1
|
Hasegawa S, Fikre-Merid M, Diksic M. 5-HT2A receptor antagonist M100907 reduces serotonin synthesis: an autoradiographic study. Brain Res Bull 2012; 87:44-9. [PMID: 22056993 PMCID: PMC3653840 DOI: 10.1016/j.brainresbull.2011.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 10/19/2011] [Indexed: 11/16/2022]
Abstract
The effects of the administration of the serotonin (5-HT)(2A) antagonist, M100907, on 5-HT synthesis rates, were evaluated using the α-[(14)C]methyl-l-tryptophan (α-MTrp) autoradiographic method. In the treatment study, M100907 (10mg/kg) was injected intraperitoneally 30 min before the α-MTrp injection (30 μCi over 2 min). A single dose of M100907 caused a significant decrease in the synthesis in the anterior olfactory nucleus, accumbens nucleus, frontal cortex, sensory-motor cortex, cingulate cortex, medial caudate-putamen, dorsal thalamus, substantia nigra, inferior collicus, raphe magnus nucleus, superior olive, and raphe pallidus nucleus. These data suggest that the terminal 5-HT(2A) receptors are involved in the regulation of 5-HT synthesis in the entire brain. Further, 5-HT synthesis is likely regulated by the 5-HT(2A) antagonistic property of M100907 in the cortices, anterior olfactory nucleus, caudate putamen, and nucleus accumbens.
Collapse
Affiliation(s)
| | - Maraki Fikre-Merid
- Cone Neurosurgical Research Laboratory, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec, Canada H3A 2B4
| | - Mirko Diksic
- Cone Neurosurgical Research Laboratory, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec, Canada H3A 2B4
| |
Collapse
|
2
|
Hentall ID, Gonzalez MMC. Promotion of Recovery From Thoracic Spinal Cord Contusion in Rats by Stimulation of Medullary Raphe or Its Midbrain Input. Neurorehabil Neural Repair 2011; 26:374-84. [DOI: 10.1177/1545968311425178] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
3
|
Bagale SM, Brown AS, Gonzalez MMC, Vitores A, Micotto TL, Kumar NSS, Hentall ID, Wilson JN. Fluorescent reporters of monoamine transporter distribution and function. Bioorg Med Chem Lett 2011; 21:7387-91. [PMID: 22047697 DOI: 10.1016/j.bmcl.2011.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 10/03/2011] [Accepted: 10/04/2011] [Indexed: 10/16/2022]
Abstract
Serotonin is a monoamine serving as a chemical messenger in diverse brain regions, as well as in blood and various other organs. We synthesized six ethylamine functionalized fluorophores as fluorescent probes for serotonin. The one with best spectral properties and aqueous solubility, 6-amino-2-(2-aminoethyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione, was studied in detail both in vivo and in vitro. It was shown to act as a ligand for serotonin transporter (SERT) without acute cerebral or cardiovascular toxicity or adverse effects. Fluorescent serotonin analogs can be used for direct visualization of SERT distribution and activity in live tissue.
Collapse
Affiliation(s)
- Sharanappa M Bagale
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33124-0431, USA
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Eger EI, Raines DE, Shafer SL, Hemmings HC, Sonner JM. Is a new paradigm needed to explain how inhaled anesthetics produce immobility? Anesth Analg 2008; 107:832-48. [PMID: 18713892 DOI: 10.1213/ane.0b013e318182aedb] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A paradox arises from present information concerning the mechanism(s) by which inhaled anesthetics produce immobility in the face of noxious stimulation. Several findings, such as additivity, suggest a common site at which inhaled anesthetics act to produce immobility. However, two decades of focused investigation have not identified a ligand- or voltage-gated channel that alone is sufficient to mediate immobility. Indeed, most putative targets provide minimal or no mediation. For example, opioid, 5-HT3, gamma-aminobutyric acid type A and glutamate receptors, and potassium and calcium channels appear to be irrelevant or play only minor roles. Furthermore, no combination of actions on ligand- or voltage-gated channels seems sufficient. A few plausible targets (e.g., sodium channels) merit further study, but there remains the possibility that immobilization results from a nonspecific mechanism.
Collapse
Affiliation(s)
- Edmond I Eger
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, California 94143-0464, USA.
| | | | | | | | | |
Collapse
|
5
|
Braz JM, Basbaum AI. Genetically expressed transneuronal tracer reveals direct and indirect serotonergic descending control circuits. J Comp Neurol 2008; 507:1990-2003. [PMID: 18273889 DOI: 10.1002/cne.21665] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Despite the evidence for a significant contribution of brainstem serotonergic (5HT) systems to the control of spinal cord "pain" transmission neurons, attention has turned recently to the influence of nonserotonergic neurons, including the facilitatory and inhibitory controls that originate from so-called "on" and "off" cells of the rostroventral medulla (RVM). Unclear, however, is the extent to which these latter circuits interact with or are influenced by the serotonergic cell groups. To address this question we selectively targeted expression of a transneuronal tracer, wheat germ agglutinin (WGA), in the 5HT neurons so as to study the interplay between the 5HT and non-5HT systems. In addition to confirming the direct medullary 5HT projection to the spinal cord we also observed large numbers of non-5HT neurons, in the medullary nucleus reticularis gigantocellularis and magnocellularis, that were WGA-immunoreactive, i.e., were transneuronally labeled from 5HT neurons. FluoroGold injections into the spinal cord established that these reticular neurons are not only postsynaptic to the 5HT neurons of the medulla, but that most are also at the origin of descending, bulbospinal pathways. By contrast, we found no evidence that neurons of the midbrain periaqueductal gray that project to the RVM are postsynaptic to midbrain or medullary 5HT neurons. Finally, we found very few examples of WGA-immunoreactive noradrenergic neurons, which suggests that there is considerable independence of the monoaminergic bulbospinal pathways. Our results indicate that 5HT neurons influence "pain" processing at the spinal cord level both directly and indirectly via feedforward connections with multiple non-5HT descending control pathways.
Collapse
Affiliation(s)
- João Manuel Braz
- Department of Anatomy, University of California San Francisco, San Francisco, California 94158, USA.
| | | |
Collapse
|
6
|
Lambert GA. Looking in the wrong place? The search for an ideal migraine preventative. Drug Dev Res 2007. [DOI: 10.1002/ddr.20204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Hentall ID, Pinzon A, Noga BR. Spatial and temporal patterns of serotonin release in the rat's lumbar spinal cord following electrical stimulation of the nucleus raphe magnus. Neuroscience 2006; 142:893-903. [PMID: 16890366 PMCID: PMC2709461 DOI: 10.1016/j.neuroscience.2006.06.038] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Revised: 06/21/2006] [Accepted: 06/22/2006] [Indexed: 01/15/2023]
Abstract
The monoamine neurotransmitter serotonin is released from spinal terminals of nucleus raphe magnus (NRM) neurons and important in sensory and motor control, but its pattern of release has remained unclear. Serotonin was measured by the high-resolution method of fast cyclic voltammetry (2 Hz) with carbon-fiber microelectrodes in lumbar segments (L3-L6) of halothane-anesthetized rats during electrical stimulation of the NRM. Because sites of serotonin release are often histologically remote from membrane transporters and receptors, rapid emergence into aggregate extracellular space was expected. Increased monoamine oxidation currents were found in 94% of trials of 50-Hz, 20-s NRM stimulation across all laminae. The estimated peak serotonin concentration averaged 37.8 nM (maximum 287 nM), and was greater in dorsal and ventral laminae (I-III and VIII-IX) than in intermediate laminae (IV-VI). When measured near NRM-evoked changes, basal monoamine levels (relative to dorsal white matter) were highest in intermediate laminae, while changes in norepinephrine level produced by locus ceruleus (LC) stimulation were lowest in laminae II/III and VII. The NRM-evoked monoamine peak was linearly proportional to stimulus frequency (10-100 Hz). The peak often occurred before the stimulus ended (mean 15.6 s at 50 Hz, range 4-35 s) regardless of frequency, suggesting that release per impulse was constant during the rise but fell later. The latency from stimulus onset to electrochemical signal detection (mean 4.2 s, range 1-23 s) was inversely correlated with peak amplitude and directly correlated with time-to-peak. Quantitative modeling suggested that shorter latencies mostly reflected the time below detection threshold (5-10 nM), so that extrasynaptic serotonin was significantly elevated well within 1 s. Longer latencies (>5 s), which were confined to intermediate laminae, appeared mainly to be due to diffusion from distant sources. In conclusion, except possibly in intermediate laminae, serotonergic volume transmission is a significant mode of spinal control by the NRM.
Collapse
Affiliation(s)
| | | | - B. R. Noga
- Corresponding author. Tel: +305-243-6155; fax: +305-243-3921. E-mail address: (B. R. Noga)
| |
Collapse
|
8
|
Carlson JD, Selden NR, Heinricher MM. Nocifensive reflex-related on- and off-cells in the pedunculopontine tegmental nucleus, cuneiform nucleus, and lateral dorsal tegmental nucleus. Brain Res 2005; 1063:187-94. [PMID: 16256081 DOI: 10.1016/j.brainres.2005.09.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 09/23/2005] [Accepted: 09/27/2005] [Indexed: 11/16/2022]
Abstract
Cholinergic projections from the pedunculopontine tegmental nucleus (PPTg) to the rostral ventromedial medulla (RVM) have been implicated in nociceptive modulation. The goal of this study was to identify neurons with nocifensive reflex-related activity in the mesopontine tegmentum including the PPTg. This study used the same behavioral neurophysiological classification system to identify neurons as has been extensively described in the RVM. Extracellular microelectrode recording was conducted in lightly anesthetized rats. Changes in firing associated with the noxious heat-evoked tail flick reflex were used to classify neurons as "on-cells" (displayed a burst in neuronal activity associated with the reflex), "off-cells" (displayed a pause in activity), and neutral cells (showed no response). Of 188 neurons studied in 23 rats, 77 were classified as on-cells, 14 as off-cells, the remainder as neutral cells. Recordings during periods without noxious stimulation found that some of the on- and off-cells displayed spontaneous transitions between active and silent periods termed cell cycling. The distribution of on- and off-cells in the mesopontine tegmentum overlapped and included the cholinergic PPTg and lateral dorsal tegmental nucleus identified by NADPH diaphorase staining, as well as the cuneiform nucleus and periaqueductal gray. The mesopontine tegmentum thus contains nocifensive reflex-related neurons with neurophysiological characteristics similar to those reported in the RVM. Neurons showing reflex-related activity were frequently encountered in the cholinergic PPTg and LDTg. Further studies will be required to determine whether these neurons modulate nociception through a link to the RVM.
Collapse
Affiliation(s)
- Jonathan Dennis Carlson
- Department of Neurological Surgery, L-472, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| | | | | |
Collapse
|
9
|
Abstract
The basic CNS neuropharmacology of naratriptan is reviewed here. Naratriptan is a second-generation triptan antimigraine drug, developed at a time when CNS activity was thought not to be relevant to its therapeutic effect in migraine. It was, however, developed to be a more lipid-soluble, more readily absorbed and less readily metabolized variant on preexisting triptans and these variations conferred on it a higher CNS profile. Naratriptan is a 5-HT(1B/1D) receptor agonist with a highly selective action on migraine pain and nausea, without significant effect on other pain or even other trigeminal pain. Probable sites of therapeutic action of naratriptan include any or all of: the cranial vasculature; the peripheral terminations of trigeminovascular sensory nerves; the first-order synapses of the trigeminovascular sensory system; the descending pain control system; and the nuclei of the thalamus. Naratriptan may prevent painful dilatation of intracranial vessels or reverse such painful dilatation. Naratriptan can prevent the release of sensory peptides and inhibit painful neurogenic vasodilatation of intracranial blood vessels. At the first order synapse of the trigeminal sensory system, naratriptan can selectively suppress neurotransmission from sensory fibers from dural and vascular tissue, while sparing transmission from other trigeminal fibers, probably through inhibition of neuropeptide transmitter release. In the periaqueductal gray matter and in the nucleus raphe magnus, naratriptan selectively activates inhibitory neurons which project to the trigeminal nucleus and spinal cord and which exert inhibitory influences on trigeminovascular sensory input. Naratriptan has also a therapeutic effect on the nausea of migraine, possibly exerting its action at the level of the nucleus tractus solitarius via the same mechanisms by which it inhibits trigeminovascular nociceptive input. The incidence of naratriptan-induced adverse effects in the CNS is low and it is not an analgesic for pain other than that of vascular headache. In patients receiving selective serotonin uptake inhibitors (SSRIs) naratriptan may cause serotonin syndrome-like behavioral side effects. The mechanism of action involved in the production of behavioral and other CNS side effects of naratriptan is unknown.
Collapse
Affiliation(s)
- Geoffrey A Lambert
- Institute of Neurological Sciences, The Prince of Wales Hospital, Randwick NSW 2031, Australia.
| |
Collapse
|
10
|
Sonner JM, Antognini JF, Dutton RC, Flood P, Gray AT, Harris RA, Homanics GE, Kendig J, Orser B, Raines DE, Trudell J, Vissel B, Eger EI. Inhaled anesthetics and immobility: mechanisms, mysteries, and minimum alveolar anesthetic concentration. Anesth Analg 2003; 97:718-740. [PMID: 12933393 DOI: 10.1213/01.ane.0000081063.76651.33] [Citation(s) in RCA: 196] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Studies using molecular modeling, genetic engineering, neurophysiology/pharmacology, and whole animals have advanced our understanding of where and how inhaled anesthetics act to produce immobility (minimum alveolar anesthetic concentration; MAC) by actions on the spinal cord. Numerous ligand- and voltage-gated channels might plausibly mediate MAC, and specific amino acid sites in certain receptors present likely candidates for mediation. However, in vivo studies to date suggest that several channels or receptors may not be mediators (e.g., gamma-aminobutyric acid A, acetylcholine, potassium, 5-hydroxytryptamine-3, opioids, and alpha(2)-adrenergic), whereas other receptors/channels (e.g., glycine, N-methyl-D-aspartate, and sodium) remain credible candidates.
Collapse
Affiliation(s)
- James M Sonner
- *Department of Anesthesia and Perioperative Care, University of California, San Francisco, California; †Department of Anesthesiology, University of California, Davis, California; ‡Columbia University, New York, New York; §University of Texas, Austin, Texas; ∥University of Pittsburgh, Pittsburgh, Pennsylvania; ¶Stanford University, Palo Alto, California; #University of Toronto, Toronto, Canada; **Department of Anaesthesia, Harvard Medical School, Cambridge, Massachusetts; and ††Garvan Institute of Medical Research, Darlinghurst, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Zhang Y, Laster MJ, Eger EI, Stabernack CR, Sonner JM. Blockade of 5-HT2A receptors may mediate or modulate part of the immobility produced by inhaled anesthetics. Anesth Analg 2003; 97:475-479. [PMID: 12873938 DOI: 10.1213/01.ane.0000070229.94485.17] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
UNLABELLED Many inhaled anesthetics block the in vitro effect of the excitatory neurotransmitter serotonin on the 5-HT2A receptor, supporting the view that this receptor might mediate the capacity of inhaled anesthetics to produce immobility during noxious stimulation (i.e., would underlie MAC, the minimum alveolar concentration required to suppress movement in response to a noxious stimulus in 50% of subjects). In the present investigation in rats, we found that intrathecal administration of the 5HT-2A blocker, ketanserin, can decrease isoflurane MAC. This effect, presumably mediated by blockade of serotonin transmission in the spinal cord, reaches a maximum of 20%-25%. An additional decrease (to 60%) may be obtained by IV infusion of ketanserin, and presumably this decrease results from ketanserin's actions on supraspinal centers. The IV doses of ketanserin that decreased MAC were approximately 100 microg. kg(-1). min(-1) in rats, compared with usual clinical doses of 1.25 microg. kg(-1). min(-1) in humans. These results indicate that 5HT2A receptors are in the neural circuitry influencing isoflurane MAC. These results, together with the blocking action of isoflurane on expressed 5HT2A receptors, strengthen the case for a role for 5HT2A receptors to isoflurane-induced immobility. However, because MAC for isoflurane is predominantly determined in the spinal cord, this result is consistent at most with a minor contribution of these receptors to the immobilizing action of isoflurane. IMPLICATIONS A subset of serotonin receptors, 5HT2A receptors, may mediate or modulate a minor portion of the immobility produced by inhaled anesthetics.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, California
| | | | | | | | | |
Collapse
|
12
|
Abstract
Upon receipt in the dorsal horn (DH) of the spinal cord, nociceptive (pain-signalling) information from the viscera, skin and other organs is subject to extensive processing by a diversity of mechanisms, certain of which enhance, and certain of which inhibit, its transfer to higher centres. In this regard, a network of descending pathways projecting from cerebral structures to the DH plays a complex and crucial role. Specific centrifugal pathways either suppress (descending inhibition) or potentiate (descending facilitation) passage of nociceptive messages to the brain. Engagement of descending inhibition by the opioid analgesic, morphine, fulfils an important role in its pain-relieving properties, while induction of analgesia by the adrenergic agonist, clonidine, reflects actions at alpha(2)-adrenoceptors (alpha(2)-ARs) in the DH normally recruited by descending pathways. However, opioids and adrenergic agents exploit but a tiny fraction of the vast panoply of mechanisms now known to be involved in the induction and/or expression of descending controls. For example, no drug interfering with descending facilitation is currently available for clinical use. The present review focuses on: (1) the organisation of descending pathways and their pathophysiological significance; (2) the role of individual transmitters and specific receptor types in the modulation and expression of mechanisms of descending inhibition and facilitation and (3) the advantages and limitations of established and innovative analgesic strategies which act by manipulation of descending controls. Knowledge of descending pathways has increased exponentially in recent years, so this is an opportune moment to survey their operation and therapeutic relevance to the improved management of pain.
Collapse
Affiliation(s)
- Mark J Millan
- Department of Psychopharmacology, Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy/Seine, Paris, France.
| |
Collapse
|
13
|
Zhang Y, Gao X, Yang ZL, Huang YL, Wu GC. Expression of 5-HT(1A) receptor mRNA in rat nucleus raphe magnus neurons after peripheral inflammation. Brain Res 2000; 887:465-8. [PMID: 11134643 DOI: 10.1016/s0006-8993(00)03037-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The present study demonstrated that 5-HT(1A) receptor mRNA was expressed with moderate level in the NRM neurons. Most of 5-HT(1A) receptor mRNA positive cells were 5-HT neurons, suggesting the majority of 5-HT(1A) receptor in the NRM might be autoreceptors. Eight hours after carrageenan inflammation, the expression of 5-HT(1A) receptor mRNA in the NRM neurons, especially in the 5-HT neurons, was significantly increased. These results suggest that synthesis of 5-HT(1A) receptors, including 5-HT(1A) autoreceptors, is increased in the NRM during peripheral inflammation.
Collapse
Affiliation(s)
- Y Zhang
- State Key Laboratory of Medical Neurobiology, Department of Neurobiology, Medical Center of Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | | | | | | | | |
Collapse
|
14
|
Abstract
Cells in the nucleus raphe magnus that are inhibited by noxious skin stimuli (off-cells) have been postulated to suppress pain by continuously inhibiting spinal and trigeminal nociceptive neurons. To test this hypothesis, spontaneous activity was simultaneously recorded from off-cells (n = 15) and wide-dynamic range cells (n = 27) of the trigeminal complex (subnucleus interpolaris), in rats anesthetized with pentobarbital. Most off-cells (n = 14) had rhythmic interspike intervals, their modes averaging 106 ms. No trigeminal cell fired rhythmically. Rhythmic firing was defined quantitatively: the autospectrum's peak power had to exceed 1.75 times its asymptote. This formula was obtained by generalizing from a natural cut-off in the theoretical autospectrum for serially uncorrelated, gamma-distributed intervals, whose firing can be varied from Poissonian to highly regular by adjusting one parameter. It encompasses the qualitative judgement of autocorrelograms commonly made in neurophysiology. Cross-correlograms (n = 29) appeared noisy and otherwise featureless. However, their power spectra (cross-periodograms) sometimes showed significant peaks, compared with simulated non-interactive distributions. The latter were generated by interchanging the raphe interval sequences at one random point (as in cutting a deck of cards), thus retaining most of their serial correlation. Of 29 cross-periodograms, 21 were significant at 1 to 13 frequencies (100 points, 0.4 to 39 Hz). These frequencies were often near the peak raphe power, and sometimes near its harmonics too. Furthermore, cross-spectral phase angles at peak power were non-uniform, most falling between 0 and 180 degrees (unit vector sum 60 degrees, n = 20). To understand why the frequency domain gave better detection, cross-spectra and cross-correlations were modeled theoretically by convolving idealized input autocorrelations and synaptic response functions. This demonstrated that rhythmic firing is insufficient for better frequency-domain detection, and that serially correlated input intervals or non-additive synaptic responses are necessary. The conclusion was confirmed by stochastic simulation of a simple non-additive synapse, that required successful input spikes to fall within a specified interval of the preceding spike. Experimentally, serial correlation was found in 12 of the 15 raphe cells, and in 20 of the 27 trigeminal cells. It is proposed that the weak experimental cross-correlograms arise because many asynchronous raphe inputs converge on each trigeminal cell, possibly to optimize the resting suppression of pain. The distribution of cross-spectral phase angles at peak raphe power suggested that raphe spikes arriving at the synapses' preferred interval cause a fall in trigeminal activity. In general, cross-spectral analysis can sometimes uncover influences hidden in cross-correlograms, but the firing of one neuron must be rhythmic and non-renewal, or else certain input intervals must be favored in synaptic transmission.
Collapse
Affiliation(s)
- I D Hentall
- University of Illinois College of Medicine, Rockford IL 61107-1897, USA.
| |
Collapse
|
15
|
Hentall ID, Kurle PJ, White TR. Correlations between serotonin level and single-cell firing in the rat's nucleus raphe magnus. Neuroscience 2000; 95:1081-8. [PMID: 10682715 DOI: 10.1016/s0306-4522(99)00516-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The relation between serotonin release and electrical activity was examined in the nucleus raphe magnus of rats anesthetized with pentobarbital. Serotonin levels were monitored through a carbon-fiber microelectrode by fast cyclic voltammetry (usually at 1 Hz). Single-cell firing was recorded through the same microelectrode, except during the voltammetry waveform and associated electrical artifact (totaling about 30 ms). Multi-barrel micropipettes incorporating the voltammetry electrode were used for iontophoresis of drugs. Cells were inhibited, excited or unaffected by noxious mechanical skin stimulation. These were respectively designated as off(M) cells, on(M) cells and neutral(M) cells, M denoting mechanical. During 3 min of pinching, serotonin slowly rose near seven of 14 on(M) cells and 26 of 46 off(M) cells; it fell near two off(M) cells; it was unchanged near all other cells, including six neutral(M) cells. On a finer spatiotemporal scale, near four of seven on(M) cells, 10 of 14 off(M) cells and 0 of four neutral(M) cells, average serotonin levels fell significantly within +/- 100 ms of spontaneous spikes. Lower serotonin may have caused the higher spike probability; the converse is theoretically unlikely, since delays between release and detection are estimated to exceed 100 ms. Increased serotonin and decreased firing were always seen following iontophoresis or intravenous injection (1 mg/kg) of the serotonin re-uptake inhibitor clomipramine (n = 7). Iontophoresis of +/- propranolol, whose serotonergic actions include antagonism and partial agonism at 5-HT1 receptors, also increased serotonin and decreased firing (n=4). Methiothepin (intravenous, 1 mg/kg), whose serotonergic actions include 5-HT1 and 5-HT2 antagonism, typically raised serotonin levels (four of five cells) and always blocked inhibition by clomipramine (n = 3). Iontophoresis of glutamate always lowered serotonin and increased firing (n = 4). Since serotonin levels and firing were usually inversely correlated, except near on(M) cells during pinch, we propose that serotonin is released from terminals of incoming nociceptive afferents. Prior neuroanatomical knowledge favors a midbrain origin for these afferents, while some of the drug findings suggest that their terminals possess inhibitory serotonergic autoreceptors, possibly of 5-HT1b subtype. The released serotonin could contribute to the inhibition of off(M) cells and excitation of on(M) cells by noxious stimulation, since inhibitory 5-HT1a receptors and excitatory 5-HT2 receptors, respectively, have previously been shown to dominate their serotonergic responses.
Collapse
Affiliation(s)
- I D Hentall
- University of Illinois College of Medicine, Rockford 61107-1897, USA
| | | | | |
Collapse
|
16
|
|
17
|
Leung CG, Mason P. Physiological survey of medullary raphe and magnocellular reticular neurons in the anesthetized rat. J Neurophysiol 1998; 80:1630-46. [PMID: 9772227 DOI: 10.1152/jn.1998.80.4.1630] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study was designed to provide a detailed and quantitative description of the physiological characteristics of neurons in the medullary raphe magnus (RM) and adjacent nucleus reticularis magnocellularis (NRMC) under anesthetized conditions. The background discharge and noxious stimulus-evoked responses of RM and NRMC neurons were recorded in rats lightly anesthetized with isoflurane. All cells that were isolated successfully were studied. After recording background discharge, the neuronal response to repeated noxious thermal and noxious mechanical stimulation of the tail was recorded. Most cells were identified as nonserotonergic by their irregular or rapid background discharge pattern. Because the spontaneous discharge of most RM nonserotonergic cells contained pauses and bursts, a comparison between the change in rate evoked by tail heat and the range of rate changes that occur spontaneously was used to classify cells. The mean responses of ON and OFF cells were more than four times the standard deviation of the changes in rate observed spontaneously. ON cells were excited in 86% of the tail heat trials tested. Similarly, OFF cells were inhibited in 97% of the noxious tail heat trials tested. The heat-evoked changes in ON and OFF cell discharge varied over more than two orders of magnitude and were greater in cells with greater rates of background discharge. The heat-evoked responses of and cells had durations of tens of seconds to minutes and were always sustained beyond the visible motor response. Most ON and OFF cells responded to noxious tail clamp in a manner that was similar to their response to noxious heat. More than half of the NEUTRAL cells that were unresponsive to noxious heat were responsive to noxious tail clamp. A minority of ON, OFF, and NEUTRAL cells responded to innocuous brush stimulation with weak, transient responses. Although many cells discharged too infrequently to be classified, units with physiological properties that were different from those described above were rare. In conclusion, most RM and NRMC cells belong to three nonserotonergic physiological cell classes that can be distinguished from each other by the consistency, not the magnitude, of their responses to repeated noxious thermal stimulation. Because most of the heat-evoked change in and cell discharge occurs after the conclusion of the initial motor withdrawal, ON and OFF cells are likely to principally modulate the response to subsequent noxious insults.
Collapse
Affiliation(s)
- C G Leung
- Department of Pharmacological and Physiological Sciences and the Committee on Neurobiology, The University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
18
|
|
19
|
Roychowdhury SM, Heinricher MM. Effects of iontophoretically applied serotonin on three classes of physiologically characterized putative pain modulating neurons in the rostral ventromedial medulla of lightly anesthetized rats. Neurosci Lett 1997; 226:136-8. [PMID: 9159508 DOI: 10.1016/s0304-3940(97)00270-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The importance of the rostral ventromedial medulla (RVM) in nociceptive modulation is well documented, and several lines of evidence point to a role for serotonin (5HT) in regulating the activity of pain modulating neurons in this region. The aim of the present study was to examine the effect of iontophoretically applied 5HT upon the firing of three physiologically defined classes of RVM neurons with distinct roles in pain modulation. The predominant effect across all classes was a facilitation of ongoing or evoked activity. A minority of cells within each class were inhibited by 5HT itself, but agonists at 5HT1 receptor types inhibited the majority of cells tested. The results thus indicate that the behavioral effects of manipulating 5HT within the RVM cannot be attributed to a selective influence on a particular cell class.
Collapse
Affiliation(s)
- S M Roychowdhury
- Department of Neurology, University of California, San Francisco 94143, USA
| | | |
Collapse
|
20
|
Hentall ID, White TR. Evidence for rhythmic firing being caused by feedback inhibition in pinch-inhibited raphe magnus neurons. Brain Res 1997; 745:348-51. [PMID: 9037432 DOI: 10.1016/s0006-8993(96)01236-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Raphe magnus cells that are inhibited by skin pinching fire spontaneously with strongly preferred interspike intervals (mean cycle 85 ms, n = 33). In pentobarbital-anesthetized rats, mid-cycle cathodal activation (0.3 ms) or end-cycle anodal black (30-60 ms) at approximately 1 Hz through the extracellular recording microelectrode delayed expected spikes; respective post-stimulus latencies peaked on average at 1.17 (n = 14) and 0.40 (n = 6) cycles. Feedback inhibition following random excitation, but not free-running intrinsic or afferent oscillations, may therefore cause the rhythm.
Collapse
Affiliation(s)
- I D Hentall
- Department of Biomedical Sciences, University of Illinois, College of Medicine at Rockford 61107-1897, USA.
| | | |
Collapse
|
21
|
Tarasiuk A, Gibbs L, Kendig JJ. Descending inhibition in neonatal rat spinal cord: actions of pentobarbital and morphine. Brain Res Bull 1996; 41:39-45. [PMID: 8883914 DOI: 10.1016/0361-9230(96)00168-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Descending inhibition plays an important role in modulating spinal nociceptive neurotransmission. Barbiturates have been suggested to be poor analgesics or anti-analgesic because they block descending inhibition from supraspinal centers to the spinal cord. Opiate analgesics, on the other hand, are postulated to increase descending inhibition. We tested this hypothesis in an isolated brain stem-spinal cord preparation from neonatal rats, using as the test response a nociceptive-related slow ventral root potential (sVRP) recorded in the lumbar region. Brain stem and spinal cord were separately perfused. Transecting the spinal cord, applying the local anesthetic lidocaine to the brain stem, or cooling the brain stem increased the area of the sVRP, thus demonstrating that tonic descending inhibition is present in this preparation. Pentobarbital (Pb) (1-10 microM) applied to the spinal cord depressed the sVRP in a dose-dependent fashion. Spinal cord transection did not significantly change Pb potency. Pb (5-10 microM) applied to the brain stem alone did not significantly increase sVRP amplitude. Morphine (15-35 nM) applied to the spinal cord also depressed the sVRP but had no effect when applied to the brain stem. The results show that there are functional synaptic connections mediating tonic descending inhibition in the neonatal rat. They do not support interaction with tonic descending inhibition as an explanation for morphine analgesia or as a reason for lack of analgesic properties in the barbiturates.
Collapse
Affiliation(s)
- A Tarasiuk
- Department of Physiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | | | | |
Collapse
|
22
|
Hentall ID. Excitation of cells in the rostral medial medulla of the rat by the nitric oxide-cyclic guanosine monophosphate messenger system. Neurosci Lett 1995; 195:155-8. [PMID: 8584198 DOI: 10.1016/0304-3940(95)11802-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Analgesia has been reported to be facilitated by supraspinal nitric oxide (NO) and cyclic guanosine monophosphate (cGMP). In the rostromedial medulla, an important pain-suppressing region, iontophoretically delivered 8-bromo-cGMP excited most single recorded cells (9/10), and methylene blue (a guanylyl cyclase inhibitor) inhibited all cells (7/7). Nitrite and ferrous ions together, shown voltammetrically ex vivo to yield nitric oxide (NO), excited some cells (14/28) and inhibited others (7/28). Methylene blue blocked excitation (3/3) but not inhibition (4/4) by the putative NO. Spontaneous or glutamate-evoked firing was gradually inhibited (23/32) or unaffected by N omega-nitro-L-arginine (a NO synthase inhibitor), but was mostly inhibited by L-arginine (the NO precursor) (23/26), although a rapid onset militated against elevated NO production. These substances, excepting L-arginine, produced changes consistent with an excitatory cGMP-NO cascade contributing to analgesia.
Collapse
Affiliation(s)
- I D Hentall
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford 61107-1897, USA
| |
Collapse
|
23
|
Bett K, Sandkühler J. Map of spinal neurons activated by chemical stimulation in the nucleus raphe magnus of the unanesthetized rat. Neuroscience 1995; 67:497-504. [PMID: 7675181 DOI: 10.1016/0306-4522(95)00017-d] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The expression of the proto-oncogene c-fos was used as a cellular marker of spinal cord neurons activated by microinjection of kainic acid into the medullary nucleus raphe magnus of awake and drug-free Sprague-Dawley rats. The c-FOS protein was detected by immunocytochemistry. We found increased immunoreactivity bilaterally in laminae I-VI of the dorsal horn. The strongest c-FOS expression was observed within the inner layer of lamina II near its border with lamina III. In the ventral horn no c-FOS immunoreactivity was observed. Thus, the present results provide evidence for a descending excitation of neurons predominantly in inner lamina II, possibly mediating nucleus raphe magnus-induced inhibition of neurons in other laminae.
Collapse
Affiliation(s)
- K Bett
- II. Physiologisches Institut, Universität Heidelberg, Germany
| | | |
Collapse
|