1
|
Bellinger DL, Wood C, Wergedal JE, Lorton D. Driving β 2- While Suppressing α-Adrenergic Receptor Activity Suppresses Joint Pathology in Inflammatory Arthritis. Front Immunol 2021; 12:628065. [PMID: 34220796 PMCID: PMC8249812 DOI: 10.3389/fimmu.2021.628065] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/05/2021] [Indexed: 12/20/2022] Open
Abstract
Objective Hypersympathetic activity is prominent in rheumatoid arthritis, and major life stressors precede onset in ~80% of patients. These findings and others support a link between stress, the sympathetic nervous system and disease onset and progression. Here, we extend previous research by evaluating how selective peripherally acting α/β2-adrenergic drugs affect joint destruction in adjuvant-induced arthritis. Methods Complete Freund's adjuvant induced inflammatory arthritis in male Lewis rats. Controls received no treatment. Arthritic rats then received vehicle or twice-daily treatment with the α-adrenergic antagonist, phentolamine (0.5 mg/day) and the β2-adrenergic agonist, terbutaline (1200 µg/day, collectively named SH1293) from day (D) of disease onset (D12) through acute (D21) and severe disease (D28). Disease progression was assessed in the hind limbs using dorsoplantar widths, X-ray analysis, micro-computed tomography, and routine histology on D14, D21, and D28 post-immunization. Results On D21, SH1293 significantly attenuated arthritis in the hind limbs, based on reduced lymphocytic infiltration, preservation of cartilage, and bone volume. Pannus formation and sympathetic nerve loss were not affected by SH1293. Bone area and osteoclast number revealed high- and low-treatment-responding groups. In high-responding rats, treatment with SH1293 significantly preserved bone area and decreased osteoclast number, data that correlated with drug-mediated joint preservation. SH1293 suppressed abnormal bone formation based on reduced production of osteophytes. On D28, the arthritic sparing effects of SH1293 on lymphocytic infiltration, cartilage and bone sparing were maintained at the expense of bone marrow adipocity. However, sympathetic nerves were retracted from the talocrural joint. Conclusion and Significance Our findings support a significant delay in early arthritis progression by treatment with SH1293. Targeting sympathetic neurotransmission may provide a strategy to slow disease progression.
Collapse
MESH Headings
- Adrenergic alpha-Antagonists/pharmacology
- Adrenergic beta-2 Receptor Agonists/pharmacology
- Animals
- Arthritis, Experimental/chemically induced
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- Arthritis, Experimental/prevention & control
- Drug Combinations
- Freund's Adjuvant
- Joints/diagnostic imaging
- Joints/drug effects
- Joints/metabolism
- Joints/pathology
- Male
- Phentolamine/pharmacology
- Rats, Inbred Lew
- Receptors, Adrenergic, alpha/drug effects
- Receptors, Adrenergic, alpha/metabolism
- Receptors, Adrenergic, beta-2/drug effects
- Receptors, Adrenergic, beta-2/metabolism
- Signal Transduction
- Terbutaline/pharmacology
- Rats
Collapse
Affiliation(s)
- Denise L. Bellinger
- Department of Human Anatomy and Pathology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Carlo Wood
- Department of Human Anatomy and Pathology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Jon E. Wergedal
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA, United States
- Departments of Medicine and Biochemistry, Loma Linda University, Loma Linda, CA, United States
| | - Dianne Lorton
- Hoover Arthritis Research Center, Banner Health Research Institute, Sun City, AZ, United States
| |
Collapse
|
2
|
Mika JK, Schwarz K, Wanzenboeck HD, Scholze P, Bertagnolli E. Investigation of neurotrophic factor concentrations with a novel in vitro concept for peripheral nerve regeneration. J Neurosci Res 2015. [DOI: 10.1002/jnr.23598] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Johann K. Mika
- Institute for Solid State Electronics, Vienna University of Technology; Vienna Austria
| | - Karin Schwarz
- Department of Pathobiology of the Nervous System (Center for Brain Research); Medical University of Vienna; Vienna Austria
| | - Heinz D. Wanzenboeck
- Institute for Solid State Electronics, Vienna University of Technology; Vienna Austria
| | - Petra Scholze
- Department of Pathobiology of the Nervous System (Center for Brain Research); Medical University of Vienna; Vienna Austria
| | - Emmerich Bertagnolli
- Institute for Solid State Electronics, Vienna University of Technology; Vienna Austria
| |
Collapse
|
3
|
Masterson CG, Durham PL. DHE repression of ATP-mediated sensitization of trigeminal ganglion neurons. Headache 2013; 50:1424-39. [PMID: 20561068 DOI: 10.1111/j.1526-4610.2010.01714.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE To investigate the mechanism by which adenosine triphosphate (ATP) causes sensitization of trigeminal neurons and how dihydroergotamine (DHE) represses this modulatory effect. BACKGROUND Dihydroergotamine is an effective treatment of migraine. The cellular mechanisms of action of DHE in treating migraine attacks remain unclear. METHODS In this study, neonatal rat trigeminal ganglia cultures were used to investigate effects of ATP, alpha, beta-methyl ATP (α,β-meATP), and DHE on intracellular calcium levels and calcitonin gene-related peptide (CGRP) secretion. RESULTS Pretreatment with ATP or α,β-meATP caused sensitization of neurons, via P2X(3) receptors, such that a subthreshold amount of potassium chloride (KCl) significantly increased intracellular calcium levels and CGRP secretion. Pretreatment with DHE repressed increases in calcium and CGRP secretion in response to ATP-KCl or α,β-meATP-KCl treatment. Importantly, these inhibitory effects of DHE were blocked with an α(2) -adrenoceptor antagonist and unaffected by a 5HT(1B/D) receptor antagonist. DHE also decreased neuronal membrane expression of the P2X(3) receptor. CONCLUSIONS Our findings provide evidence for a novel mechanism of action for DHE that involves blocking ATP-mediated sensitization of trigeminal neurons, repressing stimulated CGRP release, and decreasing P2X(3) membrane expression via activation of α(2) -adrenoceptors.
Collapse
Affiliation(s)
- Caleb G Masterson
- Center for Biomedical and Life Sciences, Missouri State University, Springfield, MO 65806, USA
| | | |
Collapse
|
4
|
Mechanisms involved in nicotinic acetylcholine receptor-induced neurotransmitter release from sympathetic nerve terminals in the mouse vas deferens. PLoS One 2011; 6:e29209. [PMID: 22216213 PMCID: PMC3245264 DOI: 10.1371/journal.pone.0029209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 11/22/2011] [Indexed: 01/12/2023] Open
Abstract
Prejunctional nicotinic acetylcholine receptors (nAChRs) amplify postganglionic sympathetic neurotransmission, and there are indications that intraterminal Ca2+ stores might be involved. However, the mechanisms by which nAChR activation stimulates neurotransmitter release at such junctions is unknown. Rapid local delivery (picospritzing) of the nAChR agonist epibatidine was combined with intracellular sharp microelectrode recording to monitor spontaneous and field-stimulation-evoked neurotransmitter release from sympathetic nerve terminals in the mouse isolated vas deferens. Locally applied epibatidine (1 µM) produced ‘epibatidine-induced depolarisations’ (EIDs) that were similar in shape to spontaneous excitatory junction potentials (SEJPs) and were abolished by nonselective nAChR antagonists and the purinergic desensitizing agonist α,β-methylene ATP. The amplitude distribution of EIDs was only slightly shifted towards lower amplitudes by the selective α7 nAChR antagonists α-bungarotoxin and methyllcaconitine, the voltage-gated Na+ channel blocker tetrodotoxin or by blocking voltage-gated Ca2+ channels with Cd2+. Lowering the extracellular Ca2+ concentration reduced the frequency of EIDs by 69%, but more surprisingly, the Ca2+-induced Ca2+ release blocker ryanodine greatly decreased the amplitude (by 41%) and the frequency of EIDs by 36%. Ryanodine had no effect on electrically-evoked neurotransmitter release, paired-pulse facilitation, SEJP frequency, SEJP amplitude or SEJP amplitude distribution. These results show that activation of non-α7 nAChRs on sympathetic postganglionic nerve terminals induces high-amplitude junctional potentials that are argued to represent multipacketed neurotransmitter release synchronized by intraterminal Ca2+-induced Ca2+ release, triggered by Ca2+ influx directly through the nAChR. This nAChR-induced neurotransmitter release can be targeted pharmacologically without affecting spontaneous or electrically-evoked neurotransmitter release.
Collapse
|
5
|
Ditting T, Linz P, Freisinger W, Heinlein S, Reeh PW, Fiedler C, Siegel K, Scrogin KE, Neuhuber W, Veelken R. Norepinephrine reduces ω-conotoxin-sensitive Ca2+ currents in renal afferent neurons in rats. Am J Physiol Renal Physiol 2011; 302:F350-7. [PMID: 22049399 DOI: 10.1152/ajprenal.00681.2010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sympathetic efferent and peptidergic afferent renal nerves likely influence hypertensive and inflammatory kidney disease. Our recent investigation with confocal microscopy revealed that in the kidney sympathetic nerve endings are colocalized with afferent nerve fibers (Ditting T, Tiegs G, Rodionova K, Reeh PW, Neuhuber W, Freisinger W, Veelken R. Am J Physiol Renal Physiol 297: F1427-F1434, 2009; Veelken R, Vogel EM, Hilgers K, Amman K, Hartner A, Sass G, Neuhuber W, Tiegs G. J Am Soc Nephrol 19: 1371-1378, 2008). However, it is not known whether renal afferent nerves are influenced by sympathetic nerve activity. We tested the hypothesis that norepinephrine (NE) influences voltage-gated Ca(2+) channel currents in cultured renal dorsal root ganglion (DRG) neurons, i.e., the first-order neuron of the renal afferent pathway. DRG neurons (T11-L2) retrogradely labeled from the kidney and subsequently cultured, were investigated by whole-cell patch clamp. Voltage-gated calcium channels (VGCC) were investigated by voltage ramps (-100 to +80 mV, 300 ms, every 20 s). NE and appropriate adrenergic receptor antagonists were administered by microperfusion. NE (20 μM) reduced VGCC-mediated currents by 10.4 ± 3.0% (P < 0.01). This reduction was abolished by the α-adrenoreceptor inhibitor phentolamine and the α(2)-adrenoceptor antagonist yohimbine. The β-adrenoreceptor antagonist propranolol and the α(1)-adrenoceptor antagonist prazosin had no effect. The inhibitory effect of NE was abolished when N-type currents were blocked by ω-conotoxin GVIA, but was unaffected by other specific Ca(2+) channel inhibitors (ω-agatoxin IVA; nimodipine). Confocal microscopy revealed sympathetic innervation of DRGs and confirmed colocalization of afferent and efferent fibers within in the kidney. Hence NE released from intrarenal sympathetic nerve endings, or sympathetic fibers within the DRGs, or even circulating catecholamines, may influence the activity of peptidergic afferent nerve fibers through N-type Ca(2+) channels via an α(2)-adrenoceptor-dependent mechanism. However, the exact site and the functional role of this interaction remains to be elucidated.
Collapse
Affiliation(s)
- Tilmann Ditting
- Dept. of Internal Medicine 4, Nephrology and Hypertension, Erlangen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Kubista H, Kosenburger K, Mahlknecht P, Drobny H, Boehm S. Inhibition of transmitter release from rat sympathetic neurons via presynaptic M(1) muscarinic acetylcholine receptors. Br J Pharmacol 2009; 156:1342-52. [PMID: 19309359 DOI: 10.1111/j.1476-5381.2009.00136.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE M(2), M(3) and/or M(4) muscarinic acetylcholine receptors have been reported to mediate presynaptic inhibition in sympathetic neurons. M(1) receptors mediate an inhibition of K(v)7, Ca(V)1 and Ca(V)2.2 channels. These effects cause increases and decreases in transmitter release, respectively, but presynaptic M(1) receptors are generally considered facilitatory. Here, we searched for inhibitory presynaptic M(1) receptors. EXPERIMENTAL APPROACH In primary cultures of rat superior cervical ganglion neurons, Ca(2+) currents were recorded via the perforated patch-clamp technique, and the release of [(3)H]-noradrenaline was determined. KEY RESULTS The muscarinic agonist oxotremorine M (OxoM) transiently enhanced (3)H outflow and reduced electrically evoked release, once the stimulant effect had faded. The stimulant effect was enhanced by pertussis toxin (PTX) and was abolished by blocking M(1) receptors, by opening K(v)7 channels and by preventing action potential propagation. The inhibitory effect was not altered by preventing action potentials or by opening K(v)7 channels, but was reduced by PTX and omega-conotoxin GVIA. The inhibition remaining after PTX treatment was abolished by blockage of M(1) receptors or inhibition of phospholipase C. When [(3)H]-noradrenaline release was triggered independently of voltage-activated Ca(2+) channels (VACCs), OxoM failed to cause any inhibition. The inhibition of Ca(2+) currents by OxoM was also reduced by omega-conotoxin and PTX and was abolished by M(1) antagonism in PTX-treated neurons. CONCLUSIONS AND IMPLICATIONS These results demonstrate that M(1), in addition to M(2), M(3) and M(4), receptors mediate presynaptic inhibition in sympathetic neurons using phospholipase C to close VACCs.
Collapse
Affiliation(s)
- H Kubista
- Centre of Biomolecular Medicine and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | |
Collapse
|
7
|
Abstract
Alpha2-adrenoceptors inhibit Ca2+ influx through voltage-gated Ca2+ channels throughout the nervous system and Ca2+ channel function is modulated following activation of some G-protein coupled receptors. We studied the specific Ca2+ channel inhibited following alpha2-adrenoceptor activation in guinea-pig small intestinal myenteric neurons. Ca2+ currents (I(Ca2+)) were studied using whole-cell patch-clamp techniques. Changes in intracellular Ca2+ (delta[Ca2+]i) in nerve cell bodies and varicosities were studied using digital imaging where Ca2+ influx was evoked by KCl (60 mmol L(-1)) depolarization. The alpha2-adrenoceptor agonist, UK 14 304 (0.01-1 micromol L(-1)) inhibited I(Ca2+) and delta[Ca2+]i; maximum inhibition of I(Ca2+) was 40%. UK 14 304 did not affect I(Ca2+) in the presence of SNX-482 or NiCl2 (R-type Ca2+ channel antagonists). UK 14 304 inhibited I(Ca2+) in the presence of nifedipine, omega-agatoxin IVA or omega-conotoxin, inhibitors of L-, P/Q- and N-type Ca2+ channels. UK 14 304 induced inhibition of I(Ca2+) was blocked by pertussis toxin pretreatment (1 microg mL(-1) for 2 h). Alpha2-adrenoceptors couple to inhibition of R-type Ca2+ channels via a pertussis toxin-sensitive pathway in myenteric neurons. R-type channels may be a target for the inhibitory actions of noradrenaline released from sympathetic nerves on to myenteric neurons.
Collapse
Affiliation(s)
- X Bian
- Department of Pharmacology and Toxicology and the Neuroscience Program, Michigan State University, East Lansing, MI 48823, USA
| | | |
Collapse
|
8
|
Scholze P, Orr-Urtreger A, Changeux JP, McIntosh JM, Huck S. Catecholamine outflow from mouse and rat brain slice preparations evoked by nicotinic acetylcholine receptor activation and electrical field stimulation. Br J Pharmacol 2007; 151:414-22. [PMID: 17401441 PMCID: PMC2013980 DOI: 10.1038/sj.bjp.0707236] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND AND PURPOSE Mice with targeted deletions of neuronal nicotinic acetylcholine receptor (nAChR) subunit genes are valuable models to study nAChR function such as catecholamine outflow by presynaptic receptor activation. Contrary to the rat, our present knowledge on presynaptic nAChRs in mice primarily relies on observations made with synaptosomes. We have now used brain slices to investigate nicotine-induced catecholamine outflow in wild type (WT) and nAChR (beta2 and alpha5) knockout mice for a comparison with rat brain slice preparations. EXPERIMENTAL APPROACH Brain slices from rat and mouse hippocampus, parieto-occipital neocortex, and corpus striatum were loaded with either [3H]-noradrenaline or [3H]-dopamine. We provoked catecholamine outflow by electrical field stimulation and nicotinic agonists. KEY RESULTS When set in relation to electrical field stimulation, nicotine-evoked catecholamine release was sizeable in the striatum but low in the neocortex of both rats and mice. [3H]-noradrenaline outflow was, on the other hand, substantial in the rat but low in the mouse hippocampus. About 10% (or less) of nicotine-induced catecholamine release persisted in the presence of tetrodotoxin in all our preparations. CONCLUSIONS AND IMPLICATIONS Targeted deletion of the beta2 subunit gene essentially abolished the effect of nicotine, indicating that this subunit is an essential constituent of nAChRs that indirectly (via action potentials) induce catecholamine release from hippocampal and striatal slices in mice. The impact of nAChRs in catecholaminergic projection areas differs between species and has thus to be considered when extrapolating results from animal models to human conditions.
Collapse
Affiliation(s)
- P Scholze
- Center for Brain Research, Medical University of Vienna Vienna, Austria
| | - A Orr-Urtreger
- The Genetic Institute, Tel-Aviv Sourasky Medical Center and Sackler School of Medicine, Tel-Aviv University Tel Aviv, Israel
| | | | - J M McIntosh
- Department of Biology, University of Utah Salt Lake City, UT, USA
| | - S Huck
- Center for Brain Research, Medical University of Vienna Vienna, Austria
- Author for correspondence:
| |
Collapse
|
9
|
Ribeiro L, Martel F, Azevedo I. Short-term exposure to somatostatin or muscarinic agonists reduce acetylcholine-induced 3H-MPP+ release from bovine adrenal medullary cells. J Biomed Sci 2007; 14:347-55. [PMID: 17225960 DOI: 10.1007/s11373-006-9144-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Accepted: 12/09/2006] [Indexed: 10/23/2022] Open
Abstract
The aim of this work was to investigate the effect of a short-term exposure to somatostatin (SS), its receptors (SSTR) selective agonists as well as muscarinic receptors agonists upon acetylcholine-induced release of (3)H-MPP(+ )from bovine adrenal medullary cells. Acetylcholine (ACH, 100, 500 microM) was found to increase the release of (3)H-MPP(+ )by these cells (to 175 and 171% of basal release, respectively). ACH-elicited (3)H-MPP(+) release was significantly reduced by hexamethonium (100 microM) and atropine (100 microM), selective nicotinic and muscarinic antagonists, respectively. Previous exposure to any of two muscarinic agonists, oxotremorine or pilocarpine, led to a significant reduction of (3)H-MPP(+) release in response to 100 microM ACH, to about a maximum of 51% and 78% of control, respectively. Somatostatin (SS, 0.01-0.1 microM), previously applied to the preparation, depressed ACH-elicited (3)H-MPP(+ )release by 25-27%, but only when a 500 microM ACH concentration was used. The inhibition exerted by SS upon ACH-evoked (3)H-MPP(+) release appeared to be mediated by its SSTR: (1) SSTR2, 3 and 4 subtype agonists mimicked the effects seen with SS, and (2) the SSTR non-selective antagonist, cyclo-SS, counteracted the SS inhibitory effect. When SS was tested in the presence of any of the muscarinic agonists, oxotremorine or pilocarpine, its inhibitory effect on 500 microM ACH-induced (3)H-MPP(+) release was no longer detectable. These results, showing a somewhat similar effect of short-term exposure to SS and muscarinic agonists over ACH-induced release of (3)H-MPP(+), as well as the loss of effect of SS by the presence of the muscarinic agonists, suggest that these compounds may share signalling pathways.
Collapse
Affiliation(s)
- Laura Ribeiro
- Department of Biochemistry (U38-FCT), Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal.
| | | | | |
Collapse
|
10
|
Kubista H, Boehm S. Molecular mechanisms underlying the modulation of exocytotic noradrenaline release via presynaptic receptors. Pharmacol Ther 2006; 112:213-42. [PMID: 16730801 DOI: 10.1016/j.pharmthera.2006.04.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Accepted: 04/10/2006] [Indexed: 10/24/2022]
Abstract
The release of noradrenaline from nerve terminals is modulated by a variety of presynaptic receptors. These receptors belong to one of the following three receptor superfamilies: transmitter-gated ion channels, G protein-coupled receptors (GPCR), and membrane receptors with intracellular enzymatic activities. For representatives of each of these three superfamilies, receptor activation has been reported to cause either an enhancement or a reduction of noradrenaline release. As these receptor classes display greatly diverging structures and functions, a multitude of different molecular mechanisms are involved in the regulation of noradrenaline release via presynaptic receptors. This review gives a short overview of the presynaptic receptors on noradrenergic nerve terminals and summarizes the events involved in vesicle exocytosis in order to finally delineate the most important signaling cascades that mediate the modulation via presynaptic receptors. In addition, the interactions between the various presynaptic receptors are described and the underlying molecular mechanisms are elucidated. Together, these presynaptic signaling mechanisms form a sophisticated network that precisely adapts the amount of noradrenaline being released to a given situation.
Collapse
Affiliation(s)
- Helmut Kubista
- Institute of Pharmacology, Centre of Biomolecular Medicine and Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, A-1090 Vienna, Austria
| | | |
Collapse
|
11
|
Steinboeck F, Kristufek D. Identification of the cytolinker protein plectin in neuronal cells - expression of a rodless isoform in neurons of the rat superior cervical ganglion. Cell Mol Neurobiol 2005; 25:1151-69. [PMID: 16392043 DOI: 10.1007/s10571-005-8503-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2004] [Accepted: 08/12/2004] [Indexed: 10/25/2022]
Abstract
Plectin, a large (> 500 kDa) dumbbell-shaped cytolinker protein plays an important role in the organization of the cytoskeletal network and the maintenance of cell integrity in a wide variety of tissues and cell types. Earlier experiments revealed the presence of plectin in the central nervous system, whereas the expression in the peripheral nervous system remained unclear. Our results obtained with reverse transcriptase-PCR (RT-PCR) provide evidence that plectin is expressed in structures of the rat peripheral nervous system. In addition to well-characterized plectin transcripts we were able to reveal novel splicing variants affecting the region coding for the central rod domain. Previous studies report a high, but tissue-specific variability of the N-terminal domain of plectin due to alternatively spliced first coding exons and the optionally spliced small exons 2 alpha and 3 alpha. We demonstrate for the first time, using single-cell RT-PCR and immunocytochemistry, that plectin is expressed in neurons of the rat superior cervical ganglion (SCG). Plectin transcripts of single SCG neurons, starting with exon 1c as the first coding exon, contain the optionally spliced exon 2 alpha but lack exon 31. These data therefore suggest that plectin is expressed in rat SCG neurons as a rodless isoform with the molecular mass of 390 kDa.
Collapse
Affiliation(s)
- Ferdinand Steinboeck
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
| | | |
Collapse
|
12
|
Haxhiu MA, Rust CF, Brooks C, Kc P. CNS determinants of sleep-related worsening of airway functions: implications for nocturnal asthma. Respir Physiol Neurobiol 2005; 151:1-30. [PMID: 16198640 DOI: 10.1016/j.resp.2005.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Revised: 07/22/2005] [Accepted: 07/26/2005] [Indexed: 11/19/2022]
Abstract
This review summarizes the recent neuroanatomical and physiological studies that form the neural basis for the state-dependent changes in airway resistance. Here, we review only the interactions between the brain regions generating quiet (non-rapid eye movement, NREM) and active (rapid eye movement, REM) sleep stages and CNS pathways controlling cholinergic outflow to the airways. During NREM and REM sleep, bronchoconstrictive responses are heightened and conductivity of the airways is lower as compared to the waking state. The decrease in conductivity of the lower airways parallels the sleep-induced decline in the discharge of brainstem monoaminergic cell groups and GABAergic neurons of the ventrolateral periaqueductal midbrain region, all of which provide inhibitory inputs to airway-related vagal preganglionic neurons (AVPNs). Withdrawal of central inhibitory influences to AVPNs results in a shift from inhibitory to excitatory transmission that leads to an increase in airway responsiveness, cholinergic outflow to the lower airways and consequently, bronchoconstriction. In healthy subjects, these changes are clinically unnoticed. However, in patients with bronchial asthma, sleep-related alterations in lung functions are troublesome, causing intensified bronchopulmonary symptoms (nocturnal asthma), frequent arousals, decreased quality of life, and increased mortality. Unquestionably, the studies revealing neural mechanisms that underlie sleep-related alterations of airway function will provide new directions in the treatment and prevention of sleep-induced worsening of airway diseases.
Collapse
Affiliation(s)
- Musa A Haxhiu
- Department of Physiology and Biophysics, Specialized Neuroscience Research Program, Howard University College of Medicine, 520 W. St., NW, Washington, DC 20059, USA.
| | | | | | | |
Collapse
|
13
|
Lechner SG, Hussl S, Schicker KW, Drobny H, Boehm S. Presynaptic inhibition via a phospholipase C- and phosphatidylinositol bisphosphate-dependent regulation of neuronal Ca2+ channels. Mol Pharmacol 2005; 68:1387-96. [PMID: 16099842 DOI: 10.1124/mol.105.014886] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Presynaptic inhibition of transmitter release is commonly mediated by a direct interaction between G protein betagamma subunits and voltage-activated Ca2+ channels. To search for an alternative pathway, the mechanisms by which presynaptic bradykinin receptors mediate an inhibition of noradrenaline release from rat superior cervical ganglion neurons were investigated. The peptide reduced noradrenaline release triggered by K+-depolarization but not that evoked by ATP, with Ca2+ channels being blocked by Cd2+. Bradykinin also reduced Ca2+ current amplitudes measured at neuronal somata, and this effect was pertussis toxin-insensitive, voltage-independent, and developed slowly within 1 min. The inhibition of Ca2+ currents was abolished by a phospholipase C inhibitor, but it was not altered by a phospholipase A2 inhibitor, by the depletion of intracellular Ca2+ stores, or by the inactivation of protein kinase C or Rho proteins. In whole-cell recordings, the reduction of Ca2+ currents was irreversible but became reversible when 4 mM ATP or 0.2 mM dioctanoyl phosphatidylinositol-4,5-bisphosphate was included in the pipette solution. In contrast, the effect of bradykinin was entirely reversible in perforated-patch recordings but became irreversible when the resynthesis of phosphatidylinositol-4,5-bisphosphate was blocked. Thus, the inhibition of Ca2+ currents by bradykinin involved a consumption of phosphatidylinositol-4,5-bisphosphate by phospholipase C but no downstream effectors of this enzyme. The reduction of noradrenaline release by bradykinin was also abolished by the inhibition of phospholipase C or of the resynthesis of phosphatidylinositol-4,5-bisphosphate. These results show that the presynaptic inhibition was mediated by a closure of voltage-gated Ca2+ channels through depletion of membrane phosphatidylinositol bisphosphates via phospholipase C.
Collapse
Affiliation(s)
- Stefan G Lechner
- Department of Pharmacology, Center of Biomolecular, Medicine and Pharmacology, Medical University of Vienna, Waehringerstrasse 13a, A-1090 Vienna, Austria
| | | | | | | | | |
Collapse
|
14
|
Edelbauer H, Lechner SG, Mayer M, Scholze T, Boehm S. Presynaptic inhibition of transmitter release from rat sympathetic neurons by bradykinin. J Neurochem 2005; 93:1110-21. [PMID: 15934932 DOI: 10.1111/j.1471-4159.2005.03084.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bradykinin is known to stimulate neurons in rat sympathetic ganglia and to enhance transmitter release from their axons by interfering with the autoinhibitory feedback, actions that involve protein kinase C. Here, bradykinin caused a transient increase in the release of previously incorporated [3H] noradrenaline from primary cultures of dissociated rat sympathetic neurons. When this effect was abolished by tetrodotoxin, bradykinin caused an inhibition of tritium overflow triggered by depolarizing K+ concentrations. This inhibition was additive to that caused by the alpha2-adrenergic agonist UK 14304, desensitized within 12 min, was insensitive to pertussis toxin, and was enhanced when protein kinase C was inactivated. The effect was half maximal at 4 nm and antagonized competitively by the B2 receptor antagonist Hoe 140. The cyclooxygenase inhibitor indomethacin and the angiotensin converting enzyme inhibitor captopril did not alter the inhibition by bradykinin. The M-type K+ channel opener retigabine attenuated the secretagogue action of bradykinin, but left its inhibitory action unaltered. In whole-cell patch-clamp recordings, bradykinin reduced voltage-activated Ca2+ currents in a pertussis toxin-insensitive manner, and this action was additive to the inhibition by UK 14304. These results demonstrate that bradykinin inhibits noradrenaline release from rat sympathetic neurons via presynaptic B2 receptors. This effect does not involve cyclooxygenase products, M-type K+ channels, or protein kinase C, but rather an inhibition of voltage-gated Ca2+ channels.
Collapse
Affiliation(s)
- Hannah Edelbauer
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | |
Collapse
|
15
|
Fischer H, Orr-Urtreger A, Role LW, Huck S. Selective deletion of the alpha5 subunit differentially affects somatic-dendritic versus axonally targeted nicotinic ACh receptors in mouse. J Physiol 2004; 563:119-37. [PMID: 15611037 PMCID: PMC1665561 DOI: 10.1113/jphysiol.2004.075788] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We have compared the functional properties of nicotinic acetylcholine receptors (nAChRs) within both somatic and presynaptic domains of superior cervical ganglion (SCG) neurones from wild-type (WT) mice with those expressed by SCG neurones from mice with a targeted deletion of the gene for the alpha5-subunit. The functional profile of somatic nAChRs was assayed by direct macroscopic current recording and from measurements of nicotinic agonist-induced calcium transients with fura-2 imaging. The profile of nAChRs at presynaptic sites was assayed by measurement of nicotinic agonist-induced transmitter release (as preloaded [3H]noradrenaline) under conditions of action potential blockade. We have examined the responses to the nicotinic agonists acetylcholine, nicotine, cytisine, dimethylphenylpiperazinium iodide (DMPP) and epibatidine. Macroscopic current and calcium imaging assays revealed several differences in the functional profile of somatic nAChRs in WT SCG neurones compared with those from mice with the alpha5 subunit deleted. Somatic nAChRs in control animals were more potently activated by cytisine as compared to DMPP. In contrast, DMPP was consistently more potent than cytisine in mice lacking the alpha5 nAChR subunit. Differences in the somatic nAChR rank order of potency were most prominent after a least 1 day in vitro. The magnitude of somatic nAChR responses to nicotinic agonists was not substantially different in control mice compared with those of alpha5 subunit-deleted animals. Comparison of presynaptic nAChR-mediated responses in WT versus alpha5 subunit-deleted animals revealed a very different set of changes in the functional profile of prejunctional nAChRs compared with somatic nAChRs. In contrast to somatic nAChRs, the responses of prejunctional receptors were markedly enhanced in alpha5 knockout animals compared with control. Furthermore, all prejunctional receptor responses were most potently activated by DMPP in both control and in alpha5 subunit-deleted mice. Hence, the presence or absence of the alpha5 subunit did not affect the rank order of potency of agonists at preterminal sites but greatly affected the magnitude of presynaptic nAChR-mediated responses. The enhanced efficacy of nicotine at presynaptic receptors was corroborated in an acute atrium preparation from postnatal alpha5 subunit-deleted mice. These results confirm and significantly extend our previous observation that in the sympathetic nervous system, somatic and prejunctional receptors are different and rely on the presence of the alpha5 subunit in a distinct manner.
Collapse
Affiliation(s)
- Harald Fischer
- Division of Biochemistry and Molecular Biology, Centre for Brain Research, Medical University Vienna, Spitalgasse 4, A-1090 Vienna, Austria
| | | | | | | |
Collapse
|
16
|
Lechner SG, Mayer M, Boehm S. Activation of M1 muscarinic receptors triggers transmitter release from rat sympathetic neurons through an inhibition of M-type K+ channels. J Physiol 2003; 553:789-802. [PMID: 14555721 PMCID: PMC2343632 DOI: 10.1113/jphysiol.2003.052449] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Acetylcholine has long been known to excite sympathetic neurons via M1 muscarinic receptors through an inhibition of M-currents. Nevertheless, it remained controversial whether activation of muscarinic receptors is also sufficient to trigger noradrenaline release from sympathetic neurons. In primary cultures of rat superior cervical ganglia, the muscarinic agonist oxotremorine M inhibited M-currents with half-maximal effects at 1 microM and induced the release of previously incorporated [3H]noradrenaline with half-maximal effects at 10 microM. This latter action was not affected by the nicotinic antagonist mecamylamine which, however, abolished currents through nicotinic receptors elicited by high oxotremorine M concentrations. Ablation of the signalling cascades linked to inhibitory G proteins by pertussis toxin potentiated the release stimulating effect of oxotremorine M, and the half-maximal concentration required to stimulate noradrenaline release was decreased to 3 microM. Pirenzepine antagonized the inhibition of M-currents and the induction of release by oxotremorine M with identical apparent affinity, and both effects were abolished by the muscarinic toxin 7. These results indicate that one muscarinic receptor subtype, namely M1, mediates these two effects. Retigabine, which enhances M-currents, abolished the release induced by oxotremorine M, but left electrically induced release unaltered. Moreover, retigabine shifted the voltage-dependent activation of M-currents by about 20 mV to more negative potentials and caused 20 mV hyperpolarisations of the membrane potential. In the absence of retigabine, oxotremorine M depolarised the neurons and elicited action potential discharges in 8 of 23 neurons; in its presence, oxotremorine M still caused equal depolarisations, but always failed to trigger action potentials. Action potential waveforms caused by current injection were not affected by retigabine. These results indicate that the inhibition of M-currents is the basis for the stimulation of transmitter release from sympathetic neurons via M1 muscarinic receptors.
Collapse
Affiliation(s)
- Stefan G Lechner
- Department of Pharmacology, University of Vienna, A-1090 Vienna, Austria
| | | | | |
Collapse
|
17
|
Kristufek D, Rudorfer W, Pifl C, Huck S. Organic cation transporter mRNA and function in the rat superior cervical ganglion. J Physiol 2002; 543:117-34. [PMID: 12181285 PMCID: PMC2290488 DOI: 10.1113/jphysiol.2002.021170] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Reuptake of extracellular noradrenaline (NA) into superior cervical ganglion (SCG) neurones is mediated by means of the noradrenaline transporter (NAT, uptake 1). We now demonstrate by single-cell RT-PCR that mRNA of the organic cation transporter 3 (OCT3, uptake 2) occurs in rat SCG neurones as well. Furthermore, our RT-PCR analyses reveal the presence of mRNA for novel organic cation transporters 1 and 2 (OCTN1 and OCTN2), but not for OCT1 or OCT2 in the ganglion. Making use of the NAT as a powerful, neurone-specific transporter system, we loaded[3H]-N-methyl-4-phenylpyridinium ([3H]-MPP+) into cultured rat SCG neurones. The ensuing radioactive outflow from these cultures was enhanced by desipramine and reserpine, but reduced (in the presence of desipramine) by the OCT3 inhibitors cyanine 863, oestradiol and corticosterone. In contrast, cyanine 863 enhanced the radioactive outflow from cultures preloaded with [3H]-NA. Two observations suggest that a depletion of storage vesicles by cyanine 863 accounts for the latter phenomenon: first, the primary radioactive product isolated from supernatants of cultures loaded with [3H]-NA was the metabolite [3H]-DHPG; and second, inhibition of MAO significantly reduced the radioactive outflow in response to cyanine 863. The outflow of [3H]-MPP+ was significantly enhanced by MPP+, guanidine, choline and amantadine as potential substrates for OCT-related transmembrane transporters. However, desipramine at a low concentration essentially blocked the radioactive outflow induced by all of these substances with the exception of MPP+, indicating the NAT and not an OCT as their primary site of action. The MPP+-induced release of [3H]-MPP+ was fully prevented by a combined application of desipramine and cyanine 863. No trans-stimulation of [3H]-MPP+ outflow was observed by the OCTN1 and OCTN2 substrate carnitine at 100 microM. Our observations indicate an OCT-mediated transmembrane transport of [3H]-MPP+. Amongst the three OCTs expressed in the SCG, OCT3 best fits the profile of substrates and antagonists that cause trans-stimulation and trans-inhibition, respectively, of [3H]-MPP+ release.
Collapse
Affiliation(s)
- Doris Kristufek
- Brain Research Institute, University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria
| | | | | | | |
Collapse
|
18
|
Abstract
Neuroleptic malignant syndrome is a rare and potentially lethal disorder associated with the use of antipsychotic medications. Heightened vigilance on the part of clinical providers has reduced morbidity and mortality caused by this disorder over the past decade, but there is still no consensus regarding its diagnosis, pathophysiology, or treatment. Efforts to demonstrate a direct link between neuroleptic malignant syndrome and malignant hyperthermia have been unsuccessful, indicating mutually distinct etiologies despite striking clinical similarities. This paper concisely reviews essential aspects of electromechanical transduction in muscle and nerve cells and current knowledge concerning the pathophysiology of malignant hyperthermia and neuroleptic malignant syndrome. Utilizing this conceptual framework, the author proposes that neuroleptic malignant syndrome may be caused by a spectrum of inherited defects in genes that are responsible for a variety of calcium regulatory proteins within sympathetic neurons or the higher order assemblies that regulate them. In this proposed model, neuroleptic malignant syndrome may be understood as a neurogenic form of malignant hyperthermia.
Collapse
Affiliation(s)
- Ronald J Gurrera
- Department of Psychiatry, Harvard Medical School and VA Boston Healthcare System, Boston, MA, USA
| |
Collapse
|
19
|
Vartian N, Moskvina E, Scholze T, Unterberger U, Allgaier C, Boehm S. UTP evokes noradrenaline release from rat sympathetic neurons by activation of protein kinase C. J Neurochem 2001; 77:876-85. [PMID: 11331416 DOI: 10.1046/j.1471-4159.2001.00290.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The pathway involved in UTP-evoked noradrenaline release was investigated in cultures of rat superior cervical ganglia. Northern blots revealed an age-related increase in levels of mRNA for P2Y6 receptors in cultures obtained at postnatal days 1 and 5, respectively, but no change in transcripts for P2Y1 and P2Y2. Likewise, UTP-evoked overflow of previously incorporated [(3)H]noradrenaline was six-fold higher in neurons obtained at postanatal day 5. Various protein kinase C inhibitors diminished UTP-, but not electrically, induced tritium overflow by > 70%, as did down-regulation of protein kinase C by 24 h exposure to phorbol ester. beta-Phorbol-12,13-dibutyrate and dioctanoylglycerol caused concentration-dependent increases in [(3)H] outflow of up to 6% of total radioactivity, and the secretagogue actions of these agents were reduced in the presence of protein kinase C inhibitors and in neurons pretreated with phorbol ester. Overflow evoked by dioctanoylglycerol was attenuated in the absence of extracellular Ca(2+) and in the presence of tetrodotoxin or Cd(2+). In addition to triggering tritium overflow, UTP reduced currents through muscarinic K(+) channels which, however, were not affected by phorbol esters. This action of UTP was not altered by protein kinase C inhibitors. These results indicate that P2Y6 receptors mediate UTP-evoked noradrenaline release from rat sympathetic neurons via activation of protein kinase C, but not inhibition of K(M) channels.
Collapse
Affiliation(s)
- N Vartian
- Institute of Pharmacology, University of Vienna, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
20
|
Ilouz N, Branski L, Parnis J, Parnas H, Linial M. Depolarization affects the binding properties of muscarinic acetylcholine receptors and their interaction with proteins of the exocytic apparatus. J Biol Chem 1999; 274:29519-28. [PMID: 10506217 DOI: 10.1074/jbc.274.41.29519] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Membrane depolarization is the signal that triggers release of neurotransmitter from nerve terminals. As a result of depolarization, voltage-dependent Ca(2+) channels open, level of intracellular Ca(2+) increases. and release of neurotransmitter commences. Previous study had shown that in rat brain synaptosomes, muscarinic acetylcholine (ACh) receptors (mAChRs) interact with soluble NSF attachment protein receptor proteins of the exocytic machinery in a voltage-dependent manner. It was suggested that this interaction might control the rapid, synchronous release of acetylcholine. The present study investigates the mechanism for such a voltage-dependent interaction. Here we show that depolarization shifts mAChRs, specifically the m2 receptor subtype, to a low affinity state toward its agonists. At resting potential, mAChRs are in a high affinity state (K(d) of approximately 20 nM) and they shift to a low affinity state (K(d) of tens of microM) upon membrane depolarization. In addition, interaction between m2 receptor subtype and the exocytic machinery increases with receptor occupancy. Both phenomena are independent of Ca(2+) influx. We propose that these results may explain control of ACh release from nerve terminals. At resting potential the exocytic machinery is clamped due to its interaction with the occupied mAChR and depolarization relieves this interaction. This, together with Ca(2+) influx, enables release of ACh to commence.
Collapse
Affiliation(s)
- N Ilouz
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | | | | | | | | |
Collapse
|
21
|
Boehm S. Presynaptic alpha2-adrenoceptors control excitatory, but not inhibitory, transmission at rat hippocampal synapses. J Physiol 1999; 519 Pt 2:439-49. [PMID: 10457061 PMCID: PMC2269514 DOI: 10.1111/j.1469-7793.1999.0439m.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
1. The effects of noradrenaline on neurotransmission at rat hippocampal synapses were investigated by recording autaptic currents in single neurons isolated on glial microislands. Noradrenaline reduced excitatory, but not inhibitory, autaptic currents in a pertussis toxin-sensitive manner, but the amine did not affect glutamate-evoked currents. 2. The inhibition of excitatory autaptic currents by noradrenaline was half-maximal at 0. 11 +/- 0.06 microM. The alpha2-adrenoceptor agonists UK 14 304 and clonidine were equipotent to noradrenaline in reducing these currents, whereas the alpha1-adrenoceptor agonist methoxamine and the beta-adrenoceptor agonist isoprenaline (isoproterenol) were ineffective. The reduction of excitatory autaptic currents by noradrenaline was not altered by the alpha1-adrenergic antagonist urapidil or the beta-antagonist propranolol, but reduced by the alpha2-antagonist yohimbine. The subtype-preferring antagonists rauwolscine and phentolamine (both at 0.3 microM) caused 9-fold and 36-fold rightward shifts in the concentration-response curve for the noradrenaline-dependent reduction of excitatory autaptic currents, respectively. Prazosine (1 microM) did not affect this concentration-response curve. 3. Noradrenaline reduced voltage-activated Ca2+ currents in excitatory, but not in inhibitory, microisland neurons. For comparison, the GABAB agonist baclofen reduced both excitatory and inhibitory autaptic currents and diminished voltage-activated Ca2+ currents in both types of neurons. The inhibition of Ca2+ currents by noradrenaline was half-maximal at 0.17 +/- 0.05 microM, and UK 14 304 and clonidine were equipotent to noradrenaline in reducing these currents. The noradrenaline-induced reduction of Ca2+ currents was antagonized by yohimbine, but not by urapidil or propranolol; the subtype-preferring alpha2-adrenergic antagonists displayed the following rank order of activity: phentolamine > rauwolscine > prazosine. 4. Noradrenaline did not affect K+ currents and failed to alter the frequency of miniature excitatory postsynaptic currents measured in mass cultures of hippocampal neurons. 5. These results show that noradrenaline regulates transmission at glutamatergic, but not at GABAergic, hippocampal synapses via presynaptic alpha2-adrenoceptors of the alpha2A/D subtype. This inhibitory action involves an inhibition of voltage-activated Ca2+ currents, but no modulation of spontaneous vesicle exocytosis or of voltage-activated K+ currents.
Collapse
Affiliation(s)
- S Boehm
- Department of Pharmacology, University of Vienna, Waehringerstrasse 13a, A-1090 Vienna, Austria.
| |
Collapse
|
22
|
Kristufek D, Koth G, Motejlek A, Schwarz K, Huck S, Boehm S. Modulation of spontaneous and stimulation-evoked transmitter release from rat sympathetic neurons by the cognition enhancer linopirdine: insights into its mechanisms of action. J Neurochem 1999; 72:2083-91. [PMID: 10217288 DOI: 10.1046/j.1471-4159.1999.0722083.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mechanisms by which the cognition enhancer linopirdine may affect transmitter release were investigated in cultures of rat superior cervical ganglion neurons. Overflow of previously incorporated [3H]noradrenaline evoked by 10 microM UTP or 0.1 microM bradykinin was enhanced by linopirdine at > or =3 microM, overflow evoked by 25 mM K(-), 100 microM nicotine, or 300 microM ATP was enhanced by linopirdine at > or =10 microM, and overflow due to 40 mM K+ or electrical field stimulation was not altered by linopirdine. Ba2+ (0.3 mM) augmented the same types of stimulation-evoked overflow to a similar extent as linopirdine. K+ (25 mM), nicotine (100 microM), and ATP (300 microM) triggered transmitter release in a partially tetrodotoxin-resistant manner, and the release-enhancing action of linopirdine was lost in the presence of tetrodotoxin (1 microM). Linopirdine (10 microM) raised spontaneous tritium outflow and reduced currents through muscarinic K+ (K(M)) channels with a similar time course. The secretagogue action of linopirdine was concentration- and Ca2(+)-dependent and abolished by tetrodotoxin (1 microM) or Cd2+ (100 microM). Linopirdine (10 microM) added to the partial inhibition of K(M) channels by 1 or 3 mM Ba2(+) but not to the complete inhibition by 10 mM Ba2(+). Likewise, the secretagogue action of 1 and 3 mM, but not that of 10 mM, Ba2+ was enhanced by linopirdine. These results indicate that linopirdine facilitates and triggers transmitter release via blockade of K(M) channels and suggest that these K+ channels are located at neuronal somata rather than at presynaptic sites.
Collapse
Affiliation(s)
- D Kristufek
- Institute of Neuropharmacology, University of Vienna, Austria
| | | | | | | | | | | |
Collapse
|
23
|
Kristufek D, Stocker E, Boehm S, Huck S. Somatic and prejunctional nicotinic receptors in cultured rat sympathetic neurones show different agonist profiles. J Physiol 1999; 516 ( Pt 3):739-56. [PMID: 10200422 PMCID: PMC2269288 DOI: 10.1111/j.1469-7793.1999.0739u.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
1. The release of [3H]-noradrenaline ([3H]-NA) in response to nicotinic acetylcholine receptor (nAChR) agonists was compared with agonist-induced currents in cultured rat superior cervical ganglion (SCG) neurones. 2. [3H]-NA release in response to high concentrations of nicotinic agonists was reduced, but not fully inhibited, by the presence of either tetrodotoxin (TTX) or Cd2+ to block voltage-gated Na+ or Ca2+ channels, respectively. We used the component of transmitter release that remained in the presence of these substances (named TTX- or Cd2+-insensitive release) to pharmacologically characterize nAChRs in proximity to the sites of vesicular exocytosis (prejunctional receptors). Prejunctional nAChRs were activated by nicotinic agonists with a rank order of potency of dimethylphenylpiperazinium iodide (DMPP) > nicotine > cytisine > ACh, and with EC50 values ranging from 22 microM (DMPP) to 110 microM (ACh). 3. [3H]-NA release in response to low concentrations of nAChR agonists was fully inhibited by the presence of either TTX or Cd2+ (named TTX- or Cd2+-sensitive release). TTX-sensitive release was triggered by nicotinic agonists with a rank order of potency of DMPP > cytisine approximately nicotine approximately ACh, which due to its similarity to TTX-insensitive release indicates that it might also be triggered by prejunctional-type nAChRs. The EC50 values for TTX (Cd2+)-sensitive release were less than 10 microM for all four agonists. 4. By contrast to transmitter release, somatic nAChRs as seen by patch clamp recordings were most potently activated by cytisine, with a rank order of potency of cytisine > nicotine approximately DMPP > ACh. EC50 values for the induction of currents exceeded 20 microM for all four agonists. 5. The nicotinic antagonist mecamylamine potently inhibited all transmitter release in response to nicotine. alpha-Bungarotoxin (alpha-BuTX) was, on the other hand, without significant effect on nicotine-induced TTX-insensitive release. The competitive antagonist dihydro-beta-erythroidine (DHbetaE) caused rightward shifts of the dose-response curves for both TTX-sensitive and TTX-insensitive transmitter release as well as for currents in response to nicotine, with pA2 values ranging from 4.03 to 4.58. 6. Due to clear differences in the pharmacology of agonists we propose that nAChRs of distinct subunit composition are differentially targeted to somatic or axonal domains.
Collapse
Affiliation(s)
- D Kristufek
- Department of Neuropharmacology, University of Vienna, Wahringerstrasse 13A, A-1090 Vienna, Austria
| | | | | | | |
Collapse
|
24
|
Posada A, Clarke PG. Fast retrograde effects on neuronal death and dendritic organization in development: the role of calcium influx. Neuroscience 1999; 89:399-408. [PMID: 10077322 DOI: 10.1016/s0306-4522(98)00442-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Retrograde signals from axon terminal to cell body are known to regulate neuronal survival and differentiation during development. They are generally attributed to the uptake and transport of trophic factors, but there is recent evidence in the isthmo-optic nucleus for a remarkably fast-acting retrograde signal from the contralateral retina that is not mediated by the conventional trophic route. The isthmo-optic nucleus undergoes 55% neuron death between embryonic days 12 and 17, and becomes laminated at embryonic day 14 owing to dendritic re-organization. Blockade of retinal electrical activity just before day 14 reduces neuronal death and lamination in the isthmo-optic nucleus within as little as 6 h. We here investigate how action potentials initiate the fast-acting retrograde signal, and we provide evidence that the first step is calcium entry into the isthmo-optic axon terminals. Neuronal death and lamination are rapidly reduced in the isthmo-optic nucleus by intraocularly injected omega-conotoxin, a blocker of N-type calcium channels known to be located mainly on axon terminal. Similar effects occurred with two other calcium channel blockers (cadmium and alpha-bungarotoxin) believed to act on both the isthmo-optic terminals and their target cells, but not with nifedipine, a blocker of L-type (mainly somatic) channels, supporting a presynaptic initiation of the fast signal. Nevertheless postsynaptic events may also be involved because pharmacological destruction of the amacrine targets cells of the isthmo-optic nucleus reduced its cell death and lamination 9-12 h later.
Collapse
Affiliation(s)
- A Posada
- Institut de Biologie Cellulaire et de Morphologie, Lausanne, Switzerland
| | | |
Collapse
|
25
|
Abstract
ATP is a fast transmitter in sympathetic ganglia and at the sympathoeffector junction. In primary cultures of dissociated rat superior cervical ganglion neurons, ATP elicits noradrenaline release in an entirely Ca2+-dependent manner. Nevertheless, ATP-evoked noradrenaline release was only partially reduced (by approximately 50%) when either Na+ or Ca2+ channels were blocked, which indicates that ATP receptors themselves mediated transmembrane Ca2+ entry. An "axonal" preparation was obtained by removing ganglia from explant cultures, which left a network of neurites behind; immunostaining for axonal and dendritic markers revealed that all of these neurites were axons. In this preparation, ATP raised intraaxonal Ca2+ and triggered noradrenaline release, and these actions were not altered when Ca2+ channels were blocked by Cd2+. Hence, Ca2+-permeable ATP-gated ion channels, i.e., P2X purinoceptors, are located at presynaptic sites and directly mediate Ca2+-dependent transmitter release. These presynaptic P2X receptors displayed a rank order of agonist potency of ATP >/= 2-methylthio-ATP > ATPgammaS >> alpha,beta-methylene-ATP approximately beta,gamma-methylene-L-ATP and were blocked by suramin or PPADS. ATP, 2-methylthio-ATP, and ATPgammaS also evoked inward currents measured at neuronal somata, but there these agonists were equipotent. Hence, presynaptic P2X receptors resemble the cloned P2X2 subtype, but they appear to differ from somatodendritic P2X receptors in terms of agonist sensitivity. Suramin reduced depolarization-evoked noradrenaline release by up to 20%, when autoinhibitory mechanisms were inactivated by pertussis toxin. These results indicate that presynaptic P2X purinoceptors mediate a positive, whereas G-protein-coupled P2Y purinoceptors mediate a negative, feedback modulation of sympathetic transmitter release.
Collapse
|
26
|
Boehm S. Selective inhibition of M-type potassium channels in rat sympathetic neurons by uridine nucleotide preferring receptors. Br J Pharmacol 1998; 124:1261-9. [PMID: 9720799 PMCID: PMC1565511 DOI: 10.1038/sj.bjp.0701956] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. UTP and UDP depolarize rat superior cervical ganglion neurons and trigger noradrenaline release from these cells. The present study investigated the mechanisms underlying this excitatory action of uridine nucleotides by measuring whole-cell voltage-dependent K+ and Ca2+ currents. 2. Steady-state outward (holding) currents measured in the amphotericin B perforated-patch configuration at a potential of -30 mV were reduced by 10 microM UTP in a reversible manner, but steady-state inward (holding) currents at -70 mV were not affected. This action of UTP was shared by the muscarinic agonist oxotremorine-M. In current-voltage curves between -20 and -100 mV, UTP diminished primarily the outwardly rectifying current components arising at potentials positive to -60 mV. 3. Slow relaxations of muscarinic K+ currents (IM) evoked by hyperpolarizations from -30 to -55 mV were also reduced by 10 microM UTP (37% inhibition) and oxotremorine-M (81% inhibition). In contrast, transient K+-currents, delayed rectifier currents, fast and slow Ca2+-dependent K+ currents, as well as voltage-dependent Ca2+ currents were not altered by UTP. 4. In conventional (open-tip) whole-cell recordings, replacement of GTP in the pipette by GDPbetaS abolished the UTP-induced inhibition of IM, whereas replacement by GTPgammaS rendered it irreversible. 5. The UTP-induced reduction of IM was half maximal at 1.5 microM with a maximum of 37% inhibition; UDP was equipotent and equieffective, while ADP was less potent (half maximal inhibition at 29 microM). ATP had no effect at < or = 30 microM. 6. The inhibition of IM induced by 10 microM UTP was antagonized by pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid (PPADS) at > or = 30 microM and by reactive blue 2 at > or = 10 microM, but not by suramin at concentrations up to 30 microM. 7. These results show that rat superior cervical ganglion neurons possess uridine nucleotide preferring P2Y receptors which inhibit KM channels. This effect presumably forms the basis of the excitatory action of uridine nucleotides in rat sympathetic neurons.
Collapse
Affiliation(s)
- S Boehm
- Department of Neuropharmacology, University of Vienna, Austria
| |
Collapse
|
27
|
Boehm S, Huck S. Noradrenaline release from rat sympathetic neurones triggered by activation of B2 bradykinin receptors. Br J Pharmacol 1997; 122:455-62. [PMID: 9351501 PMCID: PMC1564963 DOI: 10.1038/sj.bjp.0701404] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
1. The role of bradykinin receptors in the regulation of sympathetic transmitter release was investigated in primary cultures of neurones dissociated from superior cervical ganglia of neonatal rats. These cultures were loaded with [3H]-noradrenaline and the outflow of radioactivity was determined under continuous superfusion. 2. Bradykinin (100 nmol l[-1] applied for 10 min) caused a transient increase in tritium outflow that reached a peak within four minutes after the beginning of the application and then declined towards the baseline, despite the continuing presence of the peptide. ATP (100 micromol l[-1]) and nicotine (10 micromol l[-1]) caused elevations in 3H outflow with similar kinetics, whereas outflow remained elevated during a 10 min period of electrical field stimulation (0.5 ms, 50 mA, 50 V cm[-1], 1.0 Hz). 3. When bradykinin was applied for periods of 2 min, the evoked 3H overflow was half-maximal at 12 nmol l(-1) and reached a maximum of 2.3% of cellular radioactivity. The preferential B1 receptor agonist des-Arg9-bradykinin failed to alter 3H outflow. The B2 receptor antagonists, [D-Phe7]-bradykinin (1 micromol l[-1]) and Hoe 140 (10 nmol l[-1]), per se did not alter 3H outflow, but shifted the concentration-response curve for bradykinin-evoked 3H overflow to the right by a factor of 7.9 and 4.3, respectively. 4. Bradykinin-induced overflow was abolished in the absence of extracellular Ca2+ and in the presence of either 1 micromol l(-1) tetrodotoxin or 300 micromol l(-1) Cd2+, as was electrically-induced overflow. Activation of alpha2-adrenoceptors by 1 micromol l(-1) UK 14,304 reduced both bradykinin- and electrically-triggered overflow. The Ca2+-ATPase inhibitor thapsigargin (0.3 micromol l[-1]) failed to alter either type of stimulated overflow. Caffeine (10 mmol l[-1]) enhanced bradykinin-induced overflow, but reduced overflow triggered by electrical field stimulation. 5. Inclusion of Ba2+ (0.1 to 1 mmol l[-1]) in the superfusion medium enhanced electrically induced overflow by approximately 100% and potentiated bradykinin-triggered overflow by almost 400%. Application of 1 mmol l(-1) Ba2+ for periods of 2 min triggered 3H overflow, and this overflow was abolished by 1 micromol l(-1) tetrodotoxin and enhanced by 10 mmol l(-1) caffeine. In contrast, inclusion of tetraethylammonium (0.1 to 1 mmol l[-1]) in the superfusion buffer caused similar increases of bradykinin- and electrically evoked 3H overflow (by about 100%), and tetraethylammonium, when applied for 2 min, failed to alter 3H outflow. 6. Treatment of cultures with 100 ng ml(-1) pertussis toxin caused a significant increase in bradykinin-, but not in electrically-, evoked tritium overflow. Treatment with 100 ng ml(-1) cholera toxin reduced both types of stimulated 3H overflow. 7. These data reveal bradykinin as a potent stimulant of action potential-mediated and Ca2+-dependent transmitter release from rat sympathetic neurones in primary cell culture. This neurosecretory effect of bradykinin involves activation of B2-receptors, presumably linked to pertussis- and cholera toxin-insensitive G proteins, most likely members of the Gq family. Results obtained with inhibitors of muscarinic K+ (KM) channels, like caffeine and Ba2+, indicate that the secretagogue action of bradykinin probably involves inhibition of these K+ channels.
Collapse
Affiliation(s)
- S Boehm
- Institute of Neuropharmacology, University of Vienna, Austria
| | | |
Collapse
|
28
|
Abstract
Primary cultures of postganglionic sympathetic neurons were established more than 30 years ago. More recently, these cultures have been used to characterize various neurotransmitter receptors that govern sympathetic transmitter release. These receptors may be categorized into at least three groups: (1) receptors which evoke transmitter release: (2) receptors which facilitate; (3) receptors which inhibit, depolarization-evoked release. Group (1) comprises nicotinic and muscarinic acetylcholine receptors, P2X purinoceptors and pyrimidinoceptors. Group (2) currently harbours beta-adrenoceptors, P2 purinoceptors, receptors for PACAP and VIP, as well as prostanoid EP1 receptors. In group (3), muscarinic cholinoceptors, alpha 2- and beta-adrenoceptors, P2 purinoceptors, and receptors for the neuropeptides NPY, somatostatin (SRIF1) and LHRH, as well as opioid (delta and kappa) receptors can be found. Receptors which regulate transmitter release from neurons in cell culture may be located either at the somatodendritic region or at the sites of exocytosis, i.e. the presynaptic specializations of axons. Most of the receptors that evoke release are located at the soma. There ionotropic receptors cause depolarizations to generate action potentials which then trigger Ca(2+)-dependent exocytosis at axon terminals. The signalling mechanisms of metabotropic receptors which evoke release still remain to be identified. Receptors which facilitate depolarization-evoked release appear to be located preferentially at presynaptic sites and presumably act via an increase in cyclic AMP. Receptors which inhibit stimulation evoked release are also presynaptic origin and most commonly rely on a G protein-mediated blockade of voltage-gated Ca2+ channels. Results obtained with primary cell cultures of postganglionic sympathetic neurons have now supplemented previous data about neurotransmitter receptors involved in the regulation of ganglionic as well as sympatho-effector transmission. In the future, this technique may prove useful to identify yet unrecognized receptors which control the output of the sympathetic nervous system and to elucidate underlying signalling mechanisms.
Collapse
Affiliation(s)
- S Boehm
- Department of Neuropharmacology, University of Vienna, Austria.
| | | |
Collapse
|
29
|
Boehm S, Huck S. Inhibition of N-type calcium channels: the only mechanism by which presynaptic alpha 2-autoreceptors control sympathetic transmitter release. Eur J Neurosci 1996; 8:1924-31. [PMID: 8921283 DOI: 10.1111/j.1460-9568.1996.tb01336.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Alpha 2-Adrenoceptors are known to inhibit voltage-dependent Ca2+ channels located at neuronal cell bodies; the present study investigated whether this or alternative mechanisms, possibly downstream of Ca2+ entry, underlie the presynaptic alpha 2-adrenergic modulation of transmitter release from chick sympathetic neurons. Using chick sympathetic neurons, overflow of previously incorporated [3H]noradrenaline was elicited in the presence of extracellular Ca2+ by electrical pulses, 25 mM K+ or 10 microM nicotine, or by adding Ca2+ to otherwise Ca(2+)-free medium when cells had been made permeable by the calcium ionophore A23187 or by alpha-latrotoxin. Pretreatment of neurons with the N-type Ca2+ channel blocker omega-conotoxin GVIA and application of the alpha 2-adrenergic agonist UK 14304 reduced the overflow elicited by electrical pulses, K+ or nicotine, but not the overflow caused by Ca2+ after permeabilization with alpha-latrotoxin or A23187. In contrast, the L-type Ca2+ channel blocker nitrendipine reduced the overflow due to K+ and nicotine, but not the overflow following electrical stimulation or alpha-latrotoxin- and A23187-permeabilization. The inhibition of electrically evoked overflow by UK 14304 persisted in the presence of nitrendipine and the L-type Ca2+ channel agonist BayK 8644, which per se enhanced overflow. In omega-conotoxin GVIA-treated cultures, electrically evoked overflow was also enhanced by BayK 8644 and almost reached the value obtained in untreated neurons. However, UK 14304 lost its effect under these conditions. Whole-cell recordings of voltage-activated Ca2+ currents corroborated these results: UK 14304 inhibited Ca2+ currents by 33%, nitrendipine caused a 7% reduction, and BayK 8644 increased the currents by 30%. Moreover, the dihydropyridines failed to abolish the inhibition by UK 14304, but pretreatment with omega-conotoxin GVIA, which reduced mean amplitude from 0.95 to 0.23 nA, entirely prevented alpha 2-adrenergic effects. Our results indicate that the alpha 2-autoreceptor-mediated modulation of noradrenaline release from chick sympathetic neurons relies exclusively on the inhibition of omega-conotoxin GVIA-sensitive N-type Ca2+ channels. Mechanisms downstream of these channels and voltage-sensitive Ca2+ channels other than N-type appear not to be important.
Collapse
Affiliation(s)
- S Boehm
- Department of Neuropharmacology, University of Vienna, Austria
| | | |
Collapse
|
30
|
Boehm S, Huck S. A somatostatin receptor inhibits noradrenaline release from chick sympathetic neurons through pertussis toxin-sensitive mechanisms: comparison with the action of alpha 2-adrenoceptors. Neuroscience 1996; 73:595-604. [PMID: 8783273 DOI: 10.1016/0306-4522(96)00074-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The effects of somatostatin and analogues were investigated in cultures of chick sympathetic neurons. Electrically evoked tritium overflow from cultures labelled with [3H]noradrenaline was reduced by somatostatin-14 in a concentration-dependent manner, with half maximal effects at 0.3 nM and a maximum of 45% inhibition. Somatostatin-28 was equipotent to somatostatin-14 (half maximal concentration at 0.5 nM), and seglitide was less potent, the effects being half maximal at 4.2 nM. The inhibitory action of somatostatin-14 on stimulation-evoked overflow desensitized within minutes at 100 nM, but not at 10 nM, and was abolished by a pretreatment of neurons with pertussis toxin. All somatostatin analogues reduced voltage-activated Ca2+ currents recorded in the whole-cell configuration of the patch-clamp technique, with somatostatin-14 being equipotent to somatostatin-28, but more potent than seglitide. However, the inhibition of Ca2+ currents occurred at concentrations more than ten-fold higher than those required for the reduction of stimulation evoked 3H overflow. The action of somatostatin upon Ca2+ currents was also abolished by pertussis toxin and desensitized within minutes. In preceding experiments, alpha 2-adrenoceptor activation had been found to reduce transmitter release and Ca2+ currents of chick sympathetic neurons through a pertussis toxin-sensitive mechanism. In the present study, the alpha 2-adrenergic agonist UK 14,304 completely occluded the inhibition of Ca2+ currents and of electrically evoked overflow by somatostatin-14. Neither UK 14,304 nor somatostatin affected the resting membrane potential or voltage-dependent K+ currents. These results demonstrate that chick sympathetic neurons possess SRIF1 type somatostatin receptors which control transmitter release. This effect is mediated by pertussis toxin-sensitive GTP binding proteins and apparently involves an inhibition of voltage-activated Ca2+ channels, but not a modulation of K+ channels. Since alpha 2-adrenergic agonists share all of these actions and occlude the effects of somatostatin, alpha 2-adrenoceptors and SRIF1 receptors seem to regulate sympathetic transmitter release via common signalling mechanisms.
Collapse
MESH Headings
- Adrenergic alpha-Agonists/pharmacology
- Animals
- Brimonidine Tartrate
- Cells, Cultured
- Chick Embryo
- Dose-Response Relationship, Drug
- Electric Stimulation
- Ganglia, Sympathetic/physiology
- Hormone Antagonists/pharmacology
- Kinetics
- Membrane Potentials/drug effects
- Neurons/drug effects
- Neurons/physiology
- Norepinephrine/metabolism
- Patch-Clamp Techniques
- Peptides, Cyclic/pharmacology
- Pertussis Toxin
- Quinoxalines/pharmacology
- Receptors, Adrenergic, alpha-2/drug effects
- Receptors, Adrenergic, alpha-2/physiology
- Receptors, Somatostatin/drug effects
- Receptors, Somatostatin/physiology
- Somatostatin/pharmacology
- Somatostatin-28
- Virulence Factors, Bordetella/pharmacology
Collapse
Affiliation(s)
- S Boehm
- Department of Neuropharmacology, University of Vienna, Austria
| | | |
Collapse
|