studies that describe the specific physiological and functional characteristics of these BF salience-encoding neurons in behaving animals. These studies support the unifying hypothesis whereby BF salience-encoding neurons act as a gain modulation mechanism of the decision-making process to enhance cortical processing of behaviorally relevant stimuli, and thereby facilitate faster and more precise behavioral responses. This function of BF salience-encoding neurons represents a critical component in determining which incoming stimuli warrant an animal’s attention, and is therefore a fundamental and early requirement of behavioral flexibility.
Collapse
Affiliation(s)
- Sylvina M Raver
- Neural Circuits and Cognition Unit, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health Baltimore, MD, USA
| | - Shih-Chieh Lin
- Neural Circuits and Cognition Unit, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health Baltimore, MD, USA
| |
Collapse
|
9
|
Impairment in the aversive memory of mice in the inhibitory avoidance task but not in the elevated plus maze through intra-amygdala injections of histamine. Pharmacol Biochem Behav 2015; 135:237-45. [DOI: 10.1016/j.pbb.2015.05.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 12/20/2022]
|
10
|
Deiana S, Platt B, Riedel G. The cholinergic system and spatial learning. Behav Brain Res 2011; 221:389-411. [DOI: 10.1016/j.bbr.2010.11.036] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 11/15/2010] [Indexed: 12/30/2022]
|
11
|
Abstract
AbstractThe work of Sinden et al. suggests that it may be possible to produce improvement in the “highest” areas of brain function by transplanting brain tissue. What appears to be the limiting factor is not the complexity of the mental process under consideration but the discreteness of the lesion which causes the impairment and the appropriateness and accuracy of placement of the grafted tissue.
Collapse
|
12
|
Abstract
AbstractIn spite of Stein and Glasier's justifiable conclusion that initial optimism concerning the immediate clinical applicability of neural transplantation was premature, there exists much experimental evidence to support the potential for incorporating this procedure into a therapeutic arsenal in the future. To realize this potential will require continued evolution of our knowledge at multiple levels of the clinical and basic neurosciences.
Collapse
|
13
|
Abstract
AbstractThe concept of structure, operation, and functionality, as they may be understood by clinicians or researchers using neural transplantation techniques, are briefly defined. Following Stein & Glasier, we emphasize that the question of whether an intracerebral graft is really functional should be addressed not only in terms of what such a graft does in a given brain structure, but also in terms of what it does at the level of the organism.
Collapse
|
14
|
The NGF superfamily of neurotrophins: Potential treatment for Alzheimer's and Parkinson's disease. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00037432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractStein & Glasier suggest embryonic neural tissue grafts as a potential treatment strategy for Alzheimer's and Parkinson's disease. As an alternative, we suggest that the family of nerve growth factor-related neurotrophins and their trk (tyrosine kinase) receptors underlie cholinergic basal forebrain (CBF) and dopaminergic substantia nigra neuron degeneration in these diseases, respectively. Therefore, treatment approaches for these disorders could utilize neurotrophins.
Collapse
|
15
|
Some practical and theoretical issues concerning fetal brain tissue grafts as therapy for brain dysfunctions. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00037250] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractGrafts of embryonic neural tissue into the brains of adult patients are currently being used to treat Parkinson's disease and are under serious consideration as therapy for a variety of other degenerative and traumatic disorders. This target article evaluates the use of transplants to promote recovery from brain injury and highlights the kinds of questions and problems that must be addressed before this form of therapy is routinely applied. It has been argued that neural transplantation can promote functional recovery through the replacement of damaged nerve cells, the reestablishment of specific nerve pathways lost as a result of injury, the release of specific neurotransmitters, or the production of factors that promote neuronal growth. The latter two mechanisms, which need not rely on anatomical connections to the host brain, are open to examination for nonsurgical, less intrusive therapeutic use. Certain subjective judgments used to select patients who will receive grafts and in assessment of the outcome of graft therapy make it difficult to evaluate the procedure. In addition, little long-term assessment of transplant efficacy and effect has been done in nonhuman primates. Carefully controlled human studies, with multiple testing paradigms, are also needed to establish the efficacy of transplant therapy.
Collapse
|
16
|
Abstract
AbstractThe transition from research to patient following advances in transplantation research is likely to be disappointing unless it includes a better understanding of critically relevant characteristics of the neurological disorder and improvements in the animal models, particularly the behavioral features. The appropriateness of the model has less to do with the species than with how the species is used.
Collapse
|
17
|
Niewiadomska G, Baksalerska-Pazera M, Riedel G. The septo-hippocampal system, learning and recovery of function. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:791-805. [PMID: 19389457 DOI: 10.1016/j.pnpbp.2009.03.039] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2009] [Accepted: 03/30/2009] [Indexed: 12/23/2022]
Abstract
We understand this review as an attempt to summarize recent advances in the understanding of cholinergic function in cognition. Such a role has been highlighted in the 1970s by the discovery that dementia patients have greatly reduced cholinergic activity in cortex and hippocampus. A brief anatomical description of the major cholinergic pathways focuses on the basal forebrain and its projections to cortex and hippocampus. From this distinction, compelling evidence suggests that the basal forebrain --> cortex projection regulates the excitability of principal cortical neurons and is thereby critically involved in attention, stimulus detection and memory function, although the biological conditions for these functions are still debated. Similar uncertainties remain for the septo-hippocampal cholinergic system. Although initial lesions of the septum caused memory deficits reminiscent of hippocampal ablations, recent and more refined neurotoxic lesion studies which spared non-cholinergic cells of the basal forebrain failed to confirm these memory impairments in experimental animals despite a near total loss of cholinergic labeling. Yet, a decline in cholinergic markers in aging and dementia still stands as the most central piece of evidence for a link between the cholinergic system and cognition and appear to provide valuable targets for therapeutic approaches.
Collapse
|
18
|
Lin SC, Nicolelis MAL. Neuronal ensemble bursting in the basal forebrain encodes salience irrespective of valence. Neuron 2008; 59:138-49. [PMID: 18614035 PMCID: PMC2697387 DOI: 10.1016/j.neuron.2008.04.031] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 04/03/2008] [Accepted: 04/30/2008] [Indexed: 10/21/2022]
Abstract
Both reward- and punishment-related stimuli are motivationally salient and attract the attention of animals. However, it remains unclear how motivational salience is processed in the brain. Here, we show that both reward- and punishment-predicting stimuli elicited robust bursting of many noncholinergic basal forebrain (BF) neurons in behaving rats. The same BF neurons also responded with similar bursting to primary reinforcement of both valences. Reinforcement responses were modulated by expectation, with surprising reinforcement eliciting stronger BF bursting. We further demonstrate that BF burst firing predicted successful detection of near-threshold stimuli. Together, our results point to the existence of a salience-encoding system independent of stimulus valence. We propose that the encoding of motivational salience by ensemble bursting of noncholinergic BF neurons may improve behavioral performance by affecting the activity of widespread cortical circuits and therefore represents a novel candidate mechanism for top-down attention.
Collapse
Affiliation(s)
- Shih-Chieh Lin
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
19
|
The place of choline acetyltransferase activity measurement in the "cholinergic hypothesis" of neurodegenerative diseases. Neurochem Res 2007; 33:318-27. [PMID: 17940885 DOI: 10.1007/s11064-007-9497-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 08/29/2007] [Indexed: 01/06/2023]
Abstract
The so-called "cholinergic hypothesis" assumes that degenerative dysfunction of the cholinergic system originating in the basal forebrain and innervating several cortical regions and the hippocampus, is related to memory impairment and neurodegeneration found in several forms of dementia and in brain aging. Biochemical methods measuring the activity of the key enzyme for acetylcholine synthesis, choline acetyltransferase, have been used for many years as a reliable marker of the integrity or the damage of the cholinergic pathways. Stereologic counting of the basal forebrain cholinergic cell bodies, has been additionally used to assess neurodegenerative changes of the forebrain cholinergic system. While initially believed to mark relatively early stages of disease, cholinergic dysfunction is at present considered to occur in advanced dementia of Alzheimer's type, while its involvement in mild and prodromal stages of the disease has been questioned. The issue is relevant to better understand the neuropathological basis of the diseases, but it is also of primary importance for therapy. During the last few years, indeed, cholinergic replacement therapies, mainly based on the use of acetylcholinesterase inhibitors to increase synaptic availability of acetylcholine, have been exploited on the assumption that they could ameliorate the progression of the dementia from its initial stages. In the present paper, we review data from human studies, as well as from animal models of Alzheimer's and Down's diseases, focusing on different ways to evaluate cholinergic dysfunction, also in relation to the time point at which these dysfunctions can be demonstrated, and on some discrepancy arising from the use of different methodological approaches. The reviewed literature, as well as some recent data from our laboratories on a mouse model of Down's syndrome, stress the importance of performing biochemical evaluation of choline acetyltransferase activity to assess cholinergic dysfunction both in humans and in animal models.
Collapse
|
20
|
Tait DS, Brown VJ. Lesions of the basal forebrain impair reversal learning but not shifting of attentional set in rats. Behav Brain Res 2007; 187:100-8. [PMID: 17920704 DOI: 10.1016/j.bbr.2007.08.035] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 08/20/2007] [Accepted: 08/27/2007] [Indexed: 11/28/2022]
Abstract
The cholinergic neurons of the basal forebrain, which project to cortex, the thalamic reticular nucleus and the amygdala, are implicated in many aspects of attentional function, while the intrinsic neurons of the basal forebrain are implicated in learning and memory. This study compared the effects of lesions of the basal forebrain made with either the immunotoxin 192-IgG-saporin (which selectively destroys cholinergic neurons), or the non-selective excitotoxin, ibotenic acid (which destroys both cholinergic and non-cholinergic neurons) on a task which measure the acquisition and shifting of attentional set as well as the ability to learn reversals of specific stimulus-reward pairings. Rats learned to obtain food reward by digging in small bowls containing distinctive digging media that were differentially scented with distinct odours. They performed a series of two-choice discriminations, with the bait associated with either the odour or the digging medium. Rats with 192-IgG-saporin lesions of the basal forebrain were not impaired relative to control rats at any stage of the task. Rats with ibotenic acid lesions of the basal forebrain were impaired the first time stimulus-reward contingencies were reversed. They were not impaired in acquisition of new discriminations, even when an attentional-shift was required. These data are consistent with data from marmosets and so highlight the functional similarity of monkey and rodent basal forebrain. They also confirm the likely involvement of non-cholinergic neurons of the basal forebrain in reversal learning.
Collapse
Affiliation(s)
- David Scott Tait
- School of Psychology, University of St Andrews, St Mary's College, South Street, St Andrews, Fife KY16 9JP, UK.
| | | |
Collapse
|
21
|
Lin SC, Gervasoni D, Nicolelis MAL. Fast modulation of prefrontal cortex activity by basal forebrain noncholinergic neuronal ensembles. J Neurophysiol 2006; 96:3209-19. [PMID: 16928796 DOI: 10.1152/jn.00524.2006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Traditionally, most basal forebrain (BF) functions have been attributed to its cholinergic neurons. However, the majority of cortical-projecting BF neurons are noncholinergic and their in vivo functions remain unclear. We investigated how BF modulates cortical dynamics by simultaneously recording </=50 BF single neurons along with local field potentials (LFPs) from the prefrontal cortex (PFCx) in different wake-sleep states of adult rats. Using stereotypical spike time correlations, we identified a large (roughly 70%) subset of BF neurons, which we named BF tonic neurons (BFTNs). BFTNs fired tonically at 2-8 Hz without significantly changing their average firing rate across wake-sleep states. As such, these cannot be classified as cholinergic neurons. BFTNs substantially increased the spiking variability during waking and rapid-eye-movement sleep, by exhibiting frequent spike bursts with <50-ms interspike interval. Spike bursts among BFTNs were highly correlated, leading to transient population synchronization events of BFTN ensembles that lasted on average 160 ms. Most importantly, BFTN synchronization occurred preferentially just before the troughs of PFCx LFP oscillations, which reflect increased cortical activity. Furthermore, BFTN synchronization was accompanied by transient increases in prefrontal cortex gamma oscillations. These results suggest that synchronization of BFTN ensembles, which are likely to be formed by cortical-projecting GABAergic neurons from the BF, could be primarily responsible for fast cortical modulations to provide transient amplification of cortical activity.
Collapse
Affiliation(s)
- Shih-Chieh Lin
- Department of Neurobiology, Duke University Medical Center, 101 Research Drive, Box 3209, Durham, NC 27710, USA.
| | | | | |
Collapse
|
22
|
Rispoli V, Marra R, Costa N, Scipione L, Rotiroti D, De Vita D, Liberatore F, Carelli V. Choline pivaloyl ester strengthened the benefit effects of Tacrine and Galantamine on electroencephalographic and cognitive performances in nucleus basalis magnocellularis-lesioned and aged rats. Pharmacol Biochem Behav 2006; 84:453-67. [PMID: 16859739 DOI: 10.1016/j.pbb.2006.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Revised: 06/08/2006] [Accepted: 06/12/2006] [Indexed: 01/02/2023]
Abstract
The aim of the present work was the assessment of the effects produced on the electroencephalographic (EEG) activity and the cognitive and memory performances of nucleus basalis magnocellularis (NBM)-lesioned or aged rats by the combined treatment with [2-(2,2-dimethylpropionyloxy)ethyl]trimethylammonium 2,2-dimethylpropionate (choline pivaloyl ester) (CPE) and the Cholinesterase inhibitors (ChEIs) Tacrine (THA) and Galantamine (GAL). Intraperitoneal administration of CPE combined with THA or GAL to both NBM-lesioned or aged rats, produced EEG desynchronisation, and a significant decrease in the energy of the total EEG spectrum and the lower frequency bands (delta 0.25-3 and theta 4-7 Hz) lasting many minutes. Furthermore, drug associations reversed in aged rats the scopolamine (0.2 mg/kg, i.p.)-induced increase in EEG power, slow waves and high-voltage spindle (HVS). Furthermore, the combined administration of CPE and Cholinesterase inhibitors in both NBM-lesioned or aged animals, improved performances in all behavioural tasks, enhancing object discrimination, increasing locomotory activity and alternation choice in T-maze, ameliorating retention in passive avoidance and decreasing escape latency in Morris water maze. In all test, AChEIs and CPE combinations proved to be more effective than CPE, THA or GAL given alone. In conclusion, the present work shows the ability of choline pivaloyl ester in strengthening the positive cerebral activity of THA and GAL.
Collapse
Affiliation(s)
- V Rispoli
- Department of Pharmacobiological Sciences, University Magna Graecia of Catanzaro, Complesso Ninì Barbieri, I-88021 Roccelletta di Borgia (CZ), Italy.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Hu Y, Xia Z, Sun Q, Orsi A, Rees D. A new approach to the pharmacological regulation of memory: Sarsasapogenin improves memory by elevating the low muscarinic acetylcholine receptor density in brains of memory-deficit rat models. Brain Res 2005; 1060:26-39. [PMID: 16226729 DOI: 10.1016/j.brainres.2005.08.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Revised: 08/03/2005] [Accepted: 08/05/2005] [Indexed: 10/25/2022]
Abstract
The purpose of this paper is to study the basic pharmacological action of sarsasapogenin, a sapogenin from the Chinese medicinal herb Rhizoma Anemarrhenae, (abbreviated as ZMS in this paper), on learning ability and memory of three animal models: aged rats and two neurodegeneration models produced either by single unilateral injection of beta-amyloid 1-40 (Abeta1-40) plus ibotenic acid (Ibot A) or by bilateral injection of Ibot A alone into nucleus basalis magnocellularis. Y-maze test and step-through test revealed that learning ability and memory were impaired in the three models and were improved by oral administration of ZMS. ZMS did not inhibit acetylcholinesterase nor did it occupy the binding sites of muscarinic acetylcholine receptor (M receptor), hence it is neither an cholinesterase inhibitor nor an agonist or antagonist of M receptors. On the other hand, the densities of total M receptor and its M1 subtype in the brain of the three models were significantly lower than control rats, and ZMS significantly raised the densities of total M receptors and its M1 subtype. Linear regression revealed significant correlation between the learning ability/memory and the density of either total M receptor or its M1 subtype. Autoradiographic study with 3H-pirenzipine showed that the M1 subtype density was significantly lowered in cortex, hippocampus and striatum of aged rats, and ZMS could reverse these changes towards normal control level. Interestingly, the M1 receptor density after ZMS administration only approached but did not exceed that of normal young control rats. Therefore, ZMS seems to represent a new approach to the pharmacological regulation of learning and memory and appears to be not simply palliative but may modify the progression of the disease.
Collapse
Affiliation(s)
- Yaer Hu
- Research Laboratory of Cell Regulation, Shanghai Second Medical University, 280 South Chongqing Road, Shanghai 200025, China
| | | | | | | | | |
Collapse
|
24
|
Van Dam D, Vloeberghs E, Abramowski D, Staufenbiel M, De Deyn PPP. APP23 mice as a model of Alzheimer's disease: an example of a transgenic approach to modeling a CNS disorder. CNS Spectr 2005; 10:207-22. [PMID: 15744222 DOI: 10.1017/s1092852900010051] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Animal models are considered essential in research ensuing elucidation of human disease processes and subsequently, testing of potential therapeutic strategies. This is especially true for neurodegenerative disorders, in which the first steps in pathogenesis are often not accessible in human patients. Alzheimer's disease is vastly becoming a major medical and socioeconomic problem in our aging society. Valid animal models for this uniquely human condition should exhibit histopathological, biochemical, cognitive, and behavioral alterations observed in Alzheimer's disease patients. Major progress has been made since the understanding of the genetic basis of Alzheimer's disease and the development and improvement of transgenic mouse models. All present Alzheimer's disease models developed are partial but nevertheless essential in further unraveling the nature and spatial and temporal development of the complex molecular pathology underlying this condition. One of the more recent transgenic attempts to model Alzheimer's disease is the APP23 transgenic mouse. This article describes the development and assessment of this human amyloid precursor protein overexpression model. We summarize histopathological and biochemical, cognitive and behavioral observations made in heterozygous APP23 mice, thereby emphasizing the model's contribution to clarification of neurodegenerative disease mechanisms. In addition, the first therapeutic interventions in the APP23 model are included.
Collapse
Affiliation(s)
- Debby Van Dam
- Laboratory of Neurochemistry and Behaviour, Institute Born-Bunge, University of Antwerp, Antwerp, Wilrijk, Belgium
| | | | | | | | | |
Collapse
|
25
|
Kawahara Y, Ito K, Sun H, Ito M, Kanazawa I, Kwak S. GluR4c, an alternative splicing isoform of GluR4, is abundantly expressed in the adult human brain. ACTA ACUST UNITED AC 2004; 127:150-5. [PMID: 15306133 DOI: 10.1016/j.molbrainres.2004.05.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2004] [Indexed: 10/26/2022]
Abstract
We report the cloning of human GluR4c, an alternative splicing isoform of GluR4. Similar to rodent and chick GluR4c mRNA, human GluR4c had a 113-bp insert containing a stop codon, resulting in a short C terminus. The expression of human GluR4c was widespread in the brain, and was upregulated with development in the cerebellum and cerebral cortex where the level of it was about 30% of total GluR4 mRNA in adult stage. The GluR4 subunit may play a pivotal role in regulating channel properties as well as trafficking of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors in the adult human brain.
Collapse
Affiliation(s)
- Yukio Kawahara
- Department of Neurology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8655, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Marien MR, Colpaert FC, Rosenquist AC. Noradrenergic mechanisms in neurodegenerative diseases: a theory. ACTA ACUST UNITED AC 2004; 45:38-78. [PMID: 15063099 DOI: 10.1016/j.brainresrev.2004.02.002] [Citation(s) in RCA: 319] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2004] [Indexed: 11/26/2022]
Abstract
A deficiency in the noradrenergic system of the brain, originating largely from cells in the locus coeruleus (LC), is theorized to play a critical role in the progression of a family of neurodegenerative disorders that includes Parkinson's disease (PD) and Alzheimer's disease (AD). Consideration is given here to evidence that several neurodegenerative diseases and syndromes share common elements, including profound LC cell loss, and may in fact be different manifestations of a common pathophysiological process. Findings in animal models of PD indicate that the modification of LC-noradrenergic activity alters electrophysiological, neurochemical and behavioral indices of neurotransmission in the nigrostriatal dopaminergic system, and influences the response of this system to experimental lesions. In models related to AD, noradrenergic mechanisms appear to play important roles in modulating the activity of the basalocortical cholinergic system and its response to injury, and to modify cognitive functions including memory and attention. Mechanisms by which noradrenaline may protect or promote recovery from neural damage are reviewed, including effects on neuroplasticity, neurotrophic factors, neurogenesis, inflammation, cellular energy metabolism and excitotoxicity, and oxidative stress. Based on evidence for facilitatory effects on transmitter release, motor function, memory, neuroprotection and recovery of function after brain injury, a rationale for the potential of noradrenergic-based approaches, specifically alpha2-adrenoceptor antagonists, in the treatment of central neurodegenerative diseases is presented.
Collapse
Affiliation(s)
- Marc R Marien
- Centre de Recherche Pierre Fabre, Neurobiology I, 17 Avenue Jean Moulin, 81106 Castres Cedex, France.
| | | | | |
Collapse
|
27
|
Friedman JI. Cholinergic targets for cognitive enhancement in schizophrenia: focus on cholinesterase inhibitors and muscarinic agonists. Psychopharmacology (Berl) 2004; 174:45-53. [PMID: 15205878 DOI: 10.1007/s00213-004-1794-x] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2003] [Accepted: 12/31/2003] [Indexed: 02/08/2023]
Abstract
RATIONALE Alterations in the central cholinergic system of patients with schizophrenia such as reduced numbers of muscarinic and nicotinic receptors in the cortex and hippocampus may contribute to the cognitive impairment of schizophrenia. Therefore, pharmacological treatments that enhance central cholinergic function may be useful as cognitive enhancers in schizophrenia. METHODS Searches were conducted for articles which investigated alterations of central cholinergic systems in patients with schizophrenia. Additional searches were conducted for animal and human trials of potential cognitive enhancing compounds that target the cholinergic system and any preliminary trials conducted with schizophrenic patients. RESULTS Currently available treatments which are potentially suitable for this purpose include acetylcholinesterase inhibitors, muscarinic agonists, nicotinic agonists, and allosteric potentiators of nicotinic receptor function. Although some open label studies demonstrate modest cognitive improvements of schizophrenic patients treated with donepezil, data from a blinded, placebo controlled study demonstrate no effect. Data from a controlled trial of galantamine, a combined acetylcholinesterase inhibitor and allosteric potentiator of the nicotinic receptor, indicates that this may be an effective alternative. In addition, some preclinical data indicates that selective M(1) muscarinic agonists under development may have potential as cognitive enhancers and antipsychotic treatments for schizophrenic patients. CONCLUSIONS A cholinergic approach to ameliorating the cognitive dysfunction of schizophrenia appears viable. There is some preliminary data to support the efficacy of combined acetylcholinesterase inhibitors and allosteric potentiators of the nicotinic receptor, whereas future trials are awaited for more specific muscarinic agonists currently under development.
Collapse
Affiliation(s)
- Joseph I Friedman
- Department of Psychiatry, The Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1230, New York, NY 10029, USA.
| |
Collapse
|
28
|
Contestabile A, Ciani E, Contestabile A. Dietary restriction differentially protects from neurodegeneration in animal models of excitotoxicity. Brain Res 2004; 1002:162-6. [PMID: 14988047 DOI: 10.1016/j.brainres.2004.01.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2004] [Indexed: 11/23/2022]
Abstract
Reduced caloric intake obtained through long-term dietary restriction has been found beneficial in some animal models of neurodegeneration. We report here that rats maintained under dietary restriction from the second to the eighth month of age are fully protected towards degeneration of GABAergic neurons in the hippocampus and the olfactory-entorhinal cortex caused by systemic administration of the convulsant toxin, kainic acid. However, in a different model of excitotoxic neurodegeneration, injection of ibotenic acid in the forebrain magnocellular basal nucleus, the decrease of a cholinergic marker in the target areas of the cortex was only partially protected by dietary restriction. Thus, in different experimental models neurodegeneration can be differentially rescued by dietary restriction. Analysis of alterations in the expression of relevant genes in different experimental conditions, could help in better understanding these differences.
Collapse
|
29
|
Nieto-Escámez FA, Sánchez-Santed F, de Bruin JPC. Pretraining or previous non-spatial experience improves spatial learning in the Morris water maze of nucleus basalis lesioned rats. Behav Brain Res 2004; 148:55-71. [PMID: 14684248 DOI: 10.1016/s0166-4328(03)00182-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Previous experiments have shown that infusions of ibotenic acid in the nucleus basalis magnocellularis (NBM) induce a strong impairment in spatial navigation for a hidden platform in the Morris water maze. This effect was initially attributed to a cholinergic deficit, but later studies showed that performance level did not correlate with the degree of cholinergic denervation. Therefore, this impairment is due to a combined cholinergic and non-cholinergic deficit. However, it is not clear in which particular processes the NBM is involved. In this study we have evaluated the origin of behavioural impairment in spatial navigation in the water maze after an ibotenic acid-induced lesion of NBM. In the first experiment, Wistar rats were trained preoperatively in an allocentric navigation task. Postoperatively, they were tested in the same task. All lesioned animals showed a performance level similar to controls. Lesions did not impede the acquisition of new positions in the water maze, nor did affect the ability of animals to remember new platform positions after an intertrial interval of 20s, even if animals had received only allocentric experience with the platform position, or allocentric and path integration information concurrently. Lesions also failed to affect the ability to locate a hidden platform in a new environment. However, hippocampal infusions of scopolamine (5 microg) produced a severe impairment in NBM-damaged animals, without impairing performance of controls. In the second experiment Wistar rats with the same lesion were first trained in a visual-guided task in the water maze, and subsequently evaluated in the spatial task. In both tasks lesioned animals were not different from controls. These results suggest that the NBM played an important role during acquisition phases but not in the execution of spatial navigation. Moreover, the excessive emotional response displayed by lesioned animals is postulated as a relevant cause for the impairment observed in spatial navigation after NBM damage.
Collapse
Affiliation(s)
- Francisco A Nieto-Escámez
- Departamento de Neurociencia y Ciencias de la Salud, Universidad de Almería, Ctra Sacramento s/n 04120, Almería, Spain
| | | | | |
Collapse
|
30
|
Balducci C, Nurra M, Pietropoli A, Samanin R, Carli M. Reversal of visual attention dysfunction after AMPA lesions of the nucleus basalis magnocellularis (NBM) by the cholinesterase inhibitor donepezil and by a 5-HT1A receptor antagonist WAY 100635. Psychopharmacology (Berl) 2003; 167:28-36. [PMID: 12618916 DOI: 10.1007/s00213-002-1385-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2002] [Accepted: 12/06/2002] [Indexed: 11/28/2022]
Abstract
RATIONALE Degeneration of the cholinergic magnocellular neurons in the basal forebrain and their cortical projections is a major feature of the neuropathology of Alzheimer's disease (AD). In addition to memory dysfunction, attentional functions are also impaired in AD. OBJECTIVE We investigated the extent to which the cholinesterase inhibitor donepezil reversed the attentional performance deficit in nucleus basalis magnocellularis (NBM) lesioned rats. We also examined the effects of a selective and potent 5-HT(1A) receptor antagonist, WAY 100635, on the attentional deficit of NBM lesioned rats. METHODS We injected alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) into the NBM to selectively destroy cholinergic neurons projecting to the neocortex. Attentional functions were examined using the 5-CSRT task, in which hungry rats were required to locate brief visual targets presented randomly in one of five locations in a specially designed chamber. RESULTS. AMPA lesions of the NBM caused marked reductions in choline acetyltransferase activity (ChAT) ranging from 30 to 46% in medial areas of the cortex (medial-frontal and cingulate) and from 58 to 72% in more lateral areas (anterior-dorso-lateral and parietal). AMPA lesioned rats made fewer correct responses (choice accuracy), longer latency to correct response and an increase in the number of premature and perseverative responses. These impairments showed some recovery over the next 12 weeks. Reducing the duration of the visual stimulus reinstated the impairments in choice accuracy. The anticholinesterase inhibitor donepezil at 1.0 mg/kg but not 0.5 mg/kg reversed the impairments in choice accuracy and correct response latency. The premature and perseverative over-responding of AMPA lesioned rats remained unchanged. A dose of 0.1 mg/kg WAY 100635 to AMPA-lesioned rats improved their choice accuracy but did not shorten correct response latencies. The number of premature responses was reduced by WAY 100635 but perseverative over-responding was not affected. CONCLUSIONS The attentional impairments induced due to cortical cholinergic dysfunction may be ameliorated by cholinergic treatments such as cholinesterase inhibitors. In addition, 5-HT(1A) receptors and the cortical cholinergic system exert balanced opposition in regulating attentional performance in the rat. Blockade of 5-HT(1A) receptors may be useful to treat some aspects of attentional dysfunction in AD.
Collapse
Affiliation(s)
- C Balducci
- Istituto di Ricerche Farmacologiche Mario Negri, via Eritrea 62, 20157, Milano, Italy
| | | | | | | | | |
Collapse
|
31
|
Dubreuil D, Tixier C, Dutrieux G, Edeline JM. Does the radial arm maze necessarily test spatial memory? Neurobiol Learn Mem 2003; 79:109-17. [PMID: 12482685 DOI: 10.1016/s1074-7427(02)00023-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Since its design 25 years ago (Olton & Samuelson, 1976), the eight-arm radial maze has become very popular and is now widely used to assess spatial memory in rodents. Two versions of the full-baited maze protocol are present in the literature: with or without confinement between the visit of each arm. The confinement was introduced by Olton himself as early as 1977 (Olton, Collison, & Werz, 1977) to eliminate stereotypic behaviors that he had previously observed. It is widely regarded that the confinement prevents rodents from developing these response patterns, and as such it is considered an improved procedure to test spatial memory. Surprisingly, to the best of our knowledge, no study has been especially designed to demonstrate the efficacy of the confinement in blocking the stereotypic behaviors of the animals. The present study compares the strategies of rats trained with or without a confinement procedure. The results show that, after nine days of training, rats submitted to a 5- or a 10-s confinement reach the same level of performance as rats without confinement. The confinement totally prevents stereotypic behaviors like clockwise serial searching strategies which are often observed without confinement. Even a 0-s confinement is sufficient to prevent clockwise strategies, but rats seem to develop other stratagems which do not imply spatial memory. Furthermore, rats previously trained without confinement are unable to perform the task when confinement is introduced on a test day. In contrast, rats previously trained with confinement perform the task correctly when the confinement is no longer present. Thus, without confinement, good levels of performance can be achieved without precise spatial representations.
Collapse
Affiliation(s)
- Diane Dubreuil
- Laboratoire de Neurobiologie de l'Apprentissage, de la Mémoire et de la Communication, UMR CNRS 8620, Université Paris-Sud, Bât 446, 91405 Orsay cedex, France
| | | | | | | |
Collapse
|
32
|
Auld DS, Kornecook TJ, Bastianetto S, Quirion R. Alzheimer's disease and the basal forebrain cholinergic system: relations to beta-amyloid peptides, cognition, and treatment strategies. Prog Neurobiol 2002; 68:209-45. [PMID: 12450488 DOI: 10.1016/s0301-0082(02)00079-5] [Citation(s) in RCA: 493] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is the most common form of degenerative dementia and is characterized by progressive impairment in cognitive function during mid- to late-adult life. Brains from AD patients show several distinct neuropathological features, including extracellular beta-amyloid-containing plaques, intracellular neurofibrillary tangles composed of abnormally phosphorylated tau, and degeneration of cholinergic neurons of the basal forebrain. In this review, we will present evidence implicating involvement of the basal forebrain cholinergic system in AD pathogenesis and its accompanying cognitive deficits. We will initially discuss recent results indicating a link between cholinergic mechanisms and the pathogenic events that characterize AD, notably amyloid-beta peptides. Following this, animal models of dementia will be discussed in light of the relationship between basal forebrain cholinergic hypofunction and cognitive impairments in AD. Finally, past, present, and future treatment strategies aimed at alleviating the cognitive symptomatology of AD by improving basal forebrain cholinergic function will be addressed.
Collapse
Affiliation(s)
- Daniel S Auld
- Douglas Hospital Research Centre, 6875 Blvd Lasalle, Verdun, Que, Canada H4H 1R3
| | | | | | | |
Collapse
|
33
|
Morón I, Ramírez-Lugo L, Ballesteros MA, Gutiérrez R, Miranda MI, Gallo M, Bermúdez-Rattoni F. Differential effects of bicuculline and muscimol microinjections into the nucleus basalis magnocellularis in taste and place aversive memory formation. Behav Brain Res 2002; 134:425-31. [PMID: 12191830 DOI: 10.1016/s0166-4328(02)00056-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The role of the nucleus basalis magnocellularis (NBM) in learning and memory has been demonstrated in different learning paradigms such as conditioned taste aversion (CTA) and inhibitory avoidance (IA). This participation has been related to the cholinergic system, but recent studies have reported the potential role of other neurotransmitters such as GABA. The effects of acute intracerebral administration of the GABAergic antagonist bicuculline (0.05 microg) and the GABAergic agonist muscimol (0.05 microg) into the NBM of male Wistar rats were assessed in CTA and IA learning. In both learning tasks, the drug administration was performed before the acquisition. Taste aversion learning was not affected by the infusion of any of the drugs administered. IA acquisition was not affected by the administration of bicuculline or muscimol, requiring similar number of trials to reach the learning criterion. However, when the rats were tested 24 h later, those injected with bicuculline or muscimol showed an impairment of the IA learning. The present results support a role of the GABAergic system in the consolidation process of IA learning.
Collapse
Affiliation(s)
- I Morón
- Department of Experimental Psychology and Physiology of Behavior, University of Granada, Campus Cartuja, Granada 18071, Spain.
| | | | | | | | | | | | | |
Collapse
|
34
|
Nieto-Escámez FA, Sánchez-Santed F, de Bruin JPC. Cholinergic receptor blockade in prefrontal cortex and lesions of the nucleus basalis: implications for allocentric and egocentric spatial memory in rats. Behav Brain Res 2002; 134:93-112. [PMID: 12191796 DOI: 10.1016/s0166-4328(01)00458-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this study we have examined the involvement of the prefrontal cortex (PFC) along with the Nucleus basalis magnocellularis (NBM) in two types of spatial navigation tasks. We evaluated the effects of excitotoxic (ibotenate-induced) lesions of the NBM in an allocentric and an egocentric task in the Morris water maze, using sham operations for a comparison. In both cases we also assessed the effects of local cholinergic receptor blockade in the PFC by infusing the muscarinic receptor antagonist scopolamine (4 or 20 microg). Anatomically, the results obtained showed that this lesion produced a profound loss of acetylcholinesterase (AChE) positive cells in the NBM, and a loss of AChE positive fibres in most of the neocortex, but hardly in the medial PFC. Behaviourally, such lesions led to a severe impairment in the allocentric task. Intraprefrontal infusions of scopolamine led to a short-lasting impairment in task performance when the high dose was used. In the second experiment, using the same surgical manipulations, we examined the performance in the egocentric task. Like in the allocentric task animals with NBM lesions were also impaired, but with continued training they acquired a level of performance similar to the sham-operated ones. This time, infusions of scopolamine in the medial PFC led to a severe disruption of performance in both groups of animals. We conclude that acetylcholine in the medial PFC is important for egocentric but not allocentric spatial memory, whereas the NBM is involved in the learning of both tasks, be it to a different degree.
Collapse
Affiliation(s)
- Francisco A Nieto-Escámez
- Departamento de Neurociencia y Ciencias de la Salud, Universidad de Almería, Ctra del Sacramento s/n, 04120 Almería, Spain.
| | | | | |
Collapse
|
35
|
Sarter M, Bruno JP. The neglected constituent of the basal forebrain corticopetal projection system: GABAergic projections. Eur J Neurosci 2002; 15:1867-73. [PMID: 12099892 DOI: 10.1046/j.1460-9568.2002.02004.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
At least half of the basal forebrain neurons which project to the cortex are GABAergic. Whilst hypotheses about the attentional functions mediated by the cholinergic component of this corticopetal projection system have been substantiated in recent years, knowledge about the functional contributions of its GABAergic branch has remained extremely scarce. The possibility that basal forebrain GABAergic neurons that project to the cortex are selectively contacted by corticofugal projections suggests that the functions of the GABAergic branch can be conceptualized in terms of mediating executive aspects of cognitive performance, including the switching between multiple input sources and response rules. Such speculations gain preliminary support from the effects of excitotoxic lesions that preferentially, but not selectively, target the noncholinergic component of the basal forebrain corticopetal system, on performance in tasks involving demands on cognitive flexibility. Progress in understanding the cognitive functions of the basal forebrain system depends on evidence regarding its main noncholinergic components, and the generation of such evidence is contingent on the development of methods to manipulate and monitor selectively the activity of the GABAergic corticopetal projections.
Collapse
Affiliation(s)
- Martin Sarter
- The Ohio State University, Department of Psychology, Columbus, OH 43210, USA.
| | | |
Collapse
|
36
|
Power AE, McGaugh JL. Phthalic acid amygdalopetal lesion of the nucleus basalis magnocellularis induces reversible memory deficits in rats. Neurobiol Learn Mem 2002; 77:372-88. [PMID: 11991764 DOI: 10.1006/nlme.2001.4030] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The basolateral amygdala (BLA) is extensively implicated in emotional learning and memory. The current study investigated the contribution of cholinergic afferents to the BLA from the nucleus basalis magnocellularis in influencing aversive learning and memory. Sprague-Dawley rats were given permanent unilateral phthalic acid (300 ng) lesions of the nucleus basalis magnocellularis and were chronically implanted with cannulas aimed at the ipsilateral BLA. Lesioned rats showed a pronounced inhibitory avoidance task retention deficit that was attenuated by acute posttraining infusions of the muscarinic cholinergic agonist oxotremorine (4 ng) or the indirect agonist physostigmine (1 microg) into the BLA. Continuous multiple-trial inhibitory avoidance training and testing revealed that lesioned rats have a mild acquisition deficit, requiring approximately 1 additional shock to reach the criterion, and a pronounced consolidation deficit as indicated by a shorter latency to enter the shock compartment on the retention test. Because lesioned rats did not differ from sham-operated controls in performance on a spatial water maze task or in shock sensitivity, it is not likely that the memory impairments produced by the phthalic acid lesions are due to any general sensory or motor deficits. These findings suggest that the dense cholinergic projection from the nucleus basalis magnocellularis to the BLA is involved in both the acquisition and the consolidation of the aversive inhibitory avoidance task.
Collapse
Affiliation(s)
- Ann E Power
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California-Irvine, Irvine, CA 92697-3800, USA.
| | | |
Collapse
|
37
|
Burk JA, Sarter M. Dissociation between the attentional functions mediated via basal forebrain cholinergic and GABAergic neurons. Neuroscience 2002; 105:899-909. [PMID: 11530228 DOI: 10.1016/s0306-4522(01)00233-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The role of basal forebrain corticopetal cholinergic projections in attentional functions has been extensively investigated. For example, 192 IgG-saporin-induced loss of cortical cholinergic inputs was repeatedly demonstrated to result in a selective impairment in the ability of rats to detect signals in a task designed to assess sustained attention performance. The loss of cortical cholinergic inputs correlated highly with the decrease in the hit rate. Little is known about the functions of basal forebrain non-cholinergic neurons, particularly corticopetal GABAergic neurons, largely because of the absence of specific research tools to manipulate selectively this projection. As basal forebrain lesions produced with ibotenic acid were previously observed to potently destroy non-cholinergic, particularly GABAergic neurons while producing only moderate decreases in the density of cortical cholinergic inputs, the present experiment examined the effects of such lesions on sustained attention performance and then compared these effects with the immunohistochemical and attentional consequences of selective cholinotoxic lesions produced by intra-basal forebrain infusions of 192 IgG-saporin. In contrast to the selective decrease in hits previously observed in 192 IgG-saporin-lesioned animals, the attentional performance of ibotenic acid-lesioned animals was characterized by a selective increase in the relative number of false alarms, that is 'claims' for signals in non-signal trials. Analyses of the response latencies suggested that this effect of ibotenic acid was due to impairments in the animals' ability to switch from the processing of the response rules for signal trials to those for non-signal trials. As expected, 192 IgG-saporin did not affect the number of basal forebrain parvalbumin-positive neurons, that are presumably GABAergic, but decreased cortical acetylcholinesterase-positive fiber density by over 80%. Conversely, in ibotenic acid-lesioned animals, basal forebrain parvalbumin-positive cells were decreased by 60% but cortical acetylcholinesterase-positive fiber density was only moderately reduced (less than 25%). These data form the basis for the development of the hypothesis that basal forebrain GABAergic neurons mediate executive aspects of attentional task performance. Such a function may be mediated in parallel via basal forebrain GABAergic projections to the cortex and the subthalamic nucleus.
Collapse
Affiliation(s)
- J A Burk
- Department of Psychology, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
38
|
D'Hooge R, De Deyn PP. Applications of the Morris water maze in the study of learning and memory. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2001; 36:60-90. [PMID: 11516773 DOI: 10.1016/s0165-0173(01)00067-4] [Citation(s) in RCA: 1443] [Impact Index Per Article: 60.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Morris water maze (MWM) was described 20 years ago as a device to investigate spatial learning and memory in laboratory rats. In the meanwhile, it has become one of the most frequently used laboratory tools in behavioral neuroscience. Many methodological variations of the MWM task have been and are being used by research groups in many different applications. However, researchers have become increasingly aware that MWM performance is influenced by factors such as apparatus or training procedure as well as by the characteristics of the experimental animals (sex, species/strain, age, nutritional state, exposure to stress or infection). Lesions in distinct brain regions like hippocampus, striatum, basal forebrain, cerebellum and cerebral cortex were shown to impair MWM performance, but disconnecting rather than destroying brain regions relevant for spatial learning may impair MWM performance as well. Spatial learning in general and MWM performance in particular appear to depend upon the coordinated action of different brain regions and neurotransmitter systems constituting a functionally integrated neural network. Finally, the MWM task has often been used in the validation of rodent models for neurocognitive disorders and the evaluation of possible neurocognitive treatments. Through its many applications, MWM testing gained a position at the very core of contemporary neuroscience research.
Collapse
Affiliation(s)
- R D'Hooge
- Laboratory of Neurochemistry and Behavior, Born-Bunge Foundation, and Department of Neurology/Memory Clinic, Middelheim Hospital, University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium.
| | | |
Collapse
|
39
|
Browne SE, Lin L, Mattsson A, Georgievska B, Isacson O. Selective antibody-induced cholinergic cell and synapse loss produce sustained hippocampal and cortical hypometabolism with correlated cognitive deficits. Exp Neurol 2001; 170:36-47. [PMID: 11421582 DOI: 10.1006/exnr.2001.7700] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The physiological interrelationships between cognitive impairments, neurotransmitter loss, amyloid processing and energy metabolism changes in AD, cholinergic dementia and Down's syndrome are largely unknown to date. This report contains novel studies into the association between cognitive function and cerebral metabolism after long-term selective CNS cholinergic neuronal and synaptic loss in a rodent model. We measured local cerebral rates of glucose utilization ((14)C-2-deoxyglucose) throughout the brains of awake rats 4.5 months after bilateral intraventricular injections of a cholinotoxic antibody directed against the low-affinity NGF receptor (p75 NGF) associated with cholinergic neurons (192 IgG-saporin). Permanent cholinergic synapse loss was demonstrated by [(3)H]-vesamicol in vitro autoradiography defining presynaptic vesicular acetylcholine (ACh) transport sites. While other metabolic studies have defined acute and transient glucose use changes after relatively nonspecific lesions of anatomical regions containing cholinergic neurons, our results show sustained reductions in glucose utilization in brain regions impacted by cholinergic synapse loss, including frontal cortical and hippocampal regions, relative to glucose use levels in control rats. In the same animals, impaired cognitive spatial performance in a Morris water maze was correlated with reduced glucose use rates in the cortex and hippocampus at this time point, which is consistent with increased postmortem cortical and hippocampal amyloid precursor protein (APP) levels (45, 46). These results are consistent with the view of cholinergic influence over metabolism, APP processing, and cognition in the cortex and hippocampus.
Collapse
Affiliation(s)
- S E Browne
- Department of Neurology and Neuroscience, Weill Medical College at Cornell University, A502, 525 East 68th Street, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
40
|
Abstract
Post mortem schizophrenia research has been driven first by the dopamine and then the glutamate hypotheses. These hypotheses posit primary pathology in pathways dependent upon dopamine or glutamate neurotransmission. Although the dopamine and glutamate hypotheses retain considerable theoretical strength, neurobiological findings of altered dopamine or glutamate activity in schizophrenia do not explain all features of this disorder. A more synthetic approach would suggest that focal pathological change in either the prefrontal cortex or mesial temporal lobe leads to neurochemical changes in multiple neurotransmitter systems. Despite the limited experimental evidence for abnormal cholinergic neurotransmission in psychiatric disorders, increased understanding of the role of acetylcholine in the human brain and its relationship to other neurotransmitter systems has led to a rapidly growing interest in the cholinergic system in schizophrenia. This review focuses on the basic anatomy of the mammalian cholinergic system, and its possible involvement in the neurobiology of schizophrenia. Summaries of cholinergic cell groups, projection pathways, and receptor systems, in the primate and human brain, are followed by a brief discussion of the functional correlations between aberrant cholinergic neurotransmission and the signs and symptoms of schizophrenia.
Collapse
Affiliation(s)
- T M Hyde
- Clinical Brain Disorders Branch, IRP, NIMH, NIH, Bethesda, MD 20892, USA.
| | | |
Collapse
|
41
|
Cecchi M, Passani MB, Bacciottini L, Mannaioni PF, Blandina P. Cortical acetylcholine release elicited by stimulation of histamine H 1receptors in the nucleus basalis magnocellularis: a dual-probe microdialysis study in the freely moving rat. Eur J Neurosci 2001. [DOI: 10.1111/j.1460-9568.2001.01361.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Bailey AM, Thomas RK. The effects of nucleus basalis magnocellularis lesions in Long-Evans hooded rats on two learning set formation tasks, delayed matching-to-sample learning, and open-field activity. Behav Neurosci 2001. [DOI: 10.1037/0735-7044.115.2.328] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
43
|
Cecchi M, Passani MB, Bacciottini L, Mannaioni PF, Blandina P. Cortical acetylcholine release elicited by stimulation of histamine H1 receptors in the nucleus basalis magnocellularis: a dual-probe microdialysis study in the freely moving rat. Eur J Neurosci 2001. [DOI: 10.1046/j.1460-9568.2001.01361.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Perry T, Hodges H, Gray JA. Behavioural, histological and immunocytochemical consequences following 192 IgG-saporin immunolesions of the basal forebrain cholinergic system. Brain Res Bull 2001; 54:29-48. [PMID: 11226712 DOI: 10.1016/s0361-9230(00)00413-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Use of the selective immunotoxin; 192 IgG-saporin, is helping to elucidate the role of the cholinergic system in cognition by overcoming the problems of interpretation associated with the use of non-specific lesioning agents. In separate studies, we have compared the long- and short-term effects of single site and combined saporin lesions of the nucleus basalis magnocellularis and medial septal area, on spatial learning and memory in radial arm and water maze tasks. At 11 months, only rats with combined lesions showed deficits in both radial and water maze tasks, although terminal cholinergic deafferentation was substantial and extensive tissue loss was seen at the injection sites in both single and combined lesions. However, the extensive tissue loss with long-term lesions suggested that behavioural deficits were not solely attributable to cholinergic deafferentation. In contrast, when rats with combined lesions were tested 5 months after lesioning, no deficits were apparent, although there was almost complete loss of choline acetyltransferase- and nerve growth factor receptor-immunoreactivity in the basal forebrain with no tissue damage at the injection sites. This study supports existing literature that selective loss of cholinergic neurons in the basal forebrain does not produce behavioural impairments in standard tasks of learning and memory, but deficits are apparent when damage is non-selective as occurs late after lesioning, confounding interpretation of behavioural data. It further highlights potential problems with this immunotoxin in long-term studies.
Collapse
Affiliation(s)
- T Perry
- Department of Psychology, Institute of Psychiatry, King's College London, London, United Kingdom.
| | | | | |
Collapse
|
45
|
Takagi K, Miyake K, Takagi N, Tadokoro M, Nakayama E, Nagakura A, Takeo S. Characterization of microsphere embolism-induced impairment of learning and memory function and the cholinergic system. Biol Pharm Bull 2001; 24:43-9. [PMID: 11201244 DOI: 10.1248/bpb.24.43] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The impairments of learning and memory function and of the cholinergic system were examined in rats with microsphere embolism. Microsphere embolism was induced by injection of 900 microspheres with a diameter of 48 microm into the right internal carotid artery. The retention latency of a passive avoidance test was shortened and the escape latency of a water maze test was prolonged, when the animals were tested on the 5th to 10th day after the embolism, suggesting learning and memory dysfunction. Cholinergic parameters of the striatum and hippocampus, such as acetylcholine (ACh) content (67 and 60% decrease, respectively), choline acetyltransferase (ChAT) activity (45 and 56% decrease, respectively), and Bmax of muscarinic acetylcholine M1-receptor (43 and 37% decrease, respectively), were reduced on the 11th day after the embolism, suggesting attenuation of ACh synthesis and a decrease in the number of muscarinic acetylcholine M1-receptors mainly in the striatum and hippocampus. Areas not stained with triphenyltetrazolium chloride, an indication of infarction, were detected mainly in the striatum and hippocampus and partly in the frontal cortex on the 11th day after the embolism. The results suggest that an animal with microsphere embolism may be a good ischemic model with relatively sustained impairments of learning and memory function and of the striatal and hippocampal cholinergic system.
Collapse
Affiliation(s)
- K Takagi
- Department of Pharmacology, Tokyo University of Pharmacy & Life Science, Hachioji, Japan
| | | | | | | | | | | | | |
Collapse
|
46
|
Dringenberg HC. Alzheimer's disease: more than a 'cholinergic disorder' - evidence that cholinergic-monoaminergic interactions contribute to EEG slowing and dementia. Behav Brain Res 2000; 115:235-49. [PMID: 11000423 DOI: 10.1016/s0166-4328(00)00261-8] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The loss of cognitive (particularly mnemonic) abilities constitutes a prominent symptom of Alzheimer's disease (AD). These cognitive symptoms occur in close relation to the slowing of the electroencephalogram (EEG), and it is likely that the inability of cortical circuits to maintain an activated state contributes to the behavioral disorganization in AD. The 'cholinergic hypothesis' of AD suggests that many of the cognitive and EEG symptoms are related to the atrophy of basal forebrain cholinergic neurons, which innervate the neocortex and hippocampus, among others. However, data from behavioral and electrophysiological studies in rats suggest that selective reductions in cholinergic transmission result in relatively small mnemonic impairments, and only a partial reduction in EEG activation. Thus, cholinergic atrophy alone may not be sufficient to cause the marked changes in cognition and cortical activity typical of AD. Cholinergic deficits do, however, make neural circuits susceptible to additional neurodegenerative processes. In rats, lowered serotonergic or noradrenergic activity alone often produces only minor impairments in learning/memory tasks and does not block EEG activation. The same monoaminergic deficits, however, result in severe behavioral impairments, and reduce or abolish EEG activation when they occur in a brain already affected by lowered cholinergic activity. There is an abundance of evidence that monoamines are reduced in AD. These degenerative processes, when occurring in a neural environment compromised by cholinergic atrophy, may then contribute to the disturbances in cortical processing and cognition/behavior in AD. A prediction derived from this theory is that an enhancement of monoaminergic functions may have beneficial effects on behavior and cortical activity. Preliminary experiments support this idea: combined cholinergic-monoaminergic stimulation can be more effective in reversing behavioral (Morris water maze) impairments and EEG slowing in rats with multiple neurotransmitter deficiencies than cholinergic enhancement alone. Thus, a stimulation of monoaminergic activity, in conjunction with cholinergic therapies, may provide an effective treatment option for AD.
Collapse
Affiliation(s)
- H C Dringenberg
- Department of Psychology, Queen's University, Ont., K7L 3N6, Kingston, Canada.
| |
Collapse
|
47
|
Weiss JH, Sensi SL. Ca2+-Zn2+ permeable AMPA or kainate receptors: possible key factors in selective neurodegeneration. Trends Neurosci 2000; 23:365-71. [PMID: 10906800 DOI: 10.1016/s0166-2236(00)01610-6] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Neurological diseases, including global ischemia, Alzheimer's disease and amyotrophic lateral sclerosis, are characterized by selective patterns of neurodegeneration. Most studies of potential glutamate-receptor-mediated contributions to disease have focused on the highly Ca2+-permeable and widely distributed NMDA-receptor channel. However, an alternative hypothesis is that the presence of AMPA- or kainate-receptor channels that are directly permeable to Ca2+ ions (Ca-A/K-receptor channels) is of greater significance to the neuronal loss seen in these conditions. Besides a restricted distribution and high Ca2+ permeability, two other factors make Ca-A/K receptors appealing candidate contributors to selective injury: their high permeability to Zn2+ ions and the possibility that their numbers increase in disease-associated conditions. Further characterization of the functions of these channels should result in new approaches to treatment of these conditions.
Collapse
Affiliation(s)
- J H Weiss
- Dept of Neurology, University of California, Irvine, CA 92697-4292, USA
| | | |
Collapse
|
48
|
Passani MB, Bacciottini L, Mannaioni PF, Blandina P. Central histaminergic system and cognition. Neurosci Biobehav Rev 2000; 24:107-13. [PMID: 10654665 DOI: 10.1016/s0149-7634(99)00053-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The neurotransmitter histamine is contained within neurons clustered in the tuberomammillary nuclei of the hypothalamus. These cells give rise to widespread projections extending through the basal forebrain to the cerebral cortex, as well as to the thalamus and pontomesencephalic tegmentum. These morphological features suggest that the histaminergic system acts as a regulatory center for whole-brain activity. Indeed, this amine is involved in the regulation of numerous physiological functions and behaviors, including learning and memory, as indicated by extensive research reviewed in this paper. Histamine effects on cognition might be explained by the modulation of the cholinergic system. However, interactions of histamine with any transmitter system, and/or a putative intrinsic procognitive role cannot be excluded. Furthermore, although experimental evidence indicates that attention-deficit hyperactivity disorder symptoms arise from impaired dopaminergic and noradrenergic transmission, recent research suggests that histamine is also involved. The possible relevance of histamine in disorders such as age-related memory deficits, Alzheimer's disease and attention-deficit hyperactivity disorder is worth of consideration, and awaits validation with clinical trials that will prove the beneficial effects of histaminergic drugs in the treatment of these diseases.
Collapse
Affiliation(s)
- M B Passani
- Dipartimento di Farmacologia Preclinica e Clinica, Universita di Firenze, Italy
| | | | | | | |
Collapse
|
49
|
Abstract
The present study was a longitudinal study of age-related changes in performance of the 5-choice serial reaction time task, a test of visual attention. Following acquisition of the task, animals were tested on two occasions on their ability to perform the 5-choice task. In Test 1 (Young: 7 months; Aged: 13-14 months) no age-related effects on baseline performance were revealed. However, increasing the attentional load of the task revealed an impairment in choice accuracy by animals of the Aged group. In Test 2 (Young: 10-11 months; Aged 23-24 months), animals of the Aged group were significantly impaired on the baseline schedule of the task compared to the Young group. The deficit in accuracy on the task could be improved in the Aged animals by decreasing the attentional load. The results of the present study suggest a deficit in attentional function as a result of the aging process, markedly similar to that observed following lesions of the basalo-cortical cholinergic system.
Collapse
Affiliation(s)
- J L Muir
- School of Psychology, Cardiff University, UK.
| | | | | |
Collapse
|
50
|
Hodges H, Peters S, Gray JA, Hunter AJ. Counteractive effects of a partial (sabcomeline) and a full (RS86) muscarinic receptor agonist on deficits in radial maze performance induced by S-AMPA lesions of the basal forebrain and medial septal area. Behav Brain Res 1999; 99:81-92. [PMID: 10512575 DOI: 10.1016/s0166-4328(98)00075-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
After S-AMPA (8.0 mM) lesions to the nucleus basalis and medial septal regions, at the source of the cortical and hippocampal branches of the forebrain cholinergic projection system, rats displayed long-lasting and relatively stable impairment in long-term reference and short-term working memory in both spatial (place) and associative (cue) radial maze tasks. Treatment with four doses of the partial agonist at the M1 cholinergic muscarinic receptor, sabcomeline (formerly known as SB 202026: 0.01-0.156 mg/kg), substantially reduced working and reference memory errors in both tasks in lesioned rats, in a mainly dose-related manner. These effects were more consistent than those found with the direct muscarinic agonist RS86 (0.05-0.781 mg/kg). The performance of non-lesioned controls was largely unaffected by either treatment. These findings are consistent with previous evidence for cholinergic participation in the radial maze deficits induced by excitotoxic lesions to the forebrain cholinergic projection system. They show that with a relatively selective lesion, which respectively, reduced choline acetyltransferase activity to 36.5 and 22.5% of control level in frontal and dorsolateral cortex, and to 61.8 and 69.2% of control level in dorsal and ventral hippocampus, lesioned rats were responsive to pharmacological treatments aimed to enhance cholinergic function by full or partial agonist activity at M1 receptors. Findings that nicotine (0.1 mg/kg) also reduced radial maze errors in the lesioned animals supports the suggestion that lesion-induced deficits in radial maze performance were amenable to improvement by cholinergic receptor manipulation. However, given the potential adverse side effects of full receptor agonists, which nonselectively target cholinergic receptors throughout the organism, the functional efficacy of sabcomeline, which shows regional selectivity for the central M1 receptor subtypes, suggests that deleterious effects of cholinergic depletion on cognition can be counteracted without incurring the risk of unwanted side effects.
Collapse
Affiliation(s)
- H Hodges
- Department of Psychology, Institute of Psychiatry, Denmark Hill, London, UK
| | | | | | | |
Collapse
|