1
|
Baran NM, Streelman JT. Ecotype differences in aggression, neural activity and behaviorally relevant gene expression in cichlid fish. GENES BRAIN AND BEHAVIOR 2020; 19:e12657. [PMID: 32323443 DOI: 10.1111/gbb.12657] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 12/18/2022]
Abstract
In Lake Malawi, two ecologically distinct lineages of cichlid fishes (rock- vs sand-dwelling ecotypes, each comprised of over 200 species) evolved within the last million years. The rock-dwelling species (Mbuna) are aggressively territorial year-round and males court and spawn with females over rocky substrate. In contrast, males of sand-dwelling species are not territorial and instead aggregate on seasonal breeding leks in which males construct courtship "bowers" in the sand. However, little is known about how phenotypic variation in aggression is produced by the genome. In this study, we first quantify and compare behavior in seven cichlid species, demonstrating substantial ecotype and species differences in unconditioned mirror-elicited aggression. Second, we compare neural activity in mirror-elicited aggression in two representative species, Mchenga conophoros (sand-dwelling) and Petrotilapia chitimba (rock-dwelling). Finally, we compare gene expression patterns between these two species, specifically within neurons activated during mirror aggression. We identified a large number of genes showing differential expression in mirror-elicited aggression, as well as many genes that differ between ecotypes. These genes, which may underly species differences in behavior, include several neuropeptides, genes involved in the synthesis of steroid hormones and neurotransmitter activity. This work lays the foundation for future experiments using this emerging genetic model system to investigate the genomic basis of evolved species differences in both brain and behavior.
Collapse
Affiliation(s)
- Nicole M Baran
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA.,Department of Psychology, Emory University, Atlanta, Georgia, USA
| | - J Todd Streelman
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA.,The Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Sonoda S, Yoshimura M, Ueno H, Nishimura H, Nishimura K, Tanaka K, Motojima Y, Saito R, Maruyama T, Hashimoto H, Okada Y, Tanaka Y, Ueta Y. Expression of the genes encoding hypothalamic feeding-related neuropeptides in the streptozotocin-induced diabetic rats with variable hyperglycemia and hyperphagia. Neuropeptides 2019; 75:34-40. [PMID: 30928158 DOI: 10.1016/j.npep.2019.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/19/2019] [Accepted: 03/19/2019] [Indexed: 11/22/2022]
Affiliation(s)
- Satomi Sonoda
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan; First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Mitsuhiro Yoshimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Hiromichi Ueno
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Haruki Nishimura
- Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Kazuaki Nishimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Kentaro Tanaka
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Yasuhito Motojima
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan; Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Reiko Saito
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Takashi Maruyama
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Hirofumi Hashimoto
- Department of Regulatory Physiology, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Yosuke Okada
- First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Yoshiya Tanaka
- First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan.
| |
Collapse
|
3
|
Guo XX, Wang Y, Wang K, Ji BP, Zhou F. Stability of a type 2 diabetes rat model induced by high-fat diet feeding with low-dose streptozotocin injection. J Zhejiang Univ Sci B 2018; 19:559-569. [PMID: 29971994 DOI: 10.1631/jzus.b1700254] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The present study aims at determining the stability of a popular type 2 diabetes rat model induced by a high-fat diet combined with a low-dose streptozotocin injection. METHODS Wistar rats were fed with a high-fat diet for 8 weeks followed by a one-time injection of 25 or 35 mg/kg streptozotocin to induce type 2 diabetes. Then the diabetic rats were fed with regular diet/high-fat diet for 4 weeks. Changes in biochemical parameters were monitored during the 4 weeks. RESULTS All the rats developed more severe dyslipidemia and hepatic dysfunction after streptozotocin injection. The features of 35 mg/kg streptozotocin rats more resembled type 1 diabetes with decreased body weight and blood insulin. Rats with 25 mg/kg streptozotocin followed by normal diet feeding showed normalized blood glucose level and pancreatic structure, indicating that normal diet might help recovery from certain symptoms of type 2 diabetes. In comparison, diabetic rats fed with high-fat diet presented decreased but relatively stable blood glucose level, and this was significantly higher than that of the control group (P<0.05). CONCLUSIONS This model easily recovers with normal diet feeding. A high-fat diet is suggested as the background diet in future pharmacological studies using this model.
Collapse
Affiliation(s)
- Xiao-Xuan Guo
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yong Wang
- Academy of State Administration of Grain, Beijing 100037, China
| | - Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Bao-Ping Ji
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Feng Zhou
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
4
|
Ando A, Gantulga D, Nakata M, Maekawa F, Dezaki K, Ishibashi S, Yada T. Weaning stage hyperglycemia induces glucose-insensitivity in arcuate POMC neurons and hyperphagia in type 2 diabetic GK rats. Neuropeptides 2018. [PMID: 29525472 DOI: 10.1016/j.npep.2018.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hyperphagia triggers and accelerates diabetes, and prevents proper dietary control of glycemia. Inversely, the impact of hyperglycemia on hyperphagia and possible mechanistic cause common for these two metabolic disorders in type 2 diabetes are less defined. The present study examined the precise developmental process of hyperglycemia and hyperphagia and explored the alterations in the hypothalamic arcuate nucleus (ARC), the primary feeding and metabolic center, in Goto-Kakizaki (GK) rats with type 2 diabetes and nearly normal body weight. At mid 3 to 4 weeks of age, GK rats first exhibited hyperglycemia, and then hyperphagia and reduced mRNA expressions for anorexigenic pro-opiomelanocortin (POMC) and glucokinase in ARC. Furthermore, [Ca2+]i responses to high glucose in ARC POMC neurons were impaired in GK rats at 4 weeks. Treating GK rats from early 3 to mid 6 weeks of age with an anti-diabetic medicine miglitol not only suppressed hyperglycemia but ameliorated hyperphagia and restored POMC mRNA expression in ARC. These results suggest that the early hyperglycemia occurring in weaning period may lead to impaired glucose sensing and neuronal activity of POMC neurons, and thereby induce hyperphagia in GK rats. Correction of hyperglycemia in the early period may prevent and/or ameliorate the progression of hyperphagia in type 2 diabetes.
Collapse
Affiliation(s)
- A Ando
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi 320-0498, Japan; Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi 320-0498, Japan
| | - D Gantulga
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi 320-0498, Japan
| | - M Nakata
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi 320-0498, Japan
| | - F Maekawa
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba-City, Ibaragi 305-8506, Japan
| | - K Dezaki
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi 320-0498, Japan
| | - S Ishibashi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi 320-0498, Japan
| | - T Yada
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi 320-0498, Japan; Kansai Electric Power Medical Research Institute, 1-5-6 Minatojimaminamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| |
Collapse
|
5
|
Ramakrishnan R, Nazer MY, Suthanthirarajan N, Namasivayam A. An Experimental Analysis of the Catecholamines in Hyperglycemia and Acidosis-Induced Rat Brain. Int J Immunopathol Pharmacol 2016; 16:233-9. [PMID: 14611726 DOI: 10.1177/039463200301600308] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hyperglycemia and acidosis are the hallmarks of diabetes. Since these factors play an important role in diabetic complications, we have studied the brain catecholamine levels in hyperglycemic and acidotic conditions per se. Experimentally induced hyperglycemia and acidosis are accompanied by significant alterations in the catecholamine levels in discrete areas of the brain. We and others have shown that chronic or acute diabetes in animals, as well as in humans results in altered neurotransmitter levels. In the present study, hyperglycemia maintained by daily external administration of glucose for thirty days showed increased level of dopamine in striatum and hippocampus, elevation of norepinephrine in hippocampus, and increased level of epinephrine in hypothalamus, midbrain and pons medulla. The ammonium chloride induced acidosis demonstrated significant elevation of dopamine in midbrain and significant increase of norepinephrine in hypothalamus and midbrain, and increased level of epinephrine in hypothalamus, pons medulla and cerebral cortex. On the other hand, sodium acetoacetate induced acidosis did not show any significant change in the level of catecholamines in any of the areas studied. In conclusion, the changes in catecholamine levels observed in experimentally induced hyperglycemic as well as in acidotic conditions are closely related to the changes observed in spontaneous or alloxan or streptozotocin diabetic animals, thereby suggesting that these conditions may be responsible for the changes observed in diabetic animals.
Collapse
Affiliation(s)
- R Ramakrishnan
- Dept Surgery, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, USA.
| | | | | | | |
Collapse
|
6
|
Celik O, Aydin S, Celik N, Yilmaz M. Peptides: Basic determinants of reproductive functions. Peptides 2015; 72:34-43. [PMID: 26074346 DOI: 10.1016/j.peptides.2015.05.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 12/22/2022]
Abstract
Mammalian reproduction is a costly process in terms of energy consumption. The critical information regarding metabolic status is signaled to the hypothalamus mainly through peripheral peptides from the adipose tissue and gastrointestinal tract. Changes in energy stores produce fluctuations in leptin, insulin, ghrelin and glucose signals that feedback mainly to the hypothalamus to regulate metabolism and fertility. In near future, possible effects of the nutritional status on GnRH regulation can be evaluated by measuring serum or tissue levels of leptin and ghrelin in patiens suffering from infertility. The fact that leptin and ghrelin are antagonistic in their effects on GnRH neurons, their respective agonistic and antagonistic roles make them ideal candidates to use instead of GnRH agonist and antagonist. Similarly, kisspeptin expressing neurons are likely to mediate the well-established link between energy balance and reproductive functions. Exogenous kisspeptin can be used for physiological ovarian hyperstimulation for in-vitro fertilization. Moreover, kisspeptin antagonist therapy can be used for the treatment of postmenapousal women, precocious puberty, PCOS, endometriosis and uterine fibroids. In this review, we will analyze the central mechanisms involved in the integration of metabolic information and their contribution to the control of the reproductive function. Particular attention will be paid to summarize the participation of leptin, kisspeptin, ghrelin, NPY, orexin, urocortin, VIP, insulin, galanin, galanin like peptide, oxytocin, agouti gene-related peptide, and POMC neurons in this process and their possible interactions to contribute to the metabolic control of reproduction.
Collapse
Affiliation(s)
- Onder Celik
- Private Clinic, Department of Obstetrics and Gynecology, İzmir, Turkey
| | - Suleyman Aydin
- Firat University, School of Medicine, Department of Medical Biochemistry (Firat Hormones Research Group), 23119 Elazig, Turkey.
| | - Nilufer Celik
- Behcet Uz Children's Hospital, Department of Biochemistry, İzmir, Turkey
| | - Musa Yilmaz
- Firat University, School of Medicine, Department of Medical Biochemistry (Firat Hormones Research Group), 23119 Elazig, Turkey
| |
Collapse
|
7
|
Fernández-Formoso G, Pérez-Sieira S, González-Touceda D, Dieguez C, Tovar S. Leptin, 20 years of searching for glucose homeostasis. Life Sci 2015; 140:4-9. [PMID: 25744051 DOI: 10.1016/j.lfs.2015.02.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 12/31/2022]
Abstract
Leptin was discovered in 1994 (20 years ago). In addition to having well-characterized effects on the regulation of energy homeostasis, leptin clearly also plays a major role in metabolic homeostasis. In fact, leptin plays an important role in the regulation of glucose homeostasis independent of food intake and body weight. The mechanism underlying the modulation of glucose metabolism by leptin is not completely understood, although evidence indicates that the effect occurs at both the central and peripheral levels. In this review, we will focus on the role of leptin in glucose homeostasis at the central level and its role in insulin secretion and in counteracting hormones, such as glucagon, growth hormone, cortisol and catecholamines.
Collapse
Affiliation(s)
- Gabriela Fernández-Formoso
- Department of Physiology, CIMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain
| | - Sonia Pérez-Sieira
- Department of Physiology, CIMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain
| | - David González-Touceda
- Department of Physiology, CIMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain
| | - Carlos Dieguez
- Department of Physiology, CIMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain
| | - Sulay Tovar
- Department of Physiology, CIMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain.
| |
Collapse
|
8
|
Meek TH, Matsen ME, Damian V, Cubelo A, Chua SC, Morton GJ. Role of melanocortin signaling in neuroendocrine and metabolic actions of leptin in male rats with uncontrolled diabetes. Endocrinology 2014; 155:4157-67. [PMID: 25137027 PMCID: PMC4197991 DOI: 10.1210/en.2014-1169] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although the antidiabetic effects of leptin require intact neuronal melanocortin signaling in rodents with uncontrolled diabetes (uDM), increased melanocortin signaling is not sufficient to mimic leptin's glucose-lowering effects. The current studies were undertaken to clarify the role of melanocortin signaling in leptin's ability to correct metabolic and neuroendocrine disturbances associated with uDM. To accomplish this, bilateral cannulae were implanted in the lateral ventricle of rats with streptozotocin-induced diabetes, and leptin was coinfused with varying doses of the melanocortin 3/4 receptor (MC3/4R) antagonist, SHU9119. An additional cohort of streptozotocin-induced diabetes rats received intracerebroventricular administration of either the MC3/4R agonist, melanotan-II, or its vehicle. Consistent with previous findings, leptin's glucose-lowering effects were blocked by intracerebroventricular SHU9119. In contrast, leptin-mediated suppression of hyperglucagonemia involves both melanocortin dependent and independent mechanisms, and the degree of glucagon inhibition was associated with reduced plasma ketone body levels. Increased central nervous system melanocortin signaling alone fails to mimic leptin's ability to correct any of the metabolic or neuroendocrine disturbances associated with uDM. Moreover, the inability of increased melanocortin signaling to lower diabetic hyperglycemia does not appear to be secondary to release of the endogenous MC3/4R inverse agonist, Agouti-related peptide (AgRP), because AgRP knockout mice did not show increased susceptibility to the antidiabetic effects of increased MC3/4R signaling. Overall, these data suggest that 1) AgRP is not a major driver of diabetic hyperglycemia, 2) mechanisms independent of melanocortin signaling contribute to leptin's antidiabetic effects, and 3) melanocortin receptor blockade dissociates leptin's glucose-lowering effect from its action on other features of uDM, including reversal of hyperglucagonemia and ketosis, suggesting that brain control of ketosis, but not blood glucose levels, is glucagon dependent.
Collapse
Affiliation(s)
- Thomas H Meek
- Diabetes and Obesity Center of Excellence (T.H.M., M.E.M.,. V.D., A.C., G.J.M.), Department of Medicine, University of Washington, Seattle, Washington 98109; and Division of Endocrinology (S.C.C.), Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
Diabetes is a major worldwide problem. Despite some progress in the development of new antidiabetic agents, the ability to maintain tight glycemic control in order to prevent renal, retinal, and neuropathic complications of diabetes without adverse complications still remains a challenge. Recent evidence suggests, however, that in addition to playing a key role in the regulation of energy homeostasis, the adiposity hormone leptin also plays an important role in the control of glucose metabolism via its actions in the brain. This review examines the role of leptin action in the central nervous system and the mechanisms whereby leptin mediates its effects to regulate glucose metabolism. These findings suggest that defects or dysfunction in leptin signaling may contribute to the etiology of diabetes and raise the possibility that either leptin or downstream targets of leptin may have therapeutic potential for the treatment of diabetes.
Collapse
Affiliation(s)
- Thomas H. Meek
- Diabetes and Obesity Center of Excellence, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Gregory J. Morton
- Diabetes and Obesity Center of Excellence, Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
10
|
Morton GJ, Schwartz MW. Leptin and the central nervous system control of glucose metabolism. Physiol Rev 2011; 91:389-411. [PMID: 21527729 DOI: 10.1152/physrev.00007.2010] [Citation(s) in RCA: 210] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The regulation of body fat stores and blood glucose levels is critical for survival. This review highlights growing evidence that leptin action in the central nervous system plays a key role in both processes. Investigation into underlying mechanisms has begun to clarify the physiological role of leptin in the control of glucose metabolism and raises interesting new possibilities for the treatment of diabetes and related disorders.
Collapse
Affiliation(s)
- Gregory J Morton
- Diabetes and Obesity Center of Excellence, Department of Medicine, University of Washington, Seattle, Washington 98195, USA.
| | | |
Collapse
|
11
|
Iwata K, Kinoshita M, Yamada S, Imamura T, Uenoyama Y, Tsukamura H, Maeda KI. Involvement of brain ketone bodies and the noradrenergic pathway in diabetic hyperphagia in rats. J Physiol Sci 2011; 61:103-13. [PMID: 21234734 PMCID: PMC10717331 DOI: 10.1007/s12576-010-0127-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 12/05/2010] [Indexed: 10/18/2022]
Abstract
Uncontrolled type 1 diabetes leads to hyperphagia and severe ketosis. This study was conducted to test the hypothesis that ketone bodies act on the hindbrain as a starvation signal to induce diabetic hyperphagia. Injection of an inhibitor of monocarboxylate transporter 1, a ketone body transporter, into the fourth ventricle normalized the increase in food intake in streptozotocin (STZ)-induced diabetic rats. Blockade of catecholamine synthesis in the hypothalamic paraventricular nucleus (PVN) also restored food intake to normal levels in diabetic animals. On the other hand, hindbrain injection of the ketone body induced feeding, hyperglycemia, and fatty acid mobilization via increased sympathetic activity and also norepinephrine release in the PVN. This result provides evidence that hyperphagia in STZ-induced type 1 diabetes is signaled by a ketone body sensed in the hindbrain, and mediated by noradrenergic inputs to the PVN.
Collapse
Affiliation(s)
- Kinuyo Iwata
- Laboratory for Reproductive Science, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan
| | - Mika Kinoshita
- Laboratory for Reproductive Science, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan
| | - Shunji Yamada
- Laboratory for Reproductive Science, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan
| | - Takuya Imamura
- Laboratory for Biodiversity, Global COE Program, Graduate School of Science, Kyoto University, Kyoto, 606-8502 Japan
| | - Yoshihisa Uenoyama
- Laboratory for Reproductive Science, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan
| | - Hiroko Tsukamura
- Laboratory for Reproductive Science, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan
| | - Kei-ichiro Maeda
- Laboratory for Reproductive Science, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan
| |
Collapse
|
12
|
Dallman MF, Bhatnagar S. Chronic Stress and Energy Balance: Role of the Hypothalamo‐Pituitary‐Adrenal Axis. Compr Physiol 2011. [DOI: 10.1002/cphy.cp070410] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
13
|
Kinzig KP, Honors MA, Hargrave SL. Insulin sensitivity and glucose tolerance are altered by maintenance on a ketogenic diet. Endocrinology 2010; 151:3105-14. [PMID: 20427477 PMCID: PMC2903931 DOI: 10.1210/en.2010-0175] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Low-carbohydrate, ketogenic diets (KD) are frequently implemented in efforts to reduce or maintain body weight, although the metabolic effects of long-term exposure to this type of diet remain controversial. This study assessed the responsivity to peripheral and central insulin, glucose tolerance, and meal-induced effects of consuming a KD in the rat. After 8 wk of consuming chow or KD, caloric intake after peripheral or central insulin and insulin and glucose levels after a glucose challenge were assessed. In a separate group of rats, glucose and insulin responses to either a low- or high-carbohydrate test meal were measured. Finally, rats maintained on KD were switched back to a chow diet, and insulin sensitivity and glucose tolerance were evaluated to determine whether the effects of KD were reversible. Maintenance on KD resulted in decreased sensitivity to peripheral insulin and impaired glucose tolerance. Furthermore, consumption of a high-carbohydrate meal in rats that habitually consumed KD induced significantly greater insulin and glucose levels for an extended period of time, as compared with chow-fed controls. Responsivity to central insulin was heightened in KD rats and associated with increased expression levels of insulin receptor mRNA. Finally, returning to a chow diet rapidly reversed the effects of KD on insulin sensitivity and glucose tolerance. These data suggest that maintenance on KD negatively affects glucose homeostasis, an effect that is rapidly reversed upon cessation of the diet.
Collapse
Affiliation(s)
- Kimberly P Kinzig
- 703 Third Street, Department of Psychological Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | | | | |
Collapse
|
14
|
Metabolic syndrome: Aggression control mechanisms gone out of control. Med Hypotheses 2010; 74:578-89. [DOI: 10.1016/j.mehy.2009.09.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 09/07/2009] [Indexed: 01/13/2023]
|
15
|
McDevitt MA, Thorsness RJ, Levine JE. A role for ATP-sensitive potassium channels in male sexual behavior. Horm Behav 2009; 55:366-74. [PMID: 18950632 DOI: 10.1016/j.yhbeh.2008.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 08/27/2008] [Accepted: 08/29/2008] [Indexed: 11/24/2022]
Abstract
ATP-sensitive potassium (K(+)(ATP)) channels regulate cell excitability and are expressed in steroid-responsive brain regions involved in sexual behavior, such as the preoptic area (POA) and medial basal hypothalamus (MBH). We hypothesized that K(+)(ATP) channels serve as a mechanism by which testosterone can control the electrical activity of neurons and consequently elicit male sexual responsiveness. RT-PCR analysis indicated that castration induces, while testosterone inhibits, mRNA expression of the K(+)(ATP) channel subunit Kir6.2 in both the POA and MBH of adult male rats. Intracerebral infusion of the pharmacological K(+)(ATP) channel inhibitor tolbutamide increased the proportion of long-term castrates displaying sexual behavior and restored mount frequency, intromission frequency, and copulatory efficacy to values observed in testes-intact animals. Infusions of tolbutamide, but not vehicle, also decreased latencies to mount and intromit in castrated males. Unilateral tolbutamide infusion directly into the POA significantly reduced mount latency of castrates; however, it did not affect other copulatory measures, suggesting that blockade of K(+)(ATP) channels in additional brain regions may be necessary to recover the full range of sexual behavior. These data indicate that blockade of K(+)(ATP) channels is sufficient to elicit the male sexual response in the absence of testosterone. Our observations are consistent with the hypothesis that testosterone modulates male sexual behavior by regulating K(+)(ATP) channels in the brain. Decreased channel expression or channel blockade may increase the excitability of androgen-target neurons, rendering them more sensitive to the hormonal, chemical, and somatosensory inputs they receive, and potentially increase secretion of neurotransmitters that facilitate sexual behavior.
Collapse
Affiliation(s)
- Melissa A McDevitt
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208, USA
| | | | | |
Collapse
|
16
|
Joharchi K, Jorjani M. The role of nitric oxide in diabetes-induced changes of morphine tolerance in rats. Eur J Pharmacol 2007; 570:66-71. [PMID: 17599829 DOI: 10.1016/j.ejphar.2007.05.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 05/05/2007] [Accepted: 05/15/2007] [Indexed: 11/19/2022]
Abstract
Several neuroendocrine complications including diabetes change the morphine antinociception and the development of tolerance to the drug. Morphine antinociception was reduced significantly in morphine tolerant diabetic rats compared to the non-diabetic animals. The exact mechanism of this effect is not known. This study was performed to determine the role of nitric oxide (NO) on morphine tolerance in diabetic state. Nociceptive responses in alloxan-induced diabetic morphine tolerated rats were measured by the hot-plate test. The urinary nitric oxide level was measured spectrophotometrically with Griess reagent. For the conversion of nitrate to nitrite, vanadium chloride was used. The results showed that experimental diabetes increased morphine analgesia. Conversely, degree of tolerance to morphine was diminished in diabetic state. The urinary nitrite content in diabetic morphine tolerated rats was higher than non-diabetic groups. L-arginine significantly increased the NO production in diabetic morphine tolerated animals, whereas aminoguanidine decreased it. Appropriately, L-arginine increased the latency time of reaction to noxious stimuli in diabetic compared to non-diabetic rats. L-arginine-treated animals also showed more tolerance to morphine analgesia. As expected, aminoguanidine deducted the level of morphine tolerance in diabetic animals. It is suggested that NO has a modulatory role in the effects of diabetes on morphine analgesia and tolerance.
Collapse
Affiliation(s)
- Khojasteh Joharchi
- Neuroscience Research Center & Department of Pharmacology, Faculty of Medicine, Shaheed Beheshti Medical University, Tehran, Iran
| | | |
Collapse
|
17
|
Nomura M, Nishii H, Ozaki Y, Fujimoto N, Matsumoto T. An angiotensin II receptor blocker increases sexual behavior in type 2 diabetic mice. Physiol Behav 2007; 91:223-8. [PMID: 17434545 DOI: 10.1016/j.physbeh.2007.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 11/17/2006] [Accepted: 03/05/2007] [Indexed: 10/23/2022]
Abstract
The present study was conducted to examine the effects of olmersartan, angiotensin (ANG) II type 1 (AT(1)) receptor antagonist, on the sexual function in type 2 diabetes model mice. Twenty-week-old KK/Ta mice were used as a model of type 2 diabetes. Age-matched ICR and BALB/C mice were used as non-diabetic controls. The animals were fed powder chow either with or without olmesartan (7.5 microg/g in chow) for 4 weeks. The levels of sexual behavior, activity, and anxiety were then examined between the groups treated with and without olmesartan. The KK/Ta mice treated with olmesartan exhibited a significant increase in the number of mounts and intromission and a decrease in the latency to the first mount in comparison to the KK/Ta mice treated without olmesartan. These effects of olmesartan were not observed in the non-diabetic BALB/C and ICR mice. In addition, the olmesartan treatment did not affect the activity and anxiety regardless of the mouse strain. These findings suggest that the interaction between ANG II and AT(1) receptor may be involved in the pathogenesis of the sexual dysfunction associated with type 2 diabetes and a blockade of ANG II may therefore be a potentially useful treatment for male sexual dysfunction in type 2 diabetes.
Collapse
MESH Headings
- Angiotensin II/physiology
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Animals
- Diabetes Mellitus, Type 2/complications
- Disease Models, Animal
- Exploratory Behavior/drug effects
- Female
- Imidazoles/pharmacology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred ICR
- Mice, Inbred Strains
- Motor Activity/drug effects
- Reaction Time/drug effects
- Receptor, Angiotensin, Type 1/physiology
- Sexual Behavior, Animal/drug effects
- Sexual Dysfunction, Physiological/complications
- Sexual Dysfunction, Physiological/drug therapy
- Species Specificity
- Tetrazoles/pharmacology
- Time Factors
Collapse
Affiliation(s)
- Masayoshi Nomura
- Department of Urology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan.
| | | | | | | | | |
Collapse
|
18
|
Tsubone T, Masaki T, Katsuragi I, Tanaka K, Kakuma T, Yoshimatsu H. Leptin downregulates ghrelin levels in streptozotocin-induced diabetic mice. Am J Physiol Regul Integr Comp Physiol 2005; 289:R1703-6. [PMID: 16109802 DOI: 10.1152/ajpregu.00773.2004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ghrelin, an orexigenic peptide produced in the stomach, is increased in streptozotocin (STZ)-induced diabetic (DM) mice. This study clarifies the regulation of ghrelin levels by leptin in STZ-DM mice. STZ-DM mice had higher plasma ghrelin concentrations and greater ghrelin mRNA expression than control mice. Changes in ghrelin levels were dose dependently attenuated by the subcutaneous injection of leptin (0–27 nmol·kg−1·day−1 over 7 days). Leptin treatment also partially reversed the hyperphagia and hyperglycemia observed in STZ-DM mice, but not the hypoinsulinemia, and there was a decrease in plasma ghrelin concentrations and ghrelin mRNA levels compared with STZ-LEP pair-fed mice. These results indicate that leptin treatment partially reverses elevated plasma ghrelin levels in STZ-DM mice independent of food intake and insulin, and suggest that hypoleptinemia in STZ-DM mice upregulates ghrelin.
Collapse
Affiliation(s)
- Tetsuo Tsubone
- Dept. of Internal Medicine 1, Faculty of Medicine, Oita University, 1-1 Idaigaoka,Hasama, Oita, 879-5593 Japan
| | | | | | | | | | | |
Collapse
|
19
|
Stoyanovitch AG, Johnson MA, Clifton DK, Steiner RA, Fraley GS. Galanin-like peptide rescues reproductive function in the diabetic rat. Diabetes 2005; 54:2471-6. [PMID: 16046316 DOI: 10.2337/diabetes.54.8.2471] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Galanin-like peptide (GALP) is expressed in the hypothalamic arcuate nucleus and is regulated by leptin and insulin. Centrally administered GALP stimulates gonadotropin secretion and sexual behavior in the rat. Type 1 diabetes is associated with reduced expression of GALP, as well as an overall decline in reproductive function. We postulated that tonic activity of GALP in the brain is required to sustain normal reproductive activity. To test this hypothesis, we examined whether central (intracerebroventricular) immunoblockade of GALP would reduce sexual behaviors and serum levels of luteinizing hormone (LH) in normal adult male rats. We found that GALP antibody reversibly reduced serum levels of LH and abolished male sexual behaviors (P < 0.05 and 0.001, respectively). Second, we tested whether intracerebroventricular GALP could restore normal plasma LH levels and sexual behavior in diabetic animals. We compared groups of diabetic rats that received intracerebroventricular GALP or vehicle and found that GALP increased serum levels of LH and sexual behavior. Third, we examined whether intracerebroventricular administration of affinity-purified GALP antibody could block the effect of insulin and leptin in reversing the effects of diabetes on LH and sexual behavior. We found that treatment of diabetic animals with insulin and leptin nearly normalized LH levels and sexual behaviors; however, this effect was attenuated by intracerebroventricular administration of GALP antibody (P < 0.05). These observations demonstrate that endogenous GALP provides trophic support to the neuroendocrine reproductive axis, including sexual behavior.
Collapse
Affiliation(s)
- Angela G Stoyanovitch
- Biology Department, 35 E. 12th St., PSC 3065, Box 9000, Biology Dept., Hope College, Holland, MI 49423, USA
| | | | | | | | | |
Collapse
|
20
|
la Fleur SE, Houshyar H, Roy M, Dallman MF. Choice of lard, but not total lard calories, damps adrenocorticotropin responses to restraint. Endocrinology 2005; 146:2193-9. [PMID: 15705773 DOI: 10.1210/en.2004-1603] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although rats given the choice of eating high-density calories as concentrated sucrose solutions or lard exhibit reduced responsivity in the hypothalamo-pituitary-adrenal axis, rats fed high-fat diets have normal or augmented responses to stressors. To resolve this apparent discrepancy, we compared in adult male rats the effects of 7-d feeding with lard + chow (choice) to feeding a 50% lard-chow mixture (no-choice) and to chow only. Rats with choice composed diets with 50-60% total calories from lard. Rats were exposed to 30 min of restraint on d 7. In the choice group, there was a robust inhibition of ACTH and corticosterone responses to restraint compared with chow or no-choice groups. Total caloric intake was less with choice than no-choice. Fat depot weights and body weight gain were similar in the high-fat groups. Leptin concentrations were equal but insulin was higher in the choice group. We conclude the following: 1) choice of eating high-density calories strongly damps hypothalamo-pituitary-adrenal responses to stress; without choice, high-density diet is ineffective; and 2) insulin may signal metabolic well-being, and may act through hypothalamic sites to reduce caloric intake but through forebrain sites to damp stress responses.
Collapse
Affiliation(s)
- Susanne E la Fleur
- Department of Physiology, University of California San Francisco, San Francisco, California 94143-0444, USA
| | | | | | | |
Collapse
|
21
|
Kim H, Shin MS, Lee TH, Chang HK, Jang MH, Shin MC, Lim BV, Lee HH, Kim YP, Kim CJ. Treadmill exercise modulates nitric oxide synthase expression in the hypothalamus of streptozotocin-induced diabetic rats. Nutr Res 2004. [DOI: 10.1016/j.nutres.2003.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Brown NW, Ward A, Surwit R, Tiller J, Lightman S, Treasure JL, Campbell IC. Evidence for metabolic and endocrine abnormalities in subjects recovered from anorexia nervosa. Metabolism 2003; 52:296-302. [PMID: 12647266 DOI: 10.1053/meta.2003.50067] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Subjects with anorexia nervosa (AN) at low weight display metabolic, endocrine, and behavioral abnormalities. Whether these various differences are a consequence of the condition and persist after recovery is unclear. We tested the hypothesis that abnormalities in the insulin and leptin axes and in the desire to eat persisted in subjects who had recovered from AN in terms of body mass index (BMI) and menstrual function. Endocrine, metabolic, and psychological parameters were assessed by sampling under fasting conditions and serially in response to a standard meal. Subjects included 18 females recovered from AN and 18 female controls and measures included plasma insulin, leptin, glucose and beta-hydroxybutyrate (beta-HBA) concentrations together with desire to eat. Fasting glucose concentrations were normal in both groups, but fasting insulin concentrations were significantly lower and the fasting glucose/insulin ratio significantly higher in the recovered subjects. The glucose concentration was significantly higher at the end of the meal period in the recovered group. The peak increase of insulin during the meal was significantly less in the recovered group and in response to the meal, glucose/insulin ratios were significantly higher for the first 45 minutes indicating a delayed insulin response. Fasting beta-HBA concentrations were not significantly different between groups, but postmeal decreases were significant and larger in the recovered AN group. Fasting and meal-related leptin concentrations were not significantly different between the groups and in both groups were correlated with BMI. In controls, but not in recovered subjects, the reported desire to eat was correlated with plasma glucose and leptin concentrations. The insulin, glucose and beta-HBA data indicated the presence of insulin hypersensitivity in the recovered subjects. As the insulin response to the meal was blunted and apparently delayed, there may be a persistent alteration in pancreatic function as a long-term pathological consequence of the anorexia. Alternatively, these data indicate a possible trait marker for AN.
Collapse
|
23
|
Heinrichs SC. Mouse feeding behavior: ethology, regulatory mechanisms and utility for mutant phenotyping. Behav Brain Res 2001; 125:81-8. [PMID: 11682097 DOI: 10.1016/s0166-4328(01)00287-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ingestive behaviors, feeding and drinking, constitute unconditioned, obligatory functions that are tightly regulated in the rodent according to demands of the external and internal milieu. Dependent measures of food intake have been used extensively in rats to infer the identity and function of neurochemical pathways, which mediate energy balance. A recent interest in application of appetitive measures in mice can be attributed jointly to the discovery of novel markers of energy balance in genetically obese mice as well as systematic targeting of known feeding regulatory pathways in bioengineered mutant mice. Accordingly, this review will attempt to provide the reader interested in behavioral phenotyping of knockout or transgenic mice with information regarding the ethology of mouse eating behavior, known mechanisms of appetitive regulation and examples of successes and pitfalls encountered when studying food intake in mutant mice.
Collapse
Affiliation(s)
- S C Heinrichs
- Department of Psychology, Boston College, McGuinn Hall, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA.
| |
Collapse
|
24
|
Schwartz MW, Woods SC, Porte D, Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature 2000; 404:661-71. [PMID: 10766253 DOI: 10.1038/35007534] [Citation(s) in RCA: 4029] [Impact Index Per Article: 167.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
New information regarding neuronal circuits that control food intake and their hormonal regulation has extended our understanding of energy homeostasis, the process whereby energy intake is matched to energy expenditure over time. The profound obesity that results in rodents (and in the rare human case as well) from mutation of key signalling molecules involved in this regulatory system highlights its importance to human health. Although each new signalling pathway discovered in the hypothalamus is a potential target for drug development in the treatment of obesity, the growing number of such signalling molecules indicates that food intake is controlled by a highly complex process. To better understand how energy homeostasis can be achieved, we describe a model that delineates the roles of individual hormonal and neuropeptide signalling pathways in the control of food intake and the means by which obesity can arise from inherited or acquired defects in their function.
Collapse
Affiliation(s)
- M W Schwartz
- Department of Medicine, Harborview Medical Center and VA Puget Sound Health Care System, University of Washington, Seattle 98104-2499, USA
| | | | | | | | | |
Collapse
|
25
|
Schwartz MW, Baskin DG, Kaiyala KJ, Woods SC. Model for the regulation of energy balance and adiposity by the central nervous system. Am J Clin Nutr 1999; 69:584-96. [PMID: 10197558 DOI: 10.1093/ajcn/69.4.584] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In 1995, we described a new model for adiposity regulation. Since then, data regarding the biology of body weight regulation has accumulated at a remarkable rate and has both modified and strengthened our understanding of this homeostatic system. In this review we integrate new information into a revised model for further understanding this important regulatory process. Our model of energy homeostasis proposes that long-term adiposity-related signals such as insulin and leptin influence the neuronal activity of central effector pathways that serve as controllers of energy balance.
Collapse
Affiliation(s)
- M W Schwartz
- Department of Medicine, University of Washington, Harborview-Medical Center and the VA Puget Sound Health Care System, Seattle 98108, USA.
| | | | | | | |
Collapse
|
26
|
Chavez M, Seeley RJ, Havel PJ, Friedman MI, Matson CA, Woods SC, Schwartz MW. Effect of a high-fat diet on food intake and hypothalamic neuropeptide gene expression in streptozotocin diabetes. J Clin Invest 1998; 102:340-6. [PMID: 9664075 PMCID: PMC508892 DOI: 10.1172/jci603] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Insulin-deficient diabetic rats are markedly hyperphagic when fed a high-carbohydrate (HC) diet, but normophagic when fed a high-fat (HF) diet. When maintained on a HC diet, diabetic rats also exhibit increased gene expression of the orexigenic peptide neuropeptide Y (NPY) in the hypothalamic arcuate nucleus, and reduced expression of the anorectic peptide corticotropin-releasing hormone (CRH) in the paraventricular nucleus, and these changes are hypothesized to contribute to diabetic hyperphagia. In this experiment we assessed whether the normophagia displayed by HF-fed diabetic rats is associated with the opposite profile of NPY and CRH expression. Our results show that relative to diabetic rats on the HC diet, the diabetic rats on the HF diet exhibited significantly reduced caloric intake (-40%), NPY expression in the arcuate nucleus (-27%), and elevated CRH expression in the paraventricular nucleus (+37%). Insulin and corticosterone, which are known to affect hypothalamic NPY and CRH expression, were not different between these two groups, making it unlikely that they can account for the differences in either feeding behavior or hypothalamic peptide expression. There was a small but significant increase in plasma leptin levels in the diabetic animals maintained on the HF, and large differences in parameters associated with elevated fat oxidation. These observations support the hypothesis that the normalization of food intake observed in diabetic rats consuming a HF diet may in part be mediated by reductions in NPY expression and elevations in CRH expression.
Collapse
Affiliation(s)
- M Chavez
- Monell Chemical Senses Center, Philadelphia, Pennsylvania 19104-3308, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Patterson TA, Brot MD, Zavosh A, Schenk JO, Szot P, Figlewicz DP. Food deprivation decreases mRNA and activity of the rat dopamine transporter. Neuroendocrinology 1998; 68:11-20. [PMID: 9695934 DOI: 10.1159/000054345] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have hypothesized that the midbrain dopamine (DA) neurons are a target for insulin action in the central nervous system (CNS). In support of this hypothesis, we have previously demonstrated that direct intracerebroventricular infusion of insulin results in an increase in mRNA levels for the DA reuptake transporter (DAT). In this study, 24- to 36-hour food deprivation was used as a model of decreased CNS insulin levels, to test whether DAT mRNA levels, DAT protein concentration or DAT functional activity would be decreased. DAT mRNA levels, assessed by in situ hybridization, were significantly decreased in the ventral tegmental area/substantia nigra pars compacta (VTA/SNc) (77 +/- 7% of controls, p < 0.05) of food-deprived (hypoinsulinemic) rats. Binding of a specific high-affinity DAT ligand (125I-RTI-121) to membranes from brain regions of fasted or free-feeding rats provided an estimate of DAT protein, which was unchanged in both of the major terminal projection fields, the striatum and nucleus accumbens (NAc). In addition, we utilized the rotating disk electrode voltametry technique to assess possible changes in the function of the DAT in fasting (hypoinsulinemic) rats. The Vmax of DA uptake was significantly decreased (87 +/- 7% of control, p < 0.05), without a change in the Km of uptake, in striatum from fasted rats. In vitro incubation with a physiological concentration (1 nM) of insulin resulted in an increase of striatal DA uptake to control levels. We conclude that striatal DAT function can be modulated by fasting and nutritional status, with a contribution by insulin.
Collapse
Affiliation(s)
- T A Patterson
- Department of Psychology, University of Washington, Seattle, USA
| | | | | | | | | | | |
Collapse
|
28
|
Schwartz MW, Strack AM, Dallman MF. Evidence that elevated plasma corticosterone levels are the cause of reduced hypothalamic corticotrophin-releasing hormone gene expression in diabetes. REGULATORY PEPTIDES 1997; 72:105-12. [PMID: 9652969 DOI: 10.1016/s0167-0115(97)01043-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Uncontrolled diabetes mellitus causes both a sustained activation of the hypothalamic-pituitary-adrenal (HPA) axis and reduced expression of corticotrophin-releasing hormone (CRH) mRNA in the hypothalamic paraventricular nucleus (PVN). To investigate the role of glucocorticoids in the regulation of CRH mRNA expression in the PVN of diabetic rats, we studied surgically adrenalectomized (ADX) and sham-operated male Sprague-Dawley rats 4 days after i.v. injection of streptozotocin (STZ; 65 mg/kg i.v.) or vehicle. Among sham-operated animals, AM plasma corticosterone levels were significantly increased in diabetic as compared to nondiabetic animals (1.46+/-0.54 vs. 0.22+/-0.05 microg/dl; P <0.05), and were positively correlated to both plasma ACTH levels (r = 0.74; P = 0.015) and adrenal gland weight (r = 0.70; P = 0.025). In contrast, CRH mRNA levels measured in the PVN by in situ hybridization were inversely related to the plasma corticosterone level (r = -0.68; P = 0.045). In a second experiment, both diabetic and nondiabetic ADX rats received a continuous subcutaneous infusion of either corticosterone at one of two doses or its vehicle for 4 days. Among vehicle-treated ADX animals, STZ diabetes raised hypothalamic CRH mRNA levels, in contrast to the tendency for diabetes to lower CRH mRNA in intact rats in the first experiment. Corticosterone administration lowered CRH mRNA comparably in both diabetic and nondiabetic ADX rats. In contrast, diabetes reduced arginine vasopressin (AVP) mRNA levels in the PVN of ADX rats and blunted the inhibitory effect of glucocorticoids on AVP mRNA levels in this setting. We conclude (1) glucocorticoids are necessary for the effect of diabetes to reduce hypothalamic CRH gene expression, since diabetes causes a paradoxical increase in CRH mRNA levels in adrenalectomized animals; (2) glucocorticoid inhibition of hypothalamic CRH gene expression is intact in diabetic rats; and (3) the activation of the HPA axis by diabetes is associated with a proportionate decrease in PVN CRH gene expression. These findings support a model in which hypothalamic factors additional to CRH activate the HPA axis in uncontrolled diabetes, and inhibit CRH gene expression indirectly by negative glucocorticoid feedback.
Collapse
Affiliation(s)
- M W Schwartz
- Department of Medicine, University of Washington and Veterans Affairs Medical Center (151), Seattle 98108, USA.
| | | | | |
Collapse
|
29
|
Schwartz MW, Seeley RJ. Seminars in medicine of the Beth Israel Deaconess Medical Center. Neuroendocrine responses to starvation and weight loss. N Engl J Med 1997; 336:1802-11. [PMID: 9187072 DOI: 10.1056/nejm199706193362507] [Citation(s) in RCA: 179] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- M W Schwartz
- Department of Medicine, University of Washington, Harborview Medical Center, Seattle, USA
| | | |
Collapse
|
30
|
Figlewicz DP, Brot MD, McCall AL, Szot P. Diabetes causes differential changes in CNS noradrenergic and dopaminergic neurons in the rat: a molecular study. Brain Res 1996; 736:54-60. [PMID: 8930308 DOI: 10.1016/0006-8993(96)00727-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have previously reported that chronic elevation of insulin in the CNS of rats results in opposing changes of the mRNA expression for the norepinephrine transporter (NET; decreased) and the dopamine transporter (DAT; increased). In the present study we tested the hypothesis that a chronic depletion of insulin would result in opposite changes of NET and DAT mRNA expression, from those observed with chronic elevation of insulin. Rats were treated with streptozotocin to produce hypoinsulinemic diabetes. One week later, steady state levels of mRNA were measured by in situ hybridization for NET in the locus coeruleus (LC) and for DAT in the ventral tegmental area/substantia nigra compacta (VTA/SNc). The mRNA for tyrosine hydroxylase (TH), the rate-limiting enzyme for NE and DA synthesis, was measured in these same brain regions. In the diabetic animals, NET mRNA was significantly elevated (159 +/- 22% of average control level) while DAT mRNA was non-significantly decreased (78 +/- 9% of average control level). Additionally, TH mRNA was significantly altered in both the LC (131 +/- 11% of average control level) and VTA/SNc (79 +/- 5% of average control level). We conclude that endogenous insulin is one physiological regulator of the synthesis and re-uptake of NE and DA in the CNS.
Collapse
Affiliation(s)
- D P Figlewicz
- Department of Psychology, University of Washington, Seattle 98195, USA
| | | | | | | |
Collapse
|
31
|
O'Donnell JM, Banyasz T, Kovacs T. Altered thermoregulatory responses to clonidine in streptozotocin-diabetic rats. Br J Pharmacol 1996; 117:938-42. [PMID: 8851514 PMCID: PMC1909417 DOI: 10.1111/j.1476-5381.1996.tb15284.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. The effects of streptozotocin (STZ) treatment on alpha 2-adrenoceptor regulation of body temperature were studied by monitoring the response of colonic temperature to administration of clonidine. 2. A dose-dependent fall in colonic temperature occurred in control rats given clonidine challenge (0.05-2.0 mg kg-1, s.c.); this response was inhibited by prior administration of either yohimbine or idazoxan (2 mg kg-1, s.c.) but not by the peripherally-acting alpha 2-adrenoceptor antagonist L-659,066 (10 mg kg-1, s.c.). 3. In rats treated with STZ (65 mg kg-1, i.v.) administration of clonidine elicited a dose-independent hyperthermia (circa 1 degree C.); this effect was unaltered by prior administration of yohimbine or idazoxan. 4. Naloxone (5 mg kg-1, s.c.) elicited a small fall in temperature (< 1 degree C.) in both control and STZ-treated rats; naloxone pretreatment did not alter the temperature response to clonidine in either group. 5. Nicotinic acid (10 mg kg-1, s.c.) caused a similar small elevation in temperature in both groups. 6. Administration of replacement insulin to STZ-treated rats maintained weight gain and low blood glucose while the thermoregulatory response to clonidine slowly reverted to normal. 7. These results show that altered central temperature control is an element of the generalised abnormality of alpha 2-receptor function induced by STZ.
Collapse
Affiliation(s)
- J M O'Donnell
- Department of Pharmacology, University College, Galway, Ireland
| | | | | |
Collapse
|
32
|
Schwartz MW, Figlewicz DP, Woods SC, Porte D, Baskin DG. Insulin, neuropeptide Y, and food intake. Ann N Y Acad Sci 1993; 692:60-71. [PMID: 8215045 DOI: 10.1111/j.1749-6632.1993.tb26206.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- M W Schwartz
- Department of Medicine, University of Washington, Seattle 98195
| | | | | | | | | |
Collapse
|
33
|
Figlewicz DP, Szot P, Israel PA, Payne C, Dorsa DM. Insulin reduces norepinephrine transporter mRNA in vivo in rat locus coeruleus. Brain Res 1993; 602:161-4. [PMID: 8448653 DOI: 10.1016/0006-8993(93)90258-o] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Acute and chronic in vitro insulin treatment can inhibit the uptake of norepinephrine (NE) by adult rat brain synaptosomes and slices, fetal neuronal cultures, and PC12 cells. In the present study we tested whether chronic in vivo insulin treatment could alter the biosynthetic capacity of rat locus coeruleus neurons for the NE transporter protein (NET). Chronic third ventricular insulin treatment resulted in a suppression of NET mRNA to about one third of the level of vehicle-treated controls. Our finding suggests that insulin may play a regulatory role in the synthesis of this transporter, thereby modulating activity in CNS noradrenergic pathways.
Collapse
Affiliation(s)
- D P Figlewicz
- Department of Psychology, University of Washington, Seattle 98195
| | | | | | | | | |
Collapse
|
34
|
Boerrigter RM, Siertsema JV, Kema IP. Serotonin (5-HT) and the rat's eye. Some pilot studies. Doc Ophthalmol 1992; 82:141-50. [PMID: 1305018 DOI: 10.1007/bf00157004] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is a biogenic amine which has a multitude of more or less clearly established effects on peripheral vessels. It influences blood viscosity, platelet aggregation, and vasoconstruction and -dilatation, it enhances capillary permeability, it is the precursor of melatonin (a hormone with diurnal production in the eye). Because of these actions a role for serotonin in the development of glaucoma and diabetic retinopathy might be suspected. In a series of pilot studies on rats the effects of serotonin on the anterior and posterior segments of the eye were studied. Serotonin had marked influence on the retinal and choroidal vasculature. The optic disk seemed to be very sensitive to serotonin. Possibly it had an influence on the blood-retinal barrier. It caused transient cataracts, probably by decreasing the production of aqueous. It blocked tropicamin-induced mydriasis. The techniques and provisional results of measurement of serotonin in human aqueous are also described.
Collapse
Affiliation(s)
- R M Boerrigter
- Department of Ophthalmology, University of Groningen, The Netherlands
| | | | | |
Collapse
|
35
|
Leedom L, Meehan WP, Procci W, Zeidler A. Symptoms of depression in patients with type II diabetes mellitus. PSYCHOSOMATICS 1991; 32:280-6. [PMID: 1882019 DOI: 10.1016/s0033-3182(91)72066-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Patients with type II diabetes mellitus were assessed for symptoms of depression using the Zung Self-Rated Depression Scale (Zung SDS) and the Beck Depression Inventory (BDI). The patients were classified according to the presence or absence of diabetic complications, and they were compared with a group of demographically matched, nonmedically ill control subjects. The patients with diabetic complications scored significantly higher on the depression inventories than did the patients without complications and the control subjects. Factor analysis of BDI responses revealed that cognitive symptoms of depression were prominent in the diabetic patients with complications. In this group, 74% of patients scored within the range of clinical depression on the BDI; 35% scored within the range of severe depression. Symptoms of sexual dysfunction were significantly correlated with symptoms of depression in diabetic women but not in diabetic men. The findings are discussed within the context of other research in the behavioral aspects of diabetes mellitus.
Collapse
Affiliation(s)
- L Leedom
- Department of Psychiatry, Harbor/UCLA Medical Center, Torrance 90509
| | | | | | | |
Collapse
|
36
|
Chaouloff F, Blanc J, Baudrie V, Laude D, Elghozi JL. Cardiovascular and adrenaline-releasing effects of the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin in streptozotocin diabetic rats. Life Sci 1991; 48:2543-52. [PMID: 1828521 DOI: 10.1016/0024-3205(91)90610-n] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The 5-hydroxytryptamine1A (5-HT1A) receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) has been reported to trigger sympathoinhibition, as evidenced by its cardiovascular effects, and adrenal catecholamine secretion. The purpose of this study was to analyze the cardiovascular and adrenaline-releasing effects of 8-OH-DPAT in 1 week streptozotocin diabetic rats. 8-OH-DPAT-induced changes in mean arterial pressure (MAP) and heart rate (HR) were determined directly in anesthetized rats, whilst changes in plasma adrenaline (and plasma corticosterone and glucose) levels were analyzed in conscious rats. Resting blood pressure and heart rate were diminished in diabetics, when compared with controls. These changes were associated with a decrease in body weight and a marked increase in resting plasma glucose levels. Diabetes did not affect MAP response to 8-OH-DPAT, except for a decrease in the amplitude of MAP maximal fall, which was associated with a diminished bradycardic response to 8-OH-DPAT. Blood pressure response to prazosin (0.5 mg/kg) in 8-OH-DPAT-pretreated rats was also diminished in diabetics. Lastly, diabetes prevented the adrenaline-releasing and hyperglycemic effects of 8-OH-DPAT (250 ug/kg).
Collapse
Affiliation(s)
- F Chaouloff
- Laboratoire de Pharmacologie, CNRS, CHU Necker-EM, Paris, France
| | | | | | | | | |
Collapse
|
37
|
Homo-Delarche F, Fitzpatrick F, Christeff N, Nunez EA, Bach JF, Dardenne M. Sex steroids, glucocorticoids, stress and autoimmunity. J Steroid Biochem Mol Biol 1991; 40:619-37. [PMID: 1958562 DOI: 10.1016/0960-0760(91)90285-d] [Citation(s) in RCA: 181] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Interest in the field of neuroimmunoendocrinology is in full expansion. With regard to this, steroid influence on the immune system, in particular sex steroids and glucocorticoids, has been known for a long time. Sex steroids are part of the mechanism underlying the immune sexual dimorphism, as particularly emphasized in autoimmune diseases. Immunosuppressive and anti-inflammatory effects of glucocorticoids are now considered a physiological negative feedback loop to cytokines produced during an immune and/or inflammatory response. Psychosocial factors may play a role in the development of immunologically-mediated diseases, e.g. autoimmune diseases. The nonobese diabetic (NOD) mouse, that develops an immunologically-mediated insulin-dependent diabetes mellitus (IDDM) is an interesting model to study the role of endogenous steroids. Insulitis is present in both sexes, but diabetes has a strong preponderance in females. Hormonal alteration, such as castration, modulates the incidence of diabetes, whereas environmental factors, such as stress, accelerate the disease. In the present paper, we have reviewed the role of gender, sex steroid hormones, stress and glucocorticoids in autoimmunity as well as analyzed their different levels of actions and interrelationships, focusing particular attention on the immunologically-mediated IDDM of the NOD mouse.
Collapse
|