1
|
Cocaine use disorder: A look at metabotropic glutamate receptors and glutamate transporters. Pharmacol Ther 2021; 221:107797. [DOI: 10.1016/j.pharmthera.2020.107797] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 11/04/2020] [Indexed: 01/08/2023]
|
2
|
Takács VT, Klausberger T, Somogyi P, Freund TF, Gulyás AI. Extrinsic and local glutamatergic inputs of the rat hippocampal CA1 area differentially innervate pyramidal cells and interneurons. Hippocampus 2012; 22:1379-91. [PMID: 21956752 PMCID: PMC4473063 DOI: 10.1002/hipo.20974] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 07/21/2011] [Indexed: 11/08/2022]
Abstract
The two main glutamatergic pathways to the CA1 area, the Schaffer collateral/commissural input and the entorhinal fibers, as well as the local axons of CA1 pyramidal cells innervate both pyramidal cells and interneurons. To determine whether these inputs differ in their weights of activating GABAergic circuits, we have studied the relative proportion of pyramidal cells and interneurons among their postsynaptic targets in serial electron microscopic sections. Local axons of CA1 pyramidal cells, intracellularly labeled in vitro or in vivo, innervated a relatively high proportion of interneuronal postsynaptic targets (65.9 and 53.8%, in vitro and in vivo, respectively) in stratum (str.) oriens and alveus. In contrast, axons of in vitro labeled CA3 pyramidal cells in str. oriens and str. radiatum of the CA1 area made synaptic junctions predominantly with pyramidal cell spines (92.9%). The postsynaptic targets of anterogradely labeled medial entorhinal cortical boutons in CA1 str. lacunosum-moleculare were primarily pyramidal neuron dendritic spines and shafts (90.8%). The alvear group of the entorhinal afferents, traversing str. oriens, str. pyramidale, and str. radiatum showed a higher preference for innervating GABAergic cells (21.3%), particularly in str. oriens/alveus. These data demonstrate that different glutamatergic pathways innervate CA1 GABAergic cells to different extents. The results suggest that the numerically smaller CA1 local axonal inputs together with the alvear part of the entorhinal input preferentially act on GABAergic interneurons in contrast to the CA3, or the entorhinal input in str. lacunosum-moleculare. The results highlight differences in the postsynaptic target selection of the feed-forward versus recurrent glutamatergic inputs to the CA1 and CA3 areas.
Collapse
Affiliation(s)
- Virág T Takács
- Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| | | | | | | | | |
Collapse
|
3
|
Broussard DM, Titley HK, Antflick J, Hampson DR. Motor learning in the VOR: the cerebellar component. Exp Brain Res 2011; 210:451-63. [PMID: 21336828 DOI: 10.1007/s00221-011-2589-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 01/31/2011] [Indexed: 12/23/2022]
Abstract
This paper reviews results that support a model in which memory for VOR gain is initially encoded in the flocculus, and in which cerebellar LTD and LTP are responsible for gain increases and gain decreases, respectively. We also review data suggesting that after it is encoded, motor memory can either be disrupted, possibly by a local mechanism, or else consolidated. We show that consolidation can be rapid, in which case the frequency dependence of learning is unchanged and we will argue that this is consistent with a local mechanism of consolidation. In the longer term, however, the available evidence supports the transfer of memory out of the flocculus. In new experiments reported here, we address the mechanism of memory encoding. Pharmacological evidence shows that both mGluR1 and GABA(B) receptors in the flocculus are necessary for gain-up, but not for gain-down learning. Immunohistochemical experiments show that the two receptors are largely segregated on different dendritic spines on Purkinje cells. Together with what is already known of the mechanisms of cerebellar LTD and LTP, our data suggest that the direction of learning may be determined by interactions among groups of spines. Our results also provide new evidence for the existence of frequency channels for vestibular signals within the cerebellar cortex.
Collapse
|
4
|
Olive MF. Metabotropic glutamate receptor ligands as potential therapeutics for addiction. ACTA ACUST UNITED AC 2009; 2:83-98. [PMID: 19630739 DOI: 10.2174/1874473710902010083] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
There is now compelling evidence that the excitatory amino acid neurotransmitter glutamate plays a pivotal role in drug addiction and alcoholism. As a result, there has been increasing interest in developing glutamate-based therapies for the treatment of addictive disorders. Receptors for glutamate are primarily divided into two classes: ionotropic glutamate receptors (iGluRs) that mediate fast excitatory glutamate transmission, and metabotropic glutamate receptors (mGluRs), which are G-protein coupled receptors that mediate slower, modulatory glutamate transmission. Most iGluR antagonists, while showing some efficacy in animal models of addiction, exhibit serious side effects when tested in humans. mGluR ligands, on the other hand, which have been advanced to testing in clinical trials for various medical conditions, have demonstrated the ability to reduce drug reward, reinforcement, and relapse-like behaviors in animal studies. mGluR ligands that have been shown to be primarily effective are Group I (mGluR1 and mGluR5) negative allosteric modulators and Group II (mGluR2 and mGluR3) orthosteric presynaptic autoreceptor agonists. In this review, we will summarize findings from animal studies suggesting that these mGluR ligands may be of potential benefit in reducing on-going drug self-administration and may aid in the prevention of relapse. The neuroanatomical distribution of mGluR1, mGluR2/3, and mGluR5 receptors and the pharmacological properties of Group I negative allosteric modulators and Group II agonists will also be overviewed. Finally, we will discuss the current status of mGluR ligands in human clinical trials.
Collapse
Affiliation(s)
- M Foster Olive
- Center for Drug and Alcohol Programs, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, 67 President Street, MSC 861, Charleston, SC 29425, USA.
| |
Collapse
|
5
|
Ferraguti F, Crepaldi L, Nicoletti F. Metabotropic glutamate 1 receptor: current concepts and perspectives. Pharmacol Rev 2008; 60:536-81. [PMID: 19112153 DOI: 10.1124/pr.108.000166] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Almost 25 years after the first report that glutamate can activate receptors coupled to heterotrimeric G-proteins, tremendous progress has been made in the field of metabotropic glutamate receptors. Now, eight members of this family of glutamate receptors, encoded by eight different genes that share distinctive structural features have been identified. The first cloned receptor, the metabotropic glutamate (mGlu) receptor mGlu1 has probably been the most extensively studied mGlu receptor, and in many respects it represents a prototypical subtype for this family of receptors. Its biochemical, anatomical, physiological, and pharmacological characteristics have been intensely investigated. Together with subtype 5, mGlu1 receptors constitute a subgroup of receptors that couple to phospholipase C and mobilize Ca(2+) from intracellular stores. Several alternatively spliced variants of mGlu1 receptors, which differ primarily in the length of their C-terminal domain and anatomical localization, have been reported. Use of a number of genetic approaches and the recent development of selective antagonists have provided a means for clarifying the role played by this receptor in a number of neuronal systems. In this article we discuss recent advancements in the pharmacology and concepts about the intracellular transduction and pathophysiological role of mGlu1 receptors and review earlier data in view of these novel findings. The impact that this new and better understanding of the specific role of these receptors may have on novel treatment strategies for a variety of neurological and psychiatric disorders is considered.
Collapse
Affiliation(s)
- Francesco Ferraguti
- Department of Pharmacology, Innsbruck Medical University, Peter-Mayr Strasse 1a, Innsbruck A-6020, Austria.
| | | | | |
Collapse
|
6
|
Castiglione M, Calafiore M, Costa L, Sortino MA, Nicoletti F, Copani A. Group I metabotropic glutamate receptors control proliferation, survival and differentiation of cultured neural progenitor cells isolated from the subventricular zone of adult mice. Neuropharmacology 2008; 55:560-7. [PMID: 18603270 DOI: 10.1016/j.neuropharm.2008.05.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 05/02/2008] [Accepted: 05/18/2008] [Indexed: 10/22/2022]
Abstract
Neural progenitor cells (NPCs) are found in the subventricular zone (SVZ) of the adult brain, a specialized neurogenic niche that might provide a substrate for brain repair after injury. The incomplete knowledge of how NPCs in the niche respond to local signals limits the use of cultured NPCs in the development of cell transplantation strategies. We show that neurospheres obtained from the SVZ of the adult mouse expressed functional mGlu1 and mGlu5 metabotropic glutamate receptors. Pharmacological blockade of mGlu5 receptors promoted the apoptotic death of progenitors undergoing differentiation into neurons (PSA/NCAM+ cells for the most part), whereas blockade of mGlu1 receptors reduced the proliferation rate of NPCs, and promoted their differentiation towards the neuronal lineage. We conclude that endogenous activation of mGlu5 receptors might support specifically the survival of neuronal-restricted precursors, whereas endogenous activation of mGlu1 receptors might sustain the proliferation of earlier progenitors. Moreover, mGlu1 receptor antagonists increased the survival of NPCs, suggesting that endogenously activated mGlu1 receptors might play a role in the natural cell loss regulating the number or the type of progenitors.
Collapse
Affiliation(s)
- Marzia Castiglione
- Department of Pharmaceutical Sciences, University of Catania, Catania, Italy
| | | | | | | | | | | |
Collapse
|
7
|
Speed HE, Dobrunz LE. Developmental Decrease in Short-Term Facilitation at Schaffer Collateral Synapses in Hippocampus Is mGluR1 Sensitive. J Neurophysiol 2008; 99:799-813. [DOI: 10.1152/jn.00625.2007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Developmental changes can occur in the dynamic properties of synapses, known as short-term plasticity. Using rat acute hippocampal slices at room temperature, we have previously shown a decrease in short-term facilitation at Schaffer collateral synapses from young adults compared with juveniles in response to temporally complex natural stimulus patterns such as synapses receive in vivo. Here we show that this developmental decrease in facilitation is also seen at 32°C and investigate the underlying mechanism. Addition of the mGluR1 antagonist LY367385 increases short-term facilitation in response to the natural stimulus pattern, showing that mGluR1 is activated by synaptically released glutamate. Although synaptic activation of mGluR1 occurs at both ages, the effect is larger in young adults. Furthermore, blocking mGluR1 eliminates most of the developmental decrease in short-term facilitation during the natural stimulus pattern. We investigated possible retrograde/downstream messengers involved after synaptic activation of mGluR1. Blocking cannabinoid receptors has no effect on the response during the natural stimulus pattern, indicating that the reduction in facilitation during synaptic activation of mGluR1 does not occur through release of endocannabinoids. We find that blocking GABAB receptors increases facilitation during the natural stimulus pattern and occludes the effect of the mGluR1 antagonist, indicating a role for the modulation of GABA release from inhibitory interneurons by mGluR1 activation. These data suggest a model where synaptic activation of mGluR1 on inhibitory interneurons causes an increase in GABA release by inhibitory interneurons, which activates GABAB receptors on Schaffer collateral synapses and inhibits short-term facilitation during the natural stimulus pattern.
Collapse
|
8
|
Palucha A, Pilc A. Metabotropic glutamate receptor ligands as possible anxiolytic and antidepressant drugs. Pharmacol Ther 2007; 115:116-47. [PMID: 17582504 DOI: 10.1016/j.pharmthera.2007.04.007] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2007] [Accepted: 04/25/2007] [Indexed: 11/18/2022]
Abstract
Depression and anxiety represent a major problem. However, the current treatment of both groups of diseases is not satisfactory. As the glutamatergic system may play an important role in pathophysiology of both depression and anxiety, we decided to discuss the recent data on possible anxiolytic and/or antidepressant effects of metabotropic glutamate (mGlu) receptor ligands. Preclinical data indicated that antagonists of group I mGlu receptors, particularly antagonists of mGlu5 receptors, produced both anxiolytic-like and antidepressant-like effects. Clinical data also demonstrated that mGlu5 receptor antagonist, fenobam, was an active anxiolytic drug. The anxiolytic effects exerted by mGlu5 receptor antagonists are profound, comparable with or stronger than those of benzodiazepines. However, the problem with the psychotomimetic activity of mGlu5 receptor antagonists and their possible influence on memory has to be further investigated. Among all mGlu receptor ligands, group II mGlu receptor agonists seem to be the drugs with the most promising therapeutic potential and a good safety profile. Animal studies showed anxiolytic-like effects of group II mGlu receptor agonists. Currently, group II mGlu receptor agonists are in phase III clinical trials for potential treatment of anxiety disorders. On the other hand, data has been accumulated, indicating that antagonists of group II mGlu receptors have an antidepressant potential. Group III mGlu receptor ligands represent the least investigated group of mGlu receptors. However, preclinical data also indicates that ligands of these receptors, both agonists and antagonists, may have an anxiolytic-like and antidepressant-like potential.
Collapse
Affiliation(s)
- Agnieszka Palucha
- Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Kraków, Poland
| | | |
Collapse
|
9
|
Wittner L, Henze DA, Záborszky L, Buzsáki G. Hippocampal CA3 pyramidal cells selectively innervate aspiny interneurons. Eur J Neurosci 2006; 24:1286-98. [PMID: 16987216 DOI: 10.1111/j.1460-9568.2006.04992.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The specific connectivity among principal cells and interneurons determines the flow of activity in neuronal networks. To elucidate the connections between hippocampal principal cells and various classes of interneurons, CA3 pyramidal cells were intracellularly labelled with biocytin in anaesthetized rats and the three-dimensional distribution of their axon collaterals was reconstructed. The sections were double-stained for substance P receptor (SPR)- or metabotropic glutamate receptor 1alpha (mGluR-1alpha)-immunoreactivity to investigate interneuron targets of the CA3 pyramidal cells. SPR-containing interneurons represent a large portion of the GABAergic population, including spiny and aspiny classes. Axon terminals of CA3 pyramidal cells contacted SPR-positive interneuron dendrites in the hilus and in all hippocampal strata in both CA3 and CA1 regions (7.16% of all boutons). The majority of axons formed single contacts (87.5%), but multiple contacts (up to six) on single target neurons were also found. CA3 pyramidal cell axon collaterals innervated several types of morphologically different aspiny SPR-positive interneurons. In contrast, spiny SPR-interneurons or mGluR-1alpha-positive interneurons in the hilus, CA3 and CA1 regions were rarely contacted by the filled pyramidal cells. These findings indicate a strong target selection of CA3 pyramidal cells favouring the activation of aspiny classes of interneurons.
Collapse
Affiliation(s)
- Lucia Wittner
- Center for Molecular and Behavioural Neuroscience, Rutgers, The State University of New Jersey, 197 University Ave., Newark, 07102, USA
| | | | | | | |
Collapse
|
10
|
Notenboom RGE, Hampson DR, Jansen GH, van Rijen PC, van Veelen CWM, van Nieuwenhuizen O, de Graan PNE. Up-regulation of hippocampal metabotropic glutamate receptor 5 in temporal lobe epilepsy patients. ACTA ACUST UNITED AC 2005; 129:96-107. [PMID: 16311265 DOI: 10.1093/brain/awh673] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Metabotropic glutamate receptors (mGluRs) are G protein-coupled receptors involved in the regulation of glutamatergic transmission. Recent studies indicate that excitatory group I mGluRs (mGluR1 and mGluR5) contribute to neurotoxicity and hyperexcitability during epileptogenesis. In this study, we examined the distribution of mGluR1alpha and mGluR5 immunoreactivity (IR) in hippocampal resection tissue from pharmaco-resistant temporal lobe epilepsy (TLE) patients. IR was detected with panels of receptor subtype specific antisera in hippocampi from TLE patients without (non-HS group) and with hippocampal sclerosis (HS group) and was compared with that of non-epileptic autopsy controls (control group). By immunohistochemistry and immunoblot analysis, we found a marked increase of mGluR5 IR in hippocampi from the non-HS compared with the control group. High mGluR5 IR was most prominent in the cell bodies and apical dendrites of hippocampal principal neurons and in the dentate gyrus molecular layer. In the HS group, this increase in neuronal mGluR5 IR was even more pronounced, but owing to neuronal loss the number of mGluR5-immunoreactive neurons was reduced compared with the non-HS group. IR for mGluR1alpha was found in the cell bodies of principal neurons in all hippocampal subfields and in stratum oriens and hilar interneurons. No difference in mGluR1alpha IR was observed between neurons in both TLE groups and the control group. However, owing to neuronal loss, the number of mGluR1alpha-positive neurons was markedly reduced in the HS group. The up-regulation of mGluR5 in surviving neurons is probably a consequence rather than a cause of the epileptic seizures and may contribute to the hyperexcitability of the hippocampus in pharmaco-resistant TLE patients. Thus, our data point to a prominent role of mGluR5 in human TLE and indicate mGluR5 signalling as potential target for new anti-epileptic drugs.
Collapse
Affiliation(s)
- Robbert G E Notenboom
- Rudolf Magnus Institute of Neuroscience, Department of Pharmacology and Anatomy, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
11
|
Smits SM, van der Nobelen S, Hornman KJM, von Oerthel L, Burbach JPH, Smidt MP. Signalling through phospholipase C beta 4 is not essential for midbrain dopaminergic neuron survival. Neuroscience 2005; 136:171-9. [PMID: 16198487 DOI: 10.1016/j.neuroscience.2005.07.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Revised: 06/21/2005] [Accepted: 07/19/2005] [Indexed: 11/21/2022]
Abstract
The most prominent progressive neurodegenerative movement disorder, Parkinson's disease, is attributed to selective loss of dopamine neurons in the substantia nigra pars compacta, resulting in severe deficiency of dopamine. The homeo-domain gene, Pit x 3, is essential for proper development of midbrain dopaminergic neurons in the substantia nigra pars compacta and might be involved in midbrain dopaminergic survival pathways. The mGluR1-signaling downstream-effector phospholipase C beta 4 was identified in a suppression subtractive hybridization screen comparing wild-type and Pit x 3-deficient Aphakia midbrain dopaminergic neurons. Expression pattern analysis revealed that phospholipase C beta 4 was expressed in midbrain dopaminergic neurons of the substantia nigra pars compacta and part of the ventral tegmental area, whereas expression of mGluR1alpha was predominantly observed in the more vulnerable midbrain dopaminergic neurons in the lateral substantia nigra pars compacta. However, clear expression of phospholipase C beta 4 in spared midbrain dopaminergic neurons of Aphakia mice located in the ventral tegmental area, indicated that induction and maintenance of phospholipase C beta 4 expression is Pit x 3-independent in these neurons. Furthermore, we report here a normal distribution of midbrain dopaminergic cell bodies and axonal projection to the striatum in phospholipase C beta 4-/- mice, indicating that signaling of phospholipase C beta 4 is not essential for the survival of midbrain dopaminergic neurons.
Collapse
Affiliation(s)
- S M Smits
- Rudolf Magnus Institute of Neuroscience, Department of Pharmacology and Anatomy, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
12
|
Lavreysen H, Pereira SN, Leysen JE, Langlois X, Lesage ASJ. Metabotropic glutamate 1 receptor distribution and occupancy in the rat brain: a quantitative autoradiographic study using [3H]R214127. Neuropharmacology 2004; 46:609-19. [PMID: 14996538 DOI: 10.1016/j.neuropharm.2003.11.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2003] [Revised: 10/18/2003] [Accepted: 11/14/2003] [Indexed: 11/28/2022]
Abstract
We used the selective metabotropic glutamate (mGlu) 1 receptor antagonist [3H]1-(3,4-dihydro-2H-pyrano[2,3-b]quinolin-7-yl)-2-phenyl-1-ethanone ([3H]R214127) to investigate the distribution of mGlu1 receptor binding sites in rat brain. We found high mGlu1 receptor binding in the cerebellum, thalamus, dentate gyrus and medial central gray, moderate binding within the CA3 of the hippocampus and hypothalamus, and low mGlu1 receptor binding in the basal ganglia and cortex. The mGlu1 receptor is also present in variable degree in the dorsal lateral septal nucleus, amygdala, interpeduncular nucleus and median raphe nucleus. Additionally, we employed [3H]R214127 autoradiography as a means of investigating the occupancy of central mGlu1 receptors following in vivo administration of mGlu1 receptor antagonists that prevent binding of this radioligand. We found that the mGlu1 receptor antagonist (3aS,6aS)-6a-naphtalan-2-ylmethyl-5-methyliden-hexahydro-cyclopenta[c]furan-1-on (BAY 36-7620), administered subcutaneously (s.c.) at 10 mg/kg, only occupied about 30% of cerebellar and thalamic mGlu1 receptors. The mGlu1/5 receptor antagonist 2-quinoxaline-carboxamide-N-adamantan-1-yl (NPS 2390) exhibited a relatively high potency in occupying mGlu1 receptors in rat cerebellum (ED50 = 0.75 mg/kg, s.c.) and thalamus (ED50 = 0.63 mg/kg, s.c). In the future, this method can be employed to gain more insight into the in vivo profile and central activity of potential therapeutic agents that act upon the mGlu1 receptor.
Collapse
Affiliation(s)
- Hilde Lavreysen
- CNS Discovery Research, Johnson and Johnson Pharmaceutical Research and Development, a division of Janssen Pharmaceutica N.V., Turnhoutseweg 30, B-2340 Beerse, Belgium
| | | | | | | | | |
Collapse
|
13
|
Ferraguti F, Cobden P, Pollard M, Cope D, Shigemoto R, Watanabe M, Somogyi P. Immunolocalization of metabotropic glutamate receptor 1? (mGluR1?) in distinct classes of interneuron in the CA1 region of the rat hippocampus. Hippocampus 2004; 14:193-215. [PMID: 15098725 DOI: 10.1002/hipo.10163] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In the hippocampal CA1 region, metabotropic glutamate subtype 1 (mGluR1) receptors have been implicated in a variety of physiological responses to glutamate, which include modulation of synaptic transmission and plasticity, as well as neuronal excitability and synchronization. The mGluR1alpha isoform is characteristically expressed only by nonprincipal cells, and it is particularly enriched in somatostatin (SS)-containing interneurons in stratum oriensalveus. Anatomical and physiological data have indicated the presence of mGluR1alpha in several distinct classes of interneurons with their somata located also in strata pyramidale, radiatum, and lacunosum moleculare. Each different interneuron subtype, as defined by functionally relevant criteria, including input/ output characteristics and expression of selective molecular markers, subserves distinct functions in local hippocampal circuits. We have investigated which of the different CA1 interneuron classes express mGluR1alpha by immunofluorescent labeling, combining antibodies to mGluR1alpha, calcium-binding proteins, and neuropeptides, and by intracellular labeling in vitro. Several types of interneuron that are immunopositive for mGluR1alpha each targeted different domains of pyramidal cells and included (1) O-LM inter-neurons, found to coexpress both SS and parvalbumin (PV); (2) interneurons with target selectivity for other interneurons, expressing vasoactive intestinal polypeptide (VIP) and/or the calcium-binding protein calretinin; (3) procholecystokinin-immunopositive interneurons probably non-basket and dendrite-targeting; and (4) an as-yet unidentified SS-immunoreactive but PV-immunonegative interneuron class, possibly corresponding to oriens-bistratified cells. Estimation of the relative proportion of mGluR1alpha-positive interneurons showed 43%, 46%, and 30% co-labeling with SS, VIP, or PV, respectively. The identification of the specific subclasses of CA1 interneurons expressing mGluR1alpha provides the network basis for assessing the contribution of this receptor to the excitability of the hippocampus.
Collapse
Affiliation(s)
- Francesco Ferraguti
- MRC Anatomical Neuropharmacology Unit, Department of Pharmacology, Oxford University, Mansfield Road, OX1 3TH Oxford, UK.
| | | | | | | | | | | | | |
Collapse
|
14
|
Somogyi P, Dalezios Y, Luján R, Roberts JDB, Watanabe M, Shigemoto R. High level of mGluR7 in the presynaptic active zones of select populations of GABAergic terminals innervating interneurons in the rat hippocampus. Eur J Neurosci 2003; 17:2503-20. [PMID: 12823458 DOI: 10.1046/j.1460-9568.2003.02697.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The release of neurotransmitters is modulated by presynaptic metabotropic glutamate receptors (mGluRs), which show a highly selective expression and subcellular location in glutamatergic terminals in the hippocampus. Using immunocytochemistry, we investigated whether one of the receptors, mGluR7, whose level of expression is governed by the postsynaptic target, was present in GABAergic terminals and whether such terminals targeted particular cells. A total of 165 interneuron dendritic profiles receiving 466 synapses (82% mGluR7a-positive) were analysed. The presynaptic active zones of most GAD-(77%) or GABA-positive (94%) synaptic boutons on interneurons innervated by mGluR7a-enriched glutamatergic terminals (mGluR7a-decorated) were immunopositive for mGluR7a. GABAergic terminals on pyramidal cells and most other interneurons in str. oriens were mGluR7a-immunonegative. The mGluR7a-decorated cells were mostly somatostatin- and mGluR1alpha-immunopositive neurons in str. oriens and the alveus. Their GABAergic input mainly originated from VIP-positive terminals, 90% of which expressed high levels of mGluR7a in the presynaptic active zone. Parvalbumin-positive synaptic terminals were rare on mGluR7a-decorated cells, but on these neurons 73% of them were mGluR7a-immunopositive. Some type II synapses innervating interneurons were immunopositive for mGluR7b, as were some type I synapses. Because not all target cells of VIP-positive neurons are known it has not been possible to determine whether mGluR7 is expressed in a target-cell-specific manner in the terminals of single GABAergic cells. The activation of mGluR7 may decrease GABA release to mGluR7-decorated cells at times of high pyramidal cell activity, which elevates extracellular glutamate levels. Alternatively, the presynaptic receptor may be activated by as yet unidentified endogenous ligands released by the GABAergic terminals or the postsynaptic dendrites.
Collapse
Affiliation(s)
- Peter Somogyi
- MRC Anatomical Neuropharmacology Unit, Department of Pharmacology, Mansfield Road, Oxford University, Oxford OX1 3TH, UK.
| | | | | | | | | | | |
Collapse
|
15
|
Defagot MC, Villar MJ, Antonelli MC. Differential localization of metabotropic glutamate receptors during postnatal development. Dev Neurosci 2003; 24:272-82. [PMID: 12457065 DOI: 10.1159/000066741] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The localization of metabotropic glutamate receptors (mGluRs) during development has been associated with brain maturation and plasticity. The developmental immunohistochemical analysis of mGluR1alpha, mGluR2/3 and mGluR4a expression was performed in the cerebral cortex, hippocampus and basal ganglia at postnatal days (P) 4, 8, 12, 35 and 60. In early stages (P4 and P8) mGluR1alpha-like immunoreactivity (mGluR1alpha-LI) was detected in cell bodies and fibers of the frontal cortex, hippocampus and globus pallidus. At P35 and P60, the staining was observed in pyramidal cells and fibers in the deepest layers of the cortex and in stratum oriens of the hippocampus, while a lower labeling was observed in fibers of the globus pallidus. No immunostaining was observed in substantia nigra pars reticulata until P12, when a dense network of fiber staining was detected through the adult stages (P35, P60). mGluR2/3-LI was present from the second week of development in fibers and cell bodies of the stratum lacunosum moleculare of the CA1-CA3 and striatum; this staining pattern persisted until adult stages. mGluR4a-LI was observed at P12 in neuronal bodies of the cortex, in pyramidal cells of the hippocampus and in neuronal cells of the striatum. At P35 and P60, a strong signal was observed in a reduced number of labeled cells of the cerebral cortex, in fibers of the stratum oriens of CA1 and in long processes of substantia nigra pars reticulata. Our results indicate that there are significant changes in the protein expression of mGluR subunits through postnatal development. These differences may play a significant role in the establishment of proper synaptic circuitry in early postnatal life, as well as contributing to the maintenance, stabilization, and plasticity of the rat forebrain, particularly through the participation of mGluR1alpha and mGluR4a.
Collapse
Affiliation(s)
- María C Defagot
- Facultad de Ciencias Biomédicas, Universidad Austral, Buenos Aires, Argentina.
| | | | | |
Collapse
|
16
|
Adult structural plasticity and neurogenesis in the mammalian olfactory system. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2002. [DOI: 10.1007/bf02904491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Smiałowska M, Szewczyk B, Brański P, Wierońska JM, Pałucha A, Bajkowska M, Pilc A. Effect of chronic imipramine or electroconvulsive shock on the expression of mGluR1a and mGluR5a immunoreactivity in rat brain hippocampus. Neuropharmacology 2002; 42:1016-23. [PMID: 12128002 DOI: 10.1016/s0028-3908(02)00062-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies showed that chronic electroconvulsive shock (ECS) or imipramine treatment induced a subsensitivity of group I metabotropic glutamate receptors (mGluR) in hippocampus. In the present study effects of antidepressant treatment on the expression of mGluR1a and mGluR5a, belonging to the group I mGluR, were investigated in rat brain hippocampus using immunohistochemical and Western blot methods, respectively. Male Wistar rats were treated singly or chronically for 21 days with imipramine, 10 mg/kg, twice daily; with ECS (90 mA, 50 Hz, 0.5 s) every second day; or with haloperidol, 1.2 mg/kg, once daily. Appropriate controls were injected with saline. Rats were sacrificed 24 h after the last treatment and their hippocampi were taken out for analysis. It was found that the mGluR1a-immunoreactivity expression increased significantly in Ammon's horn (CA) regions after chronic ECS. The most pronounced effect was observed in the CA3. No significant effects were found after single treatment or after haloperidol. The expression of mGluR5a increased significantly after chronic imipramine in the CA1 and after chronic ECS in the CA3 region. The results obtained indicate an influence of antidepressant treatment on group I mGluR. This increase in the receptor protein level may be a compensatory mechanism developing after chronic treatment.
Collapse
Affiliation(s)
- M Smiałowska
- Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Cracow, Poland.
| | | | | | | | | | | | | |
Collapse
|
18
|
Valenti O, Conn PJ, Marino MJ. Distinct physiological roles of the Gq-coupled metabotropic glutamate receptors Co-expressed in the same neuronal populations. J Cell Physiol 2002; 191:125-37. [PMID: 12064455 DOI: 10.1002/jcp.10081] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The group I metabotropic glutamate receptors, mGluR1 and mGluR5, exhibit a high degree of sequence homology, and are often found co-expressed in the same neuronal populations. These receptors couple to a broad array of effector systems, and are implicated in diverse physiological and pathophysiological functions. Due to the high degree of sequence homology, and the findings that these receptors couple identically in recombinant systems, it has been generally assumed that these two group I mGluR subtypes would exhibit redundant function when coexpressed in the same neurons. With the advent of subtype-selective pharmacological tools, it has become possible to tease apart the functions of mGluR1 and mGluR5 in the same neuron. The emerging picture is one of diverse function, which implies differential regulation. Interestingly, the group I mGluRs are modulated by a rich variety of regulatory systems, which may explain how these receptors can mediate divergent actions when present in the same cell.
Collapse
Affiliation(s)
- Ornella Valenti
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | |
Collapse
|
19
|
Hermans E, Challiss RA. Structural, signalling and regulatory properties of the group I metabotropic glutamate receptors: prototypic family C G-protein-coupled receptors. Biochem J 2001; 359:465-84. [PMID: 11672421 PMCID: PMC1222168 DOI: 10.1042/0264-6021:3590465] [Citation(s) in RCA: 208] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In 1991 a new type of G-protein-coupled receptor (GPCR) was cloned, the type 1a metabotropic glutamate (mGlu) receptor, which, despite possessing the defining seven-transmembrane topology of the GPCR superfamily, bore little resemblance to the growing number of other cloned GPCRs. Subsequent studies have shown that there are eight mammalian mGlu receptors that, together with the calcium-sensing receptor, the GABA(B) receptor (where GABA is gamma-aminobutyric acid) and a subset of pheromone, olfactory and taste receptors, make up GPCR family C. Currently available data suggest that family C GPCRs share a number of structural, biochemical and regulatory characteristics, which differ markedly from those of the other GPCR families, most notably the rhodopsin/family A GPCRs that have been most widely studied to date. This review will focus on the group I mGlu receptors (mGlu1 and mGlu5). This subgroup of receptors is widely and differentially expressed in neuronal and glial cells within the brain, and receptor activation has been implicated in the control of an array of key signalling events, including roles in the adaptative changes needed for long-term depression or potentiation of neuronal synaptic connectivity. In addition to playing critical physiological roles within the brain, the mGlu receptors are also currently the focus of considerable attention because of their potential as drug targets for the treatment of a variety of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- E Hermans
- Laboratoire de Pharmacologie, Université Catholique de Louvain (54.10), B-1200 Brussels, Belgium.
| | | |
Collapse
|
20
|
Abstract
The activation of group I metabotropic glutamate receptors (mGluRs) produces a variety of actions that lead to alterations in excitability and synaptic transmission in the CA1 region of the hippocampus. The group I mGluRs, mGluR1 and mGluR5, are activated selectively by (S)-3,5-dihydroxyphenylglycine (DHPG). To identify which of these mGluR subtypes are responsible for the various actions of DHPG in area CA1, we took advantage of two novel subtype-selective antagonists. (S)-(+)-alpha-amino-a-methylbenzeneacetic acid (LY367385) is a potent competitive antagonist that is selective for mGluR1, whereas 2-methyl-6-(phenylethynyl)-pyridine (MPEP) is a potent noncompetitive antagonist that is selective for mGluR5. The use of these compounds in experiments with whole-cell patch-clamp recording and Ca(2+)-imaging techniques revealed that each group I mGluR subtype plays distinct roles in regulating the function of CA1 pyramidal neurons. The block of mGluR1 by LY367385 suppressed the DHPG-induced increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) and the direct depolarization of CA1 hippocampal neurons. In addition, the increase in the frequency of spontaneous IPSCs (sIPSCs) caused by the DHPG-induced depolarization of inhibitory interneurons also was blocked by LY367385, as was the DHPG-induced inhibition of transmission at the Schaffer collateral-->CA1 synapse. On the other hand, the block of mGluR5 by MPEP antagonized the DHPG-induced suppression of the Ca(2+)-activated potassium current (I(AHP)) and potentiation of the NMDA receptor. Finally, antagonism of the DHPG-induced suppression of evoked IPSCs required the blockade of both mGluR1 and mGluR5. These data suggest that mGluR1 and mGluR5 play distinct roles in the regulation of the excitability of hippocampal CA1 pyramidal neurons.
Collapse
|
21
|
Berger MA, Defagot MC, Villar MJ, Antonelli MC. D4 dopamine and metabotropic glutamate receptors in cerebral cortex and striatum in rat brain. Neurochem Res 2001; 26:345-52. [PMID: 11495344 DOI: 10.1023/a:1010990812840] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The characterization of the functional interactions between the metabotropic glutamate receptors (mGluR) and the dopaminergic (DR) receptors in the corticostriatal projections may provide a possible interpretation of synaptic events in the basal ganglia. It has been suggested that presynaptic D2-type receptor located on glutamatergic corticostriatal neurons regulates the release of glutamate. In a first approach we have studied the cellular distribution of the D4R and the mGluRs in cerebral cortex and striatum employing immunocytochemistry. D4R positive neurons were particularly numerous in medial prefrontal cortex mainly occupying layers II and III. An even distribution was found on small round-shaped neurons in the striatum. Group I mGluR1alpha-like immunoreactivity (mGluR1alpha-LI) was found in medial and deep layers of the cerebral cortex while group III mGluR4a labeled more superficial layers; group II mGluR2/3 signal was intense on fine fibers with a punctate appearance. In the striatum, mGluR1alpha and mGluR2/3 stained mainly fibers while mGluR4a labeled round shaped cell bodies. After lateral ventricular injection of colchicine, an axonal transport and firing activity blocker, D4R labeling significantly increased in cerebral cortex and decreased in the striatum. mGluR1alpha and mGluR4a signal decreased in cerebral cortex and only mGluR4a signal decreased in the striatum. These results support previous reports indicating a presynaptic localization of D4R in the striatum. In contrast, striatal mGluR1alpha appears to be a postsynaptic receptor probably synthesized in situ. Our results do not support the hypothesis of a colocalization of D4 receptor and one or more of the metabotropic glutamatergic receptors studied here.
Collapse
Affiliation(s)
- M A Berger
- Instituto de Química y Fisicoquímica Biológicas (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | | | | | | |
Collapse
|
22
|
Abstract
Metabotropic glutamate receptors (mGluRs) are a family of G-protein coupled receptors that are expressed in the central and peripheral nervous systems. The purpose of this study was to compare the ligand binding selectivity profiles of the mGluR agonist [(3)H]L-AP4 and the novel radiolabeled phenylglycine antagonist [(3)H]CPPG at all eight rat mGluR subtypes expressed in transfected human embryonic kidney cells. At a concentration of 30 nM [(3)H]L-AP4, no specific binding was detected in membranes expressing the group I receptors mGluR1a or mGluR5a, or in membranes expressing the group II mGluRs, mGluR2 and mGluR3. Among the group III mGluRs, specific [(3)H]L-AP4 binding was detected in cells expressing mGluR4a and mGluR8a but not in cells expressing mGluR6 or mGluR7a. The binding of [(3)H]CPPG showed an exceptional pattern of selectivity amongst the mGluR subtypes; at a concentration of 20 nM [(3)H]CPPG, a high level of specific binding was seen in membranes containing mGluR8a but not in any of the other mGluR subtypes. The affinity constant (K(D)) calculated for [(3)H]CPPG binding to mGluR8a was 183 nM. In competition experiments, the phosphono-substituted phenylglycine congeners including MPPG, (RS)-PPG, and unlabeled CPPG were the most potent inhibitors of [(3)H]CPPG binding while non-phosphonated compounds such as L-glutamate and MCPG were substantially less potent. These results demonstrate that [(3)H]L-AP4 and [(3)H]CPPG can be used as probes to selectively label group III mGluRs and that CPPG and related phenylglycine derivatives are useful for studying differences in the ligand recognition sites of highly homologous mGluRs.
Collapse
Affiliation(s)
- M A Naples
- Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada M5S 2S2
| | | |
Collapse
|
23
|
Alvarez FJ, Villalba RM, Carr PA, Grandes P, Somohano PM. Differential distribution of metabotropic glutamate receptors 1a, 1b, and 5 in the rat spinal cord. J Comp Neurol 2000; 422:464-87. [PMID: 10861520 DOI: 10.1002/1096-9861(20000703)422:3<464::aid-cne11>3.0.co;2-#] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Metabotropic glutamate receptors (mGluRs) modulate somatosensory, autonomic, and motor functions at spinal levels. mGluR postsynaptic actions over spinal neurons display the pharmacologic characteristics of type I mGluRs; however, the spinal distribution of type I mGluR isoforms remains poorly defined. In this study, the authors describe a differential distribution of immunoreactivity to various type I mGluR isoforms (mGluR1a, mGluR5a,b, and mGluR1b) that suggests a correlation between specific isoforms and particular aspects of spinal cord function. Two different antisera raised against mGluR5a,b detected intense immunoreactivity within nociceptive afferent terminal fields (laminae I and II) and also in autonomic regions (parasympathetic and sympathetic). In contrast, two of three anti-mGluR1a antibodies did not immunostain lamina I or II. Laminae I and II immunostaining by a third anti-mGluR1a antibody was competed by a peptide sequence obtained from a homologous region in mGluR5, suggesting possible cross reactivity in fixed tissue. Autonomic neurons did not express mGluR1a immunoreactivity. All anti-mGluR1a antibodies strongly and specifically immunolabeled dendritic and somatic membranes of neurons in the deep dorsal horn (lamina III-V) and the ventral horn (lamina VI-IX). Somatic motoneurons expressed mGluR1a immunoreactivity but little or no mGluR5 immunoreactivity. Phrenic and pudendal motoneurons expressed the highest level of mGluR1a immunoreactivity in the spinal cord. Intense mGluR1b immunoreactivity was restricted to a few scattered neurons and a prominent group of neurons in lamina X. Lamina II neurons expressed low levels of mGluR1b immunoreactivity. Ultrastructurally, type I mGluR immunoreactivity was found mostly at extrasynaptic sites on the plasma membrane, but it was also found perisynaptically, in the body of the postsynaptic regions or in relation to intracytoplasmic structures.
Collapse
Affiliation(s)
- F J Alvarez
- Department of Anatomy, Wright State University, Dayton, Ohio 45435, USA.
| | | | | | | | | |
Collapse
|
24
|
Abstract
Activation of glutamate receptors is known to alter the biophysical state of the cytoskeleton of neurons in the developing brain. In this study, we examined the ability of G protein-coupled metabotropic glutamate receptors (mGluRs) to inhibit the formation of processes induced by the expression of the microtubule-associated protein MAP2c. The infection of insect MG-1 cells with a recombinant baculovirus (BV) encoding MAP2c induced the formation of fine filamentous processes. The binding of MAPs to tubulin promotes tubulin polymerization and the formation of microtubules. Co-infection with BVs for the phosphoinositide (PI)-linked mGluR1a or mGluR1b receptor subtypes inhibited the formation of processes induced by MAP2c, whereas co-infection with BVs encoding the mGluR4a or mGluR4b subtypes that couple to adenylyl cyclase did not inhibit the formation of processes. The biochemical pathways responsible for producing the inhibitory effect of mGluR1 were investigated. Inhibitors of protein kinase C, calcium/calmodulin-dependent kinase, and protein tyrosine kinases did not block the inhibitory effect of mGluR1a. The calcium chelator BAPTA and the calcium depletor thapsigargin also did not affect the ability of mGluR1a to inhibit process formation. In contrast, inhibitors of phospholipase C reversed the effect of mGluR1 on process formation, suggesting that one or more metabolites in the PI pathway were responsible for the inhibitory effect. These findings indicate that PIs generated by activation of mGluRs inhibit the binding of MAPs to tubulin and reduce tubulin polymerization and microtubule stability.
Collapse
Affiliation(s)
- X P Huang
- Faculty of Pharmacy and Department of Pharmacology, University of Toronto, Ontario, Canada
| | | |
Collapse
|
25
|
Shigemoto R, Mizuno N. Chapter III Metabotropic glutamate receptors — immunocytochemical and in situ hybridization analyses. GLUTAMATE 2000. [DOI: 10.1016/s0924-8196(00)80044-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
26
|
Grover LM, Yan C. Evidence for involvement of group II/III metabotropic glutamate receptors in NMDA receptor-independent long-term potentiation in area CA1 of rat hippocampus. J Neurophysiol 1999; 82:2956-69. [PMID: 10601432 DOI: 10.1152/jn.1999.82.6.2956] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies implicated metabotropic glutamate receptors (mGluRs) in N-methyl-D-aspartate (NMDA) receptor-independent long-term potentiation (LTP) in area CA1 of the rat hippocampus. To learn more about the specific roles played by mGluRs in NMDA receptor-independent LTP, we used whole cell recordings to load individual CA1 pyramidal neurons with a G-protein inhibitor [guanosine-5'-O-(2-thiodiphosphate), GDPbetaS]. Although loading postsynaptic CA1 pyramidal neurons with GDPbetaS significantly reduced G-protein dependent postsynaptic potentials, GDPbetaS failed to prevent NMDA receptor- independent LTP, suggesting that postsynaptic G-protein-dependent mGluRs are not required. We also performed a series of extracellular field potential experiments in which we applied group-selective mGluR antagonists. We had previously determined that paired-pulse facilitation (PPF) was decreased during the first 30-45 min of NMDA receptor-independent LTP. To determine if mGluRs might be involved in these PPF changes, we used a twin-pulse stimulation protocol to measure PPF in field potential experiments. NMDA receptor-independent LTP was prevented by a group II mGluR antagonist [(2S)-alpha-ethylglutamic acid] and a group III mGluR antagonist [(RS)-alpha-cyclopropyl-4-phosphonophenylglycine], but was not prevented by other group II and III mGluR antagonists [(RS)-alpha-methylserine-O-phosphate monophenyl ester or (RS)-alpha-methylserine-O-phosphate]. NMDA receptor-independent LTP was not prevented by either of the group I mGluR antagonists we examined, (RS)-1-aminoindan-1,5-dicarboxylic acid and 7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester. The PPF changes which accompany NMDA receptor-independent LTP were not prevented by any of the group-selective mGluR antagonists we examined, even when the LTP itself was blocked. Finally, we found that tetanic stimulation in the presence of group III mGluR antagonists lead to nonspecific potentiation in control (nontetanized) input pathways. Taken together, our results argue against the involvement of postsynaptic group I mGluRs in NMDA receptor-independent LTP. Group II and/or group III mGluRs are required, but the specific details of the roles played by these mGluRs in NMDA receptor-independent LTP are uncertain. Based on the pattern of results we obtained, we suggest that group II mGluRs are required for induction of NMDA receptor-independent LTP, and that group III mGluRs are involved in determining the input specificity of NMDA receptor-independent LTP by suppressing potentiation of nearby, nontetanized synapses.
Collapse
Affiliation(s)
- L M Grover
- Department of Physiology, Marshall University School of Medicine, Huntington, West Virginia 25755-9340, USA
| | | |
Collapse
|
27
|
Abstract
Glutamate is the major excitatory neurotransmitter in the brain and plays a unique role in a variety of central nervous system (CNS) functions. The discovery of the metabotropic receptors (mGluRs), a family of G-protein coupled receptors than can be activated by glutamate, has led to an impressive number of studies in recent years aimed at understanding their biochemical, physiological and pharmacological characteristics. The eight mGluRs now known are divided into three groups according to their sequence homology, signal transduction mechanisms, and agonist selectivity. Group I mGluRs include mGluR1 and mGluR5, which are linked to the activation of phospholipase C; Groups II and III include all others and are negatively coupled to adenylyl cyclases. The availability in recent years of agents selective for Group I mGluRs has made possible the study of the physiological roles of these receptors in the CNS. In addition to mediating glutamatergic neurotransmission, Group I mGluRs can modulate other neurotransmitter receptors, including GABA and the ionotropic glutamate receptors. Group I mGluRs are involved in many CNS functions and may participate in a variety of disorders such as pain, epilepsy, ischemia, and chronic neurodegenerative diseases. This class of receptor may provide important pharmacological therapeutic targets and elucidating its functions will be relevant to develop new treatments for neurological and psychiatric disorders in which glutamatergic neurotransmission is abnormally regulated. In this review anatomical, physiological and pharmacological results are presented with a special emphasis on the role of Group I mGluRs in functional and pathological processes.
Collapse
Affiliation(s)
- F Bordi
- Pharmacology Department, GlaxoWellcome Medicine Research Centre, Verona, Italy.
| | | |
Collapse
|
28
|
Soloviev MM, Ciruela F, Chan WY, McIlhinney RA. Identification, cloning and analysis of expression of a new alternatively spliced form of the metabotropic glutamate receptor mGluR1 mRNA1. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1446:161-6. [PMID: 10395931 DOI: 10.1016/s0167-4781(99)00083-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We have applied quantitative RT-PCR analysis to characterise relative levels of expression of the alternatively spliced mGluR1 mRNAs. This has also allowed us to identify and clone a new alternatively spliced form of the mGluR1 mRNA. The newly identified mGluR1f mRNA is expressed at moderate levels in rat brain, reaching its maximum in cortex. mGluR1f differs from the mGluR1a mRNA by deletion of a 35-bp fragment of the mGluR1a/alpha coding sequence and insertion of an 85-bp fragment, found only in mGluR1b/beta mRNA.
Collapse
Affiliation(s)
- M M Soloviev
- Medical Research Council, Anatomical Neuropharmacology Unit, Mansfield Road, Oxford OX1 3TH, UK.
| | | | | | | |
Collapse
|
29
|
Han G, Hampson DR. Ligand binding to the amino-terminal domain of the mGluR4 subtype of metabotropic glutamate receptor. J Biol Chem 1999; 274:10008-13. [PMID: 10187777 DOI: 10.1074/jbc.274.15.10008] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The metabotropic glutamate receptor (mGluR) 4 subtype of metabotropic glutamate receptor is a presynaptic receptor that modulates neurotransmitter release. We have characterized the properties of a truncated, epitope-tagged construct containing part of the extracellular amino-terminal domain of mGluR4. The truncated receptor was secreted into the cell culture medium of transfected human embryonic kidney cells. The oligomeric structure of the soluble truncated receptor was assessed by gel electrophoresis. In the presence of high concentrations of a reducing agent, the truncated receptor migrated as a monomer; at lower concentrations of the reducing agent, only higher molecular weight oligomers were observed. Competition binding experiments using the radiolabeled agonist [3H]L-2-amino-4-phosphonobutyric acid revealed that the rank order of potency of metabotropic ligands at the truncated receptor was similar to that of the full-length membrane-bound receptor. However, the truncated receptor displayed higher affinities for agonists and lower affinities for antagonists compared with the full-length receptor. Deglycosylation produced a shift in the relative molecular weight of the soluble protein from Mr = 71,000 to Mr = 63,000; deglycosylation had no effect on the binding of [3H]L-2-amino-4-phosphonobutyric acid, indicating that the asparagine-linked carbohydrates are not necessary for agonist binding. These results demonstrate that although the primary determinants of ligand binding to mGluR4 are contained within the first 548 amino acids of the receptor, additional amino acids located downstream of this region may influence the affinity of ligands for the binding site.
Collapse
Affiliation(s)
- G Han
- Faculty of Pharmacy and Department of Pharmacology University of Toronto, Toronto, Ontario M5S 252, Canada
| | | |
Collapse
|
30
|
Bruno V, Battaglia G, Kingston A, O'Neill MJ, Catania MV, Di Grezia R, Nicoletti F. Neuroprotective activity of the potent and selective mGlu1a metabotropic glutamate receptor antagonist, (+)-2-methyl-4 carboxyphenylglycine (LY367385): comparison with LY357366, a broader spectrum antagonist with equal affinity for mGlu1a and mGlu5 receptors. Neuropharmacology 1999; 38:199-207. [PMID: 10218860 DOI: 10.1016/s0028-3908(98)00159-2] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
(+)-2-Methyl-4-carboxyphenylglycine (LY367385), a potent and selective antagonist of mGlu1a metabotropic glutamate receptors, was neuroprotective in the following in vitro and in vivo models of excitotoxic death: (i) mixed cultures of murine cortical cells transiently exposed to N-methyl-D-aspartate (NMDA); (ii) rats monolaterally infused with NMDA into the caudate nucleus; and (iii) gerbils subjected to transient global ischemia. We have compared the activity of LY367385 with that of the novel compound (+/-)-alpha-thioxantylmethyl-4-carboxyphenylglycine (LY367366), which antagonizes both mGlu1a and -5 receptors at low micromolar concentrations, but also recruits other subtypes at higher concentrations. Although LY367366 was neuroprotective, it was in general less efficacious than LY357385, suggesting that inhibition of mGlu1 receptors is sufficient to confer significant neuroprotection. We conclude that endogenous activation of mGlu1a receptors (or perhaps other mGlu1 receptor splice variants) contributes to the development of neuronal degeneration of excitotoxic origin.
Collapse
Affiliation(s)
- V Bruno
- I.N.M. Neuromed, Pozzilli, Italy
| | | | | | | | | | | | | |
Collapse
|
31
|
Schulz S, Schmidt H, Händel M, Schreff M, Höllt V. Differential distribution of alternatively spliced somatostatin receptor 2 isoforms (sst2A and sst2B) in rat spinal cord. Neurosci Lett 1998; 257:37-40. [PMID: 9857960 DOI: 10.1016/s0304-3940(98)00803-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have recently shown that the cytoplasmic tail of the somatostatin receptor sst2 undergoes alternative splicing giving rise to two isoforms, SSt2A and sst2B. In the present study, we have raised polyclonal antibodies that specifically detect either sst2A or sst2B and used these antisera for immunocytochemical localization of the receptor proteins in the rat spinal cord. sst2A-immunoreactivity formed a dense network consisting of neuronal perikarya and dendrites in the superficial layers of the dorsal horn. In contrast, prominent sst2B-immunoreactivity was found on neuronal perikarya and proximal dendrites throughout the gray matter of the spinal cord. Taken together, we show that alternative carboxy-terminal splicing is involved in cell-specific expression of somatostatin receptor sst2 isoforms in rat spinal cord, and that sst2A and sst2B mediate effects of somatostatin at different cellular sites.
Collapse
Affiliation(s)
- S Schulz
- Department of Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany
| | | | | | | | | |
Collapse
|
32
|
Ferraguti F, Conquet F, Corti C, Grandes P, Kuhn R, Knopfel T. Immunohistochemical localization of the mGluR1? metabotropic glutamate receptor in the adult rodent forebrain: Evidence for a differential distribution of mGluR1 splice variants. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19981026)400:3<391::aid-cne8>3.0.co;2-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
33
|
Kosinski CM, Standaert DG, Testa CM, Penney JB, Young AB. Expression of metabotropic glutamate receptor 1 isoforms in the substantia nigra pars compacta of the rat. Neuroscience 1998; 86:783-98. [PMID: 9692717 DOI: 10.1016/s0306-4522(97)00654-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Metabotropic glutamate receptors, which are linked via G-proteins to second messenger systems, have been implicated in the physiological regulation of dopaminergic neurons of the substantia nigra pars compacta as well as in neurodegeneration. Of the eight known metabotropic glutamate receptors, metabotropic glutamate receptor 1 is the most abundant subtype in the substantia nigra pars compacta. Metabotropic glutamate receptor 1 is alternatively spliced at the carboxy terminal region to yield five variants: 1a, 1b, 1c, 1d and a form recently identified in human brain, 1g. We used an antibody recognizing metabotropic glutamate receptor 1, and another recognizing the splice form la only, to study the localization of these receptors in dopaminergic neurons identified by the presence of tyrosine hydroxylase. Metabotropic glutamate receptor immunoreactivity was present within the somata, axons, and dendrites of substantia nigra pars compacta neurons. The 1a splice form specific antibody, however, did not label these cells, suggesting that they express a metabotropic glutamate receptor 1 splice form different from 1a. In situ hybridization with splice form-specific oligonucleotide probes was used to determine which of the other known metabotropic glutamate receptor 1 splice forms might be present in the substantia nigra pars compacta. Each probe produced a very distinct labelling pattern in the rat brain with the exception of the 1g specific probe which produced only background signal. Substantia nigra pars compacta neurons were most intensely labelled by the metabotropic glutamate receptor 1d splice form specific probe. Metabotropic glutamate receptor 1a was expressed weakly whereas there was no detectable 1b, c, or g signal in the substantia nigra pars compacta. These data demonstrate that metabotropic glutamate receptor 1 protein is present within the perikarya and processes of dopaminergic neurons in the substantia nigra pars compacta. The majority of this protein is not the 1a splice form, which is abundant in other brain regions, and may be the 1d isoform. Since splicing alters the carboxy terminus of the receptor, it is likely to affect the interaction of the receptor with intracellular signalling systems.
Collapse
Affiliation(s)
- C M Kosinski
- Department of Neurology, Massachusetts General Hospital, Boston 02114, USA
| | | | | | | | | |
Collapse
|
34
|
Kane MD, Vanden Heuvel JP, Isom GE, Schwarz RD. Differential expression of group I metabotropic glutamate receptors (mGluRs) in the rat pheochromocytoma cell line PC12: role of nerve growth factor and ras. Neurosci Lett 1998; 252:1-4. [PMID: 9756344 DOI: 10.1016/s0304-3940(98)00484-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Glutamate treatment of PC12 cells has been shown to result in the accumulation of intracellular inositol phosphates suggesting the presence of glutamate metabotropic receptors (mGluRs) positively coupled to phospholipase C. The present study examined the expression of group I mGluRs (mGluR1 and mGluR5) in PC12 cells. Undifferentiated PC12 cells were found to express both mGluR5 mRNA and receptor protein by reverse transcription polymerase chain reaction (RT-PCR) and western blot techniques. However, mGluR1 mRNA was not detected in these cells and western blot analysis showed only faint mGluR1alpha immunoreactivity suggesting a very low level of mGluR1 expression. Nerve growth factor-induced differentiation of PC12 cells resulted in the induction of mGluR1alpha and mGluR1beta mRNA and mGluR1alpha protein. PC12 cells overexpressing dominant negative ras revealed that NGF-induced mGluR1 induction, but not mGluR5 expression, is dependent on ras pathway activation in these cells. These results suggest PC12 cells may be a useful model for investigating the regulation and expression of group I mGluR isoforms and their role in neuronal processes in vitro.
Collapse
Affiliation(s)
- M D Kane
- Neuroscience Therapeutics, Parke-Davis Pharmaceutical Research Division, Warner-Lambert Company, Ann Arbor, MI 48105, USA
| | | | | | | |
Collapse
|
35
|
Berthele A, Laurie DJ, Platzer S, Zieglgänsberger W, Tölle TR, Sommer B. Differential expression of rat and human type I metabotropic glutamate receptor splice variant messenger RNAs. Neuroscience 1998; 85:733-49. [PMID: 9639268 DOI: 10.1016/s0306-4522(97)00670-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The type I metabotropic glutamate receptor (mGlu1) messenger RNA and protein are known to be widely expressed in rat brain, but knowledge of the regional expression of splice variants other than mGlu1a is limited. Probes were designed for in situ hybridization that specifically recognize each of the carboxy-terminal splice variants mGlu1a, -1b, -1c and -1d. The novel rat mGlu1d sequence was obtained by polymerase chain reaction and the predicted protein is highly homologous to the human sequence but contains both conservative and radical substitutions and is slightly longer (912 vs 908 amino acids). Each rat mGlu1 splice variant messenger RNA was found in a unique expression pattern. The messenger RNA encoding mGlu1a was abundant in cerebellar Purkinje cells and in mitral and tufted cells of the olfactory bulb. Strong expression was also detected in hippocampal interneurons, and neurons of the thalamus and substantia nigra, while moderate expression was found in colliculi and cerebellar granule cells. The mGlu1b messenger RNA was strongly expressed in Purkinje cells, hippocampal pyramidal neurons, dentate gyrus granule cells and lateral septum, and moderately expressed in striatal, superficial cortical and cerebellar granule neurons. The mGlu1d messenger RNA was expressed in all regions where mGlu1a and -1b were detected; abundant in Purkinje cells, mitral and tufted cells, and hippocampal principal neurons and interneurons, strong in thalamus and substantia nigra, and moderate in lateral septum, cortex, striatum and colliculi. Human mGlu1 splice variant expression in the cerebellum matched that found for the rat. No specific signal was found with a probe capable of hybridizing to the rat mGlu1c splice junction, although another probe designed against a more 3' sequence of mGlu1c gave strong signals in the cerebellum and hippocampus, and moderate signals in thalamus and colliculi. It is concluded that mGlu1d messenger RNA is widely expressed, that mGlu1a and -1b messenger RNAs are expressed in almost complementary patterns and that formation of the mGlu1c splice junction is a rare event.
Collapse
Affiliation(s)
- A Berthele
- Max-Planck Institute of Psychiatry, Munich, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Ong WY, Lim TM, Garey LJ. A light and electron microscopic study of the metabotropic glutamate receptor mGluR1a in the normal and kainate-lesioned rat hippocampus. MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1998; 35:173-86. [PMID: 10343978 DOI: 10.1007/bf02815123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The distribution of the metabotropic glutamate receptor mGluR1a was studied in the normal and kainate-lesioned rat hippocampus using a monoclonal (MAb) and a polyclonal antibody to mGluR1a. Many labeled nonpyramidal neurons were observed in the stratum oriens of CA1 in sections incubated with MAb. In comparison, fewer labeled neurons were observed in this layer in sections incubated with polyclonal antibody. Many nonpyramidal neurons were observed in the stratum lucidum of CA3 and the hilus of the dentate gyrus, with both antibodies. The cell bodies of pyramidal neurons were unlabeled. A dense network of labeled processes was observed in the neuropil of the CA fields at electron microscopy. Some dendrites were very densely labeled and did not contain dendritic spines. These were identified as dendrites of nonpyramidal neurons. Other dendrites contained lightly labeled dendritic shafts, but densely labeled dendritic spines, and were identified as dendrites of pyramidal neurons. Intravenous kainate injections resulted in destruction of pyramidal neurons and a massive decrease in mGluR1a immunoreactivity in the CA fields. This decrease was obvious even at 1-5 d postinjection, when the nonpyramidal neurons in the stratum oriens remained densely labeled, suggesting that pyramidal neurons contributed significantly to mGluR1a staining in the CA fields. We conclude that the dendritic spines of hippocampal pyramidal neurons contain mGluR1a, even though little staining is observed in their parent dendritic shafts or cell bodies.
Collapse
Affiliation(s)
- W Y Ong
- Department of Anatomy, National University of Singapore, Singapore
| | | | | |
Collapse
|
37
|
Hiltscher R, Seuwen K, Boddeke HW, Sommer B, Laurie DJ. Functional coupling of human metabotropic glutamate receptor hmGlu1d: comparison to splice variants hmGlu1a and -1b. Neuropharmacology 1998; 37:827-37. [PMID: 9776379 DOI: 10.1016/s0028-3908(98)00079-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Functional coupling of the human mGlu1 splice variants was examined by heterologous expression. In cells stably (CHO) or transiently (A9) expressing the hmGlu1d receptor. agonists elevated intracellular calcium with a rank order of potency typical of a group I mGlu receptor (quisqualate > L-glutamate > (S)-dihydroxyphenylglycine > (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (1S,3R-ACPD)). These responses were reduced by the antagonist (+)-alpha-methyl-4-carboxyphenylglycine (MCPG), by pretreatment with pertussis toxin and phorbol ester, and by removal of extracellular calcium. In transiently transfected HEK293 cells, the hmGlu1b and -1d receptors increased inositol monophosphate (IP) production only in the presence of glutamate, whereas hmGlu1a coupled even in the absence of agonist. This was not due to differences in receptor expression levels as assessed by immunoblotting. Adenylate cyclase activity in HEK293 cells expressing the hmGlu1 variants was neither stimulated nor inhibited by glutamate. In A9 cells hmGlu1a-mediated calcium/fluo-3 fluorescence was sensitive to depletion of intracellular calcium stores by thapsigargin, but the hmGlu1d response was resistant. Thus, hmGlu1d receptors can be distinguished from hmGlu1a by their lack of agonist-independent coupling and their dependence on extracellular calcium.
Collapse
|
38
|
Bilak SR, Morest DK. Differential expression of the metabotropic glutamate receptor mGluR1alpha by neurons and axons in the cochlear nucleus: in situ hybridization and immunohistochemistry. Synapse 1998; 28:251-70. [PMID: 9517834 DOI: 10.1002/(sici)1098-2396(199804)28:4<251::aid-syn1>3.0.co;2-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
mGluR1alpha is a metabotropic glutamate receptor involved in synaptic modifiability. A differential expression in specific neuronal types could reflect their different connections and response properties in central auditory processing. Using in situ hybridization and immunohistochemistry, we studied mGluR1alpha receptor expression throughout the cochlear nucleus. Robust labeling occurred in the dorsal cochlear nucleus and small cell shell, with less in the ventral cochlear nucleus. Among the most intensely labeled were the granule cells of the small cell shell. In the dorsal cochlear nucleus, most cell types expressed message and receptor protein, except granule cells. High levels of receptor were expressed by corn cells and cartwheel cells. The terminal dendrites and synaptic spines of cartwheel and fusiform cells contained receptor protein in the molecular layer, where they could synapse with parallel fibers. Fusiform dendrites also expressed mRNA for mGluR1alpha. The basal dendrites of fusiform cells contained receptor protein in the region where they receive cochlear nerve synapses. Immunostaining of terminal axons was prominent in the molecular layer and the small cell shell, where they were associated with synaptic nests, structures thought to provide long-term changes in excitability. Differential expression levels may reflect different functional requirements of specific cell types, including inhibitory interneurons, like corn cells and cartwheel cells, and excitatory interneurons, like granule cells in the small cell shell, which may participate in local circuits involved in modulatory or gating functions, such as stimulus enhancement or suppression. In presynaptic axons, mGluR1alpha may relate to the long-term signaling requirements of their modulatory functions.
Collapse
Affiliation(s)
- S R Bilak
- Department of Anatomy and Center for Neurological Sciences, The University of Connecticut Health Center, Farmington 06030-3405, USA
| | | |
Collapse
|
39
|
Simonyi A, Xia J, Igbavboa U, Wood WG, Sun GY. Age differences in the expression of metabotropic glutamate receptor 1 and inositol 1,4,5-trisphosphate receptor in mouse cerebellum. Neurosci Lett 1998; 244:29-32. [PMID: 9578137 DOI: 10.1016/s0304-3940(98)00127-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Age differences in the expression of cerebellar metabotropic glutamate receptor 1 (mGluR1) and inositol 1,4,5-trisphosphate receptor (IP3R) were investigated using male C57BL/6NNIA mice 5, 15 and 24 months of age. In situ hybridization for mGluR1 mRNA in the granule cell layer indicated significantly higher mRNA levels in the 24-month-old group as compared to the 5- and 15-month-old groups. However, mRNA levels of individual Purkinje neurons did not show age differences. Western blot analysis using antibody against the predominant isoform, mGluR1a, showed a decline in protein levels in the 24-month-old animals. In situ hybridization for IP3R type 1 mRNA in Purkinje neurons showed a slight but not significant decline in the 24-month-old group. Further assay of [3H]IP3 binding with cerebellar membranes showed significant reduction in Bmax values in the 15- and 24-month-old groups as compared to the 5-month-old group but Kd values were not changed. The decrease in mGluR1a receptor protein together with reduction in IP3R binding sites may play an important role in the decline in cerebellar functions with increasing age.
Collapse
Affiliation(s)
- A Simonyi
- Biochemistry Department, University of Missouri, Columbia 65212, USA
| | | | | | | | | |
Collapse
|
40
|
Mateos JM, Azkue J, Benítez R, Sarría R, Losada J, Conquet F, Ferraguti F, Kuhn R, Knöpfel T, Grandes P. Immunocytochemical localization of the mGluR1b metabotropic glutamate receptor in the rat hypothalamus. J Comp Neurol 1998; 390:225-33. [PMID: 9453666 DOI: 10.1002/(sici)1096-9861(19980112)390:2<225::aid-cne5>3.0.co;2-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The mGluR1 metabotropic glutamate receptor is a G-protein-coupled receptor that exists as different C-terminal splice variants. When expressed in mammalian cells, the mGluR1 splice variants exhibit diverse transduction mechanisms and also slightly differ in their apparent agonist affinities. In the present study, we used an affinity-purified antiserum, specifically reactive to the mGluRlb splice variant, in combination with a highly sensitive preembedding immunocytochemical method for light microscopy to investigate the distribution of this receptor in the rat hypothalamus. An intense immunoreactivity for mGluRlb was observed in distinct hypothalamic nuclei. Thus, neuronal cell bodies and dendrites were stained in the preoptic area, suprachiasmatic nucleus, dorsal hypothalamus, lateral hypothalamus, dorsomedial nucleus, tuberomammilary nucleus, and lateral mammilary body. The ventromedial nucleus exhibited neuropil immunostaining but neuronal cell bodies were not labeled. Strong mGluRlb immunoreactivity was observed in magnocellular neurons of the neuroendocrine supraoptic, paraventricular, and arcuate nuclei. Also, neuronal cell bodies were heavily labeled in the retrochiasmatic nucleus, anterior commissural nucleus, and periventricular nucleus. These immunocytochemical observations, together with previous studies, suggest that mGluRlb is coexpressed with other class I mGluRs in some nuclei throughout the hypothalamus. However, mGluRlb is so far the only receptor of this class strongly expressed in the supraoptic, paraventricular, and arcuate nuclei, which might have relevant implications in the physiological control of the neuroendocrine hypothalamic-pituitary system.
Collapse
Affiliation(s)
- J M Mateos
- Department of Neurosciences, Faculty of Medicine and Dentistry, Basque Country University, Bilbao, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Testa CM, Friberg IK, Weiss SW, Standaert DG. Immunohistochemical localization of metabotropic glutamate receptors mGluR1a and mGluR2/3 in the rat basal ganglia. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19980105)390:1<5::aid-cne2>3.0.co;2-6] [Citation(s) in RCA: 178] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
42
|
Mary S, Gomeza J, Prézeau L, Bockaert J, Pin JP. A cluster of basic residues in the carboxyl-terminal tail of the short metabotropic glutamate receptor 1 variants impairs their coupling to phospholipase C. J Biol Chem 1998; 273:425-32. [PMID: 9417099 DOI: 10.1074/jbc.273.1.425] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Among phospholipase C-coupled metabotropic glutamate receptors (mGluRs), some have a surprisingly long carboxyl-terminal intracellular domain (mGluR1a, -5a, and -5b), and others have a short one (mGluR1b, -1c, and -1d). All mGluR1 sequences are identical up to 46 residues following the 7th transmembrane domain, followed by 313, 20, 11, and 26 specific residues in mGluR1a, mGluR1b, mGluR1c, and mGluR1d, respectively. Several functional differences have been described between the long isoforms (mGluR1a, -5a, and -5b) and the short ones (mGluR1b, -1c, and -1d). Compared with the long receptors, the short ones induce slower increases in intracellular Ca2+, are activated by higher concentration of agonists, and do not exhibit constitutive, agonist-independent activity. To identify the residues responsible for these functional properties, a series of truncated, chimeric, and mutated receptors were constructed. We found that the deletion of the last 19 carboxyl-terminal residues in mGluR1c changed its properties into those of mGluR1a. Moreover, the exchange of the long carboxyl-terminal domain of mGluR5a with that of mGluR1c generated a chimeric receptor that possessed functional properties similar to those of mGluR1c. Mutagenesis of specific residues within the 19 carboxyl-terminal residues of mGluR1c revealed the importance of a cluster of 4 basic residues in defining the specific properties of this receptor. Since this cluster is part of the sequence common to all mGluR1 variants, we conclude that the long carboxyl-terminal domain of mGluR1a suppresses the inhibitory action of this sequence element.
Collapse
Affiliation(s)
- S Mary
- Mécanismes Moléculaires des Communications Cellulaires, Unité Propre de Recherche 9023-CNRS, Centre CNRS Inserm de Pharmacologie Endocrinologie, 141 rue de la Cardonille, 34094 Montpellier Cedex 05, France
| | | | | | | | | |
Collapse
|
43
|
Schulz S, Schreff M, Koch T, Zimprich A, Gramsch C, Elde R, Höllt V. Immunolocalization of two mu-opioid receptor isoforms (MOR1 and MOR1B) in the rat central nervous system. Neuroscience 1998; 82:613-22. [PMID: 9466465 DOI: 10.1016/s0306-4522(97)00288-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have recently shown that the cytoplasmic tail of the rat mu-opioid receptor undergoes alternative splicing giving rise to two isoforms, rMOR1 and rMOR1B. These isoforms exhibit similar pharmacological profiles, however, differ in agonist-induced desensitization of coupling to adenylate cyclase. In the present study, we have raised polyclonal antibodies that specifically detect either rMOR1 or rMOR1B and used these antisera for immunocytochemical localization of the receptor proteins in the rat central nervous system. Prominent MOR1B-like immunoreactivity was found in the external plexiform layer of the main olfactory bulb localized to a dense plexus of dendrites mostly originating from mitral cells and extending into the glomerular layer. MOR1-like immunoreactivity was restricted to the perikarya of mitral cells and to distinct juxtaglomerular cells as well as their processes. While MOR1-, DOR1- and KOR1-like immunoreactivity was absent from the external plexiform layer, high densities of opioid peptides were found in this layer suggesting that MOR1B may be a targeted receptor of these peptides. MOR1-like immunoreactivity was observed in many pain-controlling brain areas including the spinal cord dorsal horn, sensory trigeminal complex, raphe nuclei and periaqueductal gray while MOR1B-like immunoreactivity was not detectable in these regions. Taken together, we provide evidence that the mu receptor isoforms, MOR1 and MOR1B, exhibit a strikingly different distribution in that MOR1 appears to be the major isoform widely distributed throughout the central nervous system and MOR1B being predominantly localized to the olfactory bulb.
Collapse
Affiliation(s)
- S Schulz
- Department of Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany
| | | | | | | | | | | | | |
Collapse
|
44
|
Boxall SJ, Berthele A, Laurie DJ, Sommer B, Zieglgänsberger W, Urban L, Tölle TR. Enhanced expression of metabotropic glutamate receptor 3 messenger RNA in the rat spinal cord during ultraviolet irradiation induced peripheral inflammation. Neuroscience 1998; 82:591-602. [PMID: 9466463 DOI: 10.1016/s0306-4522(97)00246-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metabotropic glutamate receptors are thought to play a role in the development and maintenance of spinal hyperexcitability resulting in hyperalgesia and pain. In this study we have used in situ hybridization to investigate the distribution of metabotropic glutamate receptors mGluR1-7 messenger RNA in the rat spinal cord in a model of inflammatory hyperalgesia. Hyperalgesia was induced in nine-day-old rats by exposure of the left hindpaw to an ultraviolet light source. Lumbar portions of spinal cords were removed from control and ultraviolet-treated animals. In situ hybridization with specific oligonucleotide probes was used to localize metabotropic glutamate receptor messenger RNAs. mGluR1, 3-5 and 7 subtype messenger RNA was detected in the gray matter of the spinal cord with distribution being specific for the different subtypes. A significant increase in the expression of mGluR3 messenger RNA was seen in cells of the dorsal laminae in both sides of the lumbar spinal cord. This increase was most pronounced in laminae II, III and IV but gradually decreased and disappeared by the third day of inflammation. In parallel with this, behavioural experiments revealed mechanical hyperalgesia in both hindlimbs after ultraviolet irradiation. There was no change in mGluR3 messenger RNA expression in the thoracic segments. No changes have been detected in the levels of expression of mGluR 1,2,4,5,7 subtype messenger RNA in spinal cords taken from hyperalgesic animals. These observations show that during ultraviolet irradiation induced inflammation, the synthesis of mGluR3 messenger RNA is altered suggesting that regulation of metabotropic glutamate receptor expression may be instrumental in plastic changes within the spinal cord during the development of hyperalgesia and pain.
Collapse
Affiliation(s)
- S J Boxall
- Novartis Institute for Medical Sciences, London, UK
| | | | | | | | | | | | | |
Collapse
|
45
|
Mary S, Stephan D, Gomeza J, Bockaert J, Pruss RM, Pin JP. The rat mGlu1d receptor splice variant shares functional properties with the other short isoforms of mGlu1 receptor. Eur J Pharmacol 1997; 335:65-72. [PMID: 9371547 DOI: 10.1016/s0014-2999(97)01155-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Three splice variants of the rat metabotropic glutamate receptor 1 (mGlu1a, 1b and 1c receptors) have been characterized so far. All have the same sequence up to the 46th residue following the 7th transmembrane domain, followed by different carboxyl-terminal tails. Whereas mGlu1b and mGlu1c receptors possess a short intracellular carboxyl-terminal tail, the mGlu1a receptor has a very long one. Compared to cells expressing mGlu1b or mGlu1c receptors, a higher agonist potency and basal phospholipase C activity were detected in cells expressing mGlu1a receptors. Another variant with a short carboxyl-terminal tail, the HmGlu1d receptor, has been recently isolated from human brain. Here we show that the mGlu1d receptor variant also exists in the rat. Like all rat mGlu1 receptor variants, the mGlu1d receptor activates phospholipase C upon stimulation with mGlu1 receptor agonists. Although the rank order of agonist potency is the same on mGlu1a and mGlu1d receptors, agonists are less potent in stimulating phospholipase C in mGlu1d receptor-expressing cells than in cells expressing mGlu1a receptors. Moreover, like the other short variants it has no significant constitutive activity. These results indicate that the mGlu1d receptor shares similar functional properties with the other short mGlu1 receptor splice variants, and further suggests that the long carboxyl-terminal tail of the mGlu1a receptor increases phospholipase C coupling efficacy.
Collapse
Affiliation(s)
- S Mary
- Mécanismes Moléculaires des Communications Cellulaires, UPR 9023-CNRS, CCIPE, Montpellier, France
| | | | | | | | | | | |
Collapse
|
46
|
Kinzie JM, Shinohara MM, Van Den Pol AN, Westbrook GL, Segerson TP. Immunolocalization of metabotropic glutamate receptor 7 in the rat olfactory bulb. J Comp Neurol 1997. [DOI: 10.1002/(sici)1096-9861(19970901)385:3<372::aid-cne3>3.0.co;2-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
47
|
Petralia RS, Wang YX, Singh S, Wu C, Shi L, Wei J, Wenthold RJ. A monoclonal antibody shows discrete cellular and subcellular localizations of mGluR1 alpha metabotropic glutamate receptors. J Chem Neuroanat 1997; 13:77-93. [PMID: 9285353 DOI: 10.1016/s0891-0618(97)00023-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The metabotropic glutamate receptor, mGluR1 alpha, is postsynaptic in excitatory synapses in many populations of neurons and mediates long-term responses. The present study defines the distribution of this receptor using a new, highly specific monoclonal antibody to mGluR1 alpha. Overall distribution of immunostaining was similar to that described previously with polyclonal antibodies, including prominent staining in the olfactory bulb, interneurons of the CA1 hippocampus stratum oriens/alveus, globus pallidus, thalamus, Purkinje cells and in cells of the outer dorsal cochlear nucleus and with little or low staining in principal cells of the cerebral cortex and hippocampus. Interestingly, the well-known association of mGluR1 alpha receptors with neocortical interneurons was even more prevalent than previously noted with polyclonal antibodies. Ultrastructural studies in the hippocampus and cerebellum showed dense immunoperoxidase staining in postsynaptic membranes and densities and in perisynaptic and extrasynaptic membranes, as well as substantial cytoplasmic staining associated with organelles, especially the endoplasmic reticulum.
Collapse
Affiliation(s)
- R S Petralia
- Laboratory of Neurochemistry, NIDCD/NIH, Bethesda, MD 20892-4162, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Netzeband JG, Parsons KL, Sweeney DD, Gruol DL. Metabotropic glutamate receptor agonists alter neuronal excitability and Ca2+ levels via the phospholipase C transduction pathway in cultured Purkinje neurons. J Neurophysiol 1997; 78:63-75. [PMID: 9242261 DOI: 10.1152/jn.1997.78.1.63] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Selective agonists for metabotropic glutamate receptor (mGluR) subtypes were tested on mature, cultured rat cerebellar Purkinje neurons (> or = 21 days in vitro) to identify functionally relevant mGluRs expressed by these neurons and to investigate the transduction pathways associated with mGluR-mediated changes in membrane excitability. Current-clamp recordings (nystatin/perforated-patch method) were used to measure the membrane response of Purkinje neurons to brief microperfusion pulses (1.5 s) of the group I (mGluR1/mGluR5) agonists (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (300 microM), quisqualate (5 microM), and (R,S)-3,5-dihydroxyphenylglycine (50-500 microM). All group I mGluR agonists elicited biphasic membrane responses and burst activity in the Purkinje neurons. In addition, the group I mGluR agonists produced alterations in the active membrane properties of the Purkinje neurons and depressed the OFF response after hyperpolarizing current injection. In parallel microscopic Ca2+ imaging experiments, application of the group I mGluR agonists to fura-2-loaded cells elicited increases in intracellular Ca2+ in both the somatic and dendritic regions. The group II (mGluR2/mGluR3) agonist (2S,3S,4S)-alpha-(carboxycyclopropyl)-glycine (10 microM) and the group III (mGluR4/mGluR6/mGluR7/mGluR8) agonists L(+)-2-amino-4-phosphonobutyric acid (1 mM) and O-phospho-L-serine (200 microM) had no effect on the membrane potential or intracellular Ca2+ levels of the Purkinje neurons. The cultured Purkinje neurons, but not granule neurons or interneurons, showed immunostaining for mGluR1alpha in both the somatic and dendritic regions. All effects of the group I mGluR agonists were blocked by (+)-alpha-methyl-4-carboxyphenylglycine (1 mM), an mGluR antagonist. Furthermore, the phospholipase C inhibitor 1-[6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl]-1H -pyrrole-2,5-dione (2 microM) blocked the group I mGluR agonist-mediated electrophysiological response and greatly attenuated the Ca2+ signal elicited by group I mGluR agonists, particularly in the dendrites. The inactive analogue 1-[6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl]-2, 5-pyrrolidine-dione (2 microM) was relatively ineffective against the electrophysiological response and Ca2+ signal. These results indicate that functional group I mGluRs (but not group II or III mGluRs) can be activated on mature Purkinje neurons in culture and result in changes in neuronal excitability and intracellular Ca2+ mediated through phospholipase C. These data obtained from a defined neuronal type, the Purkinje neuron, confirm biochemical and molecular studies on the transduction mechanisms of group I mGluRs and show that this transduction pathway is linked to neuronal excitability and intracellular Ca2+ release in the Purkinje neurons.
Collapse
Affiliation(s)
- J G Netzeband
- Department of Neuropharmacology and Alcohol Research Center, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
49
|
Thomsen C, Pekhletski R, Haldeman B, Gilbert TA, O'Hara P, Hampson DR. Cloning and characterization of a metabotropic glutamate receptor, mGluR4b. Neuropharmacology 1997; 36:21-30. [PMID: 9144638 DOI: 10.1016/s0028-3908(96)00153-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
An alternative spliced variant of metabotropic glutamate receptor subtype mGluR4a, termed mGluR4b was isolated from a rat cDNA library. Subtype mGluR4b was identical to the previously described mGluR4a, except for the last 64 amino acids in the C-terminal region in which were replaced by 135 new amino acids in mGluR4b. Recombinant baculoviruses coding for mGluR4a and mGluR4b were expressed in Spodoptera frugiperda, Sf-9, insect cells and characterized pharmacologically by measuring [3H]-L-2-amino-4-phosphonobutyrate ([3H]-L-AP4) binding and second messenger formation. [3H]-L-AP4 binding to membranes prepared from Sf-9 cells expressing mGluR4a and mGluR4b revealed respective affinities (Kd) of 480 and 360 nM and maximal binding densities (Bmax) of 4.2 and 0.8 pmol/mg protein. The ligand selectivity of mGluR4a and mGluR4b was similar: L-AP4 > L-serine-O-phosphate > L-glutamate > L-2-amino 2-methyl-4-phosphonobutyrate > (1S,3R)-1-aminocyclopentane-1,3-dicarboxylate > or = quisqualate. A decrease in the affinity of [3H]-L-AP4 was observed in the presence of 0.1 mM guanosine 5'-O-(3-thio)trisphosphate-gamma-S, indicating that mGluR4a and mGluR4b were functionally coupled to G-proteins in Sf-9 cells. Agonists of mGluR4 caused a minor decrease in forskolin-induced cAMP formation in Sf-9 cells expressing either mGluR4a or mGluR4b, suggesting that both receptors are coupled to adenylate cyclase in an inhibitory manner. Thus, mGluR4a and mGluR4b share a common signal transduction pathway and pharmacology when expressed in Sf-9 insect cells.
Collapse
Affiliation(s)
- C Thomsen
- Department of Molecular Pharmacology, DK-2760 Målłv, Novo Nordisk A/S, Denmark.
| | | | | | | | | | | |
Collapse
|
50
|
Impaired cerebellar synaptic plasticity and motor performance in mice lacking the mGluR4 subtype of metabotropic glutamate receptor. J Neurosci 1996. [PMID: 8815915 DOI: 10.1523/jneurosci.16-20-06364.1996] [Citation(s) in RCA: 159] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The application of the glutamate analog L-2-amino-4-phosphonobutyric acid (L-AP4) to neurons produces a suppression of synaptic transmission. Although L-AP4 is a selective ligand at a subset of metabotropic glutamate receptors (mGluRs), the precise physiological role of the L-AP4-activated mGluRs remains primarily unknown. To provide a better understanding of the function of L-AP4 receptors, we have generated and studied knockout (KO) mice lacking the mGluR4 subtype of mGluR that displays high affinity for L-AP4. The mGluR4 mutant mice displayed normal spontaneous motor activity and were unimpaired on the bar cross test, indicating that disruption of the mGluR4 gene did not cause gross motor abnormalities, impairments of novelty-induced exploratory behaviors, or alterations in fine motor coordination. However, the mutant mice were deficient on the rotating rod motor-learning test, suggesting that mGluR4 KO mice may have an impaired ability to learn complex motor tasks. Patch-clamp and extracellular field recordings from Purkinje cells in cerebellar slices demonstrated that L-AP4 had no effect on synaptic responses in the mutant mice, whereas in the wild-type mice 100 microM L-AP4 produced a 23% depression of synaptic responses with an EC50 of 2.5 microM. An analysis of presynaptic short-term synaptic plasticity at the parallel fiber-->Purkinje cell synapse demonstrated that paired-pulse facilitation and post-tetanic potentiation were impaired in the mutant mice. In contrast, long-term depression (LTD) was not impaired. These results indicate that an important function of mGluR4 is to provide a presynaptic mechanism for maintaining synaptic efficacy during repetitive activation. The data also suggest that the presence of mGluR4 at the parallel fiber-->Purkinje cell synapse is required for maintaining normal motor function.
Collapse
|