1
|
Hotha A, Ganesh CB. GABA-immunoreactive neurons in the Central Nervous System of the viviparous teleost Poecilia sphenops. J Chem Neuroanat 2023; 133:102339. [PMID: 37689218 DOI: 10.1016/j.jchemneu.2023.102339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Gamma-aminobutyric acid (GABA) functions as the primary inhibitory neurotransmitter within the central nervous system (CNS) of vertebrates. In this study, we examined the distribution pattern of GABA-immunoreactive (GABA-ir) cells and fibres in the CNS of the viviparous teleost Poecilia sphenops using immunofluorescence method. GABA immunoreactivity was seen in the glomerular, mitral, and granular layers of the olfactory bulbs, as well as in most parts of the dorsal and ventral telencephalon. The preoptic area consisted of a small cluster of GABA-ir cells, whereas extensively labelled GABA-ir neurons were observed in the hypothalamic areas, including the paraventricular organ, tuberal hypothalamus, nucleus recessus lateralis, nucleus recessus posterioris, and inferior lobes. In the thalamus, GABA-positive neurons were only found in the ventral thalamic and central posterior thalamic nuclei, whereas the dorsal part of the nucleus pretectalis periventricularis consisted of a few GABA-ir cells. GABA-immunoreactivity was extensively seen in the alar and basal subdivisions of the midbrain, whereas in the rhombencephalon, GABA-ir cells and fibres were found in the cerebellum, motor nucleus of glossopharyngeal and vagal nerves, nucleus commissuralis of Cajal, and reticular formation. In the spinal cord, GABA-ir cells and fibres were observed in the dorsal horn, ventral horn, and around the central canal. Overall, the extensive distribution of GABA-ir cells and fibres throughout the CNS suggests several roles for GABA, including the neuroendocrine, viscerosensory, and somatosensory functions, for the first time in a viviparous teleost.
Collapse
Affiliation(s)
- Achyutham Hotha
- Neuroendocrinology Research Laboratory, Department of Studies in Zoology, Karnatak University, Dharwad 580 003, India
| | - C B Ganesh
- Neuroendocrinology Research Laboratory, Department of Studies in Zoology, Karnatak University, Dharwad 580 003, India.
| |
Collapse
|
2
|
Abstract
Eye movements are indispensable for visual image stabilization during self-generated and passive head and body motion and for visual orientation. Eye muscles and neuronal control elements are evolutionarily conserved, with novel behavioral repertoires emerging during the evolution of frontal eyes and foveae. The precise execution of eye movements with different dynamics is ensured by morphologically diverse yet complementary sets of extraocular muscle fibers and associated motoneurons. Singly and multiply innervated muscle fibers are controlled by motoneuronal subpopulations with largely selective premotor inputs from task-specific ocular motor control centers. The morphological duality of the neuromuscular interface is matched by complementary biochemical and molecular features that collectively assign different physiological properties to the motor entities. In contrast, the functionality represents a continuum where most motor elements contribute to any type of eye movement, although within preferential dynamic ranges, suggesting that signal transmission and muscle contractions occur within bands of frequency-selective pathways.
Collapse
Affiliation(s)
- Anja K E Horn
- Institute of Anatomy and Cell Biology I, Ludwig-Maximilians-University Munich, 80336 Munich, Germany;
| | - Hans Straka
- Department Biology II, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany
| |
Collapse
|
3
|
Mayadali ÜS, Fleuriet J, Mustari M, Straka H, Horn AKE. Transmitter and ion channel profiles of neurons in the primate abducens and trochlear nuclei. Brain Struct Funct 2021; 226:2125-2151. [PMID: 34181058 PMCID: PMC8354957 DOI: 10.1007/s00429-021-02315-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/04/2021] [Indexed: 01/28/2023]
Abstract
Extraocular motoneurons initiate dynamically different eye movements, including saccades, smooth pursuit and vestibulo-ocular reflexes. These motoneurons subdivide into two main types based on the structure of the neuro-muscular interface: motoneurons of singly-innervated (SIF), and motoneurons of multiply-innervated muscle fibers (MIF). SIF motoneurons are thought to provoke strong and brief/fast muscle contractions, whereas MIF motoneurons initiate prolonged, slow contractions. While relevant for adequate functionality, transmitter and ion channel profiles associated with the morpho-physiological differences between these motoneuron types, have not been elucidated so far. This prompted us to investigate the expression of voltage-gated potassium, sodium and calcium ion channels (Kv1.1, Kv3.1b, Nav1.6, Cav3.1-3.3, KCC2), the transmitter profiles of their presynaptic terminals (vGlut1 and 2, GlyT2 and GAD) and transmitter receptors (GluR2/3, NMDAR1, GlyR1α) using immunohistochemical analyses of abducens and trochlear motoneurons and of abducens internuclear neurons (INTs) in macaque monkeys. The main findings were: (1) MIF and SIF motoneurons express unique voltage-gated ion channel profiles, respectively, likely accounting for differences in intrinsic membrane properties. (2) Presynaptic glutamatergic synapses utilize vGlut2, but not vGlut1. (3) Trochlear motoneurons receive GABAergic inputs, abducens neurons receive both GABAergic and glycinergic inputs. (4) Synaptic densities differ between MIF and SIF motoneurons, with MIF motoneurons receiving fewer terminals. (5) Glutamatergic receptor subtypes differ between MIF and SIF motoneurons. While NMDAR1 is intensely expressed in INTs, MIF motoneurons lack this receptor subtype entirely. The obtained cell-type-specific transmitter and conductance profiles illuminate the structural substrates responsible for differential contributions of neurons in the abducens and trochlear nuclei to eye movements.
Collapse
Affiliation(s)
- Ümit Suat Mayadali
- Institute of Anatomy and Cell Biology, Dept. I, Ludwig-Maximilians-University Munich, Pettenkoferstrasse 11, 80336, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Jérome Fleuriet
- Washington National Primate Research Center, Department of Ophthalmology, University of Washington Seattle, Seattle, WA, USA
- Intensive Care Unit, Raymond Poincaré Hospital, Assistance Publique-Hôpitaux de Paris, Garches, France
| | - Michael Mustari
- Washington National Primate Research Center, Department of Ophthalmology, University of Washington Seattle, Seattle, WA, USA
| | - Hans Straka
- Department of Biology II, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Anja Kerstin Ellen Horn
- Institute of Anatomy and Cell Biology, Dept. I, Ludwig-Maximilians-University Munich, Pettenkoferstrasse 11, 80336, Munich, Germany.
| |
Collapse
|
4
|
Hernández RG, Djebari S, Vélez-Ortiz JM, de la Cruz RR, Pastor AM, Benítez-Temiño B. Short-term plasticity after partial deafferentation in the oculomotor system. Brain Struct Funct 2019; 224:2717-2731. [PMID: 31375981 DOI: 10.1007/s00429-019-01929-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/26/2019] [Indexed: 10/26/2022]
Abstract
Medial rectus motoneurons are innervated by two main pontine inputs. The specific function of each of these two inputs remains to be fully understood. Indeed, selective partial deafferentation of medial rectus motoneurons, performed by the lesion of either the vestibular or the abducens input, initially induces similar changes in motoneuronal discharge. However, at longer time periods, the responses to both lesions are dissimilar. Alterations on eye movements and motoneuronal discharge induced by vestibular input transection recover completely 2 months post-lesion, whereas changes induced by abducens internuclear lesion are more drastic and permanent. Functional recovery could be due to some kind of plastic process, such as reactive synaptogenesis, developed by the remaining intact input, which would occupy the vacant synaptic spaces left after lesion. Herein, by means of confocal microscopy, immunocytochemistry and retrograde labeling, we attempt to elucidate the possible plastic processes that take place after partial deafferentation of medial rectus motoneuron. 48 h post-injury, both vestibular and abducens internuclear lesions produced a reduced synaptic coverage on these motoneurons. However, 96 h after vestibular lesion, there was a partial recovery in the number of synaptic contacts. This suggests that there was reactive synaptogenesis. This recovery was preceded by an increase in somatic neurotrophin content, suggesting a role of these molecules in presynaptic axonal sprouting. The rise in synaptic coverage might be due to terminal sprouting performed by the remaining main input, i.e., abducens internuclear neurons. The present results may improve the understanding of this apparently redundant input system.
Collapse
Affiliation(s)
- Rosendo G Hernández
- Departamento de Fisiología, Universidad de Sevilla, Avda. Reina Mercedes, 6, 41012, Seville, Spain
| | - Souhail Djebari
- Departamento de Fisiología, Universidad de Sevilla, Avda. Reina Mercedes, 6, 41012, Seville, Spain
| | - José Miguel Vélez-Ortiz
- Departamento de Fisiología, Universidad de Sevilla, Avda. Reina Mercedes, 6, 41012, Seville, Spain
| | - Rosa R de la Cruz
- Departamento de Fisiología, Universidad de Sevilla, Avda. Reina Mercedes, 6, 41012, Seville, Spain
| | - Angel M Pastor
- Departamento de Fisiología, Universidad de Sevilla, Avda. Reina Mercedes, 6, 41012, Seville, Spain.
| | - Beatriz Benítez-Temiño
- Departamento de Fisiología, Universidad de Sevilla, Avda. Reina Mercedes, 6, 41012, Seville, Spain
| |
Collapse
|
5
|
Pharmacological profile of vestibular inhibitory inputs to superior oblique motoneurons. J Neurol 2018; 265:18-25. [PMID: 29556714 DOI: 10.1007/s00415-018-8829-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/07/2018] [Accepted: 03/08/2018] [Indexed: 10/17/2022]
Abstract
Vestibulo-ocular reflexes (VOR) are mediated by three-neuronal brainstem pathways that transform semicircular canal and otolith sensory signals into motor commands for the contraction of spatially specific sets of eye muscles. The vestibular excitation and inhibition of extraocular motoneurons underlying this reflex is reciprocally organized and allows coordinated activation of particular eye muscles and concurrent relaxation of their antagonistic counterparts. Here, we demonstrate in isolated preparations of Xenopus laevis tadpoles that the discharge modulation of superior oblique motoneurons during cyclic head motion derives from an alternating excitation and inhibition. The latter component is mediated exclusively by GABA, at variance with the glycinergic inhibitory component in lateral rectus motoneurons. The different pharmacological profile of the inhibition correlates with rhombomere-specific origins of vestibulo-ocular projection neurons and the complementary segmental abundance of GABAergic and glycinergic vestibular neurons. The evolutionary conserved rhombomeric topography of vestibulo-ocular projections makes it likely that a similar pharmacological organization of inhibitory VOR neurons as reported here for anurans is also implemented in mammalian species including humans.
Collapse
|
6
|
Prevosto V, Graf W, Ugolini G. The control of eye movements by the cerebellar nuclei: polysynaptic projections from the fastigial, interpositus posterior and dentate nuclei to lateral rectus motoneurons in primates. Eur J Neurosci 2017; 45:1538-1552. [DOI: 10.1111/ejn.13546] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/09/2017] [Accepted: 02/17/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Vincent Prevosto
- Paris-Saclay Institute of Neuroscience (UMR9197) CNRS; Université Paris-Sud; Université Paris-Saclay; Bât 32 CNRS 1 av de la Terrasse 91198 Gif-sur-Yvette France
- Department of Biomedical Engineering; Pratt School of Engineering; Duke University; Durham NC USA
- Department of Neurobiology; Duke School of Medicine; Duke University; Durham NC USA
| | - Werner Graf
- Department of Physiology and Biophysics; Howard University; Washington DC USA
| | - Gabriella Ugolini
- Paris-Saclay Institute of Neuroscience (UMR9197) CNRS; Université Paris-Sud; Université Paris-Saclay; Bât 32 CNRS 1 av de la Terrasse 91198 Gif-sur-Yvette France
| |
Collapse
|
7
|
Zeeh C, Mustari MJ, Hess BJM, Horn AKE. Transmitter inputs to different motoneuron subgroups in the oculomotor and trochlear nucleus in monkey. Front Neuroanat 2015; 9:95. [PMID: 26257611 PMCID: PMC4513436 DOI: 10.3389/fnana.2015.00095] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/06/2015] [Indexed: 11/13/2022] Open
Abstract
In all vertebrates the eyes are moved by six pairs of extraocular muscles enabling horizontal, vertical and rotatory movements. Recent work showed that each extraocular muscle is controlled by two motoneuronal groups: (1) Motoneurons of singly-innervated muscle fibers (SIF) that lie within the boundaries of motonuclei mediating a fast muscle contraction; and (2) motoneurons of multiply-innervated muscle fibers (MIF) in the periphery of motonuclei mediating a tonic muscle contraction. Currently only limited data about the transmitter inputs to the SIF and MIF motoneurons are available. Here we performed a quantitative study on the transmitter inputs to SIF and MIF motoneurons of individual muscles in the oculomotor and trochlear nucleus in monkey. Pre-labeled motoneurons were immunostained for GABA, glutamate decarboxylase, GABA-A receptor, glycine transporter 2, glycine receptor 1, and vesicular glutamate transporters 1 and 2. The main findings were: (1) the inhibitory control of SIF motoneurons for horizontal and vertical eye movements differs. Unlike in previous primate studies a considerable GABAergic input was found to all SIF motoneuronal groups, whereas a glycinergic input was confined to motoneurons of the medial rectus (MR) muscle mediating horizontal eye movements and to those of the levator palpebrae (LP) muscle elevating the upper eyelid. Whereas SIF and MIF motoneurons of individual eye muscles do not differ numerically in their GABAergic, glycinergic and vGlut2 input, vGlut1 containing terminals densely covered the supraoculomotor area (SOA) targeting MR MIF motoneurons. It is reasonable to assume that the vGlut1 input affects the near response system in the SOA, which houses the preganglionic neurons mediating pupillary constriction and accommodation and the MR MIF motoneurones involved in vergence.
Collapse
Affiliation(s)
- Christina Zeeh
- Institute of Anatomy and Cell Biology, Department I, Ludwig-Maximilians UniversityMunich, Germany
| | - Michael J. Mustari
- Washington National Primate Research Center and Department of Ophthalmology, University of WashingtonSeattle, WA, USA
| | - Bernhard J. M. Hess
- Vestibulo-Oculomotor Laboratory Zürich, Department of Neurology, University HospitalZürich, Switzerland
| | - Anja K. E. Horn
- Institute of Anatomy and Cell Biology, Department I, Ludwig-Maximilians UniversityMunich, Germany
| |
Collapse
|
8
|
Torres-Torrelo J, Torres B, Carrascal L. Modulation of the input-output function by GABAA receptor-mediated currents in rat oculomotor nucleus motoneurons. J Physiol 2014; 592:5047-64. [PMID: 25194049 PMCID: PMC4259542 DOI: 10.1113/jphysiol.2014.276576] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The neuronal input-output function depends on recruitment threshold and gain of the firing frequency-current (f-I) relationship. These two parameters are positively correlated in ocular motoneurons (MNs) recorded in alert preparation and inhibitory inputs could contribute to this correlation. Phasic inhibition mediated by γ-amino butyric acid (GABA) occurs when a high concentration of GABA at the synaptic cleft activates postsynaptic GABAA receptors, allowing neuronal information transfer. In some neuronal populations, low concentrations of GABA activate non-synaptic GABAA receptors and generate a tonic inhibition, which modulates cell excitability. This study determined how ambient GABA concentrations modulate the input-output relationship of rat oculomotor nucleus MNs. Superfusion of brain slices with GABA (100 μm) produced a GABAA receptor-mediated current that reduced the input resistance, increased the recruitment threshold and shifted the f-I relationship rightward without any change in gain. These modifications did not depend on MN size. In absence of exogenous GABA, gabazine (20 μm; antagonist of GABAA receptors) abolished spontaneous inhibitory postsynaptic currents and revealed a tonic current in MNs. Gabazine increased input resistance and decreased recruitment threshold mainly in larger MNs. The f-I relationship shifted to the left, without any change in gain. Gabazine effects were chiefly due to MN tonic inhibition because tonic current amplitude was five-fold greater than phasic. This study demonstrates a tonic inhibition in ocular MNs that modulates cell excitability depending on cell size. We suggest that GABAA tonic inhibition acting concurrently with glutamate receptors activation could reproduce the positive covariation between threshold and gain reported in alert preparation.
Collapse
Affiliation(s)
| | - Blas Torres
- Department of Physiology, University of Seville, Seville, Spain
| | - Livia Carrascal
- Department of Physiology, University of Seville, Seville, Spain
| |
Collapse
|
9
|
Erichsen JT, Wright NF, May PJ. Morphology and ultrastructure of medial rectus subgroup motoneurons in the macaque monkey. J Comp Neurol 2014; 522:626-41. [PMID: 23897455 DOI: 10.1002/cne.23437] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/09/2013] [Accepted: 07/18/2013] [Indexed: 12/21/2022]
Abstract
There are two muscle fiber types in extraocular muscles: those receiving a single motor endplate, termed singly innervated fibers (SIFs), and those receiving multiple small terminals along their length, termed multiply innervated fibers (MIFs). In monkeys, these two fiber types receive input from different motoneuron pools: SIF motoneurons found within the extraocular motor nuclei, and MIF motoneurons found along their periphery. For the monkey medial rectus muscle, MIF motoneurons are found in the C-group, while SIF motoneurons lie in the A- and B-groups. We analyzed the somatodendritic morphology and ultrastructure of these three subgroups of macaque medial rectus motoneurons to better understand the structural determinants controlling the two muscle fiber types. The dendrites of A- and B-group motoneurons lay within the oculomotor nucleus, but those of the C-group motoneurons were located outside the nucleus, and extended into the preganglionic Edinger-Westphal nucleus. A- and B-group motoneurons were very similar ultrastructurally. In contrast, C-group motoneurons displayed significantly fewer synaptic contacts on their somata and proximal dendrites, and those contacts were smaller in size and lacked dense-cored vesicles. However, the synaptic structure of C-group distal dendrites was quite similar to that observed for A- and B-group motoneurons. Our anatomical findings suggest that C-group MIF motoneurons have different physiological properties than A- and B-group SIF motoneurons, paralleling their different muscle fiber targets. Moreover, primate C-group motoneurons have evolved a special relationship with the preganglionic Edinger-Westphal nucleus, suggesting these motoneurons play an important role in near triad convergence to support increased near work requirements.
Collapse
Affiliation(s)
- Jonathan T Erichsen
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, CF24 4HQ, Wales, UK
| | | | | |
Collapse
|
10
|
Neural progenitor cell implants in the lesioned medial longitudinal fascicle of adult cats regulate synaptic composition and firing properties of abducens internuclear neurons. J Neurosci 2014; 34:7007-17. [PMID: 24828653 DOI: 10.1523/jneurosci.4231-13.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Transplants of neural progenitor cells (NPCs) into the injured CNS have been proposed as a powerful tool for brain repair, but, to date, few studies on the physiological response of host neurons have been reported. Therefore, we explored the effects of NPC implants on the discharge characteristics and synaptology of axotomized abducens internuclear neurons, which mediate gaze conjugacy for horizontal eye movements. NPCs were isolated from the subventricular zone of neonatal cats and implanted at the site of transection in the medial longitudinal fascicle of adult cats. Abducens internuclear neurons of host animals showed a complete restoration of axotomy-induced alterations in eye position sensitivity, but eye velocity sensitivity was only partially regained. Analysis of the inhibitory and excitatory components of the discharge revealed a normal re-establishment of inhibitory inputs, but only partial re-establishment of excitatory inputs. Moreover, their inhibitory terminal coverage was similar to that in controls, indicating that there was ultimately no loss of inhibitory synaptic inputs. Somatic coverage by synaptophysin-positive contacts, however, showed intermediate values between control animals and animals that had undergone axotomy, likely due to partial loss of excitatory inputs. We also demonstrated that severed axons synaptically contacted NPCs, most of which were VEGF immunopositive, and that abducens internuclear neurons expressed the VEGF receptor Flk1. Together, our results suggest that VEGF neurotrophic support might underlie the increased inhibitory-to-excitatory balance observed in the postimplant cells. The noteworthy improvement of firing properties of injured neurons following NPC implants indicates that these cells might provide a promising therapeutic strategy after neuronal lesions.
Collapse
|
11
|
Che Ngwa E, Zeeh C, Messoudi A, Büttner-Ennever JA, Horn AKE. Delineation of motoneuron subgroups supplying individual eye muscles in the human oculomotor nucleus. Front Neuroanat 2014; 8:2. [PMID: 24574976 PMCID: PMC3921678 DOI: 10.3389/fnana.2014.00002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 01/14/2014] [Indexed: 11/24/2022] Open
Abstract
The oculomotor nucleus (nIII) contains the motoneurons of medial, inferior, and superior recti (MR, IR, and SR), inferior oblique (IO), and levator palpebrae (LP) muscles. The delineation of motoneuron subgroups for each muscle is well-known in monkey, but not in human. We studied the transmitter inputs to human nIII and the trochlear nucleus (nIV), which innervates the superior oblique muscle (SO), to outline individual motoneuron subgroups. Parallel series of sections from human brainstems were immunostained for different markers: choline acetyltransferase combined with glutamate decarboxylase (GAD), calretinin (CR) or glycine receptor. The cytoarchitecture was visualized with cresyl violet, Gallyas staining and expression of non-phosphorylated neurofilaments. Apart from nIV, seven subgroups were delineated in nIII: the central caudal nucleus (CCN), a dorsolateral (DL), dorsomedial (DM), central (CEN), and ventral (VEN) group, the nucleus of Perlia (NP) and the non-preganglionic centrally projecting Edinger–Westphal nucleus (EWcp). DL, VEN, NP, and EWcp were characterized by a strong supply of GAD-positive terminals, in contrast to DM, CEN, and nIV. CR-positive terminals and fibers were confined to CCN, CEN, and NP. Based on location and histochemistry of the motoneuron subgroups in monkey, CEN is considered as the SR and IO motoneurons, DL and VEN as the B- and A-group of MR motoneurons, respectively, and DM as IR motoneurons. A good correlation between monkey and man is seen for the CR input, which labels only motoneurons of eye muscles participating in upgaze (SR, IO, and LP). The CCN contained LP motoneurons, and nIV those of SO. This study provides a map of the individual subgroups of motoneurons in human nIII for the first time, and suggests that NP may contain upgaze motoneurons. Surprisingly, a strong GABAergic input to human MR motoneurons was discovered, which is not seen in monkey and may indicate a functional oculomotor specialization.
Collapse
Affiliation(s)
- Emmanuel Che Ngwa
- Oculomotor Group, Institute of Anatomy and Cell Biology, Department I, Ludwig-Maximilians-University of Munich Munich, Germany
| | - Christina Zeeh
- Oculomotor Group, Institute of Anatomy and Cell Biology, Department I, Ludwig-Maximilians-University of Munich Munich, Germany ; German Center for Vertigo and Balance Disorders, Ludwig-Maximilians-University of Munich Munich, Germany
| | - Ahmed Messoudi
- Oculomotor Group, Institute of Anatomy and Cell Biology, Department I, Ludwig-Maximilians-University of Munich Munich, Germany
| | - Jean A Büttner-Ennever
- Oculomotor Group, Institute of Anatomy and Cell Biology, Department I, Ludwig-Maximilians-University of Munich Munich, Germany
| | - Anja K E Horn
- Oculomotor Group, Institute of Anatomy and Cell Biology, Department I, Ludwig-Maximilians-University of Munich Munich, Germany ; German Center for Vertigo and Balance Disorders, Ludwig-Maximilians-University of Munich Munich, Germany
| |
Collapse
|
12
|
Development of the human abducens nucleus: a morphometric study. Brain Dev 2012; 34:712-8. [PMID: 22269150 DOI: 10.1016/j.braindev.2011.12.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 12/22/2011] [Accepted: 12/24/2011] [Indexed: 11/22/2022]
Abstract
BACKGROUND The abducens nucleus directly innervates the lateral rectus muscle and plays a role in controlling conjugate horizontal eye movements. Although the neuronal cytoarchitecture of the abducens nucleus has been extensively investigated in various species of vertebrates, few studies have been undertaken in humans, especially in fetuses or neonates. DESIGN/SUBJECTS We examined 12 human brains from preterm infants aged 20-43 postmenstrual weeks to document the histology and morphometry of the abducens nucleus. The brain was processed into celloidin-embedded serial sections stained with the Klüver-Barrera and other conventional methods. RESULTS The nucleus was identified as a mass of cells as early as 20 weeks. Its neurons were clearly distinguished from glial cells due to droplet-like, clear nuclei containing prominent nucleoli and surrounded by a basophilic perikaryon. Neurons of various sizes and shapes were intermingled within the nucleus, although larger neurons were located towards the center of the nucleus. Immature granular or reticular Nissl bodies were seen at 20-21 weeks. Tigroid, coarse Nissl bodies appeared around 28-29 weeks in larger neurons, although in smaller neurons Nissl bodies were dispersed or concentrated peripherally. Morphometric results were: (1) the nuclear volume exponentially increased with age between 20 and 43 weeks; (2) the histograms of neuronal profile areas showed a non-normal distribution trailing toward the right and widening with age; (3) the geometric average of neuronal profile areas increased linearly with age. CONCLUSION Our study suggests that the human abducens nucleus enlarges more quickly toward the end of gestation, and comprises heterogeneous groups of neurons.
Collapse
|
13
|
Luque MA, Torres-Torrelo J, Carrascal L, Torres B, Herrero L. GABAergic Projections to the Oculomotor Nucleus in the Goldfish (carassius Auratus). Front Neuroanat 2011; 5:7. [PMID: 21331170 PMCID: PMC3034998 DOI: 10.3389/fnana.2011.00007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 01/23/2011] [Indexed: 11/29/2022] Open
Abstract
The mammalian oculomotor nucleus receives a strong γ-aminobutyric acid (GABA)ergic synaptic input, whereas such projections have rarely been reported in fish. In order to determine whether this synaptic organization is preserved across vertebrates, we investigated the GABAergic projections to the oculomotor nucleus in the goldfish by combining retrograde transport of biotin dextran amine, injected into the antidromically identified oculomotor nucleus, and GABA immunohistochemistry. The main source of GABAergic afferents to the oculomotor nucleus was the ipsilateral anterior octaval nucleus, with only a few, if any, GABAergic neurons being located in the contralateral tangential and descending nuclei of the octaval column. In mammals there is a nearly GABAergic inhibitory inputs; thus, the vestibulooculomotor GABAergic circuitry follows a plan that appears to be shared throughout the vertebrate phylogeny. The second major source of GABAergic projections was the rhombencephalic reticular formation, primarily from the medial area but, to a lesser extent, from the inferior area. A few GABAergic oculomotor projecting neurons were also observed in the ipsilateral nucleus of the medial longitudinal fasciculus. The GABAergic projections from neurons located in both the reticular formation surrounding the abducens nucleus and the nucleus of the medial reticular formation have primarily been related to the control of saccadic eye movements. Finally, all retrogradely labeled internuclear neurons of the abducens nucleus, and neurons in the cerebellum (close to the caudal lobe), were negative for GABA. These data suggest that the vestibuloocular and saccadic inhibitory GABAergic systems appear early in vertebrate phylogeny to modulate the firing properties of the oculomotor nucleus motoneurons.
Collapse
Affiliation(s)
- M. Angeles Luque
- Department of Physiology and Zoology, University of SevilleSeville, Spain
| | | | - Livia Carrascal
- Department of Physiology and Zoology, University of SevilleSeville, Spain
| | - Blas Torres
- Department of Physiology and Zoology, University of SevilleSeville, Spain
| | - Luis Herrero
- Department of Physiology and Zoology, University of SevilleSeville, Spain
| |
Collapse
|
14
|
Lorenzo LE, Russier M, Barbe A, Fritschy JM, Bras H. Differential organization of gamma-aminobutyric acid type A and glycine receptors in the somatic and dendritic compartments of rat abducens motoneurons. J Comp Neurol 2007; 504:112-26. [PMID: 17626281 DOI: 10.1002/cne.21442] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Premotor inhibitory neurons responsible for the decrease in the firing discharge during fast or slow eye movements selectively target the cell bodies and the dendrites of abducens motoneurons. Gamma-aminobutyric acid (GABA) and glycine, the main inhibitory synaptic neurotransmitters in the central nervous system, act via glycine and GABAA receptors, assembled from various types of subunits, which determine the kinetics of the currents mediated. Therefore, our hypothesis was that the expression of the inhibitory receptors on the somatic and the dendritic compartments, involved in different functions, may differ. In this study, we compared the subcellular patterns of expression of the main GABAA receptor subunits (GABAARalpha1, alpha2, alpha3, alpha5), glycine receptors (GlyRalpha1), and gephyrin in the somatic and dendritic compartments of rat abducens motoneurons, using double or triple immunocytochemical experiments with confocal microscopy. Significant differences exist in the patterns of organization and the synaptic expression of the GlyR and GABAAR subunits in the cell bodies and dendrites of abducens motoneurons. In the somata, only the GABAARalpha1 subunit was expressed, whereas both GABAARalpha1 and GABAARalpha3 were present in the dendrites. The GlyRalpha1 to GABAARalpha1 density ratio was reversed in the somatic and dendritic compartments (0.9 vs. 2.3). A quantitative electron microscopy study showed that the modes whereby gephyrin reaches its postsynaptic inhibitory synaptic target differ between the somata and the dendrites. Therefore, our results support the idea that a structure-function adaptation occurs at the single-neuron level.
Collapse
|
15
|
Ugolini G, Klam F, Doldan Dans M, Dubayle D, Brandi AM, Büttner-Ennever J, Graf W. Horizontal eye movement networks in primates as revealed by retrograde transneuronal transfer of rabies virus: differences in monosynaptic input to "slow" and "fast" abducens motoneurons. J Comp Neurol 2006; 498:762-85. [PMID: 16927266 DOI: 10.1002/cne.21092] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The sources of monosynaptic input to "fast" and "slow" abducens motoneurons (MNs) were revealed in primates by retrograde transneuronal tracing with rabies virus after injection either into the distal or central portions of the lateral rectus (LR) muscle, containing, respectively, "en grappe" endplates innervating slow muscle fibers or "en plaque" motor endplates innervating fast fibers. Rabies uptake involved exclusively motor endplates within the injected portion of the muscle. At 2.5 days after injections, remarkable differences of innervation of slow and fast MNs were demonstrated. Premotor connectivity of slow MNs, revealed here for the first time, involves mainly the supraoculomotor area, central mesencephalic reticular formation, and portions of medial vestibular and prepositus hypoglossi nuclei carrying eye position and smooth pursuit signals. Results suggest that slow MNs are involved exclusively in slow eye movements (vergence and possibly smooth pursuit), muscle length stabilization and gaze holding (fixation), and rule out their participation in fast eye movements (saccades, vestibulo-ocular reflex). By contrast, all known monosynaptic pathways to LR MNs innervate fast MNs, showing their participation in the entire horizontal eye movements repertoire. Hitherto unknown monosynaptic connections were also revealed, such as those derived from the central mesencephalic reticular formation and vertical eye movements pathways (Y group, interstitial nucleus of Cajal, rostral interstitial nucleus of the medial longitudinal fasciculus). The different connectivity of fast and slow MNs parallel differences in properties of muscle fibers that they innervate, suggesting that muscle fibers properties, rather than being self-determined, are the result of differences of their premotor innervation.
Collapse
Affiliation(s)
- Gabriella Ugolini
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS, F-91198 Gif-Sur-Yvette, France.
| | | | | | | | | | | | | |
Collapse
|
16
|
Straka H, Baker R, Gilland E. Preservation of segmental hindbrain organization in adult frogs. J Comp Neurol 2006; 494:228-45. [PMID: 16320236 DOI: 10.1002/cne.20801] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To test for possible retention of early segmental patterning throughout development, the cranial nerve efferent nuclei in adult ranid frogs were quantitatively mapped and compared with the segmental organization of these nuclei in larvae. Cranial nerve roots IV-X were labeled in larvae with fluorescent dextran amines. Each cranial nerve efferent nucleus resided in a characteristic segmental position within the clearly visible larval hindbrain rhombomeres (r). Trochlear motoneurons were located in r0, trigeminal motoneurons in r2-r3, facial branchiomotor and vestibuloacoustic efferent neurons in r4, abducens and facial parasympathetic neurons in r5, glossopharyngeal motoneurons in r6, and vagal efferent neurons in r7-r8 and rostral spinal cord. In adult frogs, biocytin labeling of cranial nerve roots IV-XII and spinal ventral root 2 in various combinations on both sides of the brain revealed precisely the same rostrocaudal sequence of efferent nuclei relative to each other as observed in larvae. This indicates that no longitudinal migratory rearrangement of hindbrain efferent neurons occurs. Although rhombomeres are not visible in adults, a segmental map of adult cranial nerve efferent nuclei can be inferred from the strict retention of the larval hindbrain pattern. Precise measurements of the borders of adjacent efferent nuclei within a coordinate system based on external landmarks were used to create a quantitative adult segmental map that mirrors the organization of the larval rhombomeric framework. Plotting morphologically and physiologically identified hindbrain neurons onto this map allows the physiological properties of adult hindbrain neurons to be linked with the underlying genetically specified segmental framework.
Collapse
Affiliation(s)
- Hans Straka
- Laboratoire de Neurobiologie des Réseaux Sensorimoteurs, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7060, Université Paris 5, Cédex 06, France.
| | | | | |
Collapse
|
17
|
Büttner-Ennever JA. The extraocular motor nuclei: organization and functional neuroanatomy. PROGRESS IN BRAIN RESEARCH 2006; 151:95-125. [PMID: 16221587 DOI: 10.1016/s0079-6123(05)51004-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The organization of the motoneuron subgroups in the brainstem controlling each extraocular eye muscle is highly stable through the vertebrate species. The subgroups are topographically organized in the oculomotor nucleus (III) and are usually considered to form the final common pathway for eye muscle control. Eye muscles contain a unique type of slow non-twitch, fatigue-resistant muscle fiber, the multiply innervated muscle fibers (MIFs). The recent identification the MIF motoneurons shows that they too have topographic organization, but very different from the classical singly innervated muscle fiber (SIF) motoneurons. The MIF motoneurons lie around the periphery of the oculomotor nucleus (III), trochlear nucleus (IV), and abducens nucleus (VI), slightly separated from the SIF subgroups. The location of four different types of neurons in VI are described and illustrated: (1) SIF motoneurons, (2) MIF motoneurons, (3) internuclear neurons, and (4) the paramedian tract neurons which project to the flocculus. Afferents to the motoneurons arise from the vestibular nuclei, the oculomotor and abducens internuclear neurons, the mesencephalic and pontine burst neurons, the interstitial nucleus of Cajal, nucleus prepositus hypoglossi, the supraoculomotor area and the central mesencephalic reticular formation and the pretectum. The MIF and SIF motoneurons have different histochemical properties and different afferent inputs. The hypothesis that SIFs participate in moving the eye and MIFs determine the alignment seems possible but is not compatible with the concept of a final common pathway.
Collapse
Affiliation(s)
- J A Büttner-Ennever
- Institute of Anatomy, Ludwig-Maximilian University of Munich, Pettenkoferstrasse 11, D-80336 Munich, Germany.
| |
Collapse
|
18
|
Abstract
The vestibular portion of the eighth cranial nerve informs the brain about the linear and angular movements of the head in space and the position of the head with respect to gravity. The termination sites of these eighth nerve afferents define the territory of the vestibular nuclei in the brainstem. (There is also a subset of afferents that project directly to the cerebellum.) This chapter reviews the anatomical organization of the vestibular nuclei, and the anatomy of the pathways from the nuclei to various target areas in the brain. The cytoarchitectonics of the vestibular brainstem are discussed, since these features have been used to distinguish the individual nuclei. The neurochemical phenotype of vestibular neurons and pathways are also summarized because the chemical anatomy of the system contributes to its signal-processing capabilities. Similarly, the morphologic features of short-axon local circuit neurons and long-axon cells with extrinsic projections are described in detail, since these structural attributes of the neurons are critical to their functional potential. Finally, the composition and hodology of the afferent and efferent pathways of the vestibular nuclei are discussed. In sum, this chapter reviews the morphology, chemoanatomy, connectivity, and synaptology of the vestibular nuclei.
Collapse
Affiliation(s)
- Stephen M Highstein
- Washington University School of Medicine, Box 8115, 4566 Scott Avenue, St. Louis, MO 63110, USA.
| | | |
Collapse
|
19
|
Abstract
The reticular formation of the brainstem contains functional cell groups that are important for the control of eye, head, or lid movements. The mesencephalic reticular formation is primarily involved in the control of vertical gaze, the paramedian pontine reticular formation in horizontal gaze, and the medullary pontine reticular formation in head movements and gaze holding. In this chapter, the locations, connections, and histochemical properties of the functional cell groups are reviewed and correlated with specific subdivisions of the reticular formation.
Collapse
Affiliation(s)
- Anja K E Horn
- Institute of Anatomy, Ludwig-Maximilian University of Munich, Pettenkoferstrasse 11, 80336 Munich, Germany.
| |
Collapse
|
20
|
de la Cruz RR, Benítez-Temiño B, Pastor AM. Intrinsic determinants of synaptic phenotype: an experimental study of abducens internuclear neurons connecting with anomalous targets. Neuroscience 2002; 112:759-71. [PMID: 12088736 DOI: 10.1016/s0306-4522(02)00133-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The present experiments investigate the role of postsynaptic neurons in the morphological differentiation of presynaptic terminals that are formed de novo in the adult CNS. Abducens internuclear neurons in the adult cat were chosen as the experimental model. These neurons project onto the contralateral medial rectus motoneurons of the oculomotor nucleus. Abducens internuclear axon terminals were identified by their anterograde labeling with biocytin and analyzed at the electron microscopic level. To promote the formation of new synapses, two different experimental approaches were used. First, after the selective ablation of medial rectus motoneurons with ricin, abducens internuclear neurons reinnervated the neighboring oculomotor internuclear neurons. Second, after axotomy followed by embryonic cerebellar grafting, abducens internuclear axons invaded the implanted tissue and established synaptic connections in both the molecular and granule cell layer. Boutons contacting the oculomotor internuclear neurons developed ultrastructural characteristics that resembled the control synapses on medial rectus motoneurons. In the grafted cerebellar tissue, abducens internuclear axons and terminals did not resemble climbing or mossy fibers but showed similarities with control boutons. However, labeled boutons analyzed in the granule cell layer established a higher number of synaptic contacts than controls. This could reflect a trend towards the mossy fiber phenotype, although labeled boutons significantly differed in every measured parameter with the mossy fiber rosettes found in the graft. We conclude that at least for the abducens internuclear neurons, the ultrastructural differentiation of axon terminals reinnervating novel targets in the adult brain seems to be mainly under intrinsic control, with little influence by postsynaptic cells.
Collapse
Affiliation(s)
- R R de la Cruz
- Laboratorio de Neurociencia y Comportamiento, Departamento de Fisiología y Biología Animal, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes 6, Spain.
| | | | | |
Collapse
|
21
|
Chen B, May PJ. Premotor circuits controlling eyelid movements in conjunction with vertical saccades in the cat: I. The rostral interstitial nucleus of the medial longitudinal fasciculus. J Comp Neurol 2002; 450:183-202. [PMID: 12124762 DOI: 10.1002/cne.10313] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Saccadic eye movements in the vertical plane are controlled by the rostral interstitial nucleus of the medial longitudinal fasciculus (riMLF) and the interstitial nucleus of Cajal. Eye movements in the vertical direction are accompanied by concurrent upper eye lid movements. These gaze-related lid movements are produced by the levator palpebrae superioris muscle, whose motoneurons are located in the caudal central subdivision (CCS) of the oculomotor nucleus. The neural circuits that direct such gaze-related lid movements were examined by use of both conventional and dual neuronal tracing methods in the cat. Injections of wheat germ agglutinin-conjugated horseradish peroxidase (WGA-HRP) into the area of the CCS revealed a distinctive subset of retrogradely labeled neurons located in the caudomedial portion of the riMLF. This subset of riMLF neurons was not labeled when injections were localized within the oculomotor nucleus proper, without involving the CCS. Injections of biotinylated dextran amine (BDA) that included this caudomedial riMLF region anterogradely labeled axons that projected profusely throughout the CCS. Labeled terminals were seen in close association with retrogradely labeled levator palpebrae motoneurons, which were primarily found contralateral to WGA-HRP muscle injections. Ultrastructural examination revealed that most BDA-labeled terminals contained clear spherical vesicles and formed asymmetrical synaptic contacts, primarily on the proximal dendrites of WGA-HRP-labeled motoneurons. A few had pleiomorphic vesicles. In summary, these results strongly suggest that the caudomedial part of the cat riMLF is a premotor center that monosynaptically controls lid movements in conjunction with vertical saccades.
Collapse
Affiliation(s)
- Bingzhong Chen
- Department of Anatomy and Neurobiology, University of Maryland at Baltimore, 21201, USA
| | | |
Collapse
|
22
|
Benítez-Temiño B, De La Cruz RR, Pastor AM. Firing properties of axotomized central nervous system neurons recover after graft reinnervation. J Comp Neurol 2002; 444:324-44. [PMID: 11891646 DOI: 10.1002/cne.10147] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Axotomy produces changes in the electrical properties of neurons and in their synaptic inputs, leading to alterations in firing pattern. We have considered the possibility that these changes occur as a result of the target deprivation induced by the lesion. Thus, we have provided a novel target to axotomized central neurons by grafting embryonic tissue at the lesion site to study the target dependence of discharge characteristics. The extracellular single-unit electrical activity of abducens internuclear neurons was recorded in the alert behaving cat in control, after axotomy, and after axotomy plus the implantation of cerebellar primordium. As recently characterized (de la Cruz et al. [2000] J. Comp. Neurol. 427:391-404), firing alterations induced by axotomy included an overall decrease in firing rate and a loss of eye-related signals, i.e., eye position and velocity neuronal sensitivities, that do not resume to normality with time. The grafting of a novel target to the injured abducens internuclear neurons restored the normal firing and sensitivities as recorded in the majority of units. To study the reinnervation of the implant, we performed anterograde labeling with biocytin combined with electron microscopy visualization. Axons of abducens internuclear neurons grew into the transplant sprouting into granule cell and molecular layers, as characterized by the immunostaining for gamma-aminobutyric acid and calbindin D-28k. Ultrastructural examination of labeled axons and boutons revealed the establishment of synaptic contacts, mainly axodendritic, with different cell types of the grafted cerebellar cortex. Therefore, these data indicate that axotomized central neurons resume to normal firing after the reinnervation of a novel target.
Collapse
Affiliation(s)
- Beatriz Benítez-Temiño
- Departamento de Fisiología y Biología Animal, Universidad de Sevilla, 41012-Seville, Spain
| | | | | |
Collapse
|
23
|
Pastor AM, Delgado-García JM, Martínez-Guijarro FJ, López-García C, de La Cruz RR. Response of abducens internuclear neurons to axotomy in the adult cat. J Comp Neurol 2000; 427:370-90. [PMID: 11054700 DOI: 10.1002/1096-9861(20001120)427:3<370::aid-cne5>3.0.co;2-m] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The highly specific projection of abducens internuclear neurons on the medial rectus motoneurons of the oculomotor nucleus constitutes an optimal model for investigating the effects of axotomy in the central nervous system. We have analyzed the morphological changes induced by this lesion on both the cell bodies and the transected axons of abducens internuclear neurons in the adult cat. Axotomy was performed by the transection of the medial longitudinal fascicle. Cell counts of Nissl-stained material and calretinin-immunostained abducens internuclear neurons revealed no cell death by 3 months postaxotomy. Ultrastructural examination of these cells at 6, 14, 24, and 90 days postaxotomy showed normal cytological features. However, the surface membrane of axotomized neurons appeared contacted by very few synaptic boutons compared to controls. This change was quantified by measuring the percentage of synaptic coverage of the cell bodies and the linear density of boutons. Both parameters decreased significantly after axotomy, with the lowest values at 90 days postlesion ( approximately 70% reduction). We also explored axonal regrowth and the possibility of reinnervation of a new target by means of anterograde labeling with biocytin. At all time intervals analyzed, labeled axons were observed to be interrupted at the caudal limit of the lesion; in no case did they cross the scar tissue to reach the distal part of the tract. Nonetheless, a conspicuous axonal sprouting was present at the caudal aspect of the lesion site. Structures suggestive of axonal growth were found, such as large terminal clubs, from which short filopodium-like branches frequently emerged. Similar findings were obtained after parvalbumin and calretinin immunostaining. At the electron microscopy level, biocytin-labeled boutons originating from the sprouts appeared surrounded by either extracellular space, which was extremely dilated at the lesion site, or by glial processes. The great majority of labeled boutons examined were, thus, devoid of neuronal contact, indicating absence of reinnervation of a new target. Altogether, these data indicate that abducens internuclear neurons survive axotomy in the adult cat and show some form of axonal regrowth, even in the absence of target connection.
Collapse
Affiliation(s)
- A M Pastor
- Laboratorio de Neurociencia, Facultad de Biología, Universidad de Sevilla, 41012-Sevilla, Spain
| | | | | | | | | |
Collapse
|
24
|
de La Cruz RR, Delgado-García JM, Pastor AM. Discharge characteristics of axotomized abducens internuclear neurons in the adult cat. J Comp Neurol 2000; 427:391-404. [PMID: 11054701 DOI: 10.1002/1096-9861(20001120)427:3<391::aid-cne6>3.0.co;2-e] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The aim of the present work was to characterize the axotomy-induced changes in the discharge properties of central nervous system neurons recorded in the alert behaving animal. The abducens internuclear neurons of the adult cat were the chosen model. The axons of these neurons course through the contralateral medial longitudinal fascicle and contact the medial rectus motoneurons of the oculomotor nucleus. Axotomy was carried out by the unilateral transection of this fascicle (right side) and produced immediate oculomotor deficits, mainly the incapacity of the right eye to adduct across the midline. Extracellular single-unit recording of abducens neurons was carried out simultaneously with eye movements. The main alteration observed in the firing of these axotomized neurons was the overall decrease in firing rate. During eye fixations, the tonic signal was reduced, and, on occasion, a progressive decay in firing rate was observed. On-directed saccades were not accompanied by the high-frequency spike burst typical of controls; instead, there was a moderate increase in firing. Similarly, during the vestibular nystagmus, neurons hardly modulated during both the slow and the fast phases. Linear regression analysis between firing rate and eye movement parameters showed a significant reduction in eye position and velocity sensitivities with respect to controls, during both spontaneous and vestibularly induced eye movements. These firing alterations were observed during the 3 month period of study after lesion, with no sign of recovery. Conversely, abducens motoneurons showed no significant alteration in their firing pattern. Therefore, axotomy produced long-lasting changes in the discharge characteristics of abducens internuclear neurons that presumably reflected the loss of afferent oculomotor signals. These alterations might be due to the absence of trophic influences derived from the target.
Collapse
Affiliation(s)
- R R de La Cruz
- Laboratorio de Neurociencia, Facultad de Biología, Universidad de Sevilla, 41012-Sevilla, Spain.
| | | | | |
Collapse
|
25
|
Abstract
Movement, the fundamental component of behavior and the principal extrinsic action of the brain, is produced when skeletal muscles contract and relax in response to patterns of action potentials generated by motoneurons. The processes that determine the firing behavior of motoneurons are therefore important in understanding the transformation of neural activity to motor behavior. Here, we review recent studies on the control of motoneuronal excitability, focusing on synaptic and cellular properties. We first present a background description of motoneurons: their development, anatomical organization, and membrane properties, both passive and active. We then describe the general anatomical organization of synaptic input to motoneurons, followed by a description of the major transmitter systems that affect motoneuronal excitability, including ligands, receptor distribution, pre- and postsynaptic actions, signal transduction, and functional role. Glutamate is the main excitatory, and GABA and glycine are the main inhibitory transmitters acting through ionotropic receptors. These amino acids signal the principal motor commands from peripheral, spinal, and supraspinal structures. Amines, such as serotonin and norepinephrine, and neuropeptides, as well as the glutamate and GABA acting at metabotropic receptors, modulate motoneuronal excitability through pre- and postsynaptic actions. Acting principally via second messenger systems, their actions converge on common effectors, e.g., leak K(+) current, cationic inward current, hyperpolarization-activated inward current, Ca(2+) channels, or presynaptic release processes. Together, these numerous inputs mediate and modify incoming motor commands, ultimately generating the coordinated firing patterns that underlie muscle contractions during motor behavior.
Collapse
Affiliation(s)
- J C Rekling
- Department of Neurobiology, University of California, Los Angeles, California 90095-1763, USA
| | | | | | | | | |
Collapse
|
26
|
Meléndez-Ferro M, Pérez-Costas E, González MJ, Pombal MA, Anadón R, Rodicio MC. GABA-immunoreactive internuclear neurons in the ocular motor system of lampreys. Brain Res 2000; 855:150-7. [PMID: 10650142 DOI: 10.1016/s0006-8993(99)02402-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The presence of internuclear neurons in the abducens and oculomotor nuclei of lampreys [González, M.J., Pombal, M.A., Rodicio, M.C. and Anadón, R., Internuclear neurons of the ocular motor system of the larval sea lamprey, J. Comp. Neurol. 401 (1998) 1-15] indicates that coordination of eye movements by internuclear neurons appeared early during the evolution of vertebrates. In order to investigate the possible involvement of inhibitory neurotransmitters in internuclear circuits, the distribution of gamma-aminobutyric acid (GABA) in the extraocular motor nuclei of the lamprey was studied using immunocytochemical techniques. Small GABA-immunoreactive (GABAir) neurons were observed in the three ocular motor nuclei. Numerous GABAir neurons were observed in the group of internuclear neurons of the dorsal rectus oculomotor subnucleus. A second group of GABAir neurons was observed among and below the trochlear motoneurons. Two further groups of GABAir interneurons, periventricular and lateral, were located in the abducens nucleus among the cells of the caudal rectus and the ventral rectus motor subnuclei, respectively. In addition to the presence of GABAir neurons, in all the ocular motor nuclei the motoneurons were contacted by numerous GABAir boutons. Taken together, these results suggest that GABA is involved as a neurotransmitter in internuclear pathways of the ocular motor system of lampreys.
Collapse
Affiliation(s)
- M Meléndez-Ferro
- Department of Fundamental Biology, University of Santiago de Compostela, 15706, Santiago de Compostela, Spain
| | | | | | | | | | | |
Collapse
|
27
|
Holstein GR, Martinelli GP, Cohen B. Ultrastructural features of non-commissural GABAergic neurons in the medial vestibular nucleus of the monkey. Neuroscience 1999; 93:183-93. [PMID: 10430482 DOI: 10.1016/s0306-4522(99)00140-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The ultrastructural characteristics of non-degenerating GABAergic neurons in rostrolateral medial vestibular nucleus were identified in monkeys following midline transection of vestibular commissural fibers. In the previous papers, we reported that most degenerated cells and terminals in this tissue were located in rostrolateral medial vestibular nucleus, and that many of these neurons were GABA-immunoreactive. In the present study, we examined the ultrastructural features of the remaining neuronal elements in this medial vestibular nucleus region, in order to identify and characterize the GABAergic cells that are not directly involved in the vestibular commissural pathway related to the velocity storage mechanism. Such cells are primarily small, with centrally-placed nuclei. Axosomatic synapses are concentrated on polar regions of the somata. The proximal dendrites of GABAergic cells are surrounded by boutons, although distal dendrites receive only occasional synaptic contacts. Two types of non-degenerated GABAergic boutons are distinguished. Type A terminals are large, with very densely-packed spherical synaptic vesicles and clusters of large, irregularly-shaped mitochondria with wide matrix spaces. Such boutons form symmetric synapses, primarily with small GABAergic and non-GABAergic dendrites. Type B terminals are smaller and contain a moderate density of round/pleomorphic vesicles, numerous small round or tubular mitochondria, cisterns and vacuoles. These boutons serve both pre- and postsynaptic roles in symmetric contacts with non-GABAergic axon terminals. On the basis of ultrastructural observations of immunostained tissue, we conclude that at least two types of GABAergic neurons are present in the rostrolateral portion of the monkey medial vestibular nucleus: neurons related to the velocity storage pathway, and a class of vestibular interneurons. A multiplicity of GABAergic bouton types are also observed, and categorized on the basis of subcellular morphology. We hypothesize that "Type A" boutons correspond to Purkinje cell afferents in rostrolateral medial vestibular nucleus, "Type B" terminals represent the axons of GABAergic medial vestibular nucleus interneurons, and "Type C" boutons take origin from vestibular commissural neurons of the velocity storage pathway.
Collapse
Affiliation(s)
- G R Holstein
- Department of Neurology, Mount Sinai School of Medicine, New York, NY, USA
| | | | | |
Collapse
|
28
|
Abstract
The internuclear neurons of the ocular motor system of lampreys are characterized here for the first time. Horseradish peroxidase (HRP), fluorescein-, or Texas red-(TRDA) coupled dextran-amine applied into the oculomotor nucleus of larval lamprey (Petromyzon marinus) retrogradely labeled two populations of contralateral abducens interneurons, one lateral and the other periventricular. Tracer application to the abducens nucleus anterogradely labeled thick contralateral fibers that specifically contact the medial rectus motor subnucleus by means of large boutons. Local application of TRDA to this subnucleus allowed identification of the lateral abducens interneurons as the origin of this projection. Electron microscopy of the medial rectus motor subnucleus showed large boutons bearing round synaptic vesicles that contact on the perikarya, as well as small boutons with pleomorphic vesicles. This lateral rectus (abducens) -- medial rectus (oculomotor) internuclear projection of lampreys appears to be similar to those involved in the coordination of horizontal eye movements in mammals. The periventricular abducens interneurons projected bilaterally to other oculomotor subnuclei. Tracer application to the abducens nucleus labeled a group of small interneurons in the ipsilateral dorsal rectus motor subnucleus. Anterograde labeling indicates that oculomotor interneurons project ipsilaterally to the ventral rectus abducens subnucleus, thus, corresponding to oculomotor interneurons found in mammals and frogs. The interneurons of the dorsal rectus and ventral rectus motor subnuclei are probably involved in the control of conjugate vertical eye movements. The present results strongly suggest that the internuclear coordination of conjugate eye movements appeared in the earliest vertebrates. The homologies of extraocular muscles of lampreys and gnathostomes were reexamined.
Collapse
Affiliation(s)
- M J González
- Department of Cellular and Molecular Biology, University of A Coruña, Spain
| | | | | | | |
Collapse
|
29
|
Affiliation(s)
- Satoru Onodera
- Department of Anatomy, School of Medicine, Iwate Medical University, Morioka 020, Japan
| | - T. Philip Hicks
- Neural Plasticity and Regeneration Group, Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario K1A OR6, Canada
| |
Collapse
|
30
|
de la Cruz RR, Pastor AM, Martińez-Guijarro FJ, López-García C, Delgado-García JM. Localization of parvalbumin, calretinin, and calbindin D-28k in identified extraocular motoneurons and internuclear neurons of the cat. J Comp Neurol 1998. [PMID: 9455899 DOI: 10.1002/(sici)1096-9861(19980119)390:3%3c377::aid-cne6%3e3.0.co;2-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Calcium-binding proteins have been shown to be excellent markers of specific neuronal populations. We aimed to characterize the expression of calcium-binding proteins in identified populations of the cat extraocular motor nuclei by means of immunohistochemistry against parvalbumin, calretinin, and calbindin D-28k. Abducens, medial rectus, and trochlear motoneurons were retrogradely labeled with horseradish peroxidase from their corresponding muscles. Oculomotor and abducens internuclear neurons were retrogradely labeled after horseradish peroxidase injection into either the abducens or the oculomotor nucleus, respectively. Parvalbumin staining produced the highest density of immunoreactive terminals in all extraocular motor nuclei and was distributed uniformly. Around 15-20% of the motoneurons were moderately stained with antibody against parvalbumin, but their axons were heavily stained, indicating an intracellular segregation of parvalbumin. Colchicine administration increased the number of parvalbumin-immunoreactive motoneurons to approximately 85%. Except for a few calbindin-immunoreactive trochlear motoneurons (1%), parvalbumin was the only marker of extraocular motoneurons. Oculomotor internuclear neurons identified from the abducens nucleus constituted a nonuniform population, because low percentages of the three types of immunostaining were observed, calbindin being the most abundant (28.5%). Other interneurons located within the boundaries of the oculomotor nucleus were mainly calbindin-immunoreactive. The medial longitudinal fascicle contained numerous parvalbumin- and calretinin-immunoreactive but few calbindin-immunoreactive axons. The majority of abducens internuclear neurons projecting to the oculomotor nucleus (80.7%) contained calretinin. Moreover, the distribution of calretinin-immunoreactive terminals in the oculomotor nucleus overlapped that of the medial rectus motoneurons and matched the anterogradely labeled terminal field of the abducens internuclear neurons. Parvalbumin immunostained 42% of the abducens internuclear neurons. Colocalization of parvalbumin and calretinin was demonstrated in adjacent semithin sections, although single-labeled neurons were also observed. Therefore, calretinin is proven to be a good marker of abducens internuclear neurons. From all of these data, it is concluded that parvalbumin, calretinin, and calbindin D-28k selectively delineate certain neuronal populations in the oculomotor system and constitute valuable tools for further analysis of oculomotor function under normal and experimental conditions.
Collapse
Affiliation(s)
- R R de la Cruz
- Laboratorio de Neurociencia, Facultad de Biología, Universidad de Sevilla, Spain.
| | | | | | | | | |
Collapse
|
31
|
de la Cruz RR, Pastor AM, Martińez-Guijarro FJ, López-García C, Delgado-García JM. Localization of parvalbumin, calretinin, and calbindin D-28k in identified extraocular motoneurons and internuclear neurons of the cat. J Comp Neurol 1998; 390:377-91. [PMID: 9455899 DOI: 10.1002/(sici)1096-9861(19980119)390:3<377::aid-cne6>3.0.co;2-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Calcium-binding proteins have been shown to be excellent markers of specific neuronal populations. We aimed to characterize the expression of calcium-binding proteins in identified populations of the cat extraocular motor nuclei by means of immunohistochemistry against parvalbumin, calretinin, and calbindin D-28k. Abducens, medial rectus, and trochlear motoneurons were retrogradely labeled with horseradish peroxidase from their corresponding muscles. Oculomotor and abducens internuclear neurons were retrogradely labeled after horseradish peroxidase injection into either the abducens or the oculomotor nucleus, respectively. Parvalbumin staining produced the highest density of immunoreactive terminals in all extraocular motor nuclei and was distributed uniformly. Around 15-20% of the motoneurons were moderately stained with antibody against parvalbumin, but their axons were heavily stained, indicating an intracellular segregation of parvalbumin. Colchicine administration increased the number of parvalbumin-immunoreactive motoneurons to approximately 85%. Except for a few calbindin-immunoreactive trochlear motoneurons (1%), parvalbumin was the only marker of extraocular motoneurons. Oculomotor internuclear neurons identified from the abducens nucleus constituted a nonuniform population, because low percentages of the three types of immunostaining were observed, calbindin being the most abundant (28.5%). Other interneurons located within the boundaries of the oculomotor nucleus were mainly calbindin-immunoreactive. The medial longitudinal fascicle contained numerous parvalbumin- and calretinin-immunoreactive but few calbindin-immunoreactive axons. The majority of abducens internuclear neurons projecting to the oculomotor nucleus (80.7%) contained calretinin. Moreover, the distribution of calretinin-immunoreactive terminals in the oculomotor nucleus overlapped that of the medial rectus motoneurons and matched the anterogradely labeled terminal field of the abducens internuclear neurons. Parvalbumin immunostained 42% of the abducens internuclear neurons. Colocalization of parvalbumin and calretinin was demonstrated in adjacent semithin sections, although single-labeled neurons were also observed. Therefore, calretinin is proven to be a good marker of abducens internuclear neurons. From all of these data, it is concluded that parvalbumin, calretinin, and calbindin D-28k selectively delineate certain neuronal populations in the oculomotor system and constitute valuable tools for further analysis of oculomotor function under normal and experimental conditions.
Collapse
Affiliation(s)
- R R de la Cruz
- Laboratorio de Neurociencia, Facultad de Biología, Universidad de Sevilla, Spain.
| | | | | | | | | |
Collapse
|
32
|
Lahjouji F, Bras H, Barbe A, Chmykhova N, Chazal G. Electron microscopic serial analysis of GABA presynaptic terminals on the axon hillock and initial segment of labeled abducens motoneurons in the rat. Neurosci Res 1997; 27:143-53. [PMID: 9100256 DOI: 10.1016/s0168-0102(96)01142-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The aim of the present study was to provide a quantitative analysis of the synapses made onto the axon hillock and initial segment of rat abducens motoneurons retrogradely or intracellularly stained with HRP. GABA-immunoreactive terminals contacting these axons were visualized using a postembedding procedure. The presynaptic terminals contained either spherical or pleomorphic vesicles. gamma-Aminobutyric acid (GABA)-immunoreactive axon terminals, which belonged to this last category, were distributed both onto axon hillocks and the proximal part of initial segments. The percentage of axonal membrane covered by synapses ranged from 44.1 to 68.2%. A quantitative analysis performed on a series of ultrathin sectioned terminals contacting the axon of an intracellularly labeled motoneuron revealed a significant correlation between the length of membrane apposition of the terminals and their perimeter or surface area, and also between the area of membrane apposition and terminal volume. GABA-immunoreactive terminals had a mean perimeter and volume that were larger than those of unlabeled axon terminals. The number of active zones was correlated with the area of apposition. Some hypotheses concerning the functional role of the GABAergic innervation of this particular part of the neuron are discussed.
Collapse
Affiliation(s)
- F Lahjouji
- Unité de Neurocybernétique cellulaire, CNRS UPR 9041, Marseille, France
| | | | | | | | | |
Collapse
|
33
|
de la Cruz RR, Pastor AM, Delgado-García JM. Influence of the postsynaptic target on the functional properties of neurons in the adult mammalian central nervous system. Rev Neurosci 1996; 7:115-49. [PMID: 8819206 DOI: 10.1515/revneuro.1996.7.2.115] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this review we have attempted to summarize present knowledge concerning the regulatory role of target cells on the expression and maintenance of the neuronal phenotype during adulthood. It is well known that in early developmental stages the survival of neurons is maintained by specific neurotrophic factors derived from their target tissues. Neuronal survival is not the only phenotype that is regulated by target-derived neurotrophic factors since the expression of electrophysiological and cytochemical properties of neurons is also affected. However, a good deal of evidence indicates that the survival of neurons becomes less dependent on their targets in the adult stage. The question is to what extent are target cells still required for the maintenance of the pre-existing or programmed state of the neuron; i.e., what is the functional significance of target-derived factors during maturity? Studies addressing this question comprise a variety of neuronal systems and technical approaches and they indicate that trophic interactions, although less apparent, persist in maturity and are most easily revealed by experimental manipulation. In this respect, research has been directed to analyzing the consequences of disconnecting a group of neurons from their target-by either axotomy or selective target removal using different neurotoxins-and followed (or not) by the implant of a novel target, usually a piece of embryonic tissue. Numerous alterations have been described as taking place in neurons following axotomy, affecting their morphology, physiology and metabolism. All these neuronal properties return to normal values when regeneration is successful and reinnervation of the target is achieved. Nevertheless, most of the changes persist if reinnervation is prevented by any procedure. Although axotomy may represent, besides target disconnection, a cellular lesion, alternative approaches (e.g., blockade of either the axoplasmic transport or the conduction of action potentials) have been used yielding similar results. Moreover, in the adult mammalian central nervous system, neurotoxins have been used to eliminate a particular target selectively and to study the consequences on the intact but target-deprived presynaptic neurons. Target depletion performed by excitotoxic lesions is not followed by retrograde cell death, but targetless neurons exhibit several modifications such as reduction in soma size and in the staining intensity for neurotransmitter-synthesizing enzymes. Recently, the oculomotor system has been used as an experimental model for evaluating the functional effects of target removal on the premotor abducens internuclear neurons whose motoneuronal target is destroyed following the injection of toxic ricin into the extraocular medial rectus muscle. The functional characteristics of these abducens neurons recorded under alert conditions simultaneously with eye movements show noticeable changes after target loss, such as a general reduction in firing frequency and a loss of the discharge signals related to eye position and velocity. Nevertheless, the firing pattern of these targetless abducens internuclear neurons recovers in parallel with the establishment of synaptic contacts on a presumptive new target: the small oculomotor internuclear neurons located in proximity to the disappeared target motoneurons. The possibility that a new target may restore neuronal properties towards a normal state has been observed in other systems after axotomy and is also evident from experiments of transplantation of immature neurons into the lesioned central nervous system of adult mammals. It can be concluded that although target-derived factors may not control neuronal survival in the adult nervous system, they are required for the maintenance of the functional state of neurons, regulating numerous aspects of neuronal structure, chemistry and electro-physiology.(ABSTRUCT TRUNCATED)
Collapse
Affiliation(s)
- R R de la Cruz
- Departamento de Fisiología y Biología Animal, Facultad de Biología, Universidad de Sevilla, Spain
| | | | | |
Collapse
|
34
|
Lahjouji F, Barbe A, Chazal G, Bras H. Evidence for colocalization of GABA and glycine in afferents to retrogradely labelled rat abducens motoneurones. Neurosci Lett 1996; 206:161-4. [PMID: 8710176 DOI: 10.1016/s0304-3940(96)12465-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The coexistence of gamma-aminobutyric acid (GABA) and glycine in axon terminals impinging on rat abducens motoneurones was investigated using a double staining procedure combining retrograde labelling of the motoneurones with HRP and post-embedding immunocytochemical staining of axon terminals. Adjacent ultrathin sections of cell bodies of identified motoneurones were individually treated with GABA or glycine antibodies. The terminals single labelled for GABA represented 11.4% of the terminals analyzed, while 8% of them were glycine immunoreactive and 9% were both GABA and glycine immunoreactive. All the labelled terminals contained pleomorphic vesicles. The mean length of apposition of the double labelled terminals was statistically larger (2.20 +/- 0.97 microns) than the GABA (1.65 +/- 0.57 microns) or glycine immunoreactive ones (1.37 +/- 0.35 microns).
Collapse
Affiliation(s)
- F Lahjouji
- Unité de Neurocybernétique Cellulaire, CNRS UPR 9041, Marseille, France
| | | | | | | |
Collapse
|
35
|
Wentzel PR, Gerrits NM, de Zeeuw CI. GABAergic and glycinergic inputs to the rabbit oculomotor nucleus with special emphasis on the medial rectus subdivision. Brain Res 1996; 707:314-9. [PMID: 8919312 DOI: 10.1016/0006-8993(95)01389-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Contradictory results have been reported about the inhibitory input to the medial rectus subdivision of the oculomotor nucleus of the cat. In the present ultrastructural study, we quantified the GABAergic and glycinergic terminals in the various subdivisions of the rabbit oculomotor nucleus with the use of post-embedding immunocytochemistry combined with retrograde tracing of horseradish peroxidase. The density of the GABAergic input to the medial rectus subdivision was as substantial as that to the other subdivisions and the postsynaptic distribution of the GABAergic and glycinergic innervation did not differ among the different oculomotor subdivisions.
Collapse
Affiliation(s)
- P R Wentzel
- Department of Anatomy, Erasmus University Rotterdam, The Netherlands
| | | | | |
Collapse
|
36
|
Wentzel PR, De Zeeuw CI, Holstege JC, Gerrits NM. Inhibitory synaptic inputs to the oculomotor nucleus from vestibulo-ocular-reflex-related nuclei in the rabbit. Neuroscience 1995; 65:161-74. [PMID: 7538643 DOI: 10.1016/0306-4522(94)00471-g] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Studies of the pathways involved in the vestibulo-ocular reflex have suggested that the projection from the superior vestibular nucleus to the ipsilateral oculomotor nucleus is inhibitory, whereas the medial vestibular nucleus, the abducens nucleus and the contralateral superior vestibular nucleus most likely exert excitatory effects on oculomotor neurons. In order to determine directly the termination pattern and the neurotransmitter of these afferents, we studied their input to the oculomotor nucleus in the rabbit at the light microscopic level with the use of anterograde tracing of Phaseolus vulgaris-leucoagglutinin combined with retrograde tracing of horseradish peroxidase from the extraocular muscles, and at the ultrastructural level with the use of anterograde tracing of wheatgerm-agglutinated horseradish peroxidase combined with GABA and glycine postembedding immunocytochemistry. The general ultrastructural characteristics of the neuropil and the types of boutons observed in the rabbit oculomotor nuclei are in general agreement with the descriptions for the oculomotor complex of other mammals. The superior vestibular nucleus projected bilaterally to the superior rectus and inferior oblique subdivisions, and ipsilaterally to the inferior rectus and medial rectus subdivision; the medial vestibular nucleus projected bilaterally to the medial rectus, inferior oblique, inferior rectus and superior rectus subdivisions with a strong contralateral predominance. The abducens nucleus projected contralaterally to the medial rectus subdivision. More than 90% of all the anterogradely labeled terminals from the ipsilateral superior vestibular nucleus were GABAergic. These terminals were characterized by flattened vesicles and symmetric synapses, and they contacted somata, as well as proximal and distal dendrites of motoneurons. All terminals derived from the medial vestibular nucleus the abducens nucleus and the contralateral superior vestibular nucleus were non-GABAergic. These non-GABAergic terminals showed spherical vesicles and asymmetric synapses, and they contacted predominantly distal dendrites. None of the anterogradely labeled terminals from the studied vestibular nuclei or abducens nucleus were glycinergic. The present study provides the first direct anatomical evidence that most, if not all, of the synaptic input from the superior vestibular nucleus to the ipsilateral oculomotor nucleus is GABAergic, and that the medial rectus subdivision is included in the termination area. Furthermore, it confirms that the projections from the medial vestibular nucleus, the abducens nucleus and the contralateral superior vestibular nucleus are exclusively non-GABAergic.
Collapse
Affiliation(s)
- P R Wentzel
- Department of Anatomy, Erasmus University Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
37
|
Lahjouji F, Bras H, Barbe A, Chazal G. GABAergic innervation of rat abducens motoneurons retrogradely labelled with HRP: quantitative ultrastuctural analysis of cell bodies and proximal dendrites. JOURNAL OF NEUROCYTOLOGY 1995; 24:29-44. [PMID: 7769399 DOI: 10.1007/bf01370158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In this quantitative electron microscopic study we investigated the distribution of GABA axon terminals on rat abducens motoneurons by combining retrograde labelling of montoneurons with post-embedding immunodetection of GABA. We analysed the synapses on 13 cell bodies and 60 proximal dendritic profiles distributed along the entire rostro-caudal extent of the nucleus. For each of these two compartments, we analysed 1754 and 1176 axon terminals in contact with 6042 and 3299 microns of postsynaptic membrane. The axon terminals were classified as Sv-type (containing spherical vesicles) or Pv-type (containing pleomorphic vesicles). The GABAergic terminals contained pleomorphic vesicles and established mainly symmetrical synaptic contacts. Their apposition lengths were greater than those of unlabelled terminals. On cell bodies, the percentage of GABAergic synaptic covering varied from 2.5% to 14.1% and the synaptic frequency of GABAergic axon terminals varied from 0.6% to 8.9%. These two parameters were significantly correlated with the diameter of the motoneurons. The percentage of synaptic covering and synaptic frequency were smaller on dendrites of small motoneurons than on those of large ones. The proximal dendrites of small motoneurons had a lesser GABAergic innervation than large ones. The total synaptic covering and frequency were smaller on somata than on dendrites. However, the percentage of synaptic covering by GABA terminals was higher on cell bodies than on proximal dendrites.
Collapse
Affiliation(s)
- F Lahjouji
- Unité de Neurocybernétique Cellulaire, CNRS UPR 418, Marseille, France
| | | | | | | |
Collapse
|
38
|
Gruart A, Delgado-García JM. Signalling properties of identified deep cerebellar nuclear neurons related to eye and head movements in the alert cat. J Physiol 1994; 478 ( Pt 1):37-54. [PMID: 7965834 PMCID: PMC1155643 DOI: 10.1113/jphysiol.1994.sp020228] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
1. The spike activity of deep cerebellar nuclear neurons was recorded in the alert cat during spontaneous and during vestibularly and visually induced eye movements. 2. Neurons were classified according to their location in the nuclei, their antidromic activation from projection sites, their sensitivity to eye position and velocity during spontaneous eye movements, and their responses to vestibular and optokinetic stimuli. 3. Type I EPV (eye position and velocity) neurons were located mainly in the posterior part of the fastigial nucleus and activated antidromically almost exclusively from the medial longitudinal fasciculus close to the oculomotor complex. These neurons, reported here for the first time, increased their firing rate during saccades and eye fixations towards the contralateral hemifield. Their position sensitivity to eye fixations in the horizontal plane was 5.3 +/- 2.6 spikes s-1 deg-1 (mean +/- S.D.). Eye velocity sensitivity during horizontal saccades was 0.71 +/- 0.52 spikes s-1 deg-1 s-1. Variability of their firing rate during a given eye fixation was higher than that shown by abducens motoneurons. 4. Type I EPV neurons increased their firing rate during ipsilateral head rotations at 0.5 Hz with a mean phase lead over eye position of 95.3 +/- 9.5 deg. They were also activated by contralateral optokinetic stimulation at 30 deg s-1. Their sensitivity to eye position and velocity in the horizontal plane during vestibular and optokinetic stimuli yielded values similar to those obtained for spontaneous eye movements. 5. Type II neurons were located in both fastigial and dentate nuclei and were activated antidromically from the restiform body, the medial longitudinal fasciculus close to the oculomotor complex, the red nucleus and the pontine nuclei. Type II neurons were not related to spontaneous eye movements. These neurons increased their firing rate in response to contralateral head rotation and during ipsilateral optokinetic stimulation, and decreased it with the oppositely directed movements. 6. Saccade-related neurons were located mostly in the fastigial and dentate nuclei. Fastigial neurons were activated antidromically from the medial longitudinal fasciculus, while dentate neurons were activated from the red nucleus. These neurons fired a burst of spikes whose duration was significantly related to saccade duration. Dentate neurons responded during the omni-directional saccades, while some fastigial neurons fired more actively during contralateral saccades. 7. These three types of neuron represent the output channel for oculomotor signals of the posterior vermis and paravermis. It is proposed that type I EPV neurons correspond to a group of premotor neurons directly involved in oculomotor control.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- A Gruart
- Departamento de Fisiología y Biología Animal, Facultad de Biología, Universidad de Sevilla, Spain
| | | |
Collapse
|
39
|
de la Cruz RR, Pastor AM, Delgado-García JM. Effects of target depletion on adult mammalian central neurons: functional correlates. Neuroscience 1994; 58:81-97. [PMID: 7512704 DOI: 10.1016/0306-4522(94)90157-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The physiological signals and patterns of synaptic connectivity that CNS neurons display after the loss of their target cells were evaluated in adult cats for one year. Abducens internuclear neurons were chosen as the experimental model because of their highly specific projection onto the medial rectus motoneurons of the oculomotor nucleus. Selective death of medial rectus motoneurons was induced by the injection into the medial rectus muscle of ricin, a potent cytotoxic lectin that leaves the presynaptic axons intact. The electrical activity of antidromically identified abducens internuclear neurons was recorded in chronic alert animals, during both spontaneous and vestibularly induced eye movements, before and after target removal. During the three weeks that followed ricin injection, abducens internuclear neurons exhibited several firing-related abnormal properties. There was an overall reduction in firing rate with a corresponding increase in the eye position threshold for recruitment. In addition, neuronal sensitivities to eye position and velocity were significantly decreased with respect to control data. Bursting activity was also altered since low-frequency delayed burst accompanied the saccades in the on-direction and, occasionally, internuclear neurons exhibited low-frequency discharges associated with off-directed saccades. Intracellular recordings carried out seven and 15 days after ricin injection demonstrated no significant changes in their electrical properties, although a marked depression of synaptic transmission was evident. The amplitude of both excitatory and inhibitory postsynaptic potentials of vestibular origin was reduced by 60-85% with respect to controls. However, postsynaptic potentials recorded one month after ricin injection showed normal amplitude values which persisted unaltered one year after target loss. Recovery of synaptic transmission occurred at the same time as the re-establishment of normal eye-related signals in the discharge pattern of abducens internuclear neurons recorded in alert cats from days 25-30 post lesion. The functional restoration of firing properties was maintained in the long term (one year). Conversely, abducens motoneurons showed normal firing and synaptic patterns at all time intervals analysed. These results demonstrate that, after an initial period of altered physiological properties, abducens internuclear neurons survive the loss of their target motoneurons and regain a normal discharge pattern and afferent synaptic connections.
Collapse
Affiliation(s)
- R R de la Cruz
- Departamento de Fisiología y Biología Animal, Facultad de Biología, Universidad de Sevilla, Spain
| | | | | |
Collapse
|
40
|
de la Cruz RR, Pastor AM, Delgado-García JM. Effects of target depletion on adult mammalian central neurons: morphological correlates. Neuroscience 1994; 58:59-79. [PMID: 7512703 DOI: 10.1016/0306-4522(94)90156-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The morphological sequelae induced by target removal were studied on adult cat abducens internuclear neurons at both the somata and terminal axon arborization levels. The neuronal target--the medial rectus motoneurons of the oculomotor nucleus--was selectively destroyed by the injection of toxic ricin into the medial rectus muscle. Retrograde labeling with horseradish peroxidase demonstrated the survival of the entire population of abducens internuclear neurons up to one year after target removal. However, soma size was reduced by about 20% three months postlesion and maintained for one year. At the ultrastructural level, a considerable deafferentation of abducens internuclear neurons was observed at short intervals (i.e. 10 days after lesion). Large regions of the plasmalemma appeared devoid of presynaptic boutons but were covered instead by glial processes. The detachment of synaptic endings was selective on abducens internuclear neurons since nearby motoneurons always showed a normal synaptic coverage. By one month, abducens internuclear neurons recovered a normal density of receiving axosomatic synapses. Anterogradely biocytin-labeled axon terminals of abducens internuclear neurons remained in place after the lesion of medial rectus motoneurons, although with a progressive decrease in density. Ultrastructural examination of the oculomotor nucleus 10 days after the lesion revealed numerous empty spaces left by the dead motoneurons. Targetless boutons were observed surrounded by large extracellular gaps, still apposed to remnants of the postsynaptic membrane or, finally, ensheathed by glial processes. At longer intervals (> one month), the ultrastructure of the oculomotor nucleus was re-established and labeled boutons were observed contacting either unidentified dendrites within the neuropil or the soma and proximal dendrites of the oculomotor internuclear neurons, that project to the abducens nucleus. Labeled boutons were never found contacting with the oculomotor internuclear neurons either in control tissue or at short periods after ricin injection. These results indicate that the availability of undamaged neurons close to the lost target motoneurons might support the long-term survival of abducens internuclear neurons. Specifically, the oculomotor internuclear neurons, which likely suffer a partial deafferentation after medial rectus motoneuron loss, constitute a potential new target for the abducens internuclear neurons. The reinnervation of a new target might explain the recovery of synaptic and firing properties of abducens internuclear neurons after medial rectus motoneuron lesion, which occurred with a similar time course, as described in the accompanying paper [de la Cruz R. R. et al. (1994) Neuroscience 58, 81-97.].
Collapse
Affiliation(s)
- R R de la Cruz
- Departamento de Fisiología y Biología Animal, Facultad de Biología, Universidad de Sevilla, Spain
| | | | | |
Collapse
|
41
|
Wentzel PR, De Zeeuw CI, Holstege JC, Gerrits NM. Colocalization of GABA and glycine in the rabbit oculomotor nucleus. Neurosci Lett 1993; 164:25-9. [PMID: 8152608 DOI: 10.1016/0304-3940(93)90848-f] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In the present study we examined the possible colocalization of the inhibitory neurotransmitters glycine and GABA in the oculomotor nucleus of the rabbit. Serial sections were processed alternately for glycine and GABA postembedding immuno-cytochemistry. Ultrastructural analysis revealed that all terminals that showed glycine-positive immunoreactivity were also GABA positive; up to 5% of the GABA-positive terminals were also glycine positive.
Collapse
Affiliation(s)
- P R Wentzel
- Department of Anatomy, Erasmus University Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
42
|
de la Cruz RR, Pastor AM, Delgado-García JM. Long-term effects of selective target removal on brainstem premotor neurons in the adult cat. Eur J Neurosci 1993; 5:232-9. [PMID: 8261104 DOI: 10.1111/j.1460-9568.1993.tb00489.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The electrical activity of antidromically identified abducens internuclear neurons selectively deprived of their target motoneurons was recorded in chronic alert cats. Target motoneurons were killed by the injection of the cytotoxic lectin of Ricinus communis into the medial rectus muscle. Following target removal, the discharge pattern of abducens internuclear neurons showed an overall decrease in firing rate, a significant reduction in their sensitivity to eye position and velocity, and the presence of anomalous responses such as bursts of spikes associated with off-directed saccades. The decreased excitability of abducens internuclear neurons correlated well with a marked reduction in the synaptic efficacy of their inputs. Thus, both excitatory and inhibitory synaptic potentials of vestibular origin showed a noticeable decrease in amplitude. The alterations in firing properties and synaptic transmission were only observed during an initial period of 3 weeks following ricin injection. Within 1 month the electrophysiological parameters returned to control values and remained unaltered for 1 year. Retrograde labelling of abducens internuclear neurons revealed that no cell death occurred after target loss. The anterograde axonal labelling of these neurons showed a progressive decrease in the density of their axonal terminals, and no sign of redistribution to other areas was found. These findings indicate that abducens internuclear neurons are not dependent on the presence of their natural target cells, either for the survival or for the maintenance of appropriate physiological signals.
Collapse
Affiliation(s)
- R R de la Cruz
- Departamento de Fisiología y Biología Animal, Facultad de Biología, Sevilla, Spain
| | | | | |
Collapse
|