1
|
Abstract
A substantial fraction of the human population suffers from chronic pain states, which often cannot be sufficiently treated with existing drugs. This calls for alternative targets and strategies for the development of novel analgesics. There is substantial evidence that the G protein-coupled GABAB receptor is involved in the processing of pain signals and thus has long been considered a valuable target for the generation of analgesics to treat chronic pain. In this review, the contribution of GABAB receptors to the generation and modulation of pain signals, their involvement in chronic pain states as well as their target suitability for the development of novel analgesics is discussed.
Collapse
Affiliation(s)
- Dietmar Benke
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Abstract
Over the past three decades the research on GABAB receptor biology and pharmacology in pain processing has been a fascinating experience. Norman Bowery's fundamental discovery of the existence of the GABAB receptor has led the way to the definition of GABAB molecular mechanisms; patterns of receptor expression in the peripheral and central nervous system; GABAB modulatory functions within the pain pathways. We are now harnessing this acquired knowledge to develop innovative approaches to the therapeutic management of chronic pain through allosteric modulation of the GABAB. Norman's legacy would be ultimately fulfilled by the development of novel analgesics that activate the GABAB receptor. This article is part of the "Special Issue Dedicated to Norman G. Bowery".
Collapse
Affiliation(s)
- Marzia Malcangio
- Wolfson Centre for Age Related Diseases, King's College London, London SE1 1UL, UK.
| |
Collapse
|
3
|
Dmitrieva N, Rodríguez-Malaver AJ, Pérez J, Hernández L. Differential release of neurotransmitters from superficial and deep layers of the dorsal horn in response to acute noxious stimulation and inflammation of the rat paw. Eur J Pain 2012; 8:245-52. [PMID: 15109975 DOI: 10.1016/j.ejpain.2003.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2003] [Accepted: 09/01/2003] [Indexed: 11/29/2022]
Abstract
Experimental evidence suggests that release of neurotransmitters in response to acute noxious stimulation and inflammation can differ in superficial and deeper dorsal horn (DH) laminae. Using two different microdialysis probes, we studied changes in levels of glutamate, aspartate, arginine and GABA in dialysates collected from the surface of the spinal cord and within the DH induced by pinching the paw or paw inflammation. In penthotal anaesthetized rats, a flexible microdialysis probe was placed on the dorsal surface of the L4-L5 or L6-S2 spinal segments. In other rats, a rigid microdialysis probe was implanted within the DH of the same segments. Samples were collected every minute before, during and after pinching the hind paw (acute pain), and every half an hour after injecting either carrageenan or saline into the same paw (inflammation-induced pain). Amino acids were measured by capillary zone electrophoresis with laser-induced fluorescence detection (CZE-LIFD). Pinching the paw induced a significant but short lasting increase in extracellular glutamate and aspartate in dialysates from the surface of the DH. Carrageenan, but not saline, injected into the paw significantly increased concentrations of glutamate, aspartate and arginine both on the surface and within the DH of L4-L5 and also within the DH of the L6-S2 segments. The GABA level was significantly increased following carrageenan only within the DH. The maximum increase on the surface was detected 60-120 min after the onset of inflammation whereas the response within the DH reached a maximum between 150 and 180 min after carrageenan. These results indicate that unlike acute mechanical noxious stimulation which enhances amino acid neurotransmitters in surface dialysate, inflammation induced neurotransmitter release in all layers of the DH suggesting sensitization of the DH.
Collapse
Affiliation(s)
- Natalia Dmitrieva
- Program in Neuroscience, Florida State University, Tallahassee, FL 32306-1270, USA.
| | | | | | | |
Collapse
|
4
|
Opposite effects of spinal cord stimulation in different phases of carrageenan-induced hyperalgesia. Eur J Pain 2012. [DOI: 10.1016/s1090-3801(99)90018-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Evaluating underlying neuronal activity associated with escape/avoidance behavior in response to noxious stimulation in adult rats. Brain Res 2011; 1433:56-61. [PMID: 22137659 DOI: 10.1016/j.brainres.2011.11.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 10/28/2011] [Accepted: 11/05/2011] [Indexed: 11/21/2022]
Abstract
The place escape/avoidance paradigm (PEAP) is a behavioral test designed to quantify the level of unpleasantness evoked by painful stimuli by assessing the willingness of a subject to escape/avoid a preferred area when it is associated with noxious stimulation. Previous studies have demonstrated that escape/avoidance behavior is dependent on activity in the anterior cingulate cortex (ACC), a region of the limbic system involved in processing the emotional component of pain in humans and animals. Analysis of c-Fos expression in the ACC confirmed that the escape/avoidance response to noxious stimuli corresponds to changes in neural activation in this region. Behavioral tests such as the PEAP may be more sensitive to changes in supraspinal pain processing and could contribute to the development of novel analgesics in the future.
Collapse
|
6
|
Liu LS, Shenoy M, Pasricha PJ. The analgesic effects of the GABAB receptor agonist, baclofen, in a rodent model of functional dyspepsia. Neurogastroenterol Motil 2011; 23:356-61, e160-1. [PMID: 21199535 DOI: 10.1111/j.1365-2982.2010.01649.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The amino acid γ-aminobutyric acid (GABA) is an important modulator of pain but its role in visceral pain syndromes is just beginning to be studied. Our aims were to investigate the effect and mechanism of action of the GABA(B) receptor agonist, baclofen, on gastric hypersensitivity in a validated rat model of functional dyspepsia (FD). METHODS 10-day-old male rats received 0.2 mL of 0.1% iodoacetamide in 2% sucrose daily by oral gavages for 6 days. Control group received 2% sucrose. At 8-10 weeks rats treated with baclofen (0.3, 1, and 3 mg kg(-1) bw) or saline were tested for behavioral and electromyographic (EMG) visceromotor responses; gastric spinal afferent nerve activity to graded gastric distention and Fos protein expression in dorsal horn of spinal cord segments T8-T10 to noxious gastric distention. KEY RESULTS Baclofen administration was associated with a significant attenuation of the behavioral and EMG responses (at 1 and 3 mg kg(-1)) and expression of Fos in T8 and T9 segments in neonatal iodoacetamide sensitized rats. However, baclofen administration did not significantly affect splanchnic nerve activity to gastric distention. Baclofen (3 mg kg(-1)) also significantly reduced the expression of spinal Fos in response to gastric distention in control rats to a lesser extent than sensitized rats. CONCLUSIONS & INFERENCES Baclofen is effective in attenuating pain associated responses in an experimental model of FD and appears to act by central mechanisms. These results provide a basis for clinical trials of this drug in FD patients.
Collapse
Affiliation(s)
- L S Liu
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Stanford, CA 94305-5187, USA
| | | | | |
Collapse
|
7
|
Gangadharan V, Agarwal N, Brugger S, Tegeder I, Bettler B, Kuner R, Kurejova M. Conditional gene deletion reveals functional redundancy of GABAB receptors in peripheral nociceptors in vivo. Mol Pain 2009; 5:68. [PMID: 19925671 PMCID: PMC2785766 DOI: 10.1186/1744-8069-5-68] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 11/19/2009] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND gamma-aminobutyric acid (GABA) is an important inhibitory neurotransmitter which mainly mediates its effects on neurons via ionotropic (GABA(A)) and metabotropic (GABA(B)) receptors. GABA(B) receptors are widely expressed in the central and the peripheral nervous system. Although there is evidence for a key function of GABA(B) receptors in the modulation of pain, the relative contribution of peripherally- versus centrally-expressed GABA(B) receptors is unclear. RESULTS In order to elucidate the functional relevance of GABA(B) receptors expressed in peripheral nociceptive neurons in pain modulation we generated and analyzed conditional mouse mutants lacking functional GABA(B1) subunit specifically in nociceptors, preserving expression in the spinal cord and brain (SNS-GABA(B1)-/- mice). Lack of the GABA(B1) subunit precludes the assembly of functional GABA(B) receptor. We analyzed SNS-GABA(B1)-/- mice and their control littermates in several models of acute and neuropathic pain. Electrophysiological studies on peripheral afferents revealed higher firing frequencies in SNS-GABA(B1)-/- mice compared to corresponding control littermates. However no differences were seen in basal nociceptive sensitivity between these groups. The development of neuropathic and chronic inflammatory pain was similar across the two genotypes. The duration of nocifensive responses evoked by intraplantar formalin injection was prolonged in the SNS-GABAB(1)-/- animals as compared to their control littermates. Pharmacological experiments revealed that systemic baclofen-induced inhibition of formalin-induced nociceptive behaviors was not dependent upon GABA(B1) expression in nociceptors. CONCLUSION This study addressed contribution of GABA(B) receptors expressed on primary afferent nociceptive fibers to the modulation of pain. We observed that neither the development of acute and chronic pain nor the analgesic effects of a systematically-delivered GABA(B) agonist was significantly changed upon a specific deletion of GABA(B) receptors from peripheral nociceptive neurons in vivo. This lets us conclude that GABA(B) receptors in the peripheral nervous system play a less important role than those in the central nervous system in the regulation of pain.
Collapse
Affiliation(s)
- Vijayan Gangadharan
- Pharmacology Institute, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
8
|
Sandercock DA, Gibson IF, Brash HM, Rutherford KM, Scott EM, Nolan AM. Development of a mechanical stimulator and force measurement system for the assessment of nociceptive thresholds in pigs. J Neurosci Methods 2009; 182:64-70. [DOI: 10.1016/j.jneumeth.2009.05.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 05/19/2009] [Accepted: 05/27/2009] [Indexed: 11/26/2022]
|
9
|
Castro AR, Pinto M, Lima D, Tavares I. Secondary hyperalgesia in the monoarthritic rat is mediated by GABAB and NK1 receptors of spinal dorsal horn neurons: A behavior and c-fos study. Neuroscience 2006; 141:2087-95. [PMID: 16809001 DOI: 10.1016/j.neuroscience.2006.05.048] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Revised: 05/22/2006] [Accepted: 05/22/2006] [Indexed: 01/28/2023]
Abstract
Secondary hyperalgesia in the monoarthritic rat is accompanied by a decrease in nociceptive activation of spinal neurons expressing GABA(B) receptors and by the opposite effect in the cells expressing neurokinin 1 (NK1)-receptors. In order to ascertain the relative role of each receptor, the effects of intrathecal administration of SP-saporin (SP-SAP), baclofen or both were evaluated, using a model of secondary hyperalgesia that consists of mechanical stimulation of the hindlimb skin close to an inflamed joint. Four days after the induction of monoarthritis by intraarticular injection of Complete Freund's Adjuvant (CFA), a cannula was implanted at T(13)-L(1) level and 10 microl of saline or SP-SAP (10(-6) M) were intrathecally (i.t.) injected. Fourteen days after CFA-injection, half of the animals from each group received i.t. injections of 10 microl saline and the remainder were injected with the same volume of baclofen (1 microg). Ten minutes later, the animals were behaviorally evaluated by the von Frey test or submitted to noxious mechanical stimulation to analyze c-fos expression. The von Frey thresholds increased after the treatments, but more pronouncedly after baclofen or SP-SAP plus baclofen. In segments L(2)-L(3), the spinal area that receives input from the stimulated skin close to the inflamed joint, the numbers of Fos-immunoreactive neurons were reduced after the three treatments both in the superficial and deep dorsal horn. In segments T(13)-L(1), the numbers of Fos-immunoreactive neurons were significantly reduced after treatment with SP-SAP plus baclofen in both dorsal horn regions, and in the deep dorsal horn after baclofen treatment. We conclude that both GABA(B) and NK1 receptors of spinal dorsal horn neurons participate in secondary hyperalgesia in the monoarthritic rat, although the decrease in GABA inhibition appears to play a more important role than the increase in SP-mediated effects.
Collapse
Affiliation(s)
- A R Castro
- Institute of Histology and Embryology, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | | | | | | |
Collapse
|
10
|
Takemura M, Sugiyo S, Moritani M, Kobayashi M, Yonehara N. Mechanisms of orofacial pain control in the central nervous system. ACTA ACUST UNITED AC 2006; 69:79-100. [PMID: 16819148 DOI: 10.1679/aohc.69.79] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Recent advances in the study of pain have revealed somatotopic- and modality-dependent processing and the integration of nociceptive signals in the brain and spinal cord. This review summarizes the uniqueness of the trigeminal sensory nucleus (TSN) in structure and function as it relates to orofacial pain control. The oral nociceptive signal is primarily processed in the rostral TSN above the obex, the nucleus principalis (Vp), and the subnuclei oralis (SpVo) and interpolaris (SpVi), while secondarily processed in the subnucleus caudalis (SpVc). In contrast, the facial nociceptive signal is primarily processed in the SpVc. The neurons projecting to the thalamus are localized mostly in the Vp, moderately in the SpVi, and modestly in the ventrolateral SpVo and the SpVc. Orofacial sensory inputs are modulated in many different ways: by interneurons in the TSN proper, through reciprocal connection between the TSN and rostral ventromedial medulla, and by the cerebral cortex. A wide variety of neuroactive substances, including substance P, gamma-aminobutyric acid, serotonin and nitric oxide (NO) could be involved in the modulatory functions of these curcuits. The earliest expression of NO synthase (NOS) in the developing rat brain is observed in a discrete neuronal population in the SpVo at embryonic day 15. NOS expression in the SpVc is late at postnatal day 10. The neurons receiving intraoral signals are intimately related with the sensorimotor reflexive function through the SpVo. In summary, a better understanding of the trigeminal sensory system--which differs from the spinal system--will help to find potential therapeutic targets and lend to developing new analgesics for orofacial-specific pain with high efficacy and fewer side effects.
Collapse
Affiliation(s)
- Motohide Takemura
- Department of Oral Anatomy and Neurobiology, Osaka University Graduate School of Dentistry, Yamadaoka, Suita, Japan.
| | | | | | | | | |
Collapse
|
11
|
Castro AR, Pinto M, Lima D, Tavares I. Nociceptive spinal neurons expressing NK1 and GABAB receptors are located in lamina I. Brain Res 2004; 1003:77-85. [PMID: 15019566 DOI: 10.1016/j.brainres.2003.12.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2003] [Indexed: 11/30/2022]
Abstract
The nociceptive nature of spinal dorsal horn neurons expressing NK1 and gamma-aminobutyric acid (GABA)(B) receptors was evaluated in the rat. Immunodetection of the Fos protein, induced by noxious mechanical stimulation of the skin, was combined with immunocytochemistry for NK1 or GABA(B) receptors (double-immunostaining study) or both receptors (triple-immunostaining study). Neurons double-labeled for Fos and for each receptor largely prevailed in lamina I. The proportions of Fos-positive cells immunostained for NK1 or GABA(B) receptors were higher in lamina I than in the remaining spinal laminae. More Fos-positive cells were immunoreactive (IR) for GABA(B) receptors than for NK1 in all dorsal horn laminae. In the triple-immunostaining study, co-localization of NK1 and GABA(B) receptors occurred only in lamina I and was higher in neurons expressing Fos. As to the morphological lamina I cell class, NK1-positive cells belonged mainly to the fusiform type while similar proportions of fusiform, pyramidal and flattened NK1 neurons expressed GABA(B) receptors. No differences were found between those cell types as to the degree of nociceptive activation. The present results suggest that the co-localization of NK1 and GABA(B) receptors is a common feature of fusiform, pyramidal and flattened neurons in lamina I. Considering the participation of the three cell classes in various ascending systems, it is concluded that a simultaneous action of substance P (SP) and GABA may play an important role in the modulation of nociceptive input supraspinally transmitted from lamina I.
Collapse
Affiliation(s)
- Ana Rita Castro
- Instituto de Histologia e Embriologia, Faculdade de Medicina e IBMC, Universidade do Porto, 4200-319 Porto, Portugal
| | | | | | | |
Collapse
|
12
|
Sands SA, McCarson KE, Enna SJ. Relationship between the antinociceptive response to desipramine and changes in GABAB receptor function and subunit expression in the dorsal horn of the rat spinal cord. Biochem Pharmacol 2004; 67:743-9. [PMID: 14757174 DOI: 10.1016/j.bcp.2003.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Although tricyclic antidepressants are among the drugs of choice for the treatment of neuropathic pain, their mechanism of action in this regard remains unknown. Because previous reports suggest these agents may influence gamma-aminobutyric acid (GABA) neurotransmission, and GABAB receptors are known to participate in the transmission of pain impulses, the present experiments were undertaken to examine whether the administration of desipramine alters GABAB receptor subunit expression and function in the dorsal horn of the rat spinal cord. For the study, rats were injected (i.p.) once daily with desipramine (15 mg/kg) for 7 consecutive days, during which their thermal withdrawal threshold was monitored, and after which GABAB receptor function, and the levels of GABAB receptor subunit mRNA, were quantified in the spinal cord dorsal horn. The results indicate that 4-7 days of continuous administration of desipramine are necessary to observe a significant increase in the thermal pain threshold. Moreover, it was found that 7 days of treatment with desipramine enhances GABAB receptor function, as measured by baclofen-stimulated [35S]GTPgammaS binding, and increases mRNA expression for the GABAB(1a) and GABAB(2), but not GABAB(1b), subunits. These findings suggest the antinociceptive effect of desipramine is accompanied by a change in spinal cord GABAB receptor sensitivity that could be an important component in the analgesic response to this agent.
Collapse
Affiliation(s)
- Scott A Sands
- Department Pharmacology, Toxicology and Therapeutics, Kansas University School of Medicine, 3901 Rainbow Blvd., Mail Code 1018, Kansas City, KS 66160, USA
| | | | | |
Collapse
|
13
|
Nackley AG, Makriyannis A, Hohmann AG. Selective activation of cannabinoid CB(2) receptors suppresses spinal fos protein expression and pain behavior in a rat model of inflammation. Neuroscience 2003; 119:747-57. [PMID: 12809695 DOI: 10.1016/s0306-4522(03)00126-x] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Activation of cannabinoid CB(2) receptors attenuates thermal nociception in untreated animals while failing to produce centrally mediated effects such as hypothermia and catalepsy [Pain 93 (2001) 239]. The present study was conducted to test the hypothesis that activation of CB(2) in the periphery suppresses the development of inflammatory pain as well as inflammation-evoked neuronal activity at the level of the CNS. The CB(2)-selective cannabinoid agonist AM1241 (100, 330 micrograms/kg i.p.) suppressed the development of carrageenan-evoked thermal and mechanical hyperalgesia and allodynia. The AM1241-induced suppression of carrageenan-evoked behavioral sensitization was blocked by the CB(2) antagonist SR144528 but not by the CB(1) antagonist SR141716A. Intraplantar (ipl) administration of AM1241 (33 micrograms/kg ipl) suppressed hyperalgesia and allodynia following administration to the carrageenan-injected paw but was inactive following administration in the contralateral (noninflamed) paw, consistent with a local site of action. In immunocytochemical studies, AM1241 suppressed spinal Fos protein expression, a marker of neuronal activity, in the carrageenan model of inflammation. AM1241 suppressed carrageenan-evoked Fos protein expression in the superficial and neck region of the dorsal horn but not in the nucleus proprius or the ventral horn. The suppression of carrageenan-evoked Fos protein expression induced by AM1241 was blocked by coadministration of SR144528 in all spinal laminae. These data provide evidence that actions at cannabinoid CB(2) receptors are sufficient to suppress inflammation-evoked neuronal activity at rostral levels of processing in the spinal dorsal horn, consistent with the ability of AM1241 to normalize nociceptive thresholds and produce antinociception in inflammatory pain states.
Collapse
Affiliation(s)
- A G Nackley
- Neuroscience and Behavior Program, Department of Psychology, The University of Georgia, 30602, Athens, GA, USA
| | | | | |
Collapse
|
14
|
Zou X, Lin Q, Willis WD. The effects of sympathectomy on capsaicin-evoked fos expression of spinal dorsal horn GABAergic neurons. Brain Res 2002; 958:322-9. [PMID: 12470868 DOI: 10.1016/s0006-8993(02)03621-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Electrophysiological studies have suggested that activity of spinal GABAergic interneurons can be enhanced following intradermal injection of capsaicin (CAP). This activity is proposed to be involved in the generation of dorsal root reflexes (DRRs) that contribute to neurogenic inflammation. We have recently reported that NMDA or non-NMDA antagonists by intrathecal pretreatment attenuate the increased Fos expression in spinal dorsal horn GABAergic neurons after intradermal injection of CAP in rats. Sympathetic efferents have been suggested to modulate inflammatory pain possibly by interactions with primary afferent terminals. In electrophysiological studies by our group, enhancement of the CAP-induced DRRs could be prevented by surgical sympathectomy and blocked by intraarterial pretreatment of the foot with alpha(1)- but not by alpha(2)-adrenoceptor antagonists. In order to determine morphologically if surgical sympathectomy changes the expression of Fos in GABAergic neurons in the lumbosacral spinal cord induced by CAP injection, further experiments were performed using immunofluorescence double-labeling staining at 30 min following CAP or vehicle injection into the glabrous skin of one hind paw of anesthetized rats both in sham-operated and sympathectomized animals. Our results showed that the proportion of Fos-positive GABAergic neuronal profiles was significantly increased following CAP injection (48.8+/-4.76%) compared to vehicle injection (23.8+/-5.1%) in laminae I-V on the ipsilateral side (P<0.05). However, when sympathetic efferents were removed surgically 7-10 days prior to the experiment (n=6), only 32.07+/-9.03% of GABA-immunoreactive neuronal profiles were stained for Fos following CAP injection, a significant reduction in the CAP-evoked Fos-staining of GABAergic neurons after surgical sympathectomy. These findings support our previous electrophysiological studies that GABAergic neurons take part in nociceptive processing within the spinal dorsal horn and suggest that sympathetic efferents may affect nociceptive transduction in the periphery.
Collapse
Affiliation(s)
- Xiaoju Zou
- Department of Anatomy and Neuroscience, Marine Biomedical Institute, The University of Texas Medical Branch, Galveston, TX 77555-1069, USA
| | | | | |
Collapse
|
15
|
Zou X, Lin Q, Willis WD. NMDA or non-NMDA receptor antagonists attenuate increased Fos expression in spinal dorsal horn GABAergic neurons after intradermal injection of capsaicin in rats. Neuroscience 2002; 106:171-82. [PMID: 11564427 DOI: 10.1016/s0306-4522(01)00175-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
GABAergic neurons play an important role in the generation of primary afferent depolarization, which results in presynaptic inhibition and, if large enough, triggers dorsal root reflexes. Recent electrophysiological studies by our group have suggested that increased excitation of spinal GABAergic neurons by activation of N-methyl-D-aspartate (NMDA) and non-NMDA receptors following intradermal injection of capsaicin results in the generation of DRRs that contribute to neurogenic inflammation. The present study was to determine if changes in the expression of Fos protein occur in GABAergic neurons in the lumbosacral spinal cord following injection of capsaicin into the glabrous skin of one hind paw of anesthetized rats and if pretreatment with an NMDA receptor antagonist, D-(-)-2-amino-7-phosphonoheptanoic acid (AP7) or a non-NMDA receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) blocks Fos expression in these neurons. The experiments used western blots and immunofluorescence double labeling staining following capsaicin or vehicle injection. Western blots showed that Fos protein was increased on the ipsilateral side in spinal cord tissue 0.5 h after capsaicin injection. Pretreatment with AP7 or CNQX caused a decrease in capsaicin-induced Fos expression. Immunofluorescence double labeling showed that the proportion of Fos-positive GABAergic neuronal profiles was significantly increased following capsaicin injection (48.8+/-4.8%) compared to the vehicle injection (23.8+/-5.1%) in superficial laminae on the ipsilateral side in lumbosacral spinal cord (P<0.05). However, when the spinal cord was pretreated with AP7 (5 microg) or CNQX (0.2 microg), only 9.1+/-0.6% or 7.1+/-0.8% of GABA-immunoreactive neuronal profiles were stained for Fos following capsaicin injection. The blockade of the capsaicin-evoked Fos staining was dose-dependent. These findings suggest that GABAergic neurons take part in dorsal horn circuits that modulate nociceptive information and that the function of GABAergic neurons following capsaicin injection is partially mediated by NMDA and non-NMDA receptors.
Collapse
Affiliation(s)
- X Zou
- Department of Anatomy and Neuroscience, Marine Biomedical Institute, The University of Texas Medical Branch, Galveston, TX 77555-1069, USA
| | | | | |
Collapse
|
16
|
Takemura M, Shimada T, Shigenaga Y. GABA B receptor-mediated effects on expression of c-Fos in rat trigeminal nucleus following high- and low-intensity afferent stimulation. Neuroscience 2001; 103:1051-8. [PMID: 11301212 DOI: 10.1016/s0306-4522(01)00031-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We examined the effects of systemic administration of a GABA(B) receptor agonist, baclofen, or antagonist, phaclofen, on the expression of c-Fos protein induced 3h after electrical stimulation of the trigeminal ganglion at low (0.1 mA) or high intensities (1.0 mA) in the urethane-anesthetized rat. In saline-treated rats, 10 min stimulation of the trigeminal ganglion induced c-Fos-immunopositive neurons throughout the full extent of the ipsilateral superficial layers of the trigeminal nucleus caudalis, and dorsal or dorsomedial part of the nuclei rostral to obex (trigeminal nucleus principalis, dorsomedial nucleus of trigeminal nucleus oralis and dorsomedial nucleus of trigeminal nucleus interpolaris). Animals stimulated at 1.0 mA induced a significantly higher number of labeled neurons in all the trigeminal sensory nuclei than animals stimulated at 0.1 mA. In rats treated with 20mg/kg i.p. baclofen and stimulated at 0.1 mA, the numbers of Fos-positive neurons in all the trigeminal sensory nuclei were significantly decreased compared to saline-treated controls. After stimulation at 1.0 mA in rats treated with baclofen, the numbers of Fos-positive neurons in all the trigeminal sensory nuclei were also significantly decreased. In rats treated with 2mg/kg i.p. phaclofen and stimulated at 1.0 mA, the numbers of Fos-positive neurons were significantly increased in all the trigeminal sensory nuclei. However, after stimulation at 0.1 mA in rats treated with phaclofen, the numbers of Fos-positive neurons were significantly decreased in the superficial layers and magnocellular zone of trigeminal nucleus caudalis and dorsomedial nucleus of trigeminal nucleus oralis. These results indicate that the expression of c-Fos in the trigeminal sensory nucleus is differentially regulated through GABAB receptors in a manner that is dependent on the nucleus and the type of primary afferents that are activated by different stimulus intensities. Systemic administration of baclofen could inhibit both nociceptive and non-nociceptive sensory activity in the trigeminal sensory nucleus. Systemic administration of phaclofen could enhance nociceptive sensory activity but not non-nociceptive activity.
Collapse
Affiliation(s)
- M Takemura
- Department of Oral Anatomy, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, 565-0871, Osaka, Japan.
| | | | | |
Collapse
|
17
|
Riley RC, Trafton JA, Chi SI, Basbaum AI. Presynaptic regulation of spinal cord tachykinin signaling via GABA(B) but not GABA(A) receptor activation. Neuroscience 2001; 103:725-37. [PMID: 11274791 DOI: 10.1016/s0306-4522(00)00571-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Internalization of spinal cord neurokinin-1 receptors following noxious stimulation provides a reliable measure of tachykinin signaling. In the present study, we examined the contribution of GABAergic mechanisms to the control of nociceptor processing involving tachykinins. Spinal administration of the GABA(B) receptor agonist R(+)-baclofen in the rat, at antinociceptive doses, significantly reduced the magnitude of neurokinin-1 receptor internalization in neurons of lamina I in response to acute noxious mechanical or thermal stimulation. By contrast, administration of even high doses of the GABA(A) receptor agonists, muscimol or isoguvacine, were without effect. CGP55845, a selective GABA(B) receptor antagonist, completely blocked the effects of baclofen, but failed to increase the incidence of internalization when administered alone. These results provide evidence for a presynaptic control of nociceptive primary afferent neurons by GABA(B) but not GABA(A) receptors in the superficial laminae of the spinal cord, limiting tachykinin release. Because CGP5584 alone did not increase the magnitude of neurokinin-1 receptor internalization observed following noxious stimulation, there appears to be little endogenous activation of GABA(B) receptors on tachykinin-releasing nociceptors under acute stimulus conditions. The contribution of pre- and postsynaptic regulatory mechanisms to GABA(B) receptor-mediated antinociception was also investigated by comparing the effect of baclofen on Fos expression evoked by noxious stimulation to that induced by intrathecal injection of substance P. In both instances, baclofen reduced Fos expression not only in neurons that express the neurokinin-1 receptor, but also in neurons that do not. We conclude that baclofen acts at presynaptic sites to reduce transmitter release from small-diameter nociceptive afferents. Presynaptic actions on non-tachykinin-containing nociceptors could similarly account for the reduction by baclofen of noxious stimulus-induced Fos expression in neurokinin-1 receptor-negative neurons. However, the inhibition of Fos expression induced by exogenous substance P indicates that actions at sites postsynaptic to tachykinin- and/or non-tachykinin-containing primary afferent terminals must also contribute to the antinociceptive actions of GABA(B) receptor agonists.
Collapse
Affiliation(s)
- R C Riley
- Departments of Anatomy and Physiology and W. M. Keck Foundation Center for Integrative Neuroscience, University of California at San Francisco, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
18
|
Lu Y, Westlund KN. Effects of baclofen on colon inflammation-induced Fos, CGRP and SP expression in spinal cord and brainstem. Brain Res 2001; 889:118-30. [PMID: 11166695 DOI: 10.1016/s0006-8993(00)03124-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The present study demonstrates sites of expression for Fos protein in the brainstem and lumbosacral spinal cord of rats subjected to mustard oil irritation of the colon. The protective effect of baclofen, a selective GABA(B) receptor agonist, on the induced Fos protein increases was determined. Mustard oil injected into the lumen of the colon produces an acute site-specific inflammation. Immunocytochemical localization of Fos protein in neuronal nuclei was evident after 1 h, was greatest at 2 h and was still evident but declining at 8 h. In the spinal cord the majority of Fos labeled neurons were localized in the superficial laminae of lumbar (L6) cord with more found in the sacral (S1) cord. Some labeled neurons were also found in the deeper spinal laminae, intermediolateral nucleus and around lamina X. Brainstem sites expressing Fos included the nucleus of the solitary tract in the medulla, parabrachial, locus coeruleus, pontine and caudal dorsal raphe nuclei and periaqueductal gray. Weak Fos protein labeling existed in a few cells in vehicle control animals. Systemic administration of the GABA(B) receptor agonist, baclofen (10 mg/kg, i.p.), significantly reduced Fos expression in the spinal cord after mustard oil treatment but significantly increased the relative number of nuclei labeled in the nucleus of the solitary tract. Baclofen also significantly decreases dorsal horn CGRP immunoreactivity relative to the increased levels seen after inflammation of the colon. The SP content increases observed after inflammation of the colon were not altered by baclofen. These data suggest that: (1) neurons in regions important for nociceptive transmission, descending inhibitory control and autonomic control are activated by noxious stimulation of the colon, and (2) baclofen specifically reduces Fos expression in the superficial dorsal horn of the spinal cord induced by nociceptive afferent input.
Collapse
Affiliation(s)
- Y Lu
- Department of Anatomy and Neuroscience and The Marine Biomedical Institute, The University of Texas Medical Branch at Galveston, Galveston, TX 77555-1069, USA
| | | |
Collapse
|
19
|
van Hilten BJ, van de Beek WJ, Hoff JI, Voormolen JH, Delhaas EM. Intrathecal baclofen for the treatment of dystonia in patients with reflex sympathetic dystrophy. N Engl J Med 2000; 343:625-30. [PMID: 10965009 DOI: 10.1056/nejm200008313430905] [Citation(s) in RCA: 218] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND METHODS Patients with reflex sympathetic dystrophy (also known as the complex regional pain syndrome) may have dystonia, which is often unresponsive to treatment. Some forms of dystonia respond to the intrathecal administration of baclofen, a specific gamma-aminobutyric acid-receptor (type B) agonist that inhibits sensory input to the neurons of the spinal cord. We evaluated this treatment in seven women who had reflex sympathetic dystrophy with multifocal or generalized tonic dystonia. First, we performed a double-blind, randomized, controlled crossover trial of bolus intrathecal injections of 25, 50, and 75 microg of baclofen and placebo. Changes in the severity of dystonia were assessed by the woman and by an investigator after each injection. In the second phase of the study, six of the women received a subcutaneous pump for continuous intrathecal administration of baclofen and were followed for 0.5 to 3 years. RESULTS In six women, bolus injections of 50 and 75 microg of baclofen resulted in complete or partial resolution of focal dystonia of the hands but little improvement in dystonia of the legs. During continuous therapy, three women regained normal hand function, and two of these three women regained the ability to walk (one only indoors). In one woman who received continuous therapy, the pain and violent jerks disappeared and the dystonic posturing of the arm decreased. In two women the spasms or restlessness of the legs decreased, without any change in the dystonia. CONCLUSIONS In some patients, the dystonia associated with reflex sympathetic dystrophy responds markedly to intrathecal baclofen.
Collapse
Affiliation(s)
- B J van Hilten
- Department of Neurology, Leiden University Medical Center, The Netherlands.
| | | | | | | | | |
Collapse
|
20
|
Santos TDJ, de Castro-Costa CM, Giffoni SD, Santos FJ, Ramos RS, Gifoni MA. The effect of baclofen on spontaneous and evoked behavioural expression of experimental neuropathic chronic pain. ARQUIVOS DE NEURO-PSIQUIATRIA 1999; 57:753-60. [PMID: 10751909 DOI: 10.1590/s0004-282x1999000500005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Baclofen (beta-p-chlorophenyl-GABA) has been used in humans to treat spasticity, as well as trigeminal neuralgia. Since GABA (gamma-aminobutyric acid) has been implicated in inhibitory and analgesic effects in the nervous system, it was of interest to study the effect of baclofen in experimental neuropathic pain. With this purpose, experiments were carried out in 17 neuropathic rats with constrictive sciatic injury, as described by Bennet and Xie (1988), taking as pain parameters scratching behaviour and the latency to the thermal nociceptive stimulus. The results showed that baclofen induces, in a dose-dependent manner, significant decrease (p < 0.05) of scratching behaviour and significant increase (p < 0.05) of the latency to the nociceptive thermal stimulus. The absence of antagonism of naloxone suggested a non-participation of an opioid-mediated mechanism in this analgesic effect of baclofen on experimental neuropathic pain.
Collapse
Affiliation(s)
- T de J Santos
- Department of Physiology and Pharmacology, Federal University of Ceará (UFC), Brazil
| | | | | | | | | | | |
Collapse
|
21
|
Durkin MM, Gunwaldsen CA, Borowsky B, Jones KA, Branchek TA. An in situ hybridization study of the distribution of the GABA(B2) protein mRNA in the rat CNS. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 71:185-200. [PMID: 10521573 DOI: 10.1016/s0169-328x(99)00182-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the mammalian central nervous system. GABA exerts its actions through two classes of receptors: GABA(A), multimeric ligand-gated Cl(-) ion channels (a class which has been proposed to include the homomeric variant previously called GABA(C), to be designated GABA(A0r)); and GABA(B), G-protein coupled receptors which regulate Ca(2+) and K(+) channels. Currently, within the GABA(B) receptor family two proteins have been identified through molecular cloning techniques and designated GABA(B1) and GABA(B2). Two N-terminal variants of GABA(B1) were isolated and designated GABA(B1a) and GABA(B1b). The distribution of neurons in the rat CNS expressing the mRNA for the GABA(B1) isoforms have been previously described by in situ hybridization histochemistry. The recent isolation and identification of the GABA(B2) protein by homology cloning has enabled the use of radiolabeled oligonucleotides to detect the distribution of the expression of GABA(B2) mRNA in the rat CNS. The expression of GABA(B2) mRNA was observed to be primarily related to neuronal profiles. The highest levels of GABA(B2) mRNA expression were detected in the piriform cortex, hippocampus, and medial habenula. GABA(B2) mRNA was abundant in all layers of the cerebral cortex, the thalamus and in cerebellar Purkinje cells. Moderate expression was observed in several hypothalamic and brainstem nuclei. In contrast to the distribution of GABA(B1) mRNA, only a weak hybridization signal for GABA(B2) was detected over cells of the basal ganglia, including the caudate-putamen, nucleus accumbens, olfactory tubercle and throughout most of the hypothalamus. Moderate-to-heavy GABA(B2) mRNA expression was also seen over dorsal root and trigeminal ganglion cells. In general, the pattern of GABA(B2) mRNA expression in the rat brain overlaps considerably with the distributions described for both GABA(B1) mRNAs, and is concordant with the distribution described for GABA(B) receptor binding sites. However, differences between GABA(B2) expression levels and GABA(B) binding sites were observed in the basal ganglia.
Collapse
Affiliation(s)
- M M Durkin
- Department of Pharmacology, Synaptic Pharmaceutical Corporation, 215 College Road, Paramus, NJ 07652, USA.
| | | | | | | | | |
Collapse
|
22
|
Abstract
Recently, the long-awaited cloning of the GABAB receptors, the last of the major known neurotransmitter receptors to be identified, has been reported. In addition to an emerging molecular understanding, there have been advances in discerning the specific coupling partners of GABAB receptors in the brain.
Collapse
Affiliation(s)
- B Bettler
- Novartis Pharma, Basel, Switzerland.
| | | | | |
Collapse
|
23
|
Abstract
Peripheral tissue injury results in a change in the excitability of spinal dorsal horn neurons, central sensitization, and the behavioral correlate, hyperalgesia. It is proposed here that a dynamic balance exists between excitatory and inhibitory synaptic input to the spinal dorsal horn that functions to prevent central sensitization following brief, mild, noxious stimulation. Following more severe stimulation and injury, there is a loss of these inhibitory mechanisms that allow central sensitization to proceed. Single-unit recordings were made from L4-L5 deep dorsal horn neurons (wide dynamic range and nociceptive specific) from barbiturate-anesthetized rats that were non-inflamed or had a carrageenan-inflamed hindpaw. Baseline test responses to mechanical stimuli were obtained and normalized to 100%. An electrical conditioning stimulus (1 Hz, 20 s, C-fiber strength) was applied to the tibial nerve or the neuronal receptive field. Five seconds later the test stimulus was repeated and the magnitude of response compared to baseline. During the conditioning stimulus, 46% of the neurons from non-inflamed and inflamed rats showed wind-up although the magnitude of wind-up was significantly greater for inflamed rats. The remaining neurons showed no change (36-46%) or wind-down (8-18%). Five seconds following the end of the conditioning stimulus 67% of the neurons from non-inflamed rats had attenuated responses to mechanical stimuli (36% of baseline). The remaining neurons were either unaffected (30%) or facilitated (3%). Following inflammation significantly fewer neurons (28%) had attenuated responses and the magnitude of attenuation was significantly less than in non-inflamed rats (54% of baseline). The responses of the remaining neurons were unaffected (54%) or facilitated (18%). During subsequent test stimuli, the responses of 30% of the neurons from non-inflamed rats were facilitated to 140% of baseline. The responses of 46% of neurons from inflamed rats were facilitated to 160% of baseline. In these neurons there was significantly less initial attenuation following inflammation compared to non-inflamed rats. The response of the neuron during the electrical conditioning had no effect upon the response following conditioning. The conditioning stimulus given transcutaneously within the receptive field produced qualitatively similar results to tibial nerve stimulation. In non-inflamed rats, when the conditioning/test-stimulus interval was increased from 5 s to 10-30 s, the responses of 20% of the neurons were attenuated (compared to 67%) and the mean magnitude of attenuation was 52% of baseline (compared to 36% of baseline). However, the responses of only 33% of the neurons were ultimately facilitated (compared to 30%). The present study documents a short period following a low-frequency C-fiber input in which the response to natural stimuli is suppressed. It is suggested that this attenuation, whether or not expressed, prevents a significant portion of deep dorsal horn neurons from becoming sensitized to C-fiber input. This functions to prevent central sensitization when the noxious stimulus does not produce inflammation and it is not beneficial to the animal to become hyperalgesic (i.e., to alter its behavior in order to protect an injured limb and reduce painful sensations). Following injury-producing tissue damage and inflammation the mechanisms that produce the attenuation are reduced, with a concomitant increase in excitation to electrical and natural stimuli, suggesting that the attenuation is inhibitory modulation of nociceptive input and injury results in a disinhibition producing an increase in excitability and central sensitization.
Collapse
Affiliation(s)
- R J Traub
- Department of Oral and Craniofacial Biological Sciences, University of Maryland Dental School, Baltimore 21201, USA.
| |
Collapse
|
24
|
Dickenson AH, Chapman V, Green GM. The pharmacology of excitatory and inhibitory amino acid-mediated events in the transmission and modulation of pain in the spinal cord. GENERAL PHARMACOLOGY 1997; 28:633-8. [PMID: 9184794 DOI: 10.1016/s0306-3623(96)00359-x] [Citation(s) in RCA: 286] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
1. The aim of this review is to consider the relative roles of inhibitory and excitatory amino acid receptor-mediated events in the processes leading to pain transmission in the spinal cord. 2. Emphasis will be on the roles of the inhibitory and excitatory amino acids, GABA and glutamate, and how the relative balance between activity in these systems appears to determine the level of pain transmission. 3. The N-methyl-D-aspartate (NMDA) receptor for glutamate has been implicated in the generation and maintenance of central (spinal) states of hypersensitivity. It has been shown that activation of this receptor underlies wind-up, whereby the level of transmission of noxious messages is potentiated. Antagonists at this receptor-channel complex prevent or block enhanced (hyperalgesic) pain states induced by tissue damage, inflammation, nerve damage and ischemia. 4. Information concerning amplification systems in the spinal cord, such as the NMDA receptor, is a step toward understanding why and how a painful response is not always matched to the stimulus. Such events have parallels with other plastic events such as long-term potentiation (LTP) in the hippocampus. 5. However, the roles of inhibitory transmitter systems can also change insofar as opioid, adenosine and GABA transmission in the spinal cord can vary in different pain states. 6. Changes in GABA systems have been well-documented and discussion will center on whether this has clinical implications. 7. In addition to behavioral and electrophysiological approaches to the pharmacology of pain the current status of the use of markers of early onset genes such as c-fos, as monitors of activity, will be discussed. 8. Hyperalgesia would appear to be balanced by inhibitions during inflammatory conditions but not in neuropathic states, pains due to nerve damage. In the latter case, events reminiscent of LTP may predominate, whereas they are held in check by inhibitions under conditions of inflammation.
Collapse
Affiliation(s)
- A H Dickenson
- Department of Pharmacology, University College London, UK
| | | | | |
Collapse
|