1
|
Qi Y, Zhao R, Tian J, Lu J, He M, Tai Y. Specific and Plastic: Chandelier Cell-to-Axon Initial Segment Connections in Shaping Functional Cortical Network. Neurosci Bull 2024; 40:1774-1788. [PMID: 39080101 PMCID: PMC11607270 DOI: 10.1007/s12264-024-01266-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/19/2024] [Indexed: 11/30/2024] Open
Abstract
Axon initial segment (AIS) is the most excitable subcellular domain of a neuron for action potential initiation. AISs of cortical projection neurons (PNs) receive GABAergic synaptic inputs primarily from chandelier cells (ChCs), which are believed to regulate action potential generation and modulate neuronal excitability. As individual ChCs often innervate hundreds of PNs, they may alter the activity of PN ensembles and even impact the entire neural network. During postnatal development or in response to changes in network activity, the AISs and axo-axonic synapses undergo dynamic structural and functional changes that underlie the wiring, refinement, and adaptation of cortical microcircuits. Here we briefly introduce the history of ChCs and review recent research advances employing modern genetic and molecular tools. Special attention will be attributed to the plasticity of the AIS and the ChC-PN connections, which play a pivotal role in shaping the dynamic network under both physiological and pathological conditions.
Collapse
Affiliation(s)
- Yanqing Qi
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Rui Zhao
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jifeng Tian
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jiangteng Lu
- Songjiang Research Institute, Shanghai Songjiang District Central Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
- Center for Brain Science of Shanghai Children's Medical Center, Department of Anatomy and Physiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Miao He
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Yilin Tai
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
2
|
Rybnicek J, Chen Y, Milic M, Tio ES, McLaurin J, Hohman TJ, De Jager PL, Schneider JA, Wang Y, Bennett DA, Tripathy S, Felsky D, Lambe EK. CHRNA5 links chandelier cells to severity of amyloid pathology in aging and Alzheimer's disease. Transl Psychiatry 2024; 14:83. [PMID: 38331937 PMCID: PMC10853183 DOI: 10.1038/s41398-024-02785-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 02/10/2024] Open
Abstract
Changes in high-affinity nicotinic acetylcholine receptors are intricately connected to neuropathology in Alzheimer's Disease (AD). Protective and cognitive-enhancing roles for the nicotinic α5 subunit have been identified, but this gene has not been closely examined in the context of human aging and dementia. Therefore, we investigate the nicotinic α5 gene CHRNA5 and the impact of relevant single nucleotide polymorphisms (SNPs) in prefrontal cortex from 922 individuals with matched genotypic and post-mortem RNA sequencing in the Religious Orders Study and Memory and Aging Project (ROS/MAP). We find that a genotype robustly linked to increased expression of CHRNA5 (rs1979905A2) predicts significantly reduced cortical β-amyloid load. Intriguingly, co-expression analysis suggests CHRNA5 has a distinct cellular expression profile compared to other nicotinic receptor genes. Consistent with this prediction, single nucleus RNA sequencing from 22 individuals reveals CHRNA5 expression is disproportionately elevated in chandelier neurons, a distinct subtype of inhibitory neuron known for its role in excitatory/inhibitory (E/I) balance. We show that chandelier neurons are enriched in amyloid-binding proteins compared to basket cells, the other major subtype of PVALB-positive interneurons. Consistent with the hypothesis that nicotinic receptors in chandelier cells normally protect against β-amyloid, cell-type proportion analysis from 549 individuals reveals these neurons show amyloid-associated vulnerability only in individuals with impaired function/trafficking of nicotinic α5-containing receptors due to homozygosity of the missense CHRNA5 SNP (rs16969968A2). Taken together, these findings suggest that CHRNA5 and its nicotinic α5 subunit exert a neuroprotective role in aging and Alzheimer's disease centered on chandelier interneurons.
Collapse
Affiliation(s)
- Jonas Rybnicek
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Yuxiao Chen
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Milos Milic
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Earvin S Tio
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - JoAnne McLaurin
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Timothy J Hohman
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Julie A Schneider
- Department of Pathology, Rush University, Chicago, IL, USA
- Department of Neurological Sciences, Rush University, Chicago, IL, USA
| | - Yanling Wang
- Department of Neurological Sciences, Rush University, Chicago, IL, USA
| | - David A Bennett
- Department of Neurological Sciences, Rush University, Chicago, IL, USA
| | - Shreejoy Tripathy
- Department of Physiology, University of Toronto, Toronto, ON, Canada.
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| | - Daniel Felsky
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| | - Evelyn K Lambe
- Department of Physiology, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Department of OBGYN, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Eisner D, Neher E, Taschenberger H, Smith G. Physiology of intracellular calcium buffering. Physiol Rev 2023; 103:2767-2845. [PMID: 37326298 PMCID: PMC11550887 DOI: 10.1152/physrev.00042.2022] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/08/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023] Open
Abstract
Calcium signaling underlies much of physiology. Almost all the Ca2+ in the cytoplasm is bound to buffers, with typically only ∼1% being freely ionized at resting levels in most cells. Physiological Ca2+ buffers include small molecules and proteins, and experimentally Ca2+ indicators will also buffer calcium. The chemistry of interactions between Ca2+ and buffers determines the extent and speed of Ca2+ binding. The physiological effects of Ca2+ buffers are determined by the kinetics with which they bind Ca2+ and their mobility within the cell. The degree of buffering depends on factors such as the affinity for Ca2+, the Ca2+ concentration, and whether Ca2+ ions bind cooperatively. Buffering affects both the amplitude and time course of cytoplasmic Ca2+ signals as well as changes of Ca2+ concentration in organelles. It can also facilitate Ca2+ diffusion inside the cell. Ca2+ buffering affects synaptic transmission, muscle contraction, Ca2+ transport across epithelia, and the killing of bacteria. Saturation of buffers leads to synaptic facilitation and tetanic contraction in skeletal muscle and may play a role in inotropy in the heart. This review focuses on the link between buffer chemistry and function and how Ca2+ buffering affects normal physiology and the consequences of changes in disease. As well as summarizing what is known, we point out the many areas where further work is required.
Collapse
Affiliation(s)
- David Eisner
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Erwin Neher
- Membrane Biophysics Laboratory, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Holger Taschenberger
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Godfrey Smith
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
4
|
Melgosa-Ecenarro L, Doostdar N, Radulescu CI, Jackson JS, Barnes SJ. Pinpointing the locus of GABAergic vulnerability in Alzheimer's disease. Semin Cell Dev Biol 2023; 139:35-54. [PMID: 35963663 DOI: 10.1016/j.semcdb.2022.06.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 12/31/2022]
Abstract
The early stages of Alzheimer's disease (AD) have been linked to microcircuit dysfunction and pathophysiological neuronal firing in several brain regions. Inhibitory GABAergic microcircuitry is a critical feature of stable neural-circuit function in the healthy brain, and its dysregulation has therefore been proposed as contributing to AD-related pathophysiology. However, exactly how the critical balance between excitatory and inhibitory microcircuitry is modified by AD pathogenesis remains unclear. Here, we set the current evidence implicating dysfunctional GABAergic microcircuitry as a driver of early AD pathophysiology in a simple conceptual framework. Our framework is based on a generalised reductionist model of firing-rate control by local feedback inhibition. We use this framework to consider multiple loci that may be vulnerable to disruption by AD pathogenesis. We first start with evidence investigating how AD-related processes may impact the gross number of inhibitory neurons in the network. We then move to discuss how pathology may impact intrinsic cellular properties and firing thresholds of GABAergic neurons. Finally, we cover how AD-related pathogenesis may disrupt synaptic connectivity between excitatory and inhibitory neurons. We use the feedback inhibition framework to discuss and organise the available evidence from both preclinical rodent work and human studies in AD patients and conclude by identifying key questions and understudied areas for future investigation.
Collapse
Affiliation(s)
- Leire Melgosa-Ecenarro
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Nazanin Doostdar
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Carola I Radulescu
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Johanna S Jackson
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Samuel J Barnes
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
5
|
Differential distribution of inhibitory neuron types in subregions of claustrum and dorsal endopiriform nucleus of the short-tailed fruit bat. Brain Struct Funct 2022; 227:1615-1640. [PMID: 35188589 DOI: 10.1007/s00429-022-02459-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/17/2022] [Indexed: 12/22/2022]
Abstract
Few brain regions have such wide-ranging inputs and outputs as the claustrum does, and fewer have posed equivalent challenges in defining their structural boundaries. We studied the distributions of three calcium-binding proteins-calretinin, parvalbumin, and calbindin-in the claustrum and dorsal endopiriform nucleus of the fruit bat, Carollia perspicillata. The proportionately large sizes of claustrum and dorsal endopiriform nucleus in Carollia brain afford unique access to these structures' intrinsic anatomy. Latexin immunoreactivity permits a separation of claustrum into core and shell subregions and an equivalent separation of dorsal endopiriform nucleus. Using latexin labeling, we found that the claustral shell in Carollia brain can be further subdivided into at least four distinct subregions. Calretinin and parvalbumin immunoreactivity reinforced the boundaries of the claustral core and its shell subregions with diametrically opposite distribution patterns. Calretinin, parvalbumin, and calbindin all colocalized with GAD67, indicating that these proteins label inhibitory neurons in both claustrum and dorsal endopiriform nucleus. Calretinin, however, also colocalized with latexin in a subset of neurons. Confocal microscopy revealed appositions that suggest synaptic contacts between cells labeled for each of the three calcium-binding proteins and latexin-immunoreactive somata in claustrum and dorsal endopiriform nucleus. Our results indicate significant subregional differences in the intrinsic inhibitory connectivity within and between claustrum and dorsal endopiriform nucleus. We conclude that the claustrum is structurally more complex than previously appreciated and that claustral and dorsal endopiriform nucleus subregions are differentially modulated by multiple inhibitory systems. These findings can also account for the excitability differences between claustrum and dorsal endopiriform nucleus described previously.
Collapse
|
6
|
Dudok B, Szoboszlay M, Paul A, Klein PM, Liao Z, Hwaun E, Szabo GG, Geiller T, Vancura B, Wang BS, McKenzie S, Homidan J, Klaver LMF, English DF, Huang ZJ, Buzsáki G, Losonczy A, Soltesz I. Recruitment and inhibitory action of hippocampal axo-axonic cells during behavior. Neuron 2021; 109:3838-3850.e8. [PMID: 34648750 PMCID: PMC8639676 DOI: 10.1016/j.neuron.2021.09.033] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/10/2021] [Accepted: 09/14/2021] [Indexed: 12/16/2022]
Abstract
The axon initial segment of hippocampal pyramidal cells is a key subcellular compartment for action potential generation, under GABAergic control by the "chandelier" or axo-axonic cells (AACs). Although AACs are the only cellular source of GABA targeting the initial segment, their in vivo activity patterns and influence over pyramidal cell dynamics are not well understood. We achieved cell-type-specific genetic access to AACs in mice and show that AACs in the hippocampal area CA1 are synchronously activated by episodes of locomotion or whisking during rest. Bidirectional intervention experiments in head-restrained mice performing a random foraging task revealed that AACs inhibit CA1 pyramidal cells, indicating that the effect of GABA on the initial segments in the hippocampus is inhibitory in vivo. Finally, optogenetic inhibition of AACs at specific track locations induced remapping of pyramidal cell place fields. These results demonstrate brain-state-specific dynamics of a critical inhibitory controller of cortical circuits.
Collapse
Affiliation(s)
- Barna Dudok
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA.
| | - Miklos Szoboszlay
- Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Anirban Paul
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA 17033, USA; Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA
| | - Peter M Klein
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Zhenrui Liao
- Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Ernie Hwaun
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Gergely G Szabo
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Tristan Geiller
- Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Bert Vancura
- Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Bor-Shuen Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA
| | - Sam McKenzie
- Department of Neurosciences, University of New Mexico, Albuquerque, NM 87131, USA; NYU Neuroscience Institute, New York University, New York, NY 10016, USA
| | - Jesslyn Homidan
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | | | - Daniel F English
- NYU Neuroscience Institute, New York University, New York, NY 10016, USA; School of Neuroscience, Virginia Tech, Blacksburg, VA 24061, USA
| | - Z Josh Huang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA; Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - György Buzsáki
- NYU Neuroscience Institute, New York University, New York, NY 10016, USA
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
7
|
Bi D, Wen L, Wu Z, Shen Y. GABAergic dysfunction in excitatory and inhibitory (E/I) imbalance drives the pathogenesis of Alzheimer's disease. Alzheimers Dement 2020; 16:1312-1329. [PMID: 32543726 DOI: 10.1002/alz.12088] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/28/2020] [Accepted: 02/10/2020] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To propose a new hypothesis that GABAergic dysfunction in excitatory and inhibitory (E/I) imbalance drives the pathogenesis of Alzheimer's disease (AD). BACKGROUND Synaptic dysfunction and E/I imbalance emerge decades before the appearance of cognitive decline in AD patients, which contribute to neurodegeneration. Initially, E/I imbalance was thought to occur first, due to dysfunction of the glutamatergic and cholinergic systems. However, new evidence has demonstrated that the GABAergic system, the counterpart of E/I balance and the major inhibitory neurotransmitter system in the central nervous system, is altered enormously and that this contributes to E/I imbalance and further AD pathogenesis. NEW HYPOTHESIS Alterations to the GABAergic system, induced by multiple AD pathogenic or risk factors, contribute to E/I imbalance and AD pathogenesis. MAJOR CHALLENGES FOR THE HYPOTHESIS This GABAergic hypothesis accounts for many critical questions and common challenges confronting a new hypothesis of AD pathogenesis. More specifically, it explains why amyloid beta (Aβ), β-secretase (BACE1), apolipoprotein E4 gene (APOE ε4), hyperactive glia cells, contributes to AD pathogenesis and why age and sex are the risk factors of AD. GABAergic dysfunction promotes the spread of Aβ pathology throughout the AD brain and associated cognitive impairments, and the induction of dysfunction induced by these varied risk factors shares this common neurobiology leading to E/I imbalance. In turn, some of these factors exacerbate GABAergic dysfunction and E/I imbalance. Moreover, the GABAergic system modulates various brain functions and thus, the GABAergic hypothesis accounts for nonamnestic manifestations. Furthermore, corrections of E/I balance through manipulation of GABAergic functions have shown positive outcomes in preclinical and clinical studies, suggesting the potential of the GABAergic system as a therapeutic target in AD. LINKAGE TO OTHER MAJOR THEORIES Dysfunction of the GABAergic system is induced by multiple critical signaling pathways, which include the existing major theories of AD pathogenesis, such as the Aβ and neuroinflammation hypotheses. In a new perspective, this GABAergic hypothesis accounts for the E/I imbalance and related excitotoxicity, which contribute to cognitive decline and AD pathogenesis. Therefore, the GABAergic system could be a key target to restore, at least partially, the E/I balance and cognitive function in AD patients.
Collapse
Affiliation(s)
- Danlei Bi
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Institute on Aging and Brain Disorders, University of Sciences and Technology of China, Hefei, China.,Neurodegenerative Disease Research Center, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lang Wen
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Institute on Aging and Brain Disorders, University of Sciences and Technology of China, Hefei, China.,Neurodegenerative Disease Research Center, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zujun Wu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Institute on Aging and Brain Disorders, University of Sciences and Technology of China, Hefei, China.,Neurodegenerative Disease Research Center, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yong Shen
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Institute on Aging and Brain Disorders, University of Sciences and Technology of China, Hefei, China.,Neurodegenerative Disease Research Center, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
8
|
Unsupervised excitation: GABAergic dysfunctions in Alzheimer’s disease. Brain Res 2019; 1707:216-226. [DOI: 10.1016/j.brainres.2018.11.042] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/31/2018] [Accepted: 11/27/2018] [Indexed: 12/22/2022]
|
9
|
Gil V, Del Río JA. Functions of Plexins/Neuropilins and Their Ligands during Hippocampal Development and Neurodegeneration. Cells 2019; 8:E206. [PMID: 30823454 PMCID: PMC6468495 DOI: 10.3390/cells8030206] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 02/22/2019] [Accepted: 02/24/2019] [Indexed: 12/22/2022] Open
Abstract
There is emerging evidence that molecules, receptors, and signaling mechanisms involved in vascular development also play crucial roles during the development of the nervous system. Among others, specific semaphorins and their receptors (neuropilins and plexins) have, in recent years, attracted the attention of researchers due to their pleiotropy of functions. Their functions, mainly associated with control of the cellular cytoskeleton, include control of cell migration, cell morphology, and synapse remodeling. Here, we will focus on their roles in the hippocampal formation that plays a crucial role in memory and learning as it is a prime target during neurodegeneration.
Collapse
Affiliation(s)
- Vanessa Gil
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Parc Científic de Barcelona, 08028 Barcelona, Spain.
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, 08028 Barcelona, Spain.
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08028 Barcelona, Spain.
- Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain.
| | - José Antonio Del Río
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Parc Científic de Barcelona, 08028 Barcelona, Spain.
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, 08028 Barcelona, Spain.
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08028 Barcelona, Spain.
- Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain.
| |
Collapse
|
10
|
Early alterations in hippocampal perisomatic GABAergic synapses and network oscillations in a mouse model of Alzheimer's disease amyloidosis. PLoS One 2019; 14:e0209228. [PMID: 30645585 PMCID: PMC6333398 DOI: 10.1371/journal.pone.0209228] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/30/2018] [Indexed: 01/01/2023] Open
Abstract
Several lines of evidence imply changes in inhibitory interneuron connectivity and subsequent alterations in oscillatory network activities in the pathogenesis of Alzheimer’s Disease (AD). Recently, we provided evidence for an increased immunoreactivity of both the postsynaptic scaffold protein gephyrin and the GABAA receptor γ2-subunit in the hippocampus of young (1 and 3 months of age), APPPS1 mice. These mice represent a well-established model of cerebral amyloidosis, which is a hallmark of human AD. In this study, we demonstrate a robust increase of parvalbumin immunoreactivity and accentuated projections of parvalbumin positive (PV+) interneurons, which target perisomatic regions of pyramidal cells within the hippocampal subregions CA1 and CA3 of 3-month-old APPPS1 mice. Colocalisation studies confirmed a significant increase in the density of PV+ projections labeled with antibodies against a presynaptic (vesicular GABA transporter) and a postsynaptic marker (gephyrin) of inhibitory synapses within the pyramidal cell layer of CA1 and CA3. As perisomatic inhibition by PV+-interneurons is crucial for the generation of hippocampal network oscillations involved in spatial processing, learning and memory formation we investigated the impact of the putative enhanced perisomatic inhibition on two types of fast neuronal network oscillations in acute hippocampal slices: 1. spontaneously occurring sharp wave-ripple complexes (SPW-R), and 2. cholinergic γ-oscillations. Interestingly, both network patterns were generally preserved in APPPS1 mice similar to WT mice. However, the comparison of simultaneous CA3 and CA1 recordings revealed that the incidence and amplitude of SPW-Rs were significantly lower in CA1 vs CA3 in APPPS1 slices, whereas the power of γ-oscillations was significantly higher in CA3 vs CA1 in WT-slices indicating an impaired communication between the CA3 and CA1 network activities in APPPS1 mice. Taken together, our data demonstrate an increased GABAergic synaptic output of PV+ interneurons impinging on pyramidal cells of CA1 and CA3, which might limit the coordinated cross-talk between these two hippocampal areas in young APPPS1 mice and mediate long-term changes in synaptic inhibition during progression of amyloidosis.
Collapse
|
11
|
Zallo F, Gardenal E, Verkhratsky A, Rodríguez JJ. Loss of calretinin and parvalbumin positive interneurones in the hippocampal CA1 of aged Alzheimer's disease mice. Neurosci Lett 2018; 681:19-25. [PMID: 29782955 DOI: 10.1016/j.neulet.2018.05.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 04/30/2018] [Accepted: 05/17/2018] [Indexed: 01/19/2023]
Abstract
Neuronal degeneration associated with Alzheimer's disease (AD), is linked to impaired calcium homeostasis and to changes in calcium-binding proteins (CBPs). The AD-related modification of neuronal CBPs remains controversial. Here we analysed the presence and expression of calretinin (CR) and parvalbumin (PV) in the hippocampal CA1 neurones of 18 months old 3xTg-AD mice compared to non-Tg animals. We found a layer specific decrease in number of interneurones expressing CR and PV (by 33.7% and 52%, respectively). Expression of PV decreased (by 13.8%) in PV-positive neurones, whereas expression of CR did not change in CR positive cells. The loss of specific subpopulations of Ca2+-binding proteins expressing interneurones (CR and PV) together with the decrease of PV in the surviving cells may be linked to their vulnerability to AD pathology. Specific loss of inhibitory interneurones with age could contribute to overall increase in the network excitability associated with AD.
Collapse
Affiliation(s)
- Fatima Zallo
- BioCruces Health Research Institute, 48903, Barakaldo, Spain; Department of Neuroscience, University of the Basque Country UPV/EHU, 48940, Leioa, Spain
| | - Emanuela Gardenal
- Department of Neuroscience, University of the Basque Country UPV/EHU, 48940, Leioa, Spain; Human Histology and Embryology Unit, Medical School, University of Verona, 37134, Verona, Italy
| | - Alexei Verkhratsky
- Department of Neuroscience, University of the Basque Country UPV/EHU, 48940, Leioa, Spain; IKERBASQUE, Basque Foundation for Science, 48013-Bilbao, Medical School, Spain; Achúcarro Basque Center for Neuroscience, 48940, Leioa, Spain; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, United Kingdom; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - José Julio Rodríguez
- BioCruces Health Research Institute, 48903, Barakaldo, Spain; Department of Neuroscience, University of the Basque Country UPV/EHU, 48940, Leioa, Spain; IKERBASQUE, Basque Foundation for Science, 48013-Bilbao, Medical School, Spain.
| |
Collapse
|
12
|
de Wilde MC, Overk CR, Sijben JW, Masliah E. Meta-analysis of synaptic pathology in Alzheimer's disease reveals selective molecular vesicular machinery vulnerability. Alzheimers Dement 2016; 12:633-44. [PMID: 26776762 DOI: 10.1016/j.jalz.2015.12.005] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/02/2015] [Accepted: 12/04/2015] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Loss of synapses best correlates to cognitive deficits in Alzheimer's disease (AD) in which oligomeric neurotoxic species of amyloid-β appears to contribute synaptic pathology. Although a number of clinical pathologic studies have been performed with limited sample size, there are no systematic studies encompassing large samples. Therefore, we performed a meta-analysis study. METHODS We identified 417 publications reporting postmortem synapse and synaptic marker loss from AD patients. Two meta-analyses were performed using a single database of subselected publications and calculating the standard mean differences. RESULTS Meta-analysis confirmed synaptic loss in selected brain regions is an early event in AD pathogenesis. The second meta-analysis of 57 synaptic markers revealed that presynaptic makers were affected more than postsynaptic markers. DISCUSSION The present meta-analysis study showed a consistent synaptic loss across brain regions and that molecular machinery including endosomal pathways, vesicular assembly mechanisms, glutamate receptors, and axonal transport are often affected.
Collapse
Affiliation(s)
- Martijn C de Wilde
- Nutricia Advanced Medical Nutrition, Nutricia Research, Utrecht, The Netherlands
| | - Cassia R Overk
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - John W Sijben
- Nutricia Advanced Medical Nutrition, Nutricia Research, Utrecht, The Netherlands
| | - Eliezer Masliah
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Department of Pathology, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
13
|
Wouterlood FG, Bloem B, Mansvelder HD, Luchicchi A, Deisseroth K. A fourth generation of neuroanatomical tracing techniques: exploiting the offspring of genetic engineering. J Neurosci Methods 2014; 235:331-48. [PMID: 25107853 DOI: 10.1016/j.jneumeth.2014.07.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 07/28/2014] [Accepted: 07/29/2014] [Indexed: 11/18/2022]
Abstract
The first three generations of neuroanatomical tract-tracing methods include, respectively, techniques exploiting degeneration, retrograde cellular transport and anterograde cellular transport. This paper reviews the most recent development in third-generation tracing, i.e., neurochemical fingerprinting based on BDA tracing, and continues with an emerging tracing technique called here 'selective fluorescent protein expression' that in our view belongs to an entirely new 'fourth-generation' class. Tracing techniques in this class lean on gene expression technology designed to 'label' projections exclusively originating from neurons expressing a very specific molecular phenotype. Genetically engineered mice that express cre-recombinase in a neurochemically specific neuronal population receive into a brain locus of interest an injection of an adeno-associated virus (AAV) carrying a double-floxed promoter-eYFP DNA sequence. After transfection this sequence is expressed only in neurons metabolizing recombinase protein. These particular neurons promptly start manufacturing the fluorescent protein which then accumulates and labels to full detail all the neuronal processes, including fibers and terminal arborizations. All other neurons remain optically 'dark'. The AAV is not replicated by the neurons, prohibiting intracerebral spread of 'infection'. The essence is that the fiber projections of discrete subpopulations of neurochemically specific neurons can be traced in full detail. One condition is that the transgenic mouse strain is recombinase-perfect. We illustrate selective fluorescent protein expression in parvalbumin-cre (PV-cre) mice and choline acetyltransferase-cre (ChAT-cre) mice. In addition we compare this novel tracing technique with observations in brains of native PV mice and ChAT-GFP mice. We include a note on tracing techniques using viruses.
Collapse
Affiliation(s)
- Floris G Wouterlood
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, Vrije University Medical Center, Amsterdam, The Netherlands.
| | - Bernard Bloem
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands; Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - Antonio Luchicchi
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - Karl Deisseroth
- Bioengineering Department, James E. Clark Center, Stanford University, Stanford, CA, USA
| |
Collapse
|
14
|
Bagnato S, Boccagni C, Sant’Angelo A, Prestandrea C, Rizzo S, Galardi G. Patients in a vegetative state following traumatic brain injury display a reduced intracortical modulation. Clin Neurophysiol 2012; 123:1937-41. [DOI: 10.1016/j.clinph.2012.03.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 02/08/2012] [Accepted: 03/18/2012] [Indexed: 11/17/2022]
|
15
|
Yamashita A, Fuchs E, Taira M, Yamamoto T, Hayashi M. Somatostatin-immunoreactive senile plaque-like structures in the frontal cortex and nucleus accumbens of aged tree shrews and Japanese macaques. J Med Primatol 2012; 41:147-57. [PMID: 22512242 DOI: 10.1111/j.1600-0684.2012.00540.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Previously, we demonstrated decreased expression of somatostatin mRNA in aged macaque brain, particularly in the prefrontal cortex. To investigate whether or not this age-dependent decrease in mRNA is related to morphological changes, we analyzed somatostatin cells in the cerebra of aged Japanese macaques and compared them with those in rats and tree shrews, the latter of which are closely related to primates. METHODS Brains of aged macaques, tree shrews, and rats were investigated by immunohistochemistry with special emphasis on somatostatin. RESULTS We observed degenerating somatostatin-immunoreactive cells in the cortices of aged macaques and tree shrews. Somatostatin-immunoreactive senile plaque-like structures were found in areas 6 and 8 and in the nucleus accumbens of macaques, as well as in the nucleus accumbens and the cortex of aged tree shrews, where amyloid accumulations were observed. CONCLUSIONS Somatostatin degenerations may be related to amyloid accumulations and may play roles in impairments of cognitive functions during aging.
Collapse
Affiliation(s)
- Akiko Yamashita
- Division of Applied System Neuroscience, Nihon University School of Medicine, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
16
|
Selective degeneration of septal and hippocampal GABAergic neurons in a mouse model of amyloidosis and tauopathy. Neurobiol Dis 2012; 47:1-12. [PMID: 22426397 DOI: 10.1016/j.nbd.2012.03.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 01/30/2012] [Accepted: 03/01/2012] [Indexed: 01/16/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by brain accumulation of amyloid-β peptide and neurofibrillary tangles, which are believed to initiate a pathological cascade that results in progressive impairment of cognitive functions and eventual neuronal death. To obtain a mouse model displaying the typical AD histopathology of amyloidosis and tauopathy, we generated a triple-transgenic mouse line (TauPS2APP) by overexpressing human mutations of the amyloid precursor protein, presenilin2 and tau genes. Stereological analysis of TauPS2APP mice revealed significant neurodegeneration of GABAergic septo-hippocampal projection neurons as well as their target cells, the GABAergic hippocampal interneurons. In contrast, the cholinergic medial septum neurons remained unaffected. Moreover, the degeneration of hippocampal GABAergic interneurons was dependent on the hippocampal subfield and interneuronal subtype investigated, whereby the dentate gyrus and the NPY-positive interneurons, respectively, were most strongly affected. Neurodegeneration was also accompanied by a change in the mRNA expression of markers for inhibitory interneurons. In line with the loss of inhibitory neurons, we observed functional changes in TauPS2APP mice relative to WT mice, with strongly enhanced long-term potentiation in the medial-perforant pathway input to the dentate gyrus, and stereotypic hyperactivity. Our data indicate that inhibitory neurons are the targets of neurodegeneration in a mouse model of amyloidosis and tauopathy, thus pointing to a possible role of the inhibitory network in the pathophysiological and functional cascade of Alzheimer's disease.
Collapse
|
17
|
Attems J, Ittner A, Jellinger K, Nitsch RM, Maj M, Wagner L, Götz J, Heikenwalder M. Reduced secretagogin expression in the hippocampus of P301L tau transgenic mice. J Neural Transm (Vienna) 2011; 118:737-45. [PMID: 21442354 DOI: 10.1007/s00702-011-0626-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Accepted: 03/13/2011] [Indexed: 11/26/2022]
Abstract
Neuropathological features in Alzheimer's Disease (AD) include the presence of hyperphosphorylated forms of the microtubule-associated tau protein (tau) in hippocampal neurones. Numerous studies indicate a neuroprotective effect of calcium-binding proteins (Ca2+ binding proteins) in neurodegenerative diseases (e.g., AD). Secretagogin is a newly described Ca2+ binding protein that is produced by pyramidal neurones of the human hippocampus. Recently, secretagogin expressing hippocampal neurones were demonstrated to resist tau-induced pathology in AD in contrast to the majority of neighbouring neurones. This suggested a neuroprotective effect of secretagogin in hippocampal neurones. Here, we investigated secretagogin expression in wild type (wt) mice as well as in hemizygous and homozygous P301L tau transgenic (tg) mice, which show pronounced and widespread tau pathology in hippocampal neurones. Secretagogin expression was analyzed at the immunohistochemical and biochemical levels in brains of age-matched wt and hemi- and homozygous tau tg mice. In wt mice hippocampal secretagogin-immunoreactive neurones were invariably detected, while immunoreactivity was much lower (P < 0.001) in tau tg mice. Of note, hippocampal secretagogin immunoreactivity was absent in 62.5% of homozygous tau tg mice. In line with this finding, Western blot analysis demonstrated a significant reduction in protein expression levels of secretagogin in homozygous tau tg compared to wt mice. Our results suggest that increased levels of tau negatively influence secretagogin expression in the hippocampus of tau tg mice.
Collapse
Affiliation(s)
- Johannes Attems
- Institute for Ageing and Health, Wolfson Research Centre, Newcastle University, Newcastle upon Tyne, UK.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Cerebral cortical γ-aminobutyric acid (GABA)ergic interneurons originate from the basal forebrain and migrate into the cortex in 2 phases. First, interneurons cross the boundary between the developing striatum and the cortex to migrate tangentially through the cortical primordium. Second, interneurons migrate radially to their correct neocortical layer position. A previous study demonstrated that mice in which the cortical hem was genetically ablated displayed a massive reduction of Cajal-Retzius (C-R) cells in the neocortical marginal zone (MZ), thereby losing C-R cell-generated reelin in the MZ. Surprisingly, pyramidal cell migration and subsequent layering were almost normal. In contrast, we find that the timing of migration of cortical GABAergic interneurons is abnormal in hem-ablated mice. Migrating interneurons both advance precociously along their tangential path and switch prematurely from tangential to radial migration to invade the cortical plate (CP). We propose that the cortical hem is responsible for establishing cues that control the timing of interneuron migration. In particular, we suggest that loss of a repellant signal from the medial neocortex, which is greatly decreased in size in hem-ablated mice, allows the early advance of interneurons and that reduction of another secreted molecule from C-R cells, the chemokine SDF-1/CXCL12, permits early radial migration into the CP.
Collapse
|
19
|
Blazquez-Llorca L, Garcia-Marin V, Defelipe J. Pericellular innervation of neurons expressing abnormally hyperphosphorylated tau in the hippocampal formation of Alzheimer's disease patients. Front Neuroanat 2010; 4:20. [PMID: 20631843 PMCID: PMC2903190 DOI: 10.3389/fnana.2010.00020] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 04/28/2010] [Indexed: 12/16/2022] Open
Abstract
Neurofibrillary tangles (NFT) represent one of the main neuropathological features in the cerebral cortex associated with Alzheimer's disease (AD). This neurofibrillary lesion involves the accumulation of abnormally hyperphosphorylated or abnormally phosphorylated microtubule-associated protein tau into paired helical filaments (PHF-tau) within neurons. We have used immunocytochemical techniques and confocal microscopy reconstructions to examine the distribution of PHF-tau-immunoreactive (ir) cells, and their perisomatic GABAergic and glutamatergic innervations in the hippocampal formation and adjacent cortex of AD patients. Furthermore, correlative light and electron microscopy was employed to examine these neurons and the perisomatic synapses. We observed two patterns of staining in PHF-tau-ir neurons, pattern I (without NFT) and pattern II (with NFT), the distribution of which varies according to the cortical layer and area. Furthermore, the distribution of both GABAergic and glutamatergic terminals around the soma and proximal processes of PHF-tau-ir neurons does not seem to be altered as it is indistinguishable from both control cases and from adjacent neurons that did not contain PHF-tau. At the electron microscope level, a normal looking neuropil with typical symmetric and asymmetric synapses was observed around PHF-tau-ir neurons. These observations suggest that the synaptic connectivity around the perisomatic region of these PHF-tau-ir neurons was apparently unaltered.
Collapse
Affiliation(s)
- Lidia Blazquez-Llorca
- Laboratorio de Circuitos Corticales (Centro de Tecnología Biomédica), Universidad Politécnica de Madrid Madrid, Spain
| | | | | |
Collapse
|
20
|
Buriticá E, Villamil L, Guzmán F, Escobar MI, García-Cairasco N, Pimienta HJ. Changes in calcium-binding protein expression in human cortical contusion tissue. J Neurotrauma 2010; 26:2145-55. [PMID: 19645526 DOI: 10.1089/neu.2009.0894] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) produces several cellular changes, such as gliosis, axonal and dendritic plasticity, and inhibition-excitation imbalance, as well as cell death, which can initiate epileptogenesis. It has been demonstrated that dysfunction of the inhibitory components of the cerebral cortex after injury may cause status epilepticus in experimental models; we proposed to analyze the response of cortical interneurons and astrocytes after TBI in humans. Twelve contusion samples were evaluated, identifying the expression of glial fibrillary acidic protein (GFAP) and calcium-binding proteins (CaBPs). The study was made in sectors with and without preserved cytoarchitecture evaluated with NeuN immunoreactivity (IR). In sectors with total loss of NeuN-IR the results showed a remarkable loss of CaBP-IR both in neuropil and somata. In sectors with conserved cytoarchitecture less drastic changes in CaBP-IR were detected. These changes include a decrease in the amount of parvalbumin (PV-IR) neurons in layer II, an increase of calbindin (CB-IR) neurons in layers III and V, and an increase in calretinin (CR-IR) neurons in layer II. We also observed glial fibrillary acidic protein immunoreactivity (GFAP-IR) in the white matter, in the gray-white matter transition, and around the sectors with NeuN-IR total loss. These findings may reflect dynamic activity as a consequence of the lesion that is associated with changes in the excitatory circuits of neighboring hyperactivated glutamatergic neurons, possibly due to the primary impact, or secondary events such as hypoxia-ischemia. Temporal evolution of these changes may be the substrate linking severe cortical contusion and the resulting epileptogenic activity observed in some patients.
Collapse
Affiliation(s)
- Efraín Buriticá
- Centro de Estudios Cerebrales, Facultad de Salud, Universidad del Valle , Cali, Valle, Colombia
| | | | | | | | | | | |
Collapse
|
21
|
Takahashi H, Brasnjevic I, Rutten BPF, Van Der Kolk N, Perl DP, Bouras C, Steinbusch HWM, Schmitz C, Hof PR, Dickstein DL. Hippocampal interneuron loss in an APP/PS1 double mutant mouse and in Alzheimer's disease. Brain Struct Funct 2010; 214:145-60. [PMID: 20213270 PMCID: PMC3038332 DOI: 10.1007/s00429-010-0242-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 01/27/2010] [Indexed: 01/26/2023]
Abstract
Hippocampal atrophy and neuron loss are commonly found in Alzheimer's disease (AD). However, the underlying molecular mechanisms and the fate in the AD hippocampus of subpopulations of interneurons that express the calcium-binding proteins parvalbumin (PV) and calretinin (CR) has not yet been properly assessed. Using quantitative stereologic methods, we analyzed the regional pattern of age-related loss of PV- and CR-immunoreactive (ir) neurons in the hippocampus of mice that carry M233T/L235P knocked-in mutations in presenilin-1 (PS1) and overexpress a mutated human beta-amyloid precursor protein (APP), namely, the APP(SL)/PS1 KI mice, as well as in APP(SL) mice and PS1 KI mice. We found a loss of PV-ir neurons (40-50%) in the CA1-2, and a loss of CR-ir neurons (37-52%) in the dentate gyrus and hilus of APP(SL)/PS1 KI mice. Interestingly, comparable PV- and CR-ir neuron losses were observed in the dentate gyrus of postmortem brain specimens obtained from patients with AD. The loss of these interneurons in AD may have substantial functional repercussions on local inhibitory processes in the hippocampus.
Collapse
Affiliation(s)
- Hisaaki Takahashi
- Department of Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands. Department of Psychiatry and Neuropsychology, Maastricht University, 6200 MD Maastricht, The Netherlands. Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Matsuyama, Ehime 791-0295, Japan
| | - Ivona Brasnjevic
- Department of Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands. Department of Psychiatry and Neuropsychology, Maastricht University, 6200 MD Maastricht, The Netherlands. European Graduate School of Neuroscience (EURON), 6200 MD Maastricht, The Netherlands
| | - Bart P. F. Rutten
- Department of Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands. Department of Psychiatry and Neuropsychology, Maastricht University, 6200 MD Maastricht, The Netherlands. European Graduate School of Neuroscience (EURON), 6200 MD Maastricht, The Netherlands
| | - Nicolien Van Der Kolk
- Department of Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands. Department of Psychiatry and Neuropsychology, Maastricht University, 6200 MD Maastricht, The Netherlands. European Graduate School of Neuroscience (EURON), 6200 MD Maastricht, The Netherlands
| | - Daniel P. Perl
- Department of Pathology (Neuropathology), Mount Sinai School of Medicine, New York, NY 10029, USA. Department of Neuroscience, Kastor Neurobiology of Aging Laboratories, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, Box 1065, New York, NY 10029, USA
| | - Constantin Bouras
- Department of Psychiatry, University of Geneva School of Medicine, 1225 Geneva, Switzerland. Department of Neuroscience, Kastor Neurobiology of Aging Laboratories, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, Box 1065, New York, NY 10029, USA
| | - Harry W. M. Steinbusch
- Department of Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands. Department of Psychiatry and Neuropsychology, Maastricht University, 6200 MD Maastricht, The Netherlands. European Graduate School of Neuroscience (EURON), 6200 MD Maastricht, The Netherlands
| | - Christoph Schmitz
- Department of Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands. Department of Psychiatry and Neuropsychology, Maastricht University, 6200 MD Maastricht, The Netherlands. European Graduate School of Neuroscience (EURON), 6200 MD Maastricht, The Netherlands. Department of Neuroscience, Kastor Neurobiology of Aging Laboratories, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, Box 1065, New York, NY 10029, USA
| | - Patrick R. Hof
- Department of Neuroscience, Kastor Neurobiology of Aging Laboratories, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, Box 1065, New York, NY 10029, USA
| | - Dara L. Dickstein
- Department of Neuroscience, Kastor Neurobiology of Aging Laboratories, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, Box 1065, New York, NY 10029, USA
| |
Collapse
|
22
|
Gatome CW, Slomianka L, Mwangi DK, Lipp HP, Amrein I. The entorhinal cortex of the Megachiroptera: a comparative study of Wahlberg’s epauletted fruit bat and the straw-coloured fruit bat. Brain Struct Funct 2010; 214:375-93. [DOI: 10.1007/s00429-010-0239-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 01/09/2010] [Indexed: 10/19/2022]
|
23
|
Garcia-Marin V, Blazquez-Llorca L, Rodriguez JR, Boluda S, Muntane G, Ferrer I, Defelipe J. Diminished perisomatic GABAergic terminals on cortical neurons adjacent to amyloid plaques. Front Neuroanat 2009; 3:28. [PMID: 19949482 PMCID: PMC2784678 DOI: 10.3389/neuro.05.028.2009] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 11/06/2009] [Indexed: 12/19/2022] Open
Abstract
One of the main pathological hallmarks of Alzheimer's disease (AD) is the accumulation of plaques in the cerebral cortex, which may appear either in the neuropil or in direct association with neuronal somata. Since different axonal systems innervate the dendritic (mostly glutamatergic) and perisomatic (mostly GABAergic) regions of neurons, the accumulation of plaques in the neuropil or associated with the soma might produce different alterations to synaptic circuits. We have used a variety of conventional light, confocal and electron microscopy techniques to study their relationship with neuronal somata in the cerebral cortex from AD patients and APP/PS1 transgenic mice. The main finding was that the membrane surfaces of neurons (mainly pyramidal cells) in contact with plaques lack GABAergic perisomatic synapses. Since these perisomatic synapses are thought to exert a strong influence on the output of pyramidal cells, their loss may lead to the hyperactivity of the neurons in contact with plaques. These results suggest that plaques modify circuits in a more selective manner than previously thought.
Collapse
Affiliation(s)
- Virginia Garcia-Marin
- Laboratorio de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
24
|
Attems J, Preusser M, Grosinger-Quass M, Wagner L, Lintner F, Jellinger K. Calcium-binding protein secretagogin-expressing neurones in the human hippocampus are largely resistant to neurodegeneration in Alzheimer's disease. Neuropathol Appl Neurobiol 2007; 34:23-32. [PMID: 17961140 DOI: 10.1111/j.1365-2990.2007.00854.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The pathological findings in Alzheimer's disease (AD) are partly attributed to alterations in calcium-binding protein (CBP) functions. We showed previously that immunoreactivity of secretagogin, a recently cloned CBP, in the human hippocampus is restricted to pyramidal neurones and that the amount of immunoreactive neurones does not differ between AD cases and controls. In this study we investigate the influence of hippocampal tau pathology on secretagogin expression in more details. The study group consisted of 26 cases with different degrees of neuropathologically confirmed AD pathology. Sections were incubated separately with secretagogin- and tau-specific antibodies, respectively. The amount of immunoreactive neurones and integral optical densities were assessed. In addition, double immunofluorescence for both secretagogin and tau was performed. No difference with respect to secretagogin immunoreactivity was observed in different stages of AD pathology, and similarly no significant associations were seen between the amount of secretagogin and tau immunoreactivity in the different hippocampal subfields. Double immunofluorescence revealed that both proteins rarely colocalize because only 5.3% of tau and 2.9% of secretagogin immunoreactive neurones, respectively, showed colocalization. Because there are no differences in the amount of hippocampal secretagogin expression between AD cases and controls (as we have shown previously), the lack of an association between the amount of secretagogin expression and tau burden together with the low frequency of colocalization of tau and secretagogin in the human hippocampus, suggest that secretagogin-expressing neurones are largely resistant to neurodegeneration in AD.
Collapse
Affiliation(s)
- J Attems
- Institute of Pathology, Otto Wagner Hospital, Baumgartner Hoehe, Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
25
|
Teter B. Life-span influences of apoE4 on CNS function. Neurobiol Aging 2007; 28:693-703; discussion 704-6. [PMID: 17045362 DOI: 10.1016/j.neurobiolaging.2006.06.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Accepted: 06/22/2006] [Indexed: 11/20/2022]
Affiliation(s)
- Bruce Teter
- Department of Medicine SFVP, University of California, Los Angeles and Veteran's Administration-GLAHS, Sepulveda VA Medical Center, mc 151, 16111 Plummer St., Sepulveda, CA 91343, United States.
| |
Collapse
|
26
|
Abstract
As part of the hippocampus, the dentate gyrus is considered to play a crucial role in associative memory. The reviewed data suggest that the dentate gyrus withstands the formation of plaques, tangles and neuronal death until late stages of Alzheimer's disease (AD). However, changes related to a disconnecting process, and more subtle intrinsic alterations, may contribute to disturbances in memory and learning observed in early stages of AD.
Collapse
Affiliation(s)
- Thomas G Ohm
- Institute of Integrative Neuroanatomy, Department of Clinical Cell and Neurobiology, Charité CCM, 10098 Berlin, Germany.
| |
Collapse
|
27
|
Belinson H, Dolev I, Michaelson DM. Neuron-specific susceptibility to apolipoprotein E4. Neurobiol Aging 2006; 28:689-92; discussion 704-6. [PMID: 17023093 DOI: 10.1016/j.neurobiolaging.2006.06.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Accepted: 06/19/2006] [Indexed: 10/24/2022]
Affiliation(s)
- Haim Belinson
- Department of Neurobiochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | | | | |
Collapse
|
28
|
PANTAZOPOULOS HARRY, LANGE NICHOLAS, HASSINGER LINDA, BERRETTA SABINA. Subpopulations of neurons expressing parvalbumin in the human amygdala. J Comp Neurol 2006; 496:706-22. [PMID: 16615121 PMCID: PMC1927834 DOI: 10.1002/cne.20961] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Amygdalar intrinsic inhibitory networks comprise several subpopulations of gamma-aminobutyric acidergic neurons, each characterized by distinct morphological features and clusters of functionally relevant neurochemical markers. In rodents, the calcium-binding proteins parvalbumin (PVB) and calbindin D28k (CB) are coexpressed in large subpopulations of amygdalar interneurons. PVB-immunoreactive (-IR) neurons have also been shown to be ensheathed by perineuronal nets (PNN), extracellular matrix envelopes believed to affect ionic homeostasis and synaptic plasticity. We tested the hypothesis that differential expression of these three markers may define distinct neuronal subpopulations within the human amygdala. Toward this end, triple-fluorescent labeling using antisera raised against PVB and CB as well as biotinylated Wisteria floribunda lectin for detection of PNN was combined with confocal microscopy. Among the 1,779 PVB-IR neurons counted, 18% also expressed CB, 31% were ensheathed in PNN, and 7% expressed both CB and PNN. Forty-four percent of PVB-IR neurons did not colocalize with either CB or PNN. The distribution of each of these neuronal subgroups showed substantial rostrocaudal gradients. Furthermore, distinct morphological features were found to characterize each neuronal subgroup. In particular, significant differences relative to the distribution and morphology were detected between PVB-IR neurons expressing CB and PVB-IR neurons wrapped in PNNs. These results indicate that amygdalar PVB-IR neurons can be subdivided into at least four different subgroups, each characterized by a specific neurochemical profile, morphological characteristics, and three-dimensional distribution. Such properties suggest that each of these neuronal subpopulations may play a specific role within the intrinsic circuitry of the amygdala.
Collapse
Affiliation(s)
- HARRY PANTAZOPOULOS
- Translational Neuroscience Laboratory, McLean Hospital, Belmont, Massachusetts 02478
| | - NICHOLAS LANGE
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts 02115
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts 02115
- Neurostatistics Laboratory, McLean Hospital, Belmont, Massachusetts 02478
| | - LINDA HASSINGER
- Translational Neuroscience Laboratory, McLean Hospital, Belmont, Massachusetts 02478
| | - SABINA BERRETTA
- Translational Neuroscience Laboratory, McLean Hospital, Belmont, Massachusetts 02478
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts 02115
- *Correspondence to: Sabina Berretta, MRC3, McLean Hospital, 115 Mill Street, Belmont, MA 02478. E-mail:
| |
Collapse
|
29
|
Cabungcal JH, Nicolas D, Kraftsik R, Cuénod M, Do KQ, Hornung JP. Glutathione deficit during development induces anomalies in the rat anterior cingulate GABAergic neurons: Relevance to schizophrenia. Neurobiol Dis 2006; 22:624-37. [PMID: 16481179 DOI: 10.1016/j.nbd.2006.01.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Revised: 12/19/2005] [Accepted: 01/02/2006] [Indexed: 10/25/2022] Open
Abstract
A series of studies in schizophrenic patients report a decrease of glutathione (GSH) in prefrontal cortex (PFC) and cerebrospinal fluid, a decrease in mRNA levels for two GSH synthesizing enzymes and a deficit in parvalbumin (PV) expression in a subclass of GABA neurons in PFC. GSH is an important redox regulator, and its deficit could be responsible for cortical anomalies, particularly in regions rich in dopamine innervation. We tested in an animal model if redox imbalance (GSH deficit and excess extracellular dopamine) during postnatal development would affect PV-expressing neurons. Three populations of interneurons immunolabeled for calcium-binding proteins were analyzed quantitatively in 16-day-old rat brain sections. Treated rats showed specific reduction in parvalbumin immunoreactivity in the anterior cingulate cortex, but not for calbindin and calretinin. These results provide experimental evidence for the critical role of redox regulation in cortical development and validate this animal model used in schizophrenia research.
Collapse
Affiliation(s)
- Jan-Harry Cabungcal
- Center for Research in Psychiatric Neuroscience, Department of Adult Psychiatry-CHUV, University of Lausanne, 1008-Prilly, Switzerland.
| | | | | | | | | | | |
Collapse
|
30
|
Hardwick C, French SJ, Southam E, Totterdell S. A comparison of possible markers for chandelier cartridges in rat medial prefrontal cortex and hippocampus. Brain Res 2005; 1031:238-44. [PMID: 15649449 DOI: 10.1016/j.brainres.2004.10.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2004] [Indexed: 12/29/2022]
Abstract
Chandelier neurons and their characteristic arrays of axonal terminals, known as cartridges, have been implicated in a variety of psychiatric and neurological disorders including schizophrenia and epilepsy. As a result, these neurons have been extensively examined in the brains of several species using a range of markers. However, these markers have not been systematically compared in a single species for their robustness in labelling chandelier cell cartridges. We have therefore examined several markers, reported to label chandelier arrays in primates, for their capacity to mark these structures in rat medial prefrontal cortex and hippocampus. These studies revealed that cartridge-like structures were labelled by parvalbumin and GAT-1 immunohistochemistry in both medial prefrontal cortex and hippocampus of the rat brain. Additionally, GAD65 immunohistochemistry labelled array-like structures preferentially in the dentate gyrus. In contrast, PSA-NCAM, calbindin and GAD67 immunohistochemistry did not reveal any array-like structures in either region of rat brain. These observations indicate that the various immunological markers previously used to visualise chandelier cell cartridges in primates are not equally efficient in labelling these structures in the rat brain, and that GAT-1 immunohistochemistry is the most robust means of visualising chandelier cell cartridges in the regions examined. These are important considerations for quantitative studies in animal models of neurological disorders where chandelier neurons are implicated.
Collapse
Affiliation(s)
- Claire Hardwick
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, United Kingdom.
| | | | | | | |
Collapse
|
31
|
Pugliese M, Carrasco JL, Geloso MC, Mascort J, Michetti F, Mahy N. Gamma-aminobutyric acidergic interneuron vulnerability to aging in canine prefrontal cortex. J Neurosci Res 2004; 77:913-20. [PMID: 15334609 DOI: 10.1002/jnr.20223] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The aged dog is considered a promising model for examining molecular and cellular processes involved in a variety of human neurological disorders. By using the canine counterpart of senile dementia of the Alzheimer's type (ccSDAT), we investigated the specific vulnerability of the gamma-aminobutyric acid (GABA) cortical subset of interneurons, characterized by their calcium-binding protein content, to neuronal death. Dogs representing a large variety of breeds were classified into three groups: young control, aged control, and ccSDAT. In all dogs, the general distribution and cell typology of parvalbumin-, calretinin-, and calbindin-positive neurons were found to be similar to those in the human. As in Alzheimer's disease patients, neurons displaying parvalbumin or calretinin immunoreactivity were resistant and the calbindin-positive ones depleted. Together with aging, amyloid deposition in its early phase (stage II) participates in this specific neuronal death, but with a lower potency. In conclusion, our data provide evidence that preservation of GABAergic cortical interneurons has to be focused on the early stage of beta-amyloid deposition. We also demonstrate the usefulness of dogs of all breeds for investigating the early phases of human brain aging and Alzheimer's disease.
Collapse
Affiliation(s)
- M Pugliese
- Unitat de Bioquímica, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
32
|
Thom M, Martinian L, Parnavelas JG, Sisodiya SM. Distribution of Cortical Interneurons in Grey Matter Heterotopia in Patients with Epilepsy. Epilepsia 2004; 45:916-23. [PMID: 15270756 DOI: 10.1111/j.0013-9580.2004.46603.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE Grey matter heterotopia are well-defined malformations of the cortex often associated with severe epilepsy. Defects have been identified in genes, including DCX and FLN1, that influence radial migration of postmitotic cells from the ventricular zone to the cortical plate. A proportion of cortical gamma-aminobutyric acid (GABA)-containing interneurons may arise from the ganglionic eminence of the ventral telencephalon. We aimed to identify the subtypes and localisation of interneurons within grey matter heterotopia relative to cortex. METHODS By using quantitative immunohistochemistry, we studied the density and distribution of interneurons within six cases of grey matter heterotopia in postmortem tissue from patients with epilepsy. RESULTS In many cases, a suggestion of focal rudimentary laminar arrangement and small reelin-positive cells was identified within the heterotopia. Immunohistochemistry for glutamic acid decarboxylase(65/57), parvalbumin, calbindin, and calretinin showed inhibitory neurons of all subtypes represented within the heterotopia, and of normal morphology. The mean densities of interneurons were overall similar to those of the overlying cortex, but the interneurons showed less organisation and were more randomly orientated compared with cortex. CONCLUSIONS Interneurons within heterotopia probably arise from the ventricular zone, but their abnormal local organization may influence the epileptogenicity of these lesions.
Collapse
Affiliation(s)
- Maria Thom
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, United Kingdom.
| | | | | | | |
Collapse
|
33
|
Sherwood CC, Holloway RL, Erwin JM, Hof PR. Cortical Orofacial Motor Representation in Old World Monkeys, Great Apes, and Humans. BRAIN, BEHAVIOR AND EVOLUTION 2004; 63:82-106. [PMID: 14685003 DOI: 10.1159/000075673] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2003] [Accepted: 08/27/2003] [Indexed: 11/19/2022]
Abstract
This study presents a comparative stereologic investigation of neurofilament protein- and calcium-binding protein-immunoreactive neurons within the region of orofacial representation of primary motor cortex (Brodmann's area 4) in several catarrhine primate species (Macaca fascicularis, Papio anubis, Pongo pygmaeus, Gorilla gorilla, Pan troglodytes, and Homo sapiens). Results showed that the density of interneurons involved in vertical interlaminar processing (i.e., calbindin- and calretinin-immunoreactive neurons) as well pyramidal neurons that supply heavily-myelinated projections (i.e., neurofilament protein-immunoreactive neurons) are correlated with overall neuronal density, whereas interneurons making transcolumnar connections (i.e., parvalbumin-immunoreactive neurons) do not exhibit such a relationship. These results suggest that differential scaling rules apply to different neuronal subtypes depending on their functional role in cortical circuitry. For example, cortical columns across catarrhine species appear to involve a similar conserved network of intracolumnar inhibitory interconnections, as represented by the distribution of calbindin- and calretinin-immunoreactive neurons. The subpopulation of horizontally-oriented wide-arbor interneurons, on the other hand, increases in density relative to other interneuron subpopulations in large brains. Due to these scaling trends, the region of orofacial representation of primary motor cortex in great apes and humans is characterized by a greater proportion of neurons enriched in neurofilament protein and parvalbumin compared to the Old World monkeys examined. These modifications might contribute to the voluntary dexterous control of orofacial muscles in great ape and human communication.
Collapse
Affiliation(s)
- Chet C Sherwood
- Department of Anthropology, Columbia University, New York, NY, USA.
| | | | | | | |
Collapse
|
34
|
Thom M, Harding BN, Lin WR, Martinian L, Cross H, Sisodiya SM. Cajal-Retzius cells, inhibitory interneuronal populations and neuropeptide Y expression in focal cortical dysplasia and microdysgenesis. Acta Neuropathol 2003; 105:561-9. [PMID: 12734663 DOI: 10.1007/s00401-003-0673-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2002] [Revised: 12/05/2002] [Accepted: 12/11/2002] [Indexed: 02/04/2023]
Abstract
Focal cortical dysplasia (FCD) and microdysgenesis (MD) are likely to represent abnormalities of radial neuronal migration during cortical development. We investigated the distribution of reelin-positive Cajal-Retzius cells, known to be important in the later stages of radial neuronal migration and cortical organization, in 12 surgical cases of both MD and FCD. Quantitation revealed significantly higher numbers of these cells in MD cases compared to controls. As the majority of cortical interneurones arise via tangential rather than radial migration, we studied the distribution and morphology of inhibitory interneuronal subsets immunolabelled for calbindin, parvalbumin and calretinin within these malformations. Frequent findings were a reduction of inhibitory interneurones in the region of FCD and abnormally localised hypertrophic or multipolar calbindin-positive interneurones in both FCD and MD. Neuropeptide Y immunostaining showed a striking increase in the density of the superficial plexus of fibres in both MD and FCD cases in addition to labelling of dysplastic neurones, which may represent an adaptive anti-convulsant mechanism to dampen down seizure propagation.
Collapse
Affiliation(s)
- M Thom
- Department of Clinical and Experimental Epilepsy, Division of Neuropathology, Institute of Neurology, Queen Square, WC1N 3BG, London, UK.
| | | | | | | | | | | |
Collapse
|
35
|
Tardif E, Chiry O, Probst A, Magistretti PJ, Clarke S. Patterns of calcium-binding proteins in human inferior colliculus: identification of subdivisions and evidence for putative parallel systems. Neuroscience 2003; 116:1111-21. [PMID: 12617952 DOI: 10.1016/s0306-4522(02)00774-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The subdivisions of human inferior colliculus are currently based on Golgi and Nissl-stained preparations. We have investigated the distribution of calcium-binding protein immunoreactivity in the human inferior colliculus and found complementary or mutually exclusive localisations of parvalbumin versus calbindin D-28k and calretinin staining. The central nucleus of the inferior colliculus but not the surrounding regions contained parvalbumin-positive neuronal somata and fibres. Calbindin-positive neurons and fibres were concentrated in the dorsal aspect of the central nucleus and in structures surrounding it: the dorsal cortex, the lateral lemniscus, the ventrolateral nucleus, and the intercollicular region. In the dorsal cortex, labelling of calbindin and calretinin revealed four distinct layers.Thus, calcium-binding protein reactivity reveals in the human inferior colliculus distinct neuronal populations that are anatomically segregated. The different calcium-binding protein-defined subdivisions may belong to parallel auditory pathways that were previously demonstrated in non-human primates, and they may constitute a first indication of parallel processing in human subcortical auditory structures.
Collapse
Affiliation(s)
- E Tardif
- Institut de Physiologie, Université de Lausanne, rue du Bugnon 7, 1005 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
36
|
Sisó S, Tort S, Aparici C, Pérez L, Vidal E, Pumarola M. Abnormal neuronal expression of the calcium-binding proteins, parvalbumin and calbindin D-28k, in aged dogs. J Comp Pathol 2003; 128:9-14. [PMID: 12531682 DOI: 10.1053/jcpa.2002.0597] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Disturbances of the gamma-aminobutyric acid (GABA) neurotransmitter system have been implicated in chronic degenerative neurological disease. Cognitive dysfunction and neuron loss are features in older dogs. GABAergic neurons also show immunoreactivity for specific calcium-binding proteins. Immunohistochemistry was used to study the neuronal expression of calbindin D-28k and parvalbumin in different areas of the brain in 13 dogs, aged between 2 and 13.5 years. Calbindin expression was found only in the cerebellum. There were significant differences in the quantity and distribution of neurons expressing these proteins between geriatric and adult brains. Parvalbumin- and calbindin-expressing neurons are relatively sensitive to degeneration in the cerebellum of older dogs. Parvalbumin labelling was associated with dystrophic structures that are commonly associated with ageing.
Collapse
Affiliation(s)
- S Sisó
- Priocat Laboratory, Centre de Recerca en Sanitat Animal, Campus Bellaterra, 08193 Bellaterra, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
37
|
Krenz I, Kalkan D, Wevers A, de Vos RA, Steur EN, Lindstrom J, Pilz K, Nowacki S, Schütz U, Moser N, Witter B, Schröder H. Parvalbumin-containing interneurons of the human cerebral cortex express nicotinic acetylcholine receptor proteins. J Chem Neuroanat 2001; 21:239-46. [PMID: 11382535 DOI: 10.1016/s0891-0618(01)00112-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cholinergic fibers from the basal forebrain are known to contact cholinoceptive cortical pyramidal neurons. Recent electrophysiological studies have revealed that nicotinic acetylcholine receptors are also present in human cerebrocortical interneurons. A direct visualization of nicotinic receptor subunits in cortical interneurons has, however, not yet been performed. We have applied double-immunofluorescence using antibodies against parvalbumin --a marker for the Chandelier and basket cell subpopulation of interneurons--and to the alpha4 and alpha7 subunit proteins of the nicotinic acetylcholine receptor. The vast majority of the parvalbuminergic interneurons was immunoreactive for the alpha4 and the alpha7 nicotinic acetylcholine receptor. Provided these receptors would be functional--as suggested by recent electrophysiological findings--the connectivity pattern of cholinergic afferents appears much more complex than thought before. Not only direct cholinergic impact on cortical projection neurons but also the indirect modulation of these by cholinergic corticopetal fibers contacting intrinsic cortical cells would be possible.
Collapse
Affiliation(s)
- I Krenz
- Department of Anatomy/Neuroanatomy, University of Köln, J. Stelzmann-Strasse 9, D-50931 Koln, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Yokoo H, Isoda K, Yamanouchi H, Sasaki A, Hirato J, Nakazato Y, Miwa Y. Cerebellar basket cells of Creutzfeldt-Jakob disease: immunohistochemical and ultrastructural study. Pathol Int 2000; 50:291-6. [PMID: 10849314 DOI: 10.1046/j.1440-1827.2000.01038.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To elucidate possible abnormalities of cerebellar basket cells of Creutzfeldt-Jakob disease (CJD), seven sporadic cases were examined neuropathologically. Recently, parvalbumin-positive, GABAergic cerebral interneurons have been demonstrated to show early, selective loss in CJD, and the phenomenon is postulated as a cause of characteristic neurological symptoms of CJD. In this study, however, we demonstrated that the basket cells, cerebellar counterparts, were resistant even in patients with severe brain atrophy, and their processes showed intense argyrophilia and immunopositivity to phosphorylated neurofilament. They can newly be listed as CJD-resistant neurons similar to those of the hippocampus and brainstem nuclei. The mechanism to escape cell loss is of great interest, and there might be unknown factors modulating susceptibility within parvalbumin-positive neuronal subgroups. Furthermore, one case showed abnormal positivity with hematoxylin, crystal violet and pyronin in the basket cells. The pyronin positivity was reduced after ribonuclease digestion, suggesting that the causative substance was composed of RNA. Ultrastructurally, the fibers contained free ribosomes and amorphous electron-dense deposits. To our knowledge, such a finding has also not been previously reported.
Collapse
Affiliation(s)
- H Yokoo
- First Department of Pathology, Gunma University School of Medicine, Maebashi, Japan.
| | | | | | | | | | | | | |
Collapse
|
39
|
|
40
|
|
41
|
Leuba G, Kraftsik R, Saini K. Quantitative distribution of parvalbumin, calretinin, and calbindin D-28k immunoreactive neurons in the visual cortex of normal and Alzheimer cases. Exp Neurol 1998; 152:278-91. [PMID: 9710527 DOI: 10.1006/exnr.1998.6838] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The distribution of parvalbumin (PV), calretinin (CR), and calbindin (CB) immunoreactive neurons was studied with the help of an image analysis system (Vidas/Zeiss) in the primary visual area 17 and associative area 18 (Brodmann) of Alzheimer and control brains. In neither of these areas was there a significant difference between Alzheimer and control groups in the mean number of PV, CR, or CB immunoreactive neuronal profiles, counted in a cortical column going from pia to white matter. Significant differences in the mean densities (numbers per square millimeter of cortex) of PV, CR, and CB immunoreactive neuronal profiles were not observed either between groups or areas, but only between superficial, middle, and deep layers within areas 17 and 18. The optical density of the immunoreactive neuropil was also similar in Alzheimer and controls, correlating with the numerical density of immunoreactive profiles in superficial, middle, and deep layers. The frequency distribution of neuronal areas indicated significant differences between PV, CR, and CB immunoreactive neuronal profiles in both areas 17 and 18, with more large PV than CR and CB positive profiles. There were also significantly more small and less large PV and CR immunoreactive neuronal profiles in Alzheimer than in controls. Our data show that, although the brain pathology is moderate to severe, there is no prominent decrease of PV, CR and CB positive neurons in the visual cortex of Alzheimer brains, but only selective changes in neuronal perikarya.
Collapse
Affiliation(s)
- G Leuba
- University Psychogeriatrics Hospital, Lausanne, CH-1008, Switzerland
| | | | | |
Collapse
|
42
|
Vogt Weisenhorn DM, Celio MR, Rickmann M. The onset of parvalbumin-expression in interneurons of the rat parietal cortex depends upon extrinsic factor(s). Eur J Neurosci 1998; 10:1027-36. [PMID: 9753170 DOI: 10.1046/j.1460-9568.1998.00120.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Parvalbumin (PV) belongs to the large family of EF-hand calcium-binding proteins and is an excellent marker for a subpopulation of GABAergic neocortical interneurons. During cortical development, PV first appears on postnatal day (P)8, in the infragranular layers; after P14, it also becomes apparent within the supragranular layers. However, nothing is known about the factors controlling its expression, which could involve functional activity, neuronal connectivity and/or neurotrophic factors. It being difficult to manipulate these parameters in vivo, their role may be more readily assessed in organotypic cultures, which are deprived of their subcortical afferents and efferents, and hence of subcortically derived neurotrophic factors and extrinsic functional activity. We prepared slices of the rat brain on P3, P5, P7 and P9, maintained them in culture for 2-5 weeks, and compared the temporal and spatial distribution pattern of PV-immunoreactivity within these slices with the in vivo situation. We found, first, that during late postnatal in vivo development and ageing, the number of PV-immunoreactive neurons in the parietal cortex decreases significantly, and second, that the expression of PV-immunoreactivity in the parietal cortex was markedly influenced by the phase of postnatal development at which slice cultures were explanted. In those removed on P7 and P9, the number of PV-immunoreactive cells, as well as the temporal and spatial distribution pattern of PV-immunoreactivity corresponded to the in vivo situation, but in explants obtained on P3 or P5, PV-immunoreactivity remained confined to layer V of the cortex, reminiscent of the expression profile manifested at the end of the second postnatal week in vivo. Also, the number of PV-immunoreactive cells in these cultures was significantly lower than in explants at the later stages. Our results indicate that the onset of PV-expression in the parietal cortex depends upon extrinsic cortical factors subsisting prior to P7. Once the production of this protein has been initiated, such influences are no longer required.
Collapse
Affiliation(s)
- D M Vogt Weisenhorn
- Emory University, School of Medicine, Department of Pathology, Atlanta, GA 30329, USA.
| | | | | |
Collapse
|
43
|
Morrison J, Hof P, Huntley G. Neurochemical organization of the primate visual cortex. HANDBOOK OF CHEMICAL NEUROANATOMY 1998. [DOI: 10.1016/s0924-8196(98)80004-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
44
|
DeFelipe J. Types of neurons, synaptic connections and chemical characteristics of cells immunoreactive for calbindin-D28K, parvalbumin and calretinin in the neocortex. J Chem Neuroanat 1997; 14:1-19. [PMID: 9498163 DOI: 10.1016/s0891-0618(97)10013-8] [Citation(s) in RCA: 423] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This article provides a general account of types of neurons, synaptic connections and chemical characteristics (colocalization studies) of cells immunoreactive for the three main calcium-binding proteins found in the neocortex, namely, calbindin-D28K, parvalbumin and calretinin. The main conclusion is two-fold. First, all, or the majority, of calbindin-, parvalbumin- and calretinin-immunoreactive cells are smooth nonpyramidal neurons (interneurons) which participate in a variety of complex cortical circuits that may differ depending on the species, cortical area or layer where they are located. Second, in general, different types of nonpyramidal neurons are stained for each of these calcium-binding proteins and display different chemical characteristics regarding a variety of neurotransmitters (or related compounds), cell surface markers and receptors. However, a certain overlap exits, which also shows regional and species differences.
Collapse
|
45
|
Brady DR, Mufson EJ. Parvalbumin-immunoreactive neurons in the hippocampal formation of Alzheimer's diseased brain. Neuroscience 1997; 80:1113-25. [PMID: 9284064 DOI: 10.1016/s0306-4522(97)00068-7] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The number and topographic distribution of immunocytochemically stained parvalbumin interneurons was determined in the hippocampal formation of control and Alzheimer's diseased brain. In control hippocampus, parvalbumin interneurons were aspiny and pleomorphic, with extensive dendritic arbors. In dentate gyrus, parvalbumin cells, as well as a dense plexus of fibers and puncta, were associated with the granule cell layer. A few cells also occupied the molecular layer. In strata oriens and pyramidale of CA1-CA3 subfields, parvalbumin neurons gave rise to dendrites that extended into adjacent strata. Densely stained puncta and beaded fibers occupied stratum pyramidale, with less dense staining in adjacent strata oriens and radiatum. Virtually no parvalbumin profiles were observed in stratum lacunosum-moleculare or the alveus. Numerous polymorphic parvalbumin neurons and a dense plexus of fibers and puncta characterized the deep layer of the subiculum and the lamina principalis externa of the presubiculum. In Alzheimer's diseased hippocampus, there was an approximate 60% decrease in the number of parvalbumin interneurons in the dentate gyrus/CA4 subfield (P<0.01) and subfields CA1-CA2 (P<0.01). In contrast, parvalbumin neurons did not statistically decline in subfields CA3, subiculum or presubiculum in Alzheimer's diseased brains relative to controls. Concurrent staining with Thioflavin-S histochemistry did not reveal degenerative changes within parvalbumin-stained profiles. These findings reveal that parvalbumin interneurons within specific hippocampal subfields are selectively vulnerable in Alzheimer's disease. This vulnerability may be related to their differential connectivity, e.g., those regions connectionally related to the cerebral cortex (dentate gyrus and CA1) are more vulnerable than those regions connectionally related to subcortical loci (subiculum and presubiculum).
Collapse
Affiliation(s)
- D R Brady
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, U.S.A
| | | |
Collapse
|
46
|
Abstract
The calcium-binding protein calretinin (CR) is present in a subpopulation of local-circuit neurons in the mammalian cerebral cortex containing gamma-aminobutyric acid. This light microscopic investigation provides a detailed qualitative and quantitative morphological analysis of CR-immunoreactive (CR+) neurons in the medial prefrontal cortex (mPFC; areas 24a,b,c, 32', and 25) of the normal adult human. The morphology of CR+ neurons and their areal and laminar distributions were consistent across human mPFC. The principal organisational features of CR+ labelling were the marked laminar distribution of immunoreactive somata and the predominantly vertical orientation of labelled axon-like and dendritic processes. Several types of CR- neurons were present in layer 1, including horizontally aligned Cajal-Retzius cells. In layers 2-6, CR+ neurons displayed a variety of morphologies: bipolar cells (49% of CR+ population), vertically bitufted cells (35%), and horizontally bitufted cells (3.5%). These neuron types were mainly located in layer 2/upper layer 3, and their dendritic processes were commonly aspiny and sometimes highly beaded. Aspiny (8%) and sparsely spiny multipolar (5%) CR+ neurons were also found. The mean somatic profile diameter of CR+ cells was 11.6 +/- 0.3 microm (mean +/- S.D). CA+ puncta formed pericellular baskets around unlabelled circular somatic profiles in layers 2/3 and around unlabelled pyramidal-shaped somata in layers 5/6. The somatic sizes of these unlabelled cell populations were significantly different. Immunolabelled puncta were also found in close contact with CR+ somata. Cortical depth distribution histograms and laminar thickness measurements defined the proportions of the overall CR- cell population in each layer: 7% in layer 1, 78% in layers 2/3, 14% in layers 5/6, and 1% in the white matter. In the tangential plane, CR+ neurons were distributed uniformly at all levels of the cortex. By using stereological counting procedures on immunoreacted Nissl-stained sections, CR+ neurons were estimated to constitute a mean 8.0% (7.2-8.7%) of the total neuron population in each cortical area. These data are compared with similar information obtained for the mPFC in monkey and rat (Gabbott and Bacon [1996b] J. Comp. Neurol. 364:657-608; Gabbott et al., [1997] J. Comp. Neurol. 377:465-499). This study provides important morphological insights into a neurochemically distinct subclass of local-circuit inhibitory neurons in the human mPFC.
Collapse
Affiliation(s)
- P L Gabbott
- University Department of Pharmacology, Oxford University, United Kingdom.
| | | | | |
Collapse
|
47
|
Sorvari H, Soininen H, Pitkänen A. Calbindin-D28K-immunoreactive cells and fibres in the human amygdaloid complex. Neuroscience 1996; 75:421-43. [PMID: 8931007 DOI: 10.1016/0306-4522(96)00296-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The distribution of calbindin-D28k-immunoreactive cells and fibres in five human amygdalae was analysed from sections that had been stained immunohistochemically with a monoclonal antibody raised against calbindin-D28k. The highest density of calbindin-D28k-positive neurons were found in the anterior cortical, medial, posterior cortical and accessory basal nuclei, in the parvicellular division of the basal nucleus and in the amygdalohippocampal area. The lowest densities of immunopositive neurons were found in the paralaminar nucleus, in the periamygdaloid cortex (PAC1 and PACo) and in some of the intercalated nuclei. The deep nuclei (lateral, basal and accessory basal nuclei) contained a high density of calbindin-D28k-immunoreactive fibres and terminals. The cortical nuclei and the central nucleus were characterized by intense neuropil labelling. Morphologically, a large majority of the calbindin-D28k-immunoreactive neurons were aspiny or sparsely spiny and resembled inhibitory local circuit neurons. A small population of lightly-stained, pyramidal-shaped neurons was also observed. In most of the amygdaloid nuclei, calbindin-D28k-immunoreactive fibres travelled close to each other and formed bundles, which suggests that some of the immunostained neurons were double-bouquet cells. In the paralaminar nucleus, the calbindin-D28k-immunoreactive axons formed tortuous plexus (100-200 microns in diameter) that surrounded several unstained somata. This study provides baseline information on the morphology and distribution of calcium-binding protein-containing inhibitory cells and fibres immunoreactive for calbindin-D28k in the human amygdaloid complex. This information can be used in future studies on the pathogenesis of diseases known to damage the amygdala, such as Alzheimer's disease and temporal lobe epilepsy.
Collapse
Affiliation(s)
- H Sorvari
- Department of Neurology, University of Kuopio, Finland
| | | | | |
Collapse
|
48
|
Leuba G, Saini K. Calcium-binding proteins immunoreactivity in the human subcortical and cortical visual structures. Vis Neurosci 1996; 13:997-1009. [PMID: 8961531 DOI: 10.1017/s0952523800007665] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The distribution of neurons and fibers immunoreactive (ir) to the three calcium-binding proteins parvalbumin (PV), calbindin D-28k (CB), and calretinin (CR) was studied in the human lateral geniculate nucleus (LGN), lateral inferior pulvinar, and optic radiation, and related to that in the visual cortex. In the LGN, PV, CR, and CB immunoreactivity was present in all laminae, slightly stronger in the magnocellular than in the parvocellular laminae for CB and CR. PV-ir puncta, representing transversally cut axons, and CR-ir fibers were revealed within the laminae and interlaminar zones, and just beyond the outer border of lamina 6 in the geniculate capsule. In the optic radiation both PV- and CR-immunoreactive neurons, puncta, and fibers were present. CB immunoreactivity was revealed in neurons of all laminae of the lateral geniculate nucleus, including S lamina and interlaminar zones. There were hardly any CB-ir puncta or fibers in the laminae, interlaminar zones, geniculate capsule, or optic radiation. In the lateral inferior pulvinar, immunoreactive neurons for the three calcium-binding proteins were present in smaller number than in the LGN, as well as PV-ir puncta and CR-ir fibers within the nucleus and in the pulvinar capsule. In the white matter underlying area 17, fibers intermingled with a few scattered neurons were stained for both PV and CR, but very rarely for CB. These fibers stopped at the limit between areas 17 and 18. Area 17 showed a dense plexus of PV-ir puncta and neurons in the thalamo-receptive layer IV and CR-ir puncta and neurons both in the superficial layers I-II, IIIC, and in layer VA. Cajal-Retzius CR-ir neurons were present in layer I. CB-ir puncta were almost confined to layer I-III and CB-ir neurons to layer II. Finally the superior colliculus exhibited mostly populations of PV and CR pyramidal-like immunoreactive neurons, mainly in the intermediate tier. These data suggest that in the visual thalamus most calcium-binding protein immunoreactive neurons project to the visual cortex, while in the superior colliculus a smaller immunoreactive population represent projection neurons.
Collapse
Affiliation(s)
- G Leuba
- University Psychogeriatrics Hospital, Lausanne-Prilly, Switzerland
| | | |
Collapse
|
49
|
Condé F, Lund JS, Lewis DA. The hierarchical development of monkey visual cortical regions as revealed by the maturation of parvalbumin-immunoreactive neurons. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1996; 96:261-76. [PMID: 8922688 DOI: 10.1016/0165-3806(96)00126-5] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The prefrontal cortex is known to be involved in behavioral paradigms requiring decisions based on short-term working memory, and visually related areas of prefrontal cortex represent the final point in a proposed hierarchical sequence of visual signal processing that begins in primary visual cortex. This study asks if the development of at least certain aspects of the circuitry of each region involved in this hierarchy proceeds in a sequential fashion from primary to higher-order areas. The timing and patterns of expression of immunoreactivity for the calcium-binding protein parvalbumin were examined in areas V1, V2, TE, 7a, and 46 in two series of macaque monkeys ranging in age from embryonic day 132 to adult. The number and laminar distribution of parvalbumin-labeled neurons reached adult levels first in area V1 (primary visual cortex), followed by the adjacent visual association area V2, and then by the higher-order regions of the inferior temporal (TE), posterior parietal (7a) and prefrontal (46) cortices. The appearance of parvalbumin immunoreactivity in the axons of the two major classes of local circuit neurons that express this protein, basket and chandelier cells, followed a similar regional pattern. Furthermore, striking differences were present between these two neuronal populations in the laminar pattern and time course of parvalbumin labeling of their axons. These findings demonstrate that at least some aspects of the intrinsic circuitry of the neocortex mature in accordance with a functional hierarchy of cortical regions. In addition, they illustrate the complexity of cortical development in terms of the different timing of expression of even a single protein in different compartments within single neurons, in different cell types, in different laminae within a region, and across different cortical regions.
Collapse
Affiliation(s)
- F Condé
- Laboratoire de Neurobiologie et Neuropharmacologie du Developpement, Université Paris-XI, Orsay, France
| | | | | |
Collapse
|
50
|
Sorvari H, Miettinen R, Soininen H, Pitkanen A. Parvalbumin-immunoreactive neurons make inhibitory synapses on pyramidal cells in the human amygdala: a light and electron microscopic study. Neurosci Lett 1996. [DOI: 10.1016/0304-3940(96)13067-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|