1
|
Stagkourakis S, Williams P, Spigolon G, Khanal S, Ziegler K, Heikkinen L, Fisone G, Broberger C. Maternal Aggression Driven by the Transient Mobilisation of a Dormant Hormone-Sensitive Circuit. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.02.526862. [PMID: 38585740 PMCID: PMC10996482 DOI: 10.1101/2023.02.02.526862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Aggression, a sexually dimorphic behaviour, is prevalent in males and typically absent in virgin females. Following parturition, however, the transient expression of aggression in adult female mice protects pups from predators and infanticide by male conspecifics. While maternal hormones are known to elicit nursing, their potential role in maternal aggression remains elusive. Here, we show in mice that a molecularly defined subset of ventral premammillary (PMvDAT) neurons, instrumental for intermale aggression, switch from quiescence to a hyperexcitable state during lactation. We identify that the maternal hormones prolactin and oxytocin excite these cells through actions that include T-type Ca2+ channels. Optogenetic manipulation or genetic ablation of PMvDAT neurons profoundly affects maternal aggression, while activation of these neurons impairs the expression of non-aggression-related maternal behaviours. This work identifies a monomorphic neural substrate that can incorporate hormonal cues to enable the transient expression of a dormant behavioural program in lactating females.
Collapse
Affiliation(s)
- Stefanos Stagkourakis
- Department of Neuroscience, Biomedicum B:4, Karolinska Institutet, Solnavägen 9, 171 65 Stockholm, Sweden
| | - Paul Williams
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 104 05 Stockholm, Sweden
| | - Giada Spigolon
- Department of Neuroscience, Biomedicum B:4, Karolinska Institutet, Solnavägen 9, 171 65 Stockholm, Sweden
| | - Shreya Khanal
- Department of Neuroscience, Biomedicum B:4, Karolinska Institutet, Solnavägen 9, 171 65 Stockholm, Sweden
| | - Katharina Ziegler
- Department of Neuroscience, Biomedicum B:4, Karolinska Institutet, Solnavägen 9, 171 65 Stockholm, Sweden
| | - Laura Heikkinen
- Department of Neuroscience, Biomedicum B:4, Karolinska Institutet, Solnavägen 9, 171 65 Stockholm, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 104 05 Stockholm, Sweden
| | - Gilberto Fisone
- Department of Neuroscience, Biomedicum B:4, Karolinska Institutet, Solnavägen 9, 171 65 Stockholm, Sweden
| | - Christian Broberger
- Department of Neuroscience, Biomedicum B:4, Karolinska Institutet, Solnavägen 9, 171 65 Stockholm, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 104 05 Stockholm, Sweden
| |
Collapse
|
2
|
Aguirre-Benítez EL, Porras MG, Parra L, González-Ríos J, Garduño-Torres DF, Albores-García D, Avendaño A, Ávila-Rodríguez MA, Melo AI, Jiménez-Estrada I, Mendoza-Garrido ME, Toriz C, Diaz D, Ibarra-Coronado E, Mendoza-Ángeles K, Hernández-Falcón J. Disruption of behavior and brain metabolism in artificially reared rats. Dev Neurobiol 2017; 77:1413-1429. [DOI: 10.1002/dneu.22548] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 10/05/2017] [Accepted: 10/16/2017] [Indexed: 12/22/2022]
Affiliation(s)
| | - Mercedes G. Porras
- Departamento de Fisiología, Facultad de Medicina; UNAM, México, AP 70250, Av. Universidad No. 3000, Col. Copilco Universidad, México, CDMX; 04510 México México
| | - Leticia Parra
- Departamento de Anatomía, Facultad de Medicina; UNAM; México Mexico
| | | | | | | | - Arturo Avendaño
- Unidad Radiofarmacia-Ciclotrón, Facultad de Medicina, UNAM; México Mexico
| | | | - Angel I. Melo
- Centro de Investigación en Reproducción Animal CINVESTAV-Universidad Autónoma de Tlaxcala, Apdo Postal 62. C.P. Tlaxcala, C.P; Tlaxcala 90000 México
| | - Ismael Jiménez-Estrada
- Departamento de Fisiología, Biofísica y Neurociencias; CINVESTAV, IPN Av. Instituto Politécnico Nacional 2508 Col. San Pedro Zacatenco, Del. Gustavo A. Madero, C.P, CDMX; México 07360 México
| | - Ma. Eugenia Mendoza-Garrido
- Departamento de Fisiología, Biofísica y Neurociencias; CINVESTAV, IPN Av. Instituto Politécnico Nacional 2508 Col. San Pedro Zacatenco, Del. Gustavo A. Madero, C.P, CDMX; México 07360 México
| | - César Toriz
- Departamento de Fisiología, Biofísica y Neurociencias; CINVESTAV, IPN Av. Instituto Politécnico Nacional 2508 Col. San Pedro Zacatenco, Del. Gustavo A. Madero, C.P, CDMX; México 07360 México
| | - Daniel Diaz
- Centro de Ciencias de la Complejidad (C3) UNAM; México México
| | - Elizabeth Ibarra-Coronado
- Departamento de Fisiología, Facultad de Medicina; UNAM, México, AP 70250, Av. Universidad No. 3000, Col. Copilco Universidad, México, CDMX; 04510 México México
| | - Karina Mendoza-Ángeles
- Departamento de Fisiología, Facultad de Medicina; UNAM, México, AP 70250, Av. Universidad No. 3000, Col. Copilco Universidad, México, CDMX; 04510 México México
| | - Jesús Hernández-Falcón
- Departamento de Fisiología, Facultad de Medicina; UNAM, México, AP 70250, Av. Universidad No. 3000, Col. Copilco Universidad, México, CDMX; 04510 México México
| |
Collapse
|
3
|
Social Isolation During Postweaning Development Causes Hypoactivity of Neurons in the Medial Nucleus of the Male Rat Amygdala. Neuropsychopharmacology 2016; 41:1929-40. [PMID: 26677945 PMCID: PMC4869062 DOI: 10.1038/npp.2015.364] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/04/2015] [Accepted: 12/11/2015] [Indexed: 12/28/2022]
Abstract
Children exposed to neglect or social deprivation are at heightened risk for psychiatric disorders and abnormal social patterns as adults. There is also evidence that prepubertal neglect in children causes abnormal metabolic activity in several brain regions, including the amygdala area. The medial nucleus of the amygdala (MeA) is a key region for performance of social behaviors and still undergoes maturation during the periadolescent period. As such, the normal development of this region may be disrupted by social deprivation. In rodents, postweaning social isolation causes a range of deficits in sexual and agonistic behaviors that normally rely on the posterior MeA (MeAp). However, little is known about the effects of social isolation on the function of MeA neurons. In this study, we tested whether postweaning social isolation caused abnormal activity of MeA neurons. We found that postweaning social isolation caused a decrease of in vivo firing activity of MeAp neurons, and reduced drive from excitatory afferents. In vitro electrophysiological studies found that postweaning social isolation caused a presynaptic impairment of excitatory input to the dorsal MeAp, but a progressive postsynaptic reduction of membrane excitability in the ventral MeAp. These results demonstrate discrete, subnucleus-specific effects of social deprivation on the physiology of MeAp neurons. This pathophysiology may contribute to the disruption of social behavior after developmental social deprivation, and may be a novel target to facilitate the treatment of social disorders.
Collapse
|
4
|
Bayless DW, Shah NM. Genetic dissection of neural circuits underlying sexually dimorphic social behaviours. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150109. [PMID: 26833830 DOI: 10.1098/rstb.2015.0109] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2015] [Indexed: 11/12/2022] Open
Abstract
The unique hormonal, genetic and epigenetic environments of males and females during development and adulthood shape the neural circuitry of the brain. These differences in neural circuitry result in sex-typical displays of social behaviours such as mating and aggression. Like other neural circuits, those underlying sex-typical social behaviours weave through complex brain regions that control a variety of diverse behaviours. For this reason, the functional dissection of neural circuits underlying sex-typical social behaviours has proved to be difficult. However, molecularly discrete neuronal subpopulations can be identified in the heterogeneous brain regions that control sex-typical social behaviours. In addition, the actions of oestrogens and androgens produce sex differences in gene expression within these brain regions, thereby highlighting the neuronal subpopulations most likely to control sexually dimorphic social behaviours. These conditions permit the implementation of innovative genetic approaches that, in mammals, are most highly advanced in the laboratory mouse. Such approaches have greatly advanced our understanding of the functional significance of sexually dimorphic neural circuits in the brain. In this review, we discuss the neural circuitry of sex-typical social behaviours in mice while highlighting the genetic technical innovations that have advanced the field.
Collapse
Affiliation(s)
- Daniel W Bayless
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94158, USA
| | - Nirao M Shah
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
5
|
Zuloaga DG, Iancu OD, Weber S, Etzel D, Marzulla T, Stewart B, Allen CN, Raber J. Enhanced functional connectivity involving the ventromedial hypothalamus following methamphetamine exposure. Front Neurosci 2015; 9:326. [PMID: 26441501 PMCID: PMC4585047 DOI: 10.3389/fnins.2015.00326] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 08/31/2015] [Indexed: 11/13/2022] Open
Abstract
Methamphetamine (MA) consumption causes disruption of many biological rhythms including the sleep-wake cycle. This circadian effect is seen shortly following MA exposure and later in life following developmental MA exposure. MA phase shifts, entrains the circadian clock and can also alter the entraining effect of light by currently unknown mechanisms. We analyzed and compared immunoreactivity of the immediate early gene c-Fos, a marker of neuronal activity, to assess neuronal activation 2 h following MA exposure in the light and dark phases. We used network analyses of correlation patterns derived from global brain immunoreactivity patterns of c-Fos, to infer functional connectivity between brain regions. There were five distinct patterns of neuronal activation. In several brain areas, neuronal activation following exposure to MA was stronger in the light than the dark phase, highlighting the importance of considering circadian periods of increased effects of MA in defining experimental conditions and understanding the mechanisms underlying detrimental effects of MA exposure to brain function. Functional connectivity between the ventromedial hypothalamus (VMH) and other brain areas, including the paraventricular nucleus of the hypothalamus and basolateral and medial amygdala, was enhanced following MA exposure, suggesting a role for the VMH in the effects of MA on the brain.
Collapse
Affiliation(s)
- Damian G Zuloaga
- Department of Behavioral Neuroscience, Oregon Health & Science University Portland Portland, OR, USA ; Department of Psychology, University at Albany Albany, NY, USA
| | - Ovidiu D Iancu
- Department of Behavioral Neuroscience, Oregon Health & Science University Portland Portland, OR, USA
| | - Sydney Weber
- Department of Behavioral Neuroscience, Oregon Health & Science University Portland Portland, OR, USA
| | - Desiree Etzel
- Department of Behavioral Neuroscience, Oregon Health & Science University Portland Portland, OR, USA
| | - Tessa Marzulla
- Department of Behavioral Neuroscience, Oregon Health & Science University Portland Portland, OR, USA
| | - Blair Stewart
- Department of Behavioral Neuroscience, Oregon Health & Science University Portland Portland, OR, USA
| | - Charles N Allen
- Department of Behavioral Neuroscience, Oregon Health & Science University Portland Portland, OR, USA ; Oregon Institute of Occupational Health Sciences, Oregon Health & Science University Portland Portland, OR, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University Portland Portland, OR, USA ; Department of Neurology, Oregon Health & Science University Portland Portland, OR, USA ; Department of Radiation Medicine, Oregon Health & Science University Portland Portland, OR, USA ; Division of Neuroscience, ONPRC, Oregon Health & Science University Portland Portland, OR, USA
| |
Collapse
|
6
|
Scotti MAL, Carlton ED, Demas GE, Grippo AJ. Social isolation disrupts innate immune responses in both male and female prairie voles and enhances agonistic behavior in female prairie voles (Microtus ochrogaster). Horm Behav 2015; 70:7-13. [PMID: 25639952 PMCID: PMC4409529 DOI: 10.1016/j.yhbeh.2015.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 01/21/2015] [Accepted: 01/23/2015] [Indexed: 12/12/2022]
Abstract
Psychosocial stress, specifically social isolation, is an important risk factor for the development of a variety of psychological and physiological disorders. Changes in immune function have been hypothesized to mediate this relationship. The current study used the prairie vole (Microtus ochrogaster) model of isolation-induced depressive-like behavior to test whether social isolation led to changes in innate immune function. Specifically, we used hemolytic complement (CH50) and bacteria killing assays to assess innate immunity, in paired or singly housed male and female prairie voles. Further, in a second experiment we tested whether females exposed to an additional short-term social stressor, a resident-intruder trial, would show changes in immune function as well as enhanced hypothalamic pituitary axis (HPA) activity as indicated by elevated plasma corticosterone levels. Socially isolated animals, regardless of sex, had significantly reduced CH50s and bacteria killing ability. Socially isolated females exposed to a resident-intruder stressor also showed reduced CH50s and bacteria killing ability as well as significant increases in aggressive behavior, however, they did not show elevated circulating corticosterone levels. Collectively, these data will help inform our understanding of the relationship between social isolation and physiological and psychological health.
Collapse
Affiliation(s)
- Melissa-Ann L Scotti
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA; Department of Psychology, Northern Illinois University, DeKalb, IL 60115, USA.
| | | | - Gregory E Demas
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Angela J Grippo
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115, USA
| |
Collapse
|
7
|
Guenther A, Kowalski G, von Engelhardt N. Prenatal social conditions shape offspring adult phenotype and reproductive success. Behav Ecol Sociobiol 2014. [DOI: 10.1007/s00265-014-1774-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Fontani S, Vaglio S, Beghelli V, Mattioli M, Bacci S, Accorsi PA. Fecal Concentrations of Cortisol, Testosterone, and Progesterone in Cotton-Top Tamarins Housed in Different Zoological Parks: Relationships Among Physiological Data, Environmental Conditions, and Behavioral Patterns. J APPL ANIM WELF SCI 2014; 17:228-52. [DOI: 10.1080/10888705.2014.916173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
León Rodríguez DA, Dueñas Z. Maternal Separation during Breastfeeding Induces Gender-Dependent Changes in Anxiety and the GABA-A Receptor Alpha-Subunit in Adult Wistar Rats. PLoS One 2013; 8:e68010. [PMID: 23826356 PMCID: PMC3694908 DOI: 10.1371/journal.pone.0068010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 05/24/2013] [Indexed: 11/18/2022] Open
Abstract
Different models of rodent maternal separation (MS) have been used to investigate long-term neurobiological and behavioral changes, associated with early stress. However, few studies have involved the analysis of sex-related differences in central anxiety modulation. This study investigated whether MS during breastfeeding affected adult males and females in terms of anxiety and brain GABA-A receptor-alpha-subunit immunoreactivity. The brain areas analyzed were the amygdale (AM), hippocampus (HP), medial prefrontal cortex (mPFC), medial preoptic area (POA) and paraventricular nucleus (PVN). Rats were housed under a reversed light/dark cycle (lights off at 7∶00 h) with access to water and food ad libitum. Animals underwent MS twice daily during the dark cycle from postnatal day 1 to postnatal day 21. Behavior was tested when rats were 65-70 days old using the elevated plus maze and after brains were treated for immunohistochemistry. We found that separated females spent more time in the open arms and showed more head dipping behavior compared with controls. The separated males spent more time in the center of the maze and engaged in more stretching behavior than the controls. Immunohistochemistry showed that separated females had less immunostained cells in the HP, mPFC, PVN and POA, while separated males had fewer immunolabeled cells in the PFC, PVN and AM. These results could indicate that MS has gender-specific effects on anxiety behaviors and that these effects are likely related to developmental alterations involving GABA-A neurotransmission.
Collapse
Affiliation(s)
| | - Zulma Dueñas
- Departamento de Ciencias Fisiológicas, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
- * E-mail:
| |
Collapse
|
10
|
Wei B, Tai F, Liu X, Ma L, Yang X, Jia R, Zhang X. Neonatal tactile stimulation alleviates the negative effects of neonatal isolation on novel object recognition, sociability and neuroendocrine levels in male adult mandarin voles (Microtus mandarinus). Physiol Behav 2013; 112-113:14-22. [PMID: 23438372 DOI: 10.1016/j.physbeh.2013.02.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 01/23/2013] [Accepted: 02/13/2013] [Indexed: 11/29/2022]
Abstract
Neonatal isolation results in long-lasting negative alterations to the brain and behavior. Some of these changes include effects on non-spatial learning and memory, sociability and neuroendocrine levels. Theoretically, neonatal tactile stimulation should reverse the impacts of neonatal isolation; however, this remains unknown for changes relating to learning, memory, sociability and hormones in social animals. Using socially monogamous mandarin voles (Microtus mandarinus), the long-lasting effects of these early manipulations on anxiety-like behavior, novel object recognition, sociability, and neuroendocrine levels were investigated. Compared with neonatal-isolated males, males subjected to the same manipulation but accompanied with tactile stimulation had heavier body weights across PND4-18 and displayed significantly less anxiety-like behavior in an open field test. In addition, tactile stimulation increased the preference index for novel object recognition reduced by neonatal isolation. Compared with control males, neonatal-isolated males engaged in less body contact with unfamiliar same-sex individuals and this effect was reversed by neonatal tactile stimulation. Tactile stimulation enhanced aggressive behavior in neonatal-isolated males and increased the levels of AVP and OT in the paraventricular nucleus (PVN) which were decreased by neonatal isolation. This early manipulation also reduced serum CORT levels that were significantly up-regulated by neonatal isolation in both neonatal and adult offspring. These results indicate that adequate tactile stimulation in early life plays an important role in the prevention of behavioral disturbances induced by neonatal isolation, possibly through the alteration of central OT, AVP and the serum corticosterone levels.
Collapse
Affiliation(s)
- Bin Wei
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | | | | | | | | | | | | |
Collapse
|
11
|
Hall FS, Perona MTG. Have studies of the developmental regulation of behavioral phenotypes revealed the mechanisms of gene-environment interactions? Physiol Behav 2012; 107:623-40. [PMID: 22643448 PMCID: PMC3447116 DOI: 10.1016/j.physbeh.2012.05.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 05/15/2012] [Accepted: 05/15/2012] [Indexed: 12/30/2022]
Abstract
This review addresses the recent convergence of our long-standing knowledge of the regulation of behavioral phenotypes by developmental experience with recent advances in our understanding of mechanisms regulating gene expression. This review supports a particular perspective on the developmental regulation of behavioral phenotypes: That the role of common developmental experiences (e.g. maternal interactions, peer interactions, exposure to a complex environment, etc.) is to fit individuals to the circumstances of their lives within bounds determined by long-standing (evolutionary) mechanisms that have shaped responses to critical and fundamental types of experience via those aspects of gene structure that regulate gene expression. The phenotype of a given species is not absolute for a given genotype but rather variable within bounds that is determined by mechanisms regulated by experience (e.g. epigenetic mechanisms). This phenotypic variation is not necessarily random, or evenly distributed along a continuum of description or measurement, but often highly disjointed, producing distinct, even opposing, phenotypes. The potentiality for these varying phenotypes is itself the product of evolution, the potential for alternative phenotypes itself conveying evolutionary advantage. Examples of such phenotypic variation, resulting from environmental or experiential influences, have a long history of study in neurobiology, and a number of these will be discussed in this review: neurodevelopmental experiences that produce phenotypic variation in visual perception, cognitive function, and emotional behavior. Although other examples will be discussed, particular emphasis will be made on the role of social behavior on neurodevelopment and phenotypic determination. It will be argued that an important purpose of some aspects of social behavior is regulation of neurobehavioral phenotypes by experience via genetic regulatory mechanisms.
Collapse
Affiliation(s)
- F Scott Hall
- Molecular Neurobiology Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassel Drive, Baltimore, MD 21224, United States.
| | | |
Collapse
|
12
|
Early-life social experiences in mice affect emotional behaviour and hypothalamic-pituitary-adrenal axis function. Pharmacol Biochem Behav 2012; 102:434-41. [DOI: 10.1016/j.pbb.2012.06.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 05/08/2012] [Accepted: 06/02/2012] [Indexed: 11/23/2022]
|
13
|
Dendritic morphology in the striatum and hypothalamus differentially exhibits experience-dependent changes in response to maternal care and early social isolation. Behav Brain Res 2012; 233:79-89. [DOI: 10.1016/j.bbr.2012.04.048] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 04/26/2012] [Accepted: 04/28/2012] [Indexed: 01/06/2023]
|
14
|
Stiller AL, Drugan RC, Hazi A, Kent SP. Stress resilience and vulnerability: the association with rearing conditions, endocrine function, immunology, and anxious behavior. Psychoneuroendocrinology 2011; 36:1383-95. [PMID: 21530089 DOI: 10.1016/j.psyneuen.2011.03.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 03/21/2011] [Accepted: 03/21/2011] [Indexed: 01/28/2023]
Abstract
BACKGROUND The current study explored the underlying behavioral, endocrine, and immune markers of vulnerability to stress-induced depression, and the impact of rearing environments on adult functioning. METHOD Adult Sprague-Dawley rats (n=195) were reared in either Maternal Separation (MS), Early Weaning and Isolation (EWI), or Non-Handled (NH) conditions. Anxiety behavior was assessed using the emergence test at mean postnatal day (PND) 60. Stress-induced depressive behavior was measured at mean PND 86 using an intermittent cold water swim stress and swim escape test (SET) paradigm. Immediately following the SET, and in a sample of naïve controls (N=31), trunk blood was collected to assay for serum corticosterone (CORT) and spleens were removed for determination of Concanavalin A (Con-A) stimulated T-cell proliferation. RESULTS Stress vulnerable rats (top tertile of SET swim time) were characterised by increased anxiety-like behavior, greater post-stress CORT concentrations, and a significantly higher Con-A induced T-cell proliferative response compared to stress resilient rats (bottom tertile of SET swim time). The EWI rearing condition was a contributing factor in predicting total swim escape time, however MS was not. MS offspring did have double the basal level of CORT than NH offspring, suggestive of a hyperfunctioning HPA axis. CONCLUSION The swim stress animal model enabled observation of stress vulnerability and resilience; results point towards the existence of distinct behavioral, endocrine, and immunological profiles of the vulnerable and resilient animal, which may have important implications for mental health and stress research.
Collapse
Affiliation(s)
- Anna L Stiller
- School of Psychological Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | | | | | | |
Collapse
|
15
|
Toth M, Mikics E, Tulogdi A, Aliczki M, Haller J. Post-weaning social isolation induces abnormal forms of aggression in conjunction with increased glucocorticoid and autonomic stress responses. Horm Behav 2011; 60:28-36. [PMID: 21316368 DOI: 10.1016/j.yhbeh.2011.02.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 01/14/2011] [Accepted: 02/02/2011] [Indexed: 11/17/2022]
Abstract
We showed earlier that social isolation from weaning (a paradigm frequently used to model social neglect in children) induces abnormal forms of attack in rats, and assumed that these are associated with hyperarousal. To investigate this hypothesis, we deprived rats of social contacts from weaning and studied their behavior, glucocorticoid and autonomic stress responses in the resident-intruder paradigm at the age of 82 days. Social isolation resulted in abnormal attack patterns characterized by attacks on vulnerable targets, deficient social communication and increased defensive behaviors (defensive upright, flight, freezing). During aggressive encounters, socially deprived rats rapidly switched from one behavior to another, i.e. showed an increased number of behavioral transitions as compared to controls. We tentatively term this behavioral feature "behavioral fragmentation" and considered it a form of behavioral arousal. Basal levels of plasma corticosterone regularly assessed by radioimmunoassay between 27 and 78 days of age were not affected. In contrast, aggression-induced glucocorticoid responses were approximately doubled by socially isolation. Diurnal oscillations in heart rate assessed by in vivo biotelemetry were not affected by social isolation. In contrast, the aggression-induced increase in heart rate was higher in socially isolated than in socially housed rats. Thus, post-weaning social isolation induced abnormal forms of aggression that developed on the background of increased behavioral, endocrine and autonomic arousal. We suggest that this paradigm may be used to model aggression-related psychopathologies associated with hyperarousal, particularly those that are triggered by adverse rearing conditions.
Collapse
Affiliation(s)
- Mate Toth
- Department of Behavioral Neuroscience, Institute of Experimental Medicine, Budapest, Hungary
| | | | | | | | | |
Collapse
|
16
|
Veenema AH. Early life stress, the development of aggression and neuroendocrine and neurobiological correlates: what can we learn from animal models? Front Neuroendocrinol 2009; 30:497-518. [PMID: 19341763 DOI: 10.1016/j.yfrne.2009.03.003] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2008] [Revised: 03/16/2009] [Accepted: 03/18/2009] [Indexed: 11/17/2022]
Abstract
Early life stress (child and adolescent abuse, neglect and trauma) induces robust alterations in emotional and social functioning resulting in enhanced risk for the development of psychopathologies such as mood and aggressive disorders. Here, an overview is given on recent findings in primate and rodent models of early life stress, demonstrating that chronic deprivation of early maternal care as well as chronic deprivation of early physical interactions with peers are profound risk factors for the development of inappropriate aggressive behaviors. Alterations in the hypothalamic-pituitary-adrenocortical (HPA), vasopressin and serotonin systems and their relevance for the regulation of aggression are discussed. Data suggest that social deprivation-induced inappropriate forms of aggression are associated with high or low HPA axis (re)activity and a generally lower functioning of the serotonin system in adulthood. Moreover, genetic and epigenetic modifications in HPA and serotonin systems influence the outcome of early life stress and may even moderate adverse effects of early social deprivation on aggression. A more comprehensive study of aggression, neuroendocrine, neurobiological and (epi)genetic correlates of early life stress using animal models is necessary to provide a better understanding of the invasive aggressive deficits observed in humans exposed to child maltreatment.
Collapse
Affiliation(s)
- Alexa H Veenema
- Department of Behavioral Neuroendocrinology, Institute of Zoology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
17
|
Lukkes JL, Mokin MV, Scholl JL, Forster GL. Adult rats exposed to early-life social isolation exhibit increased anxiety and conditioned fear behavior, and altered hormonal stress responses. Horm Behav 2009; 55:248-56. [PMID: 19027017 DOI: 10.1016/j.yhbeh.2008.10.014] [Citation(s) in RCA: 226] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 10/24/2008] [Accepted: 10/24/2008] [Indexed: 10/21/2022]
Abstract
Social isolation of rodents during development is thought to be a relevant model of early-life chronic stress. We investigated the effects of early-life social isolation on later adult fear and anxiety behavior, and on corticosterone stress responses, in male rats. On postnatal day 21, male rats were either housed in isolation or in groups of 3 for a 3 week period, after which, all rats were group-reared for an additional 2 weeks. After the 5-week treatment, adult rats were examined for conditioned fear, open field anxiety-like behavior, social interaction behavior and corticosterone responses to restraint stress. Isolates exhibited increased anxiety-like behaviors in a brightly-lit open field during the first 10 min of the test period compared to group-reared rats. Isolation-reared rats also showed increased fear behavior and reduced social contact in a social interaction test, and a transient increase in fear behavior to a conditioned stimulus that predicted foot-shock. Isolation-reared rats showed similar restraint-induced increases in plasma corticosterone as group-reared controls, but plasma corticosterone levels 2 h after restraint were significantly lower than pre-stress levels in isolates. Overall, this study shows that isolation restricted to an early part of development increases anxiety-like and fear behaviors in adulthood, and also results in depressed levels of plasma corticosterone following restraint stress.
Collapse
Affiliation(s)
- Jodi L Lukkes
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069-2390, USA
| | | | | | | |
Collapse
|
18
|
Effects of isolation-rearing on the development of social behaviors in male Mongolian gerbils (Meriones unguiculatus). Physiol Behav 2008; 94:491-500. [DOI: 10.1016/j.physbeh.2008.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 03/04/2008] [Accepted: 03/05/2008] [Indexed: 11/20/2022]
|
19
|
Vinkers CH, van Bogaert MJV, Klanker M, Korte SM, Oosting R, Hanania T, Hopkins SC, Olivier B, Groenink L. Translational aspects of pharmacological research into anxiety disorders: the stress-induced hyperthermia (SIH) paradigm. Eur J Pharmacol 2008; 585:407-25. [PMID: 18420191 DOI: 10.1016/j.ejphar.2008.02.097] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 02/01/2008] [Accepted: 02/13/2008] [Indexed: 11/29/2022]
Abstract
In anxiety research, the search for models with sufficient clinical predictive validity to support the translation of animal studies on anxiolytic drugs to clinical research is often challenging. This review describes the stress-induced hyperthermia (SIH) paradigm, a model that studies the activation of the autonomic nervous system in response to stress by measuring body temperature. The reproducible and robust SIH response, combined with ease of testing, make the SIH paradigm very suitable for drug screening. We will review the current knowledge on the neurobiology of the SIH response, discuss the role of GABA(A) and serotonin (5-HT) pharmacology, as well as how the SIH response relates to infectious fever. Furthermore, we will present novel data on the SIH response variance across different mice and their sensitivity to anxiolytic drugs. The SIH response is an autonomic stress response that can be successfully studied at the level of its physiology, pharmacology, neurobiology and genetics and possesses excellent animal-to-human translational properties.
Collapse
Affiliation(s)
- Christiaan H Vinkers
- Department of Psychopharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS) and Rudolf Magnus Institute of Neuroscience, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Joëls M, Karst H, Krugers HJ, Lucassen PJ. Chronic stress: implications for neuronal morphology, function and neurogenesis. Front Neuroendocrinol 2007; 28:72-96. [PMID: 17544065 DOI: 10.1016/j.yfrne.2007.04.001] [Citation(s) in RCA: 277] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 04/12/2007] [Accepted: 04/20/2007] [Indexed: 12/19/2022]
Abstract
In normal life, organisms are repeatedly exposed to brief periods of stress, most of which can be controlled and adequately dealt with. The presently available data indicate that such brief periods of stress have little influence on the shape of neurons or adult neurogenesis, yet change the physiological function of cells in two time-domains. Shortly after stress excitability in limbic areas is rapidly enhanced, but also in brainstem neurons which produce catecholamines; collectively, during this phase the stress hormones promote focused attention, alertness, vigilance and the initial steps in encoding of information linked to the event. Later on, when the hormone concentrations are back to their pre-stress level, gene-mediated actions by corticosteroids reverse and normalize the enhanced excitability, an adaptive response meant to curtail defense reactions against stressors and to enable further storage of relevant information. When stress is experienced repetitively in an uncontrollable and unpredictable manner, a cascade of processes in brain is started which eventually leads to profound, region-specific alterations in dendrite and spine morphology, to suppression of adult neurogenesis and to inappropriate functional responses to a brief stress exposure including a sensitized activation phase and inadequate normalization of brain activity. Although various compounds can effectively prevent these cellular changes by chronic stress, the exact mechanism by which the effects are accomplished is poorly understood. One of the challenges for future research is to link the cellular changes seen in animal models for chronic stress to behavioral effects and to understand the risks they can impose on humans for the precipitation of stress-related disorders.
Collapse
Affiliation(s)
- Marian Joëls
- SILS-CNS, University of Amsterdam, Kruislaan 320, 1098 SM Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
21
|
Lett HS, Blumenthal JA, Babyak MA, Strauman TJ, Robins C, Sherwood A. Social support and coronary heart disease: epidemiologic evidence and implications for treatment. Psychosom Med 2005; 67:869-78. [PMID: 16314591 DOI: 10.1097/01.psy.0000188393.73571.0a] [Citation(s) in RCA: 263] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The present paper reviews theories of social support and evidence for the role of social support in the development and progression of coronary heart disease (CHD). METHODS Articles for the primary review of social support as a risk factor were identified with MEDLINE (1966-2004) and PsychINFO (1872-2004). Reviews of bibliographies also were used to identify relevant articles. RESULTS In general, evidence suggests that low social support confers a risk of 1.5 to 2.0 in both healthy populations and in patients with established CHD. However, there is substantial variability in the manner in which social support is conceptualized and measured. In addition, few studies have simultaneously compared differing types of support. CONCLUSIONS Although low levels of support are associated with increased risk for CHD events, it is not clear what types of support are most associated with clinical outcomes in healthy persons and CHD patients. The development of a consensus in the conceptualization and measurement of social support is needed to examine which types of support are most likely to be associated with adverse CHD outcomes. There also is little evidence that improving low social support reduces CHD events.
Collapse
Affiliation(s)
- Heather S Lett
- Department of Psychiatry and Behavioral Science, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Rapidly accruing evidence from a diversity of disciplines supports the hypothesis that psychosocial factors are related to morbidity and mortality due to cardiovascular diseases. We review relevant literature on (a) negative emotional states, including depression, anger and hostility, and anxiety; (b) chronic and acute psychosocial stressors; and (c) social ties, social support, and social conflict. All three of these psychosocial domains have been significantly associated with increased risk of cardiovascular morbidity and mortality. We also discuss critical pathophysiological mechanisms and pathways that likely operate in a synergistic and integrative way to promote atherogenesis and related clinical manifestations. We conclude by discussing some of the important challenges and opportunities for future investigations.
Collapse
Affiliation(s)
- Susan A Everson-Rose
- Department of Preventive Medicine, Rush University Medical Center, Chicago, Illinois 60612, USA.
| | | |
Collapse
|
23
|
Bartesaghi R, Severi S, Guidi S. Effects of early environment on pyramidal neuron morphology in field CA1 of the guinea-pig. Neuroscience 2003; 116:715-32. [PMID: 12573714 DOI: 10.1016/s0306-4522(02)00753-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We previously demonstrated that early isolation has profound effects on the morphology of the dentate granule cells and field CA3 pyramidal neurons. Aim of the present study was to analyze the effects of early environment on the morphology of field CA1 pyramidal neurons, the third element of the hippocampal trisynaptic circuit. The dendritic trees and the soma of field CA1 pyramidal neurons were quantified in Golgi-stained brains of guinea-pigs of both sexes raised in either a social or an isolated environment. Based on the different pattern of the apical dendritic tree two major classes of CA1 pyramidal neurons were recognized (monotufted neurons and bitufted neurons). In males isolation induced in both neuron types a decrease in the number of low order apical branches but in the apical tree of the monotufted neurons isolation induced an increase in the number of intermediate order branches and dendritic length. In isolated females the apical tree of the monotufted neurons showed a very scarce atrophy. In contrast, the apical tree of the bitufted neurons from isolated females showed a decrease in the number of low and intermediate order branches and dendritic length. In isolated males the basal tree of the bitufted neurons had a large decrease in the total number of branches and dendritic length. In contrast, in isolated females the basal tree of both neuron types showed an increase in the number of low order branches. In males but not in females isolation caused a reduction in the soma dimensions of both neuron types. No isolation-induced changes were observed in dendritic spine density in either the apical or basal dendrites. The results demonstrate remarkable structural changes in CA1 pyramidal neurons following early isolation and a different reactivity to environment of the two CA1 pyramidal neuron types, their apical and basal trees and the two sexes. The neuroanatomical changes caused by isolation in field CA1 and in the two other elements of the trisynaptic circuit are likely to be associated with changes in the physiology of the hippocampal formation and in cognitive processes such as learning and memory in which the hippocampal formation plays a pivotal role.
Collapse
Affiliation(s)
- R Bartesaghi
- Dipartimento di Fisiologia Umana e Generale, Università di Bologna, Italy.
| | | | | |
Collapse
|
24
|
Schrijver NCA, Bahr NI, Weiss IC, Würbel H. Dissociable effects of isolation rearing and environmental enrichment on exploration, spatial learning and HPA activity in adult rats. Pharmacol Biochem Behav 2002; 73:209-24. [PMID: 12076740 DOI: 10.1016/s0091-3057(02)00790-6] [Citation(s) in RCA: 211] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Male Lister hooded rats were reared from weaning either singly or in groups of three in either barren or enriched cages (n=9 each) to study effects of isolation rearing and environmental enrichment on open-field activity, object exploration, activity in the Light/Dark box (L/D box), spatial learning and memory in the Morris water maze, and hypothalamic-pituitary-adrenal (HPA) activity in response to restraint stress. Regardless of inanimate background, isolation rearing mainly enhanced activity under several conditions of environmental novelty. By contrast, environmental enrichment, regardless of social background, primarily accelerated habituation to novelty and improved spatial learning and memory. None of the treatments significantly altered basal and response levels of plasma ACTH and corticosterone. Furthermore, rats reared singly in barren cages showed persistent activity in the L/D box, indicating an interaction between isolation-induced hyperactivity and reduced habituation due to barren caging. These results show that isolation rearing and environmental enrichment affect behaviour selectively, while at the same time revealing biologically relevant interactions between social and inanimate stimulation. It is concluded that systematic variation of social and inanimate stimulation can help distinguish between effects that generalise across variation in environmental background and effects that are idiosyncratic to a specific environmental background.
Collapse
Affiliation(s)
- Nicole C A Schrijver
- Institute of Animal Sciences, Physiology and Animal Husbandry, ETH Zurich, Schorenstrasse 16, Schwerzenbach 8603, Switzerland
| | | | | | | |
Collapse
|
25
|
Bartesaghi R, Severi S. Effects of early environment on field CA3a pyramidal neuron morphology in the guinea-pig. Neuroscience 2002; 110:475-88. [PMID: 11906787 DOI: 10.1016/s0306-4522(01)00469-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There is evidence that early environmental conditions have profound effects on the morphology of the dentate granule cells. The aim of the present study was to obtain information about the effects of early environment on neuron morphology in the hippocampal field CA3, a structure closely linked to the dentate gyrus. The dendritic trees and the somata of field CA3a pyramidal neurons were quantified in Golgi-stained brains of guinea-pigs of both sexes raised in either a social or an isolated environment. Two pyramidal neuron types were found in CA3a, characterized by either a long or a short shaft. Environment affected the apical tree of the long-shaft neurons only in males and that of the short-shaft neurons in both sexes. In isolated males the long-shaft neurons had a decrease in the number of dendritic intersections (62-82%), branching points (76%) and length (71%) in the middle third of the apical tree. The short-shaft neurons had a decrease in the number of intersections at two distal levels only in both isolated males (26, 83%) and females (77, 82%). The shaft spine density was affected by environment in the long-shaft neurons of males only, with a density increase (110%) in isolated males. In both sexes the basal tree of only the long-shaft neurons was affected by environment. Isolated males had a decrease in the number of dendritic intersections (65-88%), primary dendrites (80%) and dendritic length (88%) and isolated females had a decrease in the number of intersections (51-89%), branching points (77%) and dendritic length (85%). The soma major axis of only the long-shaft neurons was affected by environment with a reduction in isolated males (90%) but an increase in isolated females (111%). These results demonstrate dendritic atrophy of CA3a pyramidal neurons following early isolation and a different reactivity to environment of the two CA3a pyramidal neuron types, their apical and basal trees and the two sexes. The dendritic atrophy of CA3a neurons caused by isolation is likely to be associated with an impairment in the physiology of the hippocampal formation and in the forms of memory in which the hippocampal formation plays a major role.
Collapse
Affiliation(s)
- R Bartesaghi
- Dipartimento di Fisiologia Umana e Generale, Università di Bologna, Piazza di Porta S. Donato 2, I-40127, Bologna, Italy.
| | | |
Collapse
|
26
|
Viau V, Soriano L, Dallman MF. Androgens alter corticotropin releasing hormone and arginine vasopressin mRNA within forebrain sites known to regulate activity in the hypothalamic-pituitary-adrenal axis. J Neuroendocrinol 2001; 13:442-52. [PMID: 11328455 DOI: 10.1046/j.1365-2826.2001.00653.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To reveal direct effects of androgens, independent of glucocorticoids, we studied the effects of gonadectomy (GDX) in adrenalectomized (ADX) rats with or without androgen replacement on corticotropin releasing hormone (CRH) and arginine vasopressin (AVP) mRNA expression within various forebrain sites known to regulate the hypothalamic-pituitary-adrenal axis. These included the medial parvocellular portion of the paraventricular nucleus of the hypothalamus (mp PVN), the central and medial nuclei of the amygdala and bed nuclei of the stria terminalis (BNST). In the mp PVN, ADX stimulated both CRH and AVP mRNA expression. Combined ADX + GDX inhibited only AVP, and testosterone and dihydrotestosterone (DHT) restored AVP mRNA. In the central nucleus of the amygdala, ADX decreased CRH mRNA expression, and this response was unaffected by GDX +/- testosterone or DHT replacement. In the medial amygdala, AVP mRNA expression was decreased by ADX, abolished by ADX + GDX, and restored by androgen replacement. ADX had no effect on CRH and AVP mRNA expression in the BNST. GDX + ADX, however, reduced CRH mRNA expression only within the fusiform nuclei of the BNST and reduced the number of AVP-expressing neurones in the posterior BNST. Androgen replacement reversed both responses. In summary, in ADX rats, AVP, but not CRH mRNA expression in the amygdala and mp PVN, is sensitive to GDX +/- androgen replacement. Both CRH- and AVP-expressing neurones in the BNST respond to GDX and androgen replacement, but not to ADX alone. Because androgen receptors are not expressed by hypophysiotropic PVN neurones, we conclude that glucocorticoid-independent, androgenic influences on medial parvocellular AVP mRNA expression are mediated upstream from the PVN, and may involve AVP-related pathways in the medial amygdala, relayed to and through CRH- and AVP-expressing neurones of the BNST.
Collapse
Affiliation(s)
- V Viau
- Department of Physiology, University of California, San Francisco 94143-0444, USA
| | | | | |
Collapse
|
27
|
Caston J, Devulder B, Jouen F, Lalonde R, Delhaye-Bouchaud N, Mariani J. Role of an enriched environment on the restoration of behavioral deficits in Lurcher mutant mice. Dev Psychobiol 1999; 35:291-303. [PMID: 10573569 DOI: 10.1002/(sici)1098-2302(199912)35:4<291::aid-dev4>3.0.co;2-u] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Lurcher mutant mice, characterized by massive degeneration of the cerebellar cortex, and normal littermate controls were reared from birth either in standard conditions or in an enriched environment. The effects of this manipulation on motor functions, landmark water maze learning, exploration, and anxiety were evaluated at 3 months of age. Under standard conditions, Lurcher mutants were impaired in comparison to controls on tests of sensorimotor function and had altered exploratory tendencies. The enriched housing improved the motor coordination of Lurcher mutants and decreased the number of trials before reaching criterion in the landmark water maze. In addition to its effects in Lurcher mutants, enriched rearing also increased some behavioral abilities in normal mice. It is hypothesized that enriched housing altered brain morphology or neurochemistry in both normal and cerebellar-damaged animals.
Collapse
Affiliation(s)
- J Caston
- Université de Rouen, Faculté des Sciences, Laboratoire de Neurobiologie de l'Apprentissage, UPRES PSY.CO 1780, 76821 Mont-Saint-Aignan Cedex, France
| | | | | | | | | | | |
Collapse
|
28
|
Independent and overlapping effects of corticosterone and testosterone on corticotropin-releasing hormone and arginine vasopressin mRNA expression in the paraventricular nucleus of the hypothalamus and stress-induced adrenocorticotropic hormone release. J Neurosci 1999. [PMID: 10414997 DOI: 10.1523/jneurosci.19-15-06684.1999] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Adrenocorticotropin (ACTH) release is regulated by both glucocorticoids and androgens; however, the precise interactions are unclear. We have controlled circulating corticosterone (B) and testosterone (T) by adrenalectomy (ADX) +/- B replacement and gonadectomy (GDX) +/- T replacement, comparing these to sham-operated groups. We hoped to reveal how and where these neuroendocrine systems interact to affect resting and stress-induced ACTH secretion. ADX responses. In gonadal-intact rats, ADX increased corticotropin-releasing factor (CRH) and vasopressin (AVP) mRNA in hypothalamic parvocellular paraventricular nuclei (PVN) and ACTH in pituitary and plasma. B restored these toward normal. GDX blocked the increase in AVP but not CRH mRNA and reduced plasma, but not pituitary ACTH in ADX rats. GDX+T restored increased AVP mRNA in ADX rats, although plasma ACTH remained decreased. Stress responses. Restraint-induced ACTH responses were elevated in ADX gonadally intact rats, and B reduced these toward normal. GDX in adrenal-intact and ADX+B rats increased ACTH responses. Without B, T did not affect ACTH; together with B, T restored ACTH responses to normal. The magnitude of ACTH responses to stress was paralleled by similar effects on the number of c-fos staining neurons in the hypophysiotropic PVN. We conclude that gonadal regulation of ACTH responses to ADX is determined by T dependent effects on AVP biosynthesis, whereas CRH biosynthesis is B-dependent. Stress-induced ACTH release is not explained by B and T interactions at the PVN, but is determined by B- and T-dependent changes in drive to PVN motorneurons.
Collapse
|
29
|
Abstract
This paper outlines two pathways through which social support can influence the prevention or progression of cardiovascular disease: health behaviors and neuroendocrine mechanisms. Its primary focus is on neuroendocrine pathways, reviewing data which suggest that lack of social support is etiologically related to coronary artery lesion development through two mechanisms: sympathetic-adrenomedullary influences on platelet function, heart rate and blood pressure in the initial endothelial injury; and pituitary-adrenal cortical factors involved in smooth muscle cell proliferation during progression of the lesion after injury has taken place. It hypothesizes that the buffering effect of social support on the cardiovascular system is mediated primarily through mechanisms associated with the release of oxytocin.
Collapse
Affiliation(s)
- S S Knox
- Division of Epidemiology and Clinical Applications, National Heart, Lung, and Blood Institute, II Rockledge Center, Bethesda, MD 20892-7936, USA.
| | | |
Collapse
|
30
|
Abstract
Social stress, which is a part of the interaction between animals, can be defined as the set of physical stresses caused specifically by the presence and actions of certain conspecifics. Dense populations are characterized by considerably increased intermale and interfemale aggressive behavior. This establishes a hierarchy which influences reproduction of the animals. Aggression of adults toward unrelated juveniles harms the physiological development of attacked young. Stress from crowding during pregnancy can affect reproductive activity even through the second generation. During postnatal development, sexual maturation of juveniles can be delayed by the presence of group-living adults. In adult females, disturbance of homeostasis after fertilization can evoke untimely termination of pregnancy. In monogamous rodents, removal of the male partner reduces the number of parturitions. In several species, recently inseminated females exposed to a strange male will lose developing embryos. Thus, sociogenic stressors are among the most important factors affecting fecundity in animals.
Collapse
Affiliation(s)
- A Marchlewska-Koj
- Department of Mammalian Reproduction, Jagiellonian University, Krakow, Poland
| |
Collapse
|
31
|
Poeggel G, Braun K. Early auditory filial learning in degus (Octodon degus): behavioral and autoradiographic studies. Brain Res 1996; 743:162-70. [PMID: 9017243 DOI: 10.1016/s0006-8993(96)01039-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Degu mothers (Octodon degus) utter specific maternal calls during nursing which presumably stimulate and reinforce suckling. Pups from surgically muted mothers show a reduced gain of body weight during postnatal development compared to pups from normally vocalizing mothers. Our behavioral studies suggest that the pups have to learn the meaning of the maternal calls during the first two weeks of life. Two-week-old pups from normally vocalizing mothers expressed a preference for the maternal call in a behavioral discrimination test, in contrast to pups from surgically muted mothers. Investigation of brain activities using the 2-[14C]fluoro-deoxyglucose (2-FDG) method revealed that pups from normal mothers display a significantly higher 2-FDG uptake in precentral medial, anterior cingulate cortex and a slight, non-significant increase in the prelimbic cortex and orbital PFC upon presentation of the maternal call, compared to pups from muted mothers, for which the maternal call was unfamiliar and meaningless. These prefrontal cortical areas are known to be involved in associative learning processes and our data suggest that they are involved in the association between the maternal call and the positive emotional situation during nursing.
Collapse
Affiliation(s)
- G Poeggel
- Zoological Institute, University of Leipzig, Germany.
| | | |
Collapse
|