1
|
Casadei M, Miguel B, Rubione J, Fiore E, Mengelle D, Guerri-Guttenberg RA, Montaner A, Villar MJ, Constandil-Córdova L, Romero-Sandoval AE, Brumovsky PR. Mesenchymal Stem Cell Engagement Modulates Neuroma Microenviroment in Rats and Humans and Prevents Postamputation Pain. THE JOURNAL OF PAIN 2024; 25:104508. [PMID: 38484854 PMCID: PMC11283994 DOI: 10.1016/j.jpain.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/11/2024]
Abstract
Postamputation pain is currently managed unsatisfactorily with neuron-targeted pharmacological and interventional therapies. Non-neuronal pain mechanisms have emerged as crucial factors in the development and persistence of postamputation pain. Consequently, these mechanisms offer exciting prospects as innovative therapeutic targets. We examined the hypothesis that engaging mesenchymal stem cells (MSCs) would foster local neuroimmune interactions, leading to a potential reduction in postamputation pain. We utilized an ex vivo neuroma model from a phantom limb pain patient to uncover that the oligodeoxynucleotide IMT504 engaged human primary MSCs to promote an anti-inflammatory microenvironment. Reverse translation experiments recapitulated these effects. Thus, in an in vivo rat model, IMT504 exhibited strong efficacy in preventing autotomy (self-mutilation) behaviors. This effect was linked to a substantial accumulation of MSCs in the neuroma and associated dorsal root ganglia and the establishment of an anti-inflammatory phenotype in these compartments. Centrally, this intervention reduced glial reactivity in the dorsal horn spinal cord, demonstrating diminished nociceptive activity. Accordingly, the exogenous systemic administration of MSCs phenocopied the behavioral effects of IMT504. Our findings underscore the mechanistic relevance of MSCs and the translational therapeutic potential of IMT504 to engage non-neuronal cells for the prevention of postamputation pain. PERSPECTIVE: The present study suggests that IMT504-dependent recruitment of endogenous MSCs within severely injured nerves may prevent post-amputation pain by modifying the inflammatory scenario at relevant sites in the pain pathway. Reinforcing data in rat and human tissues supports the potential therapeutic value of IMT504 in patients suffering postamputation pain.
Collapse
Affiliation(s)
- Mailín Casadei
- Instituto de Investigaciones en Medicina Traslacional, CONICET-Universidad Austral, Buenos Aires, Argentina, B1629AHJ
| | - Bernardo Miguel
- Instituto de Investigaciones en Medicina Traslacional, CONICET-Universidad Austral, Buenos Aires, Argentina, B1629AHJ
| | - Julia Rubione
- Instituto de Investigaciones en Medicina Traslacional, CONICET-Universidad Austral, Buenos Aires, Argentina, B1629AHJ
| | - Esteban Fiore
- Instituto de Investigaciones en Medicina Traslacional, CONICET-Universidad Austral, Buenos Aires, Argentina, B1629AHJ
| | - Diego Mengelle
- Hospital Universitario Austral, Universidad Austral, Buenos Aires, Argentina, B1629AHJ
| | | | - Alejandro Montaner
- Instituto de Ciencia y Tecnología “César Milstein”, CONICET-Fundación Pablo Cassará, Buenos Aires, Argentina, C1440FFX
| | - Marcelo J. Villar
- Instituto de Investigaciones en Medicina Traslacional, CONICET-Universidad Austral, Buenos Aires, Argentina, B1629AHJ
| | | | | | - Pablo R. Brumovsky
- Instituto de Investigaciones en Medicina Traslacional, CONICET-Universidad Austral, Buenos Aires, Argentina, B1629AHJ
| |
Collapse
|
2
|
González-Cubero E, González-Fernández ML, Rodríguez-Díaz M, Palomo-Irigoyen M, Woodhoo A, Villar-Suárez V. Application of adipose-derived mesenchymal stem cells in an in vivo model of peripheral nerve damage. Front Cell Neurosci 2022; 16:992221. [PMID: 36159399 PMCID: PMC9493127 DOI: 10.3389/fncel.2022.992221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Background Neuropathic pain is one of the most difficult to treat chronic pain syndromes. It has significant effects on patients’ quality of life and substantially adds to the burden of direct and indirect medical costs. There is a critical need to improve therapies for peripheral nerve regeneration. The aim of this study is to address this issue by performing a detailed analysis of the therapeutic benefits of two treatment options: adipose tissue derived-mesenchymal stem cells (ASCs) and ASC-conditioned medium (CM). Methods To this end, we used an in vivo rat sciatic nerve damage model to investigate the molecular mechanisms involved in the myelinating capacity of ASCs and CM. Furthermore, effect of TNF and CM on Schwann cells (SCs) was evaluated. For our in vivo model, biomaterial surgical implants containing TNF were used to induce peripheral neuropathy in rats. Damaged nerves were also treated with either ASCs or CM and molecular methods were used to collect evidence of nerve regeneration. Post-operatively, rats were subjected to walking track analysis and their sciatic functional index was evaluated. Morphological data was gathered through transmission electron microscopy (TEM) of sciatic nerves harvested from the experimental rats. We also evaluated the effect of TNF on Schwann cells (SCs) in vitro. Genes and their correspondent proteins associated with nerve regeneration were analyzed by qPCR, western blot, and confocal microscopy. Results Our data suggests that both ASCs and CM are potentially beneficial treatments for promoting myelination and axonal regeneration. After TNF-induced nerve damage we observed an upregulation of c-Jun along with a downregulation of Krox-20 myelin-associated transcription factor. However, when CM was added to TNF-treated nerves the opposite effect occurred and also resulted in increased expression of myelin-related genes and their corresponding proteins. Conclusion Findings from our in vivo model showed that both ASCs and CM aided the regeneration of axonal myelin sheaths and the remodeling of peripheral nerve morphology.
Collapse
Affiliation(s)
- Elsa González-Cubero
- Department of Anatomy, Faculty of Veterinary Sciences, University of León-Universidad de León, León, Spain
| | | | - María Rodríguez-Díaz
- Department of Anatomy, Faculty of Veterinary Sciences, University of León-Universidad de León, León, Spain
| | - Marta Palomo-Irigoyen
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
- Genes and Disease Group, Department of Dermatology, Medical University of Vienna, Anna Spiegel Center of Translational Research, Vienna, Austria
| | - Ashwin Woodhoo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Gene Regulatory Control in Disease Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Vega Villar-Suárez
- Department of Anatomy, Faculty of Veterinary Sciences, University of León-Universidad de León, León, Spain
- Institute of Biomedicine (IBIOMED), University of León-Universidad de León, León, Spain
- *Correspondence: Vega Villar-Suárez,
| |
Collapse
|
3
|
Cordaro M, Siracusa R, D’Amico R, Genovese T, Franco G, Marino Y, Di Paola D, Cuzzocrea S, Impellizzeri D, Di Paola R, Fusco R. Role of Etanercept and Infliximab on Nociceptive Changes Induced by the Experimental Model of Fibromyalgia. Int J Mol Sci 2022; 23:ijms23116139. [PMID: 35682817 PMCID: PMC9181785 DOI: 10.3390/ijms23116139] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/22/2022] Open
Abstract
Background: Fibromyalgia is a clinical condition that affects 1% to 5% of the population. No proper therapy has been currently found. It has been described that inflammation plays a central role in the nerve sensitizations that characterize the pathology. Methods: This paper aimed to evaluate the efficacy of etanercept and infliximab in the management of pain sensitization. Fibromyalgia was induced by three injections once a day of reserpine at the dose of 1 mg/kg. Etanercept (3 mg/kg) and infliximab (10 mg/kg) were administered the day after the last reserpine injection and then 5 days after that. Behavioral analyses were conducted once a week, and molecular investigations were performed at the end of the experiment. Results: Our data confirmed the major effect of infliximab administration as compared to etanercept: infliximab administration strongly reduced pain sensitization in thermal hyperalgesia and mechanical allodynia. From the molecular point of view, infliximab reduced the activation of microglia and astrocytes and the expression of the purinergic P2X7 receptor ubiquitously expressed on glia and neurons. Downstream of the P2X7 receptor, infliximab also reduced p38-MAPK overexpression induced by the reserpine administration. Conclusion: Etanercept and infliximab treatment caused a significant reduction in pain. In particular, rats that received infliximab showed less pain sensitization. Moreover, infliximab reduced the activation of microglia and astrocytes, reducing the expression of the purinergic receptor P2X7 and p38-MAPK pathway.
Collapse
Affiliation(s)
- Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.S.); (R.D.); (T.G.); (G.F.); (Y.M.); (D.D.P.)
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.S.); (R.D.); (T.G.); (G.F.); (Y.M.); (D.D.P.)
| | - Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.S.); (R.D.); (T.G.); (G.F.); (Y.M.); (D.D.P.)
| | - Gianluca Franco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.S.); (R.D.); (T.G.); (G.F.); (Y.M.); (D.D.P.)
| | - Ylenia Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.S.); (R.D.); (T.G.); (G.F.); (Y.M.); (D.D.P.)
| | - Davide Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.S.); (R.D.); (T.G.); (G.F.); (Y.M.); (D.D.P.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.S.); (R.D.); (T.G.); (G.F.); (Y.M.); (D.D.P.)
- Correspondence: (S.C.); (D.I.)
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.S.); (R.D.); (T.G.); (G.F.); (Y.M.); (D.D.P.)
- Correspondence: (S.C.); (D.I.)
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy;
| | - Roberta Fusco
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| |
Collapse
|
4
|
Dervan A, Franchi A, Almeida-Gonzalez FR, Dowling JK, Kwakyi OB, McCoy CE, O’Brien FJ, Hibbitts A. Biomaterial and Therapeutic Approaches for the Manipulation of Macrophage Phenotype in Peripheral and Central Nerve Repair. Pharmaceutics 2021; 13:2161. [PMID: 34959446 PMCID: PMC8706646 DOI: 10.3390/pharmaceutics13122161] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/18/2022] Open
Abstract
Injury to the peripheral or central nervous systems often results in extensive loss of motor and sensory function that can greatly diminish quality of life. In both cases, macrophage infiltration into the injury site plays an integral role in the host tissue inflammatory response. In particular, the temporally related transition of macrophage phenotype between the M1/M2 inflammatory/repair states is critical for successful tissue repair. In recent years, biomaterial implants have emerged as a novel approach to bridge lesion sites and provide a growth-inductive environment for regenerating axons. This has more recently seen these two areas of research increasingly intersecting in the creation of 'immune-modulatory' biomaterials. These synthetic or naturally derived materials are fabricated to drive macrophages towards a pro-repair phenotype. This review considers the macrophage-mediated inflammatory events that occur following nervous tissue injury and outlines the latest developments in biomaterial-based strategies to influence macrophage phenotype and enhance repair.
Collapse
Affiliation(s)
- Adrian Dervan
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.D.); (A.F.); (F.R.A.-G.); (F.J.O.)
- Trinity Centre for Bioengineering, Trinity College Dublin, D02 R590 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, D02 YN77 Dublin, Ireland
| | - Antonio Franchi
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.D.); (A.F.); (F.R.A.-G.); (F.J.O.)
- Trinity Centre for Bioengineering, Trinity College Dublin, D02 R590 Dublin, Ireland
| | - Francisco R. Almeida-Gonzalez
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.D.); (A.F.); (F.R.A.-G.); (F.J.O.)
- Trinity Centre for Bioengineering, Trinity College Dublin, D02 R590 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, D02 YN77 Dublin, Ireland
| | - Jennifer K. Dowling
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (J.K.D.); (O.B.K.); (C.E.M.)
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Ohemaa B. Kwakyi
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (J.K.D.); (O.B.K.); (C.E.M.)
- School of Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Claire E. McCoy
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (J.K.D.); (O.B.K.); (C.E.M.)
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Fergal J. O’Brien
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.D.); (A.F.); (F.R.A.-G.); (F.J.O.)
- Trinity Centre for Bioengineering, Trinity College Dublin, D02 R590 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, D02 YN77 Dublin, Ireland
| | - Alan Hibbitts
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.D.); (A.F.); (F.R.A.-G.); (F.J.O.)
- Trinity Centre for Bioengineering, Trinity College Dublin, D02 R590 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, D02 YN77 Dublin, Ireland
| |
Collapse
|
5
|
Lu ZY, Fan J, Yu LH, Ma B, Cheng LM. The Up-regulation of TNF-α Maintains Trigeminal Neuralgia by Modulating MAPKs Phosphorylation and BKCa Channels in Trigeminal Nucleus Caudalis. Front Cell Neurosci 2021; 15:764141. [PMID: 34899191 PMCID: PMC8657151 DOI: 10.3389/fncel.2021.764141] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/18/2021] [Indexed: 12/30/2022] Open
Abstract
Trigeminal neuralgia (TN) is a severe chronic neuropathic pain. Despite numerous available medical interventions, the therapeutic effects are not ideal. To control the pain attacks, the need for more contemporary drugs continues to be a real challenge. Our previous study reported that Ca2+-activated K+ channels (BKCa) channels modulated by mitogen-activated protein kinases (MAPKs) in the trigeminal ganglia (TG) neurons play crucial roles in regulating TN, and some research studies demonstrated that inflammatory cytokine tumor necrosis factor alpha (TNF-α) could promote neuropathic pain. Meanwhile, the trigeminal nucleus caudalis (TNC), the first central site of the trigeminal nociceptive pathway, is responsible for processing sensory and pain signals from the peripheral orofacial area. Thus, this study is aimed to further investigate whether TNF-α and MAPKs phosphorylation in the TNC could mediate the pathogenesis of TN by modulating BKCa channels. The results showed that TNF-α of the TNC region is upregulated significantly in the chronic constriction injury of infraorbital nerve (ION-CCI) rats model, which displayed persistent facial mechanical allodynia. The normal rats with target injection of exogenous TNF-α to the fourth brain ventricle behaved just like the ION-CCI model rats, the orofacial mechanical pain threshold decreased clearly. Meanwhile, the exogenous TNF-α increased the action potential frequency and reduced the BKCa currents of TNC neurons significantly, which could be reversed by U0126 and SB203580, the inhibitors of MAPK. In addition, U0126, SB203580, and another MAPK inhibitor SP600125 could relieve the facial mechanical allodynia by being injected into the fourth brain ventricle of ION-CCI model rats, respectively. Taken together, our work suggests that the upregulation of TNF-α in the TNC region would cause the increase of MAPKs phosphorylation and then the negative regulation of BKCa channels, resulting in the TN.
Collapse
Affiliation(s)
- Zhan-Ying Lu
- Experimental Training Center of Basic Medical Science, Naval Medical University, Shanghai, China
| | - Juan Fan
- Experimental Training Center of Basic Medical Science, Naval Medical University, Shanghai, China
| | - Li-Hua Yu
- Experimental Training Center of Basic Medical Science, Naval Medical University, Shanghai, China
| | - Bei Ma
- Experimental Training Center of Basic Medical Science, Naval Medical University, Shanghai, China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Division of Spine Surgery, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Li-Ming Cheng
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Division of Spine Surgery, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Mahan MA, Abou-Al-Shaar H, Karsy M, Warner W, Yeoh S, Palmer CA. Pathologic remodeling in human neuromas: insights from clinical specimens. Acta Neurochir (Wien) 2019; 161:2453-2466. [PMID: 31612277 DOI: 10.1007/s00701-019-04052-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 08/22/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Neuroma pathology is commonly described as lacking a clear internal structure, but we observed evidence that there are consistent architectural elements. Using human neuroma samples, we sought to identify molecular features that characterize neuroma pathophysiology. METHODS Thirty specimens-12 neuromas-in-continuity (NICs), 11 stump neuromas, two brachial plexus avulsions, and five controls-were immunohistochemically analyzed with antibodies against various components of normal nerve substructures. RESULTS There were no substantial histopathologic differences between stump neuromas and NICs, except that NICs had intact fascicle(s) in the specimen. These intact fascicles showed evidence of injury and fibrosis. On immunohistochemical analysis of the neuromas, laminin demonstrated a consistent double-lumen configuration. The outer lumen stained with GLUT1 antibodies, consistent with perineurium and microfascicle formation. Antibodies to NF200 revealed small clusters of small-diameter axons within the inner lumen, and the anti-S100 antibody showed a relatively regular pattern of non-myelinating Schwann cells. CD68+ cells were only seen in a limited temporal window after injury. T-cells were seen in neuroma specimens, with both a temporal evolution as well as persistence long after injury. Avulsion injury specimens had similar architecture to control nerves. Seven pediatric specimens were not qualitatively different from adult specimens. NICs demonstrated intact but abnormal fascicles that may account for the neurologically impoverished outcomes from untreated NICs. CONCLUSIONS We propose that there is consistent pathophysiologic remodeling after fascicle disruption. Particular features, such as predominance of small caliber axons and persistence of numerous T-cells long after injury, suggest a potential role in chronic pain associated with neuromas.
Collapse
Affiliation(s)
- Mark A Mahan
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, 175 North Medical Drive East, Salt Lake City, UT, 84132, USA.
| | - Hussam Abou-Al-Shaar
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Michael Karsy
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, 175 North Medical Drive East, Salt Lake City, UT, 84132, USA
| | - Wesley Warner
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, 175 North Medical Drive East, Salt Lake City, UT, 84132, USA
| | - Stewart Yeoh
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, 175 North Medical Drive East, Salt Lake City, UT, 84132, USA
| | - Cheryl A Palmer
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
7
|
Affiliation(s)
- H. Cheng
- Livestock Behaviour Research Unit, USDA-ARS, West Lafayette, IN 47907, USA
| |
Collapse
|
8
|
Lahiri A, Delgado IM, Sheshadri S, Ng KA, Nag S, Yen SC, Thakor NV. Self-organization of "fibro-axonal" composite tissue around unmodified metallic micro-electrodes can form a functioning interface with a peripheral nerve: A new direction for creating long-term neural interfaces. Muscle Nerve 2016; 53:789-96. [PMID: 26425938 DOI: 10.1002/mus.24928] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2015] [Indexed: 11/06/2022]
Abstract
INTRODUCTION A long-term peripheral neural interface is an area of intense research. The use of electrode interfaces is limited by the biological response to the electrode material. METHODS We created an electrode construct to harbor the rat sciatic nerve with interposition of autogenous adipose tissue between the nerve and the electrode. The construct was implanted for 10 weeks. RESULTS Immunohistochemistry showed a unique laminar pattern of axonal growth layered between fibro-collagenous tissue, forming a physical interface with the tungsten micro-electrode. Action potentials transmitted across the intrerface showed mean conduction velocities varying between 6.99 ± 2.46 and 20.14 ± 4 m/s. CONCLUSIONS We have demonstrated the feasibility of a novel peripheral nerve interface through modulation of normal biologic phenomena. It has potential applications as a chronic implantable neural interface.
Collapse
Affiliation(s)
- Amitabha Lahiri
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | - Kian-Ann Ng
- Singapore Institute for Neurotechnology, Singapore
| | - Sudip Nag
- Singapore Institute for Neurotechnology, Singapore
| | | | | |
Collapse
|
9
|
Miclescu A, Schmelz M, Gordh T. Differential analgesic effects of subanesthetic concentrations of lidocaine on spontaneous and evoked pain in human painful neuroma: A randomized, double blind study. Scand J Pain 2015; 8:37-44. [DOI: 10.1016/j.sjpain.2015.04.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 04/20/2015] [Indexed: 12/22/2022]
Abstract
Abstract
Background
Both peripheral nerve injury and neuroma pain are the result of changes in sodium channel expression. Lidocaine selectively inhibits the spontaneous ectopic activity by binding to sodium channels. Subanesthetics concentrations of lidocaine are able to produce a differential block of the ectopic discharges, but not propagation of impulses, suppressing differentially the associated neuropathic pain symptoms. The aim of this study was to investigate the differences between the analgesic effects of lidocaine 0.5% and a control group of lidocaine 0.1% on several neuroma related pain modalities.
Methods
Sixteen patients with neuropathic pain due to painful neuromas caused by nerve injury participated in this randomized, double-blind experiment. The patterns of sensory changes were compared before and after injection of 1ml lidocaine 0.5% and 0.1% close to the neuroma, the sessions being 1–2 weeks apart. Spontaneous and evoked pains were assessed using a visual analogue scale (VAS), quantitative and qualitative sensory testing. The primary end-point measure was defined as the change in pain score measured from baseline until 60min after injection. Assessments of spontaneous pain and evoked pain were done post injection at 15s, 30s, 1min, and at 5-min intervals for the first 30-min post injection and then every 10-min to 1 hr post injection. The assessments of pain were performed between the limbs in the following order: spontaneous pain, then assessment of dynamic mechanical allodynia and then hyperalgesia.
Results
Lidocaine dose-dependently reduced spontaneous and evoked pain scores by more than 80% with maximum effects between 1 and 5min for evoked pain and between 3 and 15min for spontaneous pain. While evoked pain normalized rapidly reaching about 50% of the control level 20min after the injection, spontaneous pain levels continue to be lower in comparison with baseline values for more than 60min. When comparing the time course of analgesia between spontaneous and evoked pain, lidocaine-induced a greater reduction of evoked pain, but with shorter duration than spontaneous pain. The differences between evoked pain and spontaneous pain were statistically significant in both groups (lidocaine 0.5% group; p = 0.02 and lidocaine 0.1% group; p = 0.01). Reproducibility was high for all assessed variables. Surprisingly, both lidocaine concentrations produced a sensory loss within the area with hyperalgesia and allodynia: hypoesthesia occurred earlier and lasted longer with lidocaine 0.5% (between 30s and 5min) in comparison with lidocaine 0.1% (p = 0.018).
Conclusion
Differential analgesic effects of subanesthetic concentrations of local lidocaineon evoked and spontaneous pain in human neuroma suggest that different mechanisms underlie these two key clinical symptoms. Spontaneous pain and evoked pain need an ongoing peripheral drive and any possible CNS amplification change is temporally closely related to this peripheral input.
Implications
Painful neuroma represents a clinical model of peripheral neuropathic pain that could lead to a significant step forward in the understanding of pain pathophysiology providing the opportunity to study spontaneous and evoked pain and the underlying mechanisms of neuropathic pain. The proposed model of neuropathic pain allows testing new substances by administration of analgesics directly where the pain is generated.
Collapse
Affiliation(s)
- Adriana Miclescu
- Multidisciplinary Pain Center , Uppsala University Hospital , Uppsala Sweden
| | - Martin Schmelz
- Clinics of Anesthesiology and Intensive Care Medicine, Mannheim , University of Heidelberg , Heidelberg Germany
| | - Torsten Gordh
- Multidisciplinary Pain Center , Uppsala University Hospital , Uppsala Sweden
- Department of Surgical Sciences , Uppsala University , Uppsala Sweden
| |
Collapse
|
10
|
Freitag CM, Miller RJ. Peroxisome proliferator-activated receptor agonists modulate neuropathic pain: a link to chemokines? Front Cell Neurosci 2014; 8:238. [PMID: 25191225 PMCID: PMC4138931 DOI: 10.3389/fncel.2014.00238] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/28/2014] [Indexed: 11/29/2022] Open
Abstract
Chronic pain presents a widespread and intractable medical problem. While numerous pharmaceuticals are used to treat chronic pain, drugs that are safe for extended use and highly effective at treating the most severe pain do not yet exist. Chronic pain resulting from nervous system injury (neuropathic pain) is common in conditions ranging from multiple sclerosis to HIV-1 infection to type II diabetes. Inflammation caused by neuropathy is believed to contribute to the generation and maintenance of neuropathic pain. Chemokines are key inflammatory mediators, several of which (MCP-1, RANTES, MIP-1α, fractalkine, SDF-1 among others) have been linked to chronic, neuropathic pain in both human conditions and animal models. The important roles chemokines play in inflammation and pain make them an attractive therapeutic target. Peroxisome proliferator-activated receptors (PPARs) are a family of nuclear receptors known for their roles in metabolism. Recent research has revealed that PPARs also play a role in inflammatory gene repression. PPAR agonists have wide-ranging effects including inhibition of chemokine expression and pain behavior reduction in animal models. Experimental evidence suggests a connection between the pain ameliorating effects of PPAR agonists and suppression of inflammatory gene expression, including chemokines. In early clinical research, one PPARα agonist, palmitoylethanolamide (PEA), shows promise in relieving chronic pain. If this link can be better established, PPAR agonists may represent a new drug therapy for neuropathic pain.
Collapse
Affiliation(s)
- Caroline M Freitag
- Department of Molecular Pharmacology and Biological Chemistry, Richard J. Miller Laboratory, Northwestern University Chicago, IL, USA
| | - Richard J Miller
- Department of Molecular Pharmacology and Biological Chemistry, Richard J. Miller Laboratory, Northwestern University Chicago, IL, USA
| |
Collapse
|
11
|
Peritoneal Administration of Met-RANTES Attenuates Inflammatory and Nociceptive Responses in a Murine Neuropathic Pain Model. THE JOURNAL OF PAIN 2013. [DOI: 10.1016/j.jpain.2012.09.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Discovery of Fused Triazolo-thiadiazoles as Inhibitors of TNF-alpha: Pharmacophore Hybridization for Treatment of Neuropathic Pain. Pain Ther 2012; 1:3. [PMID: 25134932 PMCID: PMC4107862 DOI: 10.1007/s40122-012-0003-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Indexed: 12/14/2022] Open
Abstract
Introduction Neuropathic pain is a complex, chronic pain state that is usually accompanied by tissue injury. With neuropathic pain, the nerve fibers themselves may be damaged, dysfunctional, or injured. Methods A series of pharmacophoric hybrids of substituted aryl semicarbazides incorporated into a fused triazolo-thiadiazole nucleus were synthesized and evaluated for neuropathic pain activity. After the assessment of neurotoxicity and peripheral analgesic activity, the compounds were evaluated in two peripheral neuropathic pain models, the chronic constriction injury and partial sciatic nerve ligation, to assess their antiallodynic and antihyperalgesic potential. Results Selected compounds exhibiting promising efficacies (4b, 6a, and 7e) revealed median effective dose (ED50) values ranging from 7.62–28.71 mg/kg in four behavioral assays of allodynia and hyperalgesia (spontaneous pain, tactile allodynia, cold allodynia, and mechanical hyperalgesia). Studies carried out to assess the underlying mechanism revealed that compounds suppressed the inflammatory component of the neuropathic pain by inhibiting tumor necrosis factor (TNF)-alpha and preventing oxidative and nitrosative stress. Conclusion Using a hybrid design approach, the present study identified novel chemical compounds that could be a potential lead for the treatment of neuropathic pain.
Collapse
|
13
|
Lee S, Zhang J. Heterogeneity of macrophages in injured trigeminal nerves: cytokine/chemokine expressing vs. phagocytic macrophages. Brain Behav Immun 2012; 26:891-903. [PMID: 22469908 DOI: 10.1016/j.bbi.2012.03.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 03/14/2012] [Accepted: 03/15/2012] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Macrophages are important immune effector cells in both innate and adaptive immune responses. Injury to peripheral nerves triggers activation of resident macrophages and infiltration of haematogenous macrophages, which they play critical roles in Wallerian degeneration and neuropathic pain. As macrophages are able to change their phenotypes in response to environment cues, we attempt to identify distinct phenotypes of macrophages in injured nerves and to understand the potential contribution of each macrophage subpopulation to the genesis of neuropathic pain associated with nerve injury. METHODS Rat mental nerves (terminal branches of trigeminal nerve) were loosely ligated. Sensitivity to mechanical stimuli at the lower lip area was monitored using calibrated von Frey Hairs. We examined the expression pattern of Iba-1, MAC1 and ED1 which allow us to reveal the immunophenotypes of macrophages at different time points post-injury. Functional status of each macrophage subpopulation was further investigated by colocalization with cytokines/chemokines, myelin basic protein and MHC II antigen, which reflect respectively secretory, phagocytic and antigen presentation properties of activated macrophages. RESULTS Following nerve injury, a burst of Iba-1(+) macrophages was found in injured mental nerves. Among them, we detected two major immunophenotypes: MAC1(+) cytokines/chemokines secreting macrophages and ED1(+) phagocytic macrophages. Small, round shaped MAC1(+) macrophages were distributed essentially around the lesion site and existed only at early time points. Large, irregular and foamy ED1(+) macrophages were found among damaged nerve fibers and they persisted for at least 3 months post-injury. Although ED1(+) macrophages did not secrete inflammatory mediators, they were able to express neurotransmitter CGRP and MHC II at later time points. In parallel, we observed that mechanical allodynia developed after the nerve ligation was at its lowest level within 1 month. Although slightly increased afterwards, the head escape threshold maintained significantly lower than before injury until 3 months. We suggest that MAC1(+) macrophages contribute to the initiation of neuropathic pain by releasing cytokines/chemokines, and ED1(+) macrophages may contribute in maintaining the hypersensitivity under other mechanisms. CONCLUSION Our results highlighted the heterogeneity and the plasticity of macrophages in response to the injury and provided further information on their potential involvement in neuropathic pain. Exploring the full spectrum of macrophage phenotypes in injured nerve is necessary. Individual macrophage population may be selectively targeted by cell-specific intervention for an effective treatment of neuropathic pain.
Collapse
Affiliation(s)
- SeungHwan Lee
- The Alan Edwards Centre for Research on Pain, McGill University, 740, Dr. Penfield Ave., Montreal, Quebec, Canada H3A 0G1
| | | |
Collapse
|
14
|
Ren K. Further evidence on a role of chemokines in injury-related pain hypersensitivity: commentary on a paper by Saika et al. (2012, this issue). Eur J Pain 2012; 16:1209-10. [PMID: 22615147 DOI: 10.1002/j.1532-2149.2012.00173.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2012] [Indexed: 11/11/2022]
Affiliation(s)
- Ke Ren
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
15
|
Liou JT, Yuan HB, Mao CC, Lai YS, Day YJ. Absence of C-C motif chemokine ligand 5 in mice leads to decreased local macrophage recruitment and behavioral hypersensitivity in a murine neuropathic pain model. Pain 2012; 153:1283-1291. [PMID: 22494919 DOI: 10.1016/j.pain.2012.03.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 02/23/2012] [Accepted: 03/07/2012] [Indexed: 10/28/2022]
Abstract
Accumulated evidence suggests that the C-C motif chemokine ligand 5 (CCL5) modulates migration of inflammatory cells in several pathological conditions. This study tested the hypothesis that lack of CCL5 would modulate the recruitment of inflammatory cells to painful, inflamed sites and could attenuate pain in a murine chronic neuropathic pain model. Nociceptive sensitization, immune cell infiltration, multiple cytokine expression, and opioid peptide expression in damaged nerves were studied in wild-type (CCL5 +/+) and CCL5-deficient (CCL5 -/-) mice after partial sciatic nerve ligation (PSNL). Results indicated that CCL5 -/- mice had less behavioral hypersensitivity after PSNL. Macrophage infiltration and proinflammatory cytokines (tumor necrosis factor-α, interleukin [IL]-1β, IL-6, and interferon-γ) in damaged nerves following PSNL were significantly decreased in CCL5 -/- mice. Conversely, several antiinflammatory cytokine (IL-4 and IL-10) proteins were significantly increased in CCL5 -/- animals and the expression of enkephalin, β-endorphin, and dynorphin mRNA was significantly lower than in wild-type control mice. These results represent the first evidence that CCL5 is capable of regulating the pathway that controls hyperalgesia at the level of the peripheral injured site in a murine chronic neuropathic pain model. We demonstrated that lack of CCL5 modulated cell infiltration and the proinflammatory milieu within the injured nerve. Attenuated behavioral hypersensitivity in CCL5 -/- mice observed in the current study could be a result of decreased macrophage infiltration, mobilization, and functional ability at injured sites. Collectively, the present study results suggest that CCL5 receptor antagonists may ultimately provide a novel class of analgesics for therapeutic intervention in chronic neuropathic pain.
Collapse
Affiliation(s)
- Jiin-Tarng Liou
- Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou, Taiwan, ROC Transgenic & Molecular Immunogenetics Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan, ROC Graduate Institutes of Clinical Medical Sciences, Chang Gung University, Linkou, Taiwan, ROC Department of Anesthesiology, Taipei-Veterans General Hospital and School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC Department of Medicine, Chang Gung University, Linkou, Taiwan, ROC
| | | | | | | | | |
Collapse
|
16
|
Dudhgaonkar SP, Tandan SK, Kumar D, Naik AK, Raviprakash V. Ameliorative effect of combined administration of inducible nitric oxide synthase inhibitor with cyclooxygenase-2 inhibitors in neuropathic pain in rats. Eur J Pain 2012; 11:528-34. [PMID: 16920373 DOI: 10.1016/j.ejpain.2006.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Revised: 07/04/2006] [Accepted: 07/10/2006] [Indexed: 01/22/2023]
Abstract
OBJECTIVES The objective of this study was to examine the effects of rofecoxib, meloxicam, both cyclooxygenase-2 (COX-2) inhibitors and aminoguanidine hydrochloride, an inducible nitric oxide synthase (iNOS) inhibitor and their combinations in neuropathic pain in rats. METHODS Neuropathy was induced by chronic constriction injury (CCI) of right sciatic nerve under ketamine anesthesia in rats. Effect of ED(50) of aminoguanidine hydrochloride, rofecoxib and meloxicam administered orally was investigated using behavioral tests. Effect of combinations of aminoguanidine hydrochloride with rofecoxib and meloxicam was also investigated in neuropathic pain employing behavioral tests. RESULTS Behavioral tests, mechanical, thermal and cold stimuli confirmed the development of neuropathic pain after CCI. Aminoguanidine hydrochloride, rofecoxib and meloxicam when administered alone, produced significant increase in paw withdrawal threshold to mechanical stimuli at 6 h in ipsilateral hind paw after CCI. Co-administration of aminoguanidine hydrochloride (30 mg/kg) with rofecoxib (1.31 mg/kg) and meloxicam (1.34 mg/kg) was also found to produce significant increase in paw withdrawal latencies to mechanical stimuli at 6 h. Combined administration of aminoguanidine hydrochloride with meloxicam and rofecoxib produced significant rise in pain threshold for mechanical hyperalgesia in ipsilateral hind paw when compared with the groups treated with aminoguanidine hydrochloride, meloxicam and rofecoxib alone. CONCLUSION Co-administration of meloxicam and rofecoxib with aminoguanidine hydrochloride may be an alternative approach for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Shailesh P Dudhgaonkar
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Bareilly, Izatnagar 243 122, UP, India
| | | | | | | | | |
Collapse
|
17
|
Rouwette T, Vanelderen P, Roubos E, Kozicz T, Vissers K. The amygdala, a relay station for switching on and off pain. Eur J Pain 2011; 16:782-92. [DOI: 10.1002/j.1532-2149.2011.00071.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2011] [Indexed: 12/21/2022]
Affiliation(s)
| | | | - E.W. Roubos
- Department of Cellular Animal Physiology; Donders Institute for Brain, Cognition and Behaviour; Centre for Neuroscience; Radboud University Nijmegen; Nijmegen; The Netherlands
| | - T. Kozicz
- Department of Cellular Animal Physiology; Donders Institute for Brain, Cognition and Behaviour; Centre for Neuroscience; Radboud University Nijmegen; Nijmegen; The Netherlands
| | - K. Vissers
- Department of Anesthesiology; Pain and Palliative Medicine; Radboud University Nijmegen Medical Centre; Nijmegen; The Netherlands
| |
Collapse
|
18
|
Kim CF, Moalem-Taylor G. Detailed characterization of neuro-immune responses following neuropathic injury in mice. Brain Res 2011; 1405:95-108. [DOI: 10.1016/j.brainres.2011.06.022] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 05/30/2011] [Accepted: 06/08/2011] [Indexed: 01/23/2023]
|
19
|
Persson AK, Gasser A, Black JA, Waxman SG. NaV1.7 accumulates and co-localizes with phosphorylated ERK1/2 within transected axons in early experimental neuromas. Exp Neurol 2011; 230:273-9. [DOI: 10.1016/j.expneurol.2011.05.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 04/04/2011] [Accepted: 05/06/2011] [Indexed: 02/06/2023]
|
20
|
Leung L, Cahill CM. TNF-alpha and neuropathic pain--a review. J Neuroinflammation 2010; 7:27. [PMID: 20398373 PMCID: PMC2861665 DOI: 10.1186/1742-2094-7-27] [Citation(s) in RCA: 430] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 04/16/2010] [Indexed: 12/12/2022] Open
Abstract
Tumor necrosis factor alpha (TNF-α) was discovered more than a century ago, and its known roles have extended from within the immune system to include a neuro-inflammatory domain in the nervous system. Neuropathic pain is a recognized type of pathological pain where nociceptive responses persist beyond the resolution of damage to the nerve or its surrounding tissue. Very often, neuropathic pain is disproportionately enhanced in intensity (hyperalgesia) or altered in modality (hyperpathia or allodynia) in relation to the stimuli. At time of this writing, there is as yet no common consensus about the etiology of neuropathic pain - possible mechanisms can be categorized into peripheral sensitization and central sensitization of the nervous system in response to the nociceptive stimuli. Animal models of neuropathic pain based on various types of nerve injuries (peripheral versus spinal nerve, ligation versus chronic constrictive injury) have persistently implicated a pivotal role for TNF-α at both peripheral and central levels of sensitization. Despite a lack of success in clinical trials of anti-TNF-α therapy in alleviating the sciatic type of neuropathic pain, the intricate link of TNF-α with other neuro-inflammatory signaling systems (e.g., chemokines and p38 MAPK) has indeed inspired a systems approach perspective for future drug development in treating neuropathic pain.
Collapse
Affiliation(s)
- Lawrence Leung
- Centre for Neurosciences Studies, 18, Stuart Street, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| | | |
Collapse
|
21
|
Gibbs GF, Drummond PD, Finch PM, Phillips JK. Unravelling the pathophysiology of complex regional pain syndrome: focus on sympathetically maintained pain. Clin Exp Pharmacol Physiol 2008; 35:717-24. [PMID: 18215185 DOI: 10.1111/j.1440-1681.2007.04862.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
1. In diseases such as complex regional pain syndrome (CRPS), where neuropathic pain is the primary concern, traditional pain classifications and lesion descriptors are of limited value. To obtain better treatment outcomes for patients, the underlying pathophysiological mechanisms of neuropathic pain need to be elucidated and analysed so that therapeutic targets can be identified and specific treatments developed. 2. In the present review, we examine the current literature on sympathetically maintained pain (SMP), a subset of neuropathic pain, within the context of CRPS. Evidence from both human and animal studies is presented and discussed in terms of its support for the existence of SMP and the mechanistic information it provides. 3. We discuss three current hypotheses that propose both a site and method for sympathetic-sensory coupling: (i) direct coupling between sympathetic and sensory neurons in the dorsal root ganglion; (ii) chemical coupling between sympathetic and nociceptive neuron terminals in skin; and (iii) the development of a-adrenoceptor-mediated supersensitivity in nociceptive fibres in skin in association with the release of inflammatory mediators. 4. Finally, we propose a new hypothesis that integrates the mechanisms of chemical coupling and a-adrenoceptor-mediated supersensitivity. This hypothesis is based on previously unpublished data from our laboratory showing that a histological substrate suitable for sympathetic-sensory coupling exists in normal subjects. In the diseased state, the nociceptive fibres implicated in this substrate may be activated by both endogenous and exogenous noradrenaline. The mediating a-adrenoceptors may be expressed on the nociceptive fibres or on closely associated support cells.
Collapse
Affiliation(s)
- Gael F Gibbs
- Division of Health Sciences, Murdoch University, Murdoch, WA, Australia
| | | | | | | |
Collapse
|
22
|
Watkins LR, Hutchinson MR, Milligan ED, Maier SF. "Listening" and "talking" to neurons: implications of immune activation for pain control and increasing the efficacy of opioids. BRAIN RESEARCH REVIEWS 2007; 56:148-69. [PMID: 17706291 PMCID: PMC2245863 DOI: 10.1016/j.brainresrev.2007.06.006] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 06/21/2007] [Accepted: 06/26/2007] [Indexed: 01/08/2023]
Abstract
It is recently become clear that activated immune cells and immune-like glial cells can dramatically alter neuronal function. By increasing neuronal excitability, these non-neuronal cells are now implicated in the creation and maintenance of pathological pain, such as occurs in response to peripheral nerve injury. Such effects are exerted at multiple sites along the pain pathway, including at peripheral nerves, dorsal root ganglia, and spinal cord. In addition, activated glial cells are now recognized as disrupting the pain suppressive effects of opioid drugs and contributing to opioid tolerance and opioid dependence/withdrawal. While this review focuses on regulation of pain and opioid actions, such immune-neuronal interactions are broad in their implications. Such changes in neuronal function would be expected to occur wherever immune-derived substances come in close contact with neurons.
Collapse
Affiliation(s)
- Linda R Watkins
- Department of Psychology and Center for Neuroscience, University of Colorado at Boulder, Boulder, CO 80309-0345, USA.
| | | | | | | |
Collapse
|
23
|
Vora AR, Bodell SM, Loescher AR, Smith KG, Robinson PP, Boissonade FM. Inflammatory cell accumulation in traumatic neuromas of the human lingual nerve. Arch Oral Biol 2006; 52:74-82. [PMID: 17097599 DOI: 10.1016/j.archoralbio.2006.08.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 07/24/2006] [Accepted: 08/06/2006] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To quantify the accumulation of inflammatory cells in traumatic neuromas of the human lingual nerve, and to establish any correlation with the patients' reported symptoms of dysaesthesia. DESIGN Using fluorescence immunohistochemistry, the extent of any chronic inflammatory infiltrate was quantified in human lingual neuroma specimens removed from 24 patients at the time of microsurgical nerve repair. A pan-leucocyte marker (CD45) and a specific macrophage marker (CD68) were used, and comparisons made between neuromas-in-continuity (NICs) and nerve-end neuromas (NENs) in patients with or without symptoms of dysaesthesia. RESULTS CD68 and CD45 labelling was significantly associated with areas of viable nerve tissue in neuromas and the CD68 labelling was significantly higher in NICs than NENs. CD68 labelling density tended to decrease with increasing time after the initial nerve injury, but this correlation was only significant for labelling associated with viable nerve tissue in NENs. No significant difference was found between the level of CD68 or CD45 labelling in patients with or without symptoms of dysaesthesia. CONCLUSION This study has demonstrated the presence of inflammatory cells within traumatic neuromas of the human lingual nerve. These cells were found to be closely associated with regions of viable nerve tissue, but there was no correlation with the patients' clinical symptoms.
Collapse
Affiliation(s)
- Amit R Vora
- Department of Oral and Maxillofacial Surgery, School of Clinical Dentistry, Claremont Crescent, Sheffield S10 2TA, UK
| | | | | | | | | | | |
Collapse
|
24
|
Okuda T, Ishida O, Fujimoto Y, Tanaka N, Inoue A, Nakata Y, Ochi M. The autotomy relief effect of a silicone tube covering the proximal nerve stump. J Orthop Res 2006; 24:1427-37. [PMID: 16732614 DOI: 10.1002/jor.20196] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A technique of covering the proximal nerve stump (PNS) has been reported as a preventative method or treatment for neuroma. However, its detailed pain relief mechanism remains unknown. We created a silicone tube model in which the PNS of the rat sciatic nerve was introduced into the tube, whereas the controls had no tube. The score of autotomy observed in the tube group was lower than that in the control group at 3 days to 2 weeks after surgery, which suggested that the silicone tube had pain-like behavior inhibitory action. To elucidate the mechanism of autotomy inhibition, immunohistochemistry and Toluidine blue staining were performed in the PNS. The increase in S-100-immunoreactivity (IR) including Schwann cells was inhibited at 1 week after surgery in the tube group, and the increase in the number of macrophages shown by ED-1-IR at 1, 2, and 4 weeks after surgery was similarly inhibited. Toluidine blue staining showed that the increase in the number of mast cells was inhibited at 1, 2, and 4 weeks after surgery and in the number of lymphocytes at 1 and 2 weeks after surgery in the tube group. Therefore, blocking of the infiltration of inflammatory cells into the PNS by the silicone tube was thought to be the mechanism of autotomy inhibition. To further explore details of this mechanism, the expression of nerve growth factor (NGF), production of which is induced by inflammatory cells and of the NGF receptor TrkA was examined in the PNS and the dorsal root ganglion using immunohistochemistry and a ribonuclease protection assay. In the PNS, the increase in NGF-IR was inhibited at 1, 2, and 4 weeks after surgery in the tube group, suggesting that this could be one of the pain-like behavior inhibitory effects.
Collapse
Affiliation(s)
- Teruaki Okuda
- Department of Orthopaedic Surgery, Division of Clinical Medical Science, Programs for Applied Biomedicine, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan.
| | | | | | | | | | | | | |
Collapse
|
25
|
Moalem G, Tracey DJ. Immune and inflammatory mechanisms in neuropathic pain. ACTA ACUST UNITED AC 2006; 51:240-64. [PMID: 16388853 DOI: 10.1016/j.brainresrev.2005.11.004] [Citation(s) in RCA: 572] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 11/16/2005] [Accepted: 11/17/2005] [Indexed: 12/22/2022]
Abstract
Tissue damage, inflammation or injury of the nervous system may result in chronic neuropathic pain characterised by increased sensitivity to painful stimuli (hyperalgesia), the perception of innocuous stimuli as painful (allodynia) and spontaneous pain. Neuropathic pain has been described in about 1% of the US population, is often severely debilitating and largely resistant to treatment. Animal models of peripheral neuropathic pain are now available in which the mechanisms underlying hyperalgesia and allodynia due to nerve injury or nerve inflammation can be analysed. Recently, it has become clear that inflammatory and immune mechanisms both in the periphery and the central nervous system play an important role in neuropathic pain. Infiltration of inflammatory cells, as well as activation of resident immune cells in response to nervous system damage, leads to subsequent production and secretion of various inflammatory mediators. These mediators promote neuroimmune activation and can sensitise primary afferent neurones and contribute to pain hypersensitivity. Inflammatory cells such as mast cells, neutrophils, macrophages and T lymphocytes have all been implicated, as have immune-like glial cells such as microglia and astrocytes. In addition, the immune response plays an important role in demyelinating neuropathies such as multiple sclerosis (MS), in which pain is a common symptom, and an animal model of MS-related pain has recently been demonstrated. Here, we will briefly review some of the milestones in research that have led to an increased awareness of the contribution of immune and inflammatory systems to neuropathic pain and then review in more detail the role of immune cells and inflammatory mediators.
Collapse
Affiliation(s)
- Gila Moalem
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | | |
Collapse
|
26
|
Vora AR, Loescher AR, Craig GT, Boissonade FM, Robinson PP. A light microscopical study on the structure of traumatic neuromas of the human lingual nerve. ACTA ACUST UNITED AC 2005; 99:395-403. [PMID: 15772589 DOI: 10.1016/j.tripleo.2004.08.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To determine the morphologic characteristics of traumatic neuromas resulting from damage to the lingual nerve during the surgical removal of lower third molar teeth. STUDY DESIGN Using light microscopy, we examined hematoxylin and eosin-stained sections of neuromas removed at the time of microsurgical nerve repair in 31 patients. Changes in fascicular pattern were quantified and evidence of inflammation was recorded. Statistical comparisons were made between the sections from patients with and without symptoms of dysesthesia, and with sections of normal lingual nerve obtained from organ donor retrieval patients. RESULTS The neuromas were found to contain large numbers of small and haphazardly arranged regenerating nerve fascicles within a densely collagenous and fibroblastic stroma. The mean number of fascicles was 31 (+/- SD 28) in normal lingual nerve, but 462 (+/- 366) within traumatic neuromas. Mean fascicle diameter was 44 (+/- 10) microm in neuromas, but 273 (+/- 101) microm in normal nerve. A chronic mononuclear cell inflammatory infiltrate was observed in 42% of neuroma specimens, and histologic signs of inflammation were frequently seen in patients with symptoms of dysesthesia. CONCLUSIONS Damage to the lingual nerve during third molar removal results in marked changes to the fascicular pattern and sometimes the presence of chronic inflammation in the injured nerve. These changes could contribute to the altered electrophysiological properties of axons trapped within traumatic neuromas, but we found no significant differences between the specimens studied from patients with or without symptoms of dysesthesia.
Collapse
Affiliation(s)
- Amit R Vora
- Department of Oral & Maxillofacial Surgery, School of Clinical Dentistry, Claremont Crescent, Sheffield, S10 2TA, UK.
| | | | | | | | | |
Collapse
|
27
|
Walker SJ, Worst TJ, Freeman WM, Vrana KE. Functional genomic analysis in pain research using hybridization arrays. METHODS IN MOLECULAR MEDICINE 2004; 99:239-53. [PMID: 15131342 DOI: 10.1385/1-59259-770-x:239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Hybridization array technology makes it possible to compare global gene-expression patterns in any experimental context for which good-quality RNA can be generated. To date, DNA arrays have been used as a tool to compare functional genomic changes (differences in wholesale gene expression) in studies that cover an impressive variety of research disciplines including cancer, yeast genomics, and, more recently, neuroscience and behavior. The basic premise of the array experiment is that one interrogates a panel of probes (gene-specific cDNA fragments or gene-specific oligonucleotides that have been immobilized on a solid support) with RNAs (targets) from control and treated experimental samples that have been either radioactively or fluorescently labeled. Signal derived from either competitive (both samples on a single chip) or differential (one sample/one chip) hybridization is used to calculate relative gene expression. There are three widely used platforms available to perform array experiments (Affymetrix GeneChips, oligonucleotide arrays, and membrane-based cDNA arrays) and each platform offers advantages and limitations. The experimental description in this chapter explains, in detail, how to perform a hybridization array using the macroarray platform.
Collapse
Affiliation(s)
- Stephen J Walker
- Center for the Neurobiological Investigation of Drug Abuse and Neurobehavioral Study of Alcohol, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | | | | | |
Collapse
|
28
|
Ma W, Eisenach JC. Cyclooxygenase 2 in infiltrating inflammatory cells in injured nerve is universally up-regulated following various types of peripheral nerve injury. Neuroscience 2004; 121:691-704. [PMID: 14568029 DOI: 10.1016/s0306-4522(03)00495-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We previously reported the up-regulation of cyclooxygenase 2 (COX2) in injured sciatic nerve of rats with partial sciatic nerve ligation (PSNL) and the reversal of PSNL-elicited tactile allodynia by local injection of the COX inhibitor ketorolac [Eur J Neurosci 15 (2002) 1037]. We further asked whether COX2 up-regulation in injured nerve is a universal phenomenon following various types of nerve injury. In the current study, we observed that abundant COX2 immunoreactive (IR) cell profiles appeared in injured nerves of rats following spinal nerve ligation (SNL), chronic constriction injury (CCI) and complete sciatic nerve transection. Most COX2-IR cells were identified as infiltrating macrophages. Partial injury induced greater COX2 up-regulation than complete injury. COX2 up-regulation reached a peak at 2-4 weeks, evidently declined by 3 months and disappeared by 7 months postlesion. These findings suggest that up-regulation of COX2 in injured nerve is a common event during the initial several months after nerve injury. We observed that local ketorolac-elicited anti-allodynia was closely associated with the abundance of COX2-IR cells in injured nerve, varying with the type of injury and time after injury. The anti-allodynia lasted the longest when local ketorolac was given 2-4 weeks after PSNL, CCI and SNL. The duration of local ketorolac's anti-allodynia was the longest in CCI rats, which also exhibited the most abundant COX2 up-regulation. Local ketorolac's anti-allodynia lasted much shorter when given 2-3 months after lesion. Local ketorolac failed to induce anti-allodynia 7 months after lesion, a time when COX2-IR cells completely disappeared from the injured nerve except a few cells at the injury site. Our data strongly suggest that during the initial several months after nerve injury, peripherally over-produced prostaglandins play an important role in the maintenance of neuropathic pain.
Collapse
Affiliation(s)
- W Ma
- Pain Mechanism Laboratory, Department of Anesthesiology, and Center for the Study of Pharmacologic Plasticity in the Presence of Pain, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
| | | |
Collapse
|
29
|
Marsolais D, Côté CH, Frenette J. Nonsteroidal anti-inflammatory drug reduces neutrophil and macrophage accumulation but does not improve tendon regeneration. J Transl Med 2003; 83:991-9. [PMID: 12861039 DOI: 10.1097/01.lab.0000078688.07696.ac] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Whether nonsteroidal anti-inflammatory drugs have a beneficial effect on tendon regeneration is still a matter of debate. Given that inflammatory cells are thought to induce nonspecific damage following an injury, we tested the hypothesis that a 3-day treatment with diclofenac would protect tendons from inflammatory cell injury and would promote healing. Neutrophil and ED1(+) macrophage concentrations were determined in the paratenon and the core of the rat Achilles tendon following collagenase-induced injury. Hydroxyproline content, edema, and mechanical properties were also evaluated at 1, 3, 7, 14, and 28 days post-trauma. Collagenase injections induced a 70% decrease in the ultimate rupture point at Day 3. Diclofenac treatments (1 mg/kg bid) selectively decreased the accumulation of neutrophils and ED1(+) macrophages by 59% and 35%, respectively, in the paratenon, where blood vessels are numerous, but did not reduce the accumulation of neutrophils and ED1(+) macrophages in the core of the tendon. Edema was significantly reduced on Day 3 but persisted during the remodeling phase in the diclofenac-treated group only. The inhibition of leukocyte accumulation by diclofenac did not translate into a reduction of tissue damage or a promotion of tissue healing, because the mechanical properties of injured Achilles tendons were identical in placebo and diclofenac-treated groups. These results indicate that diclofenac reduced both edema and the accumulation of inflammatory cells within the paratenon but provided no biochemical or functional benefits for the Achilles tendon.
Collapse
Affiliation(s)
- David Marsolais
- Department of Rehabilitation, Faculty of Medicine, Université Laval, Quebec, Canada
| | | | | |
Collapse
|
30
|
Benoliel R, Wilensky A, Tal M, Eliav E. Application of a pro-inflammatory agent to the orbital portion of the rat infraorbital nerve induces changes indicative of ongoing trigeminal pain. Pain 2002; 99:567-578. [PMID: 12406533 DOI: 10.1016/s0304-3959(02)00272-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present experiments investigated the behavioral and immunocytchemical (ICC) effects of applying complete Freund's adjuvant (CFA) to the orbital portion of the infraorbital nerve (IOn). Two control groups, the first had saline applied to the IOn and the second underwent sham operation, were included in the study. In the CFA group, significant hyper-responsiveness to von Frey (analysis of variance <0.05) and to pinprick stimulation (Kruskal Wallis <0.05) in the vibrissal pad was observed on the fourth and the fifth days post-operative (dpo). This was accompanied by a reduced bite force and altered bite patterns of similar duration. Histology of the IOn in CFA rats revealed immune cell infiltration and edema around and in the nerve trunk with only mild axonal damage confirmed by neuropeptide Y immunoreactivity in trigeminal ganglion. Histological areas of inconsistent and mild inflammation were observed in the saline group that were accompanied by similarly attenuated behavioral and ICC changes. This model of inflammation-induced neuropathic pain is highly applicable to the study of neuroinflammatory orofacial pain.
Collapse
Affiliation(s)
- Rafael Benoliel
- The Department of Oral Diagnosis, Oral Medicine, Oral Radiology, Hadassah School of Dental Medicine, The Hebrew University,Jerusalem, Israel The Department of Anatomy, Hadassah School of Dental Medicine, The Hebrew University, Jerusalem, Israel
| | | | | | | |
Collapse
|
31
|
Ma W, Eisenach JC. Morphological and pharmacological evidence for the role of peripheral prostaglandins in the pathogenesis of neuropathic pain. Eur J Neurosci 2002; 15:1037-47. [PMID: 11918652 DOI: 10.1046/j.1460-9568.2002.01940.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Inflammatory mediators produced in the injured nerve have been proposed as contributing factors in the development of neuropathic pain. Prostaglandins (PGs) are probably included in these important inflammatory mediators. In the present study, 2 and 4 weeks following partial sciatic nerve ligation (PSNL), we observed a dramatic increase in the prostaglandin synthesizing enzyme cyclooxygenase (COX)2-immunoreactive (IR) cell profiles in the injury site and adjacent region. Some of these COX2-IR cells were identified as macrophages because they coexpressed ED1. None of these COX2-IR cell profiles coexpressed the Schwann cell marker S100. In the contralateral sciatic nerve and sciatic nerve from normal rats, we failed to observe any of these COX-IR cell profiles. We also observed COX1-IR cell profiles (presumably Langerhans cells) in the epidermis of the footpad of both normal and PSNL rats. Interestingly, a greater number of COX1-IR cell profiles were observed in the epidermis of the ipsilateral footpad of PSNL rats. Local injection of ketorolac, a nonselective COX inhibitor, into the ipsilateral plantar side or into the injury site of the sciatic nerve, effectively reversed the tactile allodynia induced by PSNL for > 5 days. Intraperitoneal or intramuscular injection of ketorolac had a similar but shorter antiallodynic effect. Intraplantar or peri-neural injection of ketorolac dramatically suppressed the PSNL-induced increase in the phosphorylation of a transcription factor cAMP response element binding protein (CREB) in the ipsilateral dorsal horn of L4 and L5 spinal cord of PSNL rats. Intraplantar or peri-neural injection of ketorolac at the time of lesion did not prevent mechanical hypersensitivity but reduced it with a slow onset 3 weeks after lesion. Our data suggest that PSNL induces over-production of PGs in peripheral tissues and that PGs probably sensitize nociceptors and are involved in central plasticity and sensitization at the spinal cord level, thus contributing to the maintenance of tactile allodynia.
Collapse
Affiliation(s)
- Weiya Ma
- Pain Mechanism Laboratory, Department of Anaesthesiology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | | |
Collapse
|
32
|
Chacur M, Milligan ED, Gazda LS, Armstrong C, Wang H, Tracey KJ, Maier SF, Watkins LR. A new model of sciatic inflammatory neuritis (SIN): induction of unilateral and bilateral mechanical allodynia following acute unilateral peri-sciatic immune activation in rats. Pain 2001; 94:231-244. [PMID: 11731060 DOI: 10.1016/s0304-3959(01)00354-2] [Citation(s) in RCA: 239] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Immune activation near healthy peripheral nerves may have a greater role in creating pathological pain than previously recognized. We have developed a new model of sciatic inflammatory neuritis to assess how such immune activation may influence somatosensory processing. The present series of experiments reveal that zymosan (yeast cell walls) acutely injected around the sciatic nerve of awake unrestrained rats rapidly (within 3h) produces low threshold mechanical allodynia in the absence of thermal hyperalgesia. Low (4 microg) doses of zymosan produce both territorial and extra-territorial allodynia restricted to the ipsilateral hindpaw. Higher (40-400 microg) doses of zymosan again produce both territorial and extra-territorial allodynia. However, allodynia is now expressed both in the ipsilateral as well as contralateral hindpaws. Several lines of evidence are provided that the appearance of this contralateral ('mirror') allodynia reflects local actions of zymosan on the sciatic nerve rather than spread of this immune activator to the general circulation. Since many clinical neuropathies result from inflammation/infection of peripheral nerves rather than frank physical trauma, understanding how immune activation alters pain processing may suggest novel approaches to pain control.
Collapse
Affiliation(s)
- Marucia Chacur
- Laboratory of Pathophysiology, Butantan Institute, Avenue Vital Brazil, 1500, 05503-900 Sao Paulo, SP, Brazil Department of Psychology and the Center for Neurosciences, University of Colorado at Boulder, Boulder, CO 80309-0345, USA Laboratory of Biomedical Science, North Shore University Hospital, 350 Community Drive, Manhasset, NY 11030, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Cui JG, Holmin S, Mathiesen T, Meyerson BA, Linderoth B. Possible role of inflammatory mediators in tactile hypersensitivity in rat models of mononeuropathy. Pain 2000; 88:239-248. [PMID: 11068111 DOI: 10.1016/s0304-3959(00)00331-6] [Citation(s) in RCA: 237] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Peripheral hypersensitivity (hyperalgesia and allodynia) are common phenomena both in inflammatory and in neuropathic pain conditions. Several rat models of mononeuropathy (Bennett, Seltzer and Gazelius models) display such symptoms following partial injury to the sciatic nerve. Using immunohistochemistry and behavioral tests, we investigated inflammatory cell and cytokine responses in the sciatic nerve 14 days after injury created in these different models as well as after axotomy. Tactile hypersensitivity ('allodynia') was present in all Gazelius model rats whereas only 38 and 29% of the Bennett and Seltzer models, respectively, displayed this sign of neuropathy. The inflammatory reactions in rats with and without tactile allodynia were compared. Monocytes/macrophages (ED-1), natural killer cells, T lymphocytes, and the pro-inflammatory cytokines tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6), were significantly upregulated in all nerve injured rats in comparison to sham-operated controls. Interestingly, ED-1-, TNF-alpha- and IL-6-positive cells increased more markedly in allodynic Bennett and Seltzer rats than in non-allodynic ones. The magnitude of the inflammatory response does not seem to relate to the extent of damage to the nerve fibers because axotomized rats displayed much lower upregulation. Our findings indicate that the considerable increase in monocytes/macrophages induced by a nerve injury results in a very high release of IL-6 and TNF-alpha. This may relate to the generation of tactile allodynia/hyperalgesia, since there was a clear correlation between the number of ED-1 and IL-6-positive cells and the degree of allodynia. It is possible that measures to reduce monocyte/macrophage recruitment and the release of pro-inflammatory interleukins after nerve damage could influence the development of neuropathic pain.
Collapse
Affiliation(s)
- Jian-Guo Cui
- Department of Clinical Neuroscience, Section of Neurosurgery, Karolinska Institute/Hospital, Box 130, SE-171 76 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
34
|
Abstract
Cytokines have a major role in promoting the growth and spread of cancers. Elevated levels of several cytokines have been described in cancer patients. Evidence from animal and human studies suggests that cytokines may contribute to a wide range of symptoms in advanced cancer, including: asthenia, pain, drowsiness, cognitive failure, agitated delirium, autonomic dysfunction, anorexia, cachexia, fever and metabolic abnormalities. Considerable effort is being directed at finding anticytokine treatments, raising the possibility of new options for symptoms that are currently difficult to control.
Collapse
Affiliation(s)
- R J Dunlop
- St. Christopher's Hospice, Esher, Surrey, United Kingdom
| | | |
Collapse
|
35
|
Eckert A, Segond von Banchet G, Sopper S, Petersen M. Spatio-temporal pattern of induction of bradykinin receptors and inflammation in rat dorsal root ganglia after unilateral nerve ligation. Pain 1999; 83:487-497. [PMID: 10568857 DOI: 10.1016/s0304-3959(99)00152-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Expression of bradykinin receptors was analyzed in freshly isolated dorsal root ganglion neurons of the ipsi- and contralateral segments L4/L5, L2/L3, and T12/T13 two to twenty days after unilateral injury of the adult rat sciatic nerve using gold labeled bradykinin. The number of infiltrating leucocytes was investigated by flow cytometry. Sciatic nerve injury transiently increased the proportion of neurons expressing bradykinin receptors not only in the ipsilateral ganglia L4/L5, but also in the homonymous contralateral ganglia and also bilaterally in the adjacent ganglia L2/L3. Neurons of the ganglia T12/T13 were not affected. The time course of upregulation was different between neurons of the injured nerve and uninjured ones. Furthermore, the proportion of neurons expressing a high density of receptors increased also bilaterally in ganglia L4/L5 and L2/L3. As on the ipsilateral side, the increase in neurons expressing bradykinin receptors in the contralateral homonymous ganglia was due to an induction of the B1 receptor subtype and an upregulation of the B2 subtype. As a possible source for stimulating factors for induction of bradykinin receptors the number of macrophages and lymphocytes was investigated two to twenty days after nerve ligation. No increase was observed prior to day ten and only in ipsilateral ganglia L4/L5, not contralaterally and not in adjacent ganglia L2/L3 and T12/T13. The experiments show that the induction of bradykinin receptors following a unilateral nerve lesion is not restricted to neurons projecting into the damaged nerve but is (i) bilateral, (ii) different in time course between injured and uninjured neurons, and (iii) locally confined to neurons of the adjacent ganglia. Macrophages and lymphocytes are increased after ten day ligation only in the affected ganglia and are probably not involved in the induction of bradykinin receptors.
Collapse
Affiliation(s)
- Astrid Eckert
- Institute of Physiology, University of Würzburg, Röntgenring 9, D-97070 Würzburg, Germany Institute of Virology and Immunobiology, University of Würzburg, Versbacher Strasse 7, D-97080 Würzburg, Germany
| | | | | | | |
Collapse
|
36
|
Abstract
The hypothesis that prostaglandins contribute to hyperalgesia resulting from nerve injury was tested in rats in which the sciatic nerve was partially transected on one side. Subcutaneous injection of indomethacin (a classic inhibitor of cyclo-oxygenase) into the affected hindpaw relieved mechanical hyperalgesia for up to 10 days after injection. Subcutaneous injection of meloxicam or SC-58125 (selective inhibitors of cyclo-oxygenase-2) into the affected hindpaw also relieved mechanical hyperalgesia, but with a shorter time-course. Subcutaneous injection of SC-19220 (an EP1 prostaglandin receptor blocker) into the affected hindpaw produced significant relief of mechanical and thermal hyperalgesia. Comparable injections into the contralateral paw or abdomen had no effect on mechanical or thermal hyperalgesia, suggesting that the effects we observed were local rather than systemic. We conclude that prostaglandins, probably prostaglandin E1 or E2, contribute to the peripheral mechanisms underlying hyperalgesia following nerve injury. These data provide further evidence that inflammatory mediators contribute to neuropathic pain, and may warrant further study of peripherally administered non-steroidal anti-inflammatory drugs as a possible treatment for such pain in patients.
Collapse
Affiliation(s)
- J P Syriatowicz
- School of Anatomy, University of New South Wales, Sydney, Australia
| | | | | | | |
Collapse
|
37
|
Zochodne DW, Levy D, Zwiers H, Sun H, Rubin I, Cheng C, Lauritzen M. Evidence for nitric oxide and nitric oxide synthase activity in proximal stumps of transected peripheral nerves. Neuroscience 1999; 91:1515-27. [PMID: 10391455 DOI: 10.1016/s0306-4522(98)00729-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Nitric oxide may be liberated as an inflammatory mediator within injured peripheral nerve trunks. We evaluated the proximal stumps of injured peripheral nerve stumps that later form neuromas or regenerative nerve sprouts, for evidence of local nitric oxide elaboration and activity. Proximal stumps were created in male Sprague-Dawley rats by sectioning of the sciatic nerve and resection of its distal portions and branches. There was striking physiological evidence of nitric oxide activity at the tips of 48-h and 14-day-old proximal nerve stumps. We detected local nitric oxide-mediated hyperemia of both extrinsic plexus and endoneurial microvessels that was reversible, in a dose-dependent stereospecific fashion, by the broad-spectrum nitric oxide synthase inhibitors, Nomega-nitro-L-arginine-methyl ester or Nomega-nitro-L-arginine, but not by 7-nitroindazole, an inhibitor with relative selectivity for neuronal nitric oxide. Immunohistochemical studies provided evidence for the localization of nitric oxide generators at the same sites. In 48-h but not 14-day stumps increased expression of two isoforms of nitric oxide synthase was detected: endothelial nitric oxide and to a much lesser extent neuronal nitric oxide synthase. Both isoforms appeared in axonal endbulb-like profiles that co-localized with neurofilament immunostaining. Western immunoblots identified a band consistent with endothelial nitric oxide synthase expression. In 14-day stumps with early neuroma formation, but not 48-h stumps, there was staining for immunological nitric oxide synthase in some endoneurial and epineurial macrophages. Total nitric oxide synthase biochemical enzymatic activity, measured by labelled arginine to citrulline conversion, was increased in 14-day but not 48-h stumps. Injured peripheral nerves have evidence of early nitric oxide action, nitric oxide synthase expression and nitric oxide activity in proximal nerve stumps. Nitric oxide may have an important impact on the regenerative milieu.
Collapse
Affiliation(s)
- D W Zochodne
- Department of Clinical Neurosciences and The Neurosciences Research Group, University of Calgary, Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
The highly disagreeable sensation of pain results from an extraordinarily complex and interactive series of mechanisms integrated at all levels of the neuroaxis, from the periphery, via the dorsal horn to higher cerebral structures. Pain is usually elicited by the activation of specific nociceptors ('nociceptive pain'). However, it may also result from injury to sensory fibres, or from damage to the CNS itself ('neuropathic pain'). Although acute and subchronic, nociceptive pain fulfils a warning role, chronic and/or severe nociceptive and neuropathic pain is maladaptive. Recent years have seen a progressive unravelling of the neuroanatomical circuits and cellular mechanisms underlying the induction of pain. In addition to familiar inflammatory mediators, such as prostaglandins and bradykinin, potentially-important, pronociceptive roles have been proposed for a variety of 'exotic' species, including protons, ATP, cytokines, neurotrophins (growth factors) and nitric oxide. Further, both in the periphery and in the CNS, non-neuronal glial and immunecompetent cells have been shown to play a modulatory role in the response to inflammation and injury, and in processes modifying nociception. In the dorsal horn of the spinal cord, wherein the primary processing of nociceptive information occurs, N-methyl-D-aspartate receptors are activated by glutamate released from nocisponsive afferent fibres. Their activation plays a key role in the induction of neuronal sensitization, a process underlying prolonged painful states. In addition, upon peripheral nerve injury, a reduction of inhibitory interneurone tone in the dorsal horn exacerbates sensitized states and further enhance nociception. As concerns the transfer of nociceptive information to the brain, several pathways other than the classical spinothalamic tract are of importance: for example, the postsynaptic dorsal column pathway. In discussing the roles of supraspinal structures in pain sensation, differences between its 'discriminative-sensory' and 'affective-cognitive' dimensions should be emphasized. The purpose of the present article is to provide a global account of mechanisms involved in the induction of pain. Particular attention is focused on cellular aspects and on the consequences of peripheral nerve injury. In the first part of the review, neuronal pathways for the transmission of nociceptive information from peripheral nerve terminals to the dorsal horn, and therefrom to higher centres, are outlined. This neuronal framework is then exploited for a consideration of peripheral, spinal and supraspinal mechanisms involved in the induction of pain by stimulation of peripheral nociceptors, by peripheral nerve injury and by damage to the CNS itself. Finally, a hypothesis is forwarded that neurotrophins may play an important role in central, adaptive mechanisms modulating nociception. An improved understanding of the origins of pain should facilitate the development of novel strategies for its more effective treatment.
Collapse
Affiliation(s)
- M J Millan
- Institut de Recherches Servier, Psychopharmacology Department, Paris, France
| |
Collapse
|
39
|
Abstract
Recent observations have provided new insight into neuronal responses to axotomy, signalling of the Schwann cell switch from 'operating' to 'proliferation' mode and temporal molecular changes in the responsiveness of Schwann cells to neuronal signals, as well as into the role of macrophages in Wallerian degeneration, nerve repair and neuropathic pain. Furthermore, promising therapeutic interventions have been developed to promote axon regeneration and to attenuate axotomy-induced neuronal cell death by means of pharmacological treatment or application of neurotrophic proteins using various strategies and routes of delivery.
Collapse
Affiliation(s)
- H W Müller
- Department of Neurology, Heinrich-Heine University, Düsseldorf, Germany.
| | | |
Collapse
|
40
|
Lu G, Beuerman RW, Zhao S, Sun G, Nguyen DH, Ma S, Kline DG. Tumor necrosis factor-alpha and interleukin-1 induce activation of MAP kinase and SAP kinase in human neuroma fibroblasts. Neurochem Int 1997; 30:401-10. [PMID: 9106254 DOI: 10.1016/s0197-0186(96)00075-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Two cytokines, tumor necrosis factor-alpha (TNF-alpha) and interleukin-1 (IL-1), which are released by macrophages during the early inflammatory phase of nerve injury, are known to induce activation of mitogen-activated protein kinase (MAPK) and stress-activated protein kinase (SAPK), which locate at different signal transduction pathways and are involved in cell cycle G0/G1 transition and cellular proliferation in human fibroblasts. Activation of these two protein kinases by the cytokines may stimulate fibroblast proliferation in damaged nerves and thereby play a role in the formation of a neuroma, a disorganized mass of tissue that interferes with neural regeneration and repair. To investigate the possibility that this mechanism is operative in neuroma formation, we used cultured, serum-starved fibroblasts from surgically removed human neuromas stimulated with TNF-alpha and/or IL-1 alpha and IL-1 beta, and measured the activation of MAPK and SAPK using myelin basic protein (MBP) and human c-Jun (1-169) glutathione S-agarose transferase (GST) fusion protein as substrates. For comparison, neuroma fibroblast cultures were also stimulated with phorbol 12-myristate 13-acetate (PMA) and platelet-derived growth factor-AB (PDGF-AB), a potent activator for MAPK. TNF-alpha and both forms of IL-1 produced a rapid activation of MAPK, with a peak at 15 min for TNF-alpha stimulation, and a peak at 30 min for IL-1 stimulation. TNF-alpha combined with either IL-1 alpha or IL-1 beta produced a synergistic effect on the activation of MAPK. The increases in MAPK induced by TNF-alpha and IL-1 were similar to the increases induced by PMA and PDGF-AB. To confirm the presence of MAPK, immunoprecipitation and immunoblotting were carried out on experimental and control lysates. TNF-alpha and IL-1 also increased activation of SAPK, but to a lesser extent than MAPK. PMA and PDGF-AB were also much less effective in stimulating activation of SAPK. Our findings indicate that TNF-alpha and IL-1 activate parallel signal transduction pathways in human neuroma fibroblasts, and that they are relatively stronger activators of MAPK than of SAPK. Previous studies have convincingly demonstrated that MAPK and SAPK are involved in human fibroblast proliferation. The results of our study suggest that TNF-alpha and IL-1 may play a role in frustrating functional nerve regeneration after injury by stimulating these two kinases, which, in turn, leads to fibroblast proliferation and formation of neuromas.
Collapse
Affiliation(s)
- G Lu
- LSU Eye Center, New Orleans 70112, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Goehler LE, Relton JK, Dripps D, Kiechle R, Tartaglia N, Maier SF, Watkins LR. Vagal paraganglia bind biotinylated interleukin-1 receptor antagonist: a possible mechanism for immune-to-brain communication. Brain Res Bull 1997; 43:357-64. [PMID: 9227848 DOI: 10.1016/s0361-9230(97)00020-8] [Citation(s) in RCA: 210] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Interleukin-1 beta is a proinflammatory cytokine released by activated immune cells. In addition to orchestrating immune responses to infection, interleukin-1 beta is a key mediator of immune-to-brain communication. Interleukin-1 beta and endotoxin (which releases IL1 beta from immune cells) cause centrally mediated illness responses such as fever, aphagia, etc. These effects are blocked by intraperitoneal IL1 receptor antagonist (IL1ra), suggesting critical involvement of peripheral IL1 receptors. Centrally mediated illness responses are also blocked by vagotomy, suggesting that IL1 beta directly or indirectly activates vagal afferents. To test for IL1 beta binding whole vagus (abdominal, laryngeal, and thoracic) and sections of hepatic vagus and liver hilus were incubated with biotinylated IL1ra and processed for avidin-biotin complex (ABC) or avidin-FITC histochemistry. Glomus cells of vagal paraganglia were labeled in all regions of the vagus. Biotinylated IL1ra also labeled smooth muscle and endothelial cells of blood vessels and lymphoid tissues. No label was present in omission or competition controls. These data suggest that centrally mediated illness responses result from IL1 activation of vagal paraganglia.
Collapse
Affiliation(s)
- L E Goehler
- Department of Cellular and Structural Biology, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Affiliation(s)
- A Dray
- Sandoz Institute for Medical Research, London, UK
| |
Collapse
|
43
|
Watkins LR, Maier SF, Goehler LE. Immune activation: the role of pro-inflammatory cytokines in inflammation, illness responses and pathological pain states. Pain 1995; 63:289-302. [PMID: 8719529 DOI: 10.1016/0304-3959(95)00186-7] [Citation(s) in RCA: 457] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
It has recently become accepted that the activated immune system communicates to brain via release of pro-inflammatory cytokines. This review examines the possibility that pro-inflammatory cytokines (interleukins and/or tumor necrosis factor) mediate a variety of commonly studied hyperalgesic states. We will first briefly review basic immune responses and inflammation. We will then develop the concept of illness responses and provide evidence for their existence and for the dramatic changes in neural functioning that they cause. Lastly, we will examine the potential roles that both pro-inflammatory cytokines and the neural circuits that they activate may play in the hyperalgesic states produced by irritants, inflammatory agents, and nerve damage. The possibility is raised that apparently diverse hyperalgesic states may converge in the central nervous system and activate similar or identical neural circuitry.
Collapse
Affiliation(s)
- Linda R Watkins
- Department of Psychology, University of Colorado at Boulder, Boulder, CO 80309, USA
| | | | | |
Collapse
|
44
|
Abstract
Damage to peripheral nerves often results in pain and hyperalgesia. We suggest that nerve damage causes an inflammatory response in which cells associated with the nerve release inflammatory mediators such as eicosanoids; these mediators may contribute to the hyperalgesia which results from nerve injury. The cell types most likely to be responsible include macrophages and postganglionic sympathetic neurones. A better understanding of the mechanisms involved should lead to improved therapies for neuropathic pain.
Collapse
Affiliation(s)
- D J Tracey
- School of Anatomy, University of New South Wales, Sydney, Australia
| | | |
Collapse
|
45
|
Affiliation(s)
- R R Gacek
- Department of Otolaryngology and Communication Sciences, SUNY Health Science Center, Syracuse
| | | |
Collapse
|
46
|
Walters ET. Injury-related behavior and neuronal plasticity: an evolutionary perspective on sensitization, hyperalgesia, and analgesia. INTERNATIONAL REVIEW OF NEUROBIOLOGY 1994; 36:325-427. [PMID: 7822120 DOI: 10.1016/s0074-7742(08)60307-4] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- E T Walters
- Department of Physiology and Cell Biology, University of Texas Medical School at Houston 77030
| |
Collapse
|