1
|
Waterhouse BD, Predale HK, Plummer NW, Jensen P, Chandler DJ. Probing the structure and function of locus coeruleus projections to CNS motor centers. Front Neural Circuits 2022; 16:895481. [PMID: 36247730 PMCID: PMC9556855 DOI: 10.3389/fncir.2022.895481] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
The brainstem nucleus locus coeruleus (LC) sends projections to the forebrain, brainstem, cerebellum and spinal cord and is a source of the neurotransmitter norepinephrine (NE) in these areas. For more than 50 years, LC was considered to be homogeneous in structure and function such that NE would be released uniformly and act simultaneously on the cells and circuits that receive LC projections. However, recent studies have provided evidence that LC is modular in design, with segregated output channels and the potential for differential release and action of NE in its projection fields. These new findings have prompted a radical shift in our thinking about LC operations and demand revision of theoretical constructs regarding impact of the LC-NE system on behavioral outcomes in health and disease. Within this context, a major gap in our knowledge is the relationship between the LC-NE system and CNS motor control centers. While we know much about the organization of the LC-NE system with respect to sensory and cognitive circuitries and the impact of LC output on sensory guided behaviors and executive function, much less is known about the role of the LC-NE pathway in motor network operations and movement control. As a starting point for closing this gap in understanding, we propose using an intersectional recombinase-based viral-genetic strategy TrAC (Tracing Axon Collaterals) as well as established ex vivo electrophysiological assays to characterize efferent connectivity and physiological attributes of mouse LC-motor network projection neurons. The novel hypothesis to be tested is that LC cells with projections to CNS motor centers are scattered throughout the rostral-caudal extent of the nucleus but collectively display a common set of electrophysiological properties. Additionally, we expect to find these LC projection neurons maintain an organized network of axon collaterals capable of supporting selective, synchronous release of NE in motor circuitries for the purpose of coordinately regulating operations across networks that are responsible for balance and movement dynamics. Investigation of this hypothesis will advance our knowledge of the role of the LC-NE system in motor control and provide a basis for treating movement disorders resulting from disease, injury, or normal aging.
Collapse
Affiliation(s)
- Barry D. Waterhouse
- Department of Cell Biology and Neuroscience, Rowan University, Stratford, NJ, United States,*Correspondence: Barry D. Waterhouse,
| | - Haven K. Predale
- Department of Cell Biology and Neuroscience, Rowan University, Stratford, NJ, United States
| | - Nicholas W. Plummer
- Neurobiology Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Raleigh, NC, United States
| | - Patricia Jensen
- Neurobiology Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Raleigh, NC, United States
| | - Daniel J. Chandler
- Department of Cell Biology and Neuroscience, Rowan University, Stratford, NJ, United States
| |
Collapse
|
2
|
Flace P, Livrea P, Basile GA, Galletta D, Bizzoca A, Gennarini G, Bertino S, Branca JJV, Gulisano M, Bianconi S, Bramanti A, Anastasi G. The Cerebellar Dopaminergic System. Front Syst Neurosci 2021; 15:650614. [PMID: 34421548 PMCID: PMC8375553 DOI: 10.3389/fnsys.2021.650614] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/04/2021] [Indexed: 12/04/2022] Open
Abstract
In the central nervous system (CNS), dopamine (DA) is involved in motor and cognitive functions. Although the cerebellum is not been considered an elective dopaminergic region, studies attributed to it a critical role in dopamine deficit-related neurological and psychiatric disorders [e.g., Parkinson's disease (PD) and schizophrenia (SCZ)]. Data on the cerebellar dopaminergic neuronal system are still lacking. Nevertheless, biochemical studies detected in the mammalians cerebellum high dopamine levels, while chemical neuroanatomy studies revealed the presence of midbrain dopaminergic afferents to the cerebellum as well as wide distribution of the dopaminergic receptor subtypes (DRD1-DRD5). The present review summarizes the data on the cerebellar dopaminergic system including its involvement in associative and projective circuits. Furthermore, this study also briefly discusses the role of the cerebellar dopaminergic system in some neurologic and psychiatric disorders and suggests its potential involvement as a target in pharmacologic and non-pharmacologic treatments.
Collapse
Affiliation(s)
- Paolo Flace
- Medical School, University of Bari ‘Aldo Moro', Bari, Italy
| | | | - Gianpaolo Antonio Basile
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Diana Galletta
- Unit of Psychiatry and Psychology, Federico II University Hospital, Naples, Italy
| | - Antonella Bizzoca
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari “Aldo Moro”, Bari, Italy
| | - Gianfranco Gennarini
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari “Aldo Moro”, Bari, Italy
| | - Salvatore Bertino
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | | | - Massimo Gulisano
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Simona Bianconi
- Physical, Rehabilitation Medicine and Sport Medicine Unit, University Hospital “G. Martino”, Messina, Italy
| | - Alessia Bramanti
- Scientific Institute for Research, Hospitalization and Health Care IRCCS “Centro Neurolesi Bonino Pulejo”, Messina, Italy
| | - Giuseppe Anastasi
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| |
Collapse
|
3
|
Xu W, De Carvalho F, Clarke AK, Jackson A. Communication from the cerebellum to the neocortex during sleep spindles. Prog Neurobiol 2021; 199:101940. [PMID: 33161064 PMCID: PMC7938225 DOI: 10.1016/j.pneurobio.2020.101940] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 10/14/2020] [Accepted: 11/01/2020] [Indexed: 10/30/2022]
Abstract
Surprisingly little is known about neural activity in the sleeping cerebellum. Using long-term wireless recording, we characterised dynamic cerebro-thalamo-cerebellar interactions during natural sleep in monkeys. Similar sleep cycles were evident in both M1 and cerebellum as cyclical fluctuations in firing rates as well as a reciprocal pattern of slow waves and sleep spindles. Directed connectivity from motor cortex to the cerebellum suggested a neocortical origin of slow waves. Surprisingly however, spindles were associated with a directional influence from the cerebellum to motor cortex, conducted via the thalamus. Furthermore, the relative phase of spindle-band oscillations in the neocortex and cerebellum varied systematically with their changing amplitudes. We used linear dynamical systems analysis to show that this behaviour could only be explained by a system of two coupled oscillators. These observations appear inconsistent with a single spindle generator within the thalamo-cortical system, and suggest instead a cerebellar contribution to neocortical sleep spindles. Since spindles are implicated in the off-line consolidation of procedural learning, we speculate that this may involve communication via cerebello-thalamo-neocortical pathways in sleep.
Collapse
Affiliation(s)
- W Xu
- Institute of Neuroscience, Newcastle University, Newcastle NE2 4HH, UK.
| | - F De Carvalho
- Institute of Neuroscience, Newcastle University, Newcastle NE2 4HH, UK.
| | - A K Clarke
- Institute of Neuroscience, Newcastle University, Newcastle NE2 4HH, UK.
| | - A Jackson
- Institute of Neuroscience, Newcastle University, Newcastle NE2 4HH, UK.
| |
Collapse
|
4
|
The locus coeruleus-norepinephrine system and sensory signal processing: A historical review and current perspectives. Brain Res 2019; 1709:1-15. [DOI: 10.1016/j.brainres.2018.08.032] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 11/22/2022]
|
5
|
"What have we GANEd?" A theoretical construct to explain experimental evidence for noradrenergic regulation of sensory signal processing. Behav Brain Sci 2016; 39:e219. [PMID: 28347394 DOI: 10.1017/s0140525x15001909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The GANE (glutamate amplifies noradrenergic effects) theory posits a mechanism for amplifying noradrenergic modulatory actions and enhancing the processing of high-priority sensory signals for immediate or future experience-guided action. This theoretical construct is thought provoking with respect to the central processing of high-priority versus low-priority stimuli, but it requires some refinement to account for physiological fluctuations in NE efflux as a function of naturally occurring transitions in behavioral state and the experimentally observed phenomena associated with noradrenergic regulation of sensory signal transfer.
Collapse
|
6
|
Rommelfanger KS, Edwards GL, Freeman KG, Liles LC, Miller GW, Weinshenker D. Norepinephrine loss produces more profound motor deficits than MPTP treatment in mice. Proc Natl Acad Sci U S A 2007; 104:13804-9. [PMID: 17702867 PMCID: PMC1959463 DOI: 10.1073/pnas.0702753104] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although Parkinson's disease (PD) is characterized primarily by loss of nigrostriatal dopaminergic neurons, there is a concomitant loss of norepinephrine (NE) neurons in the locus coeruleus. Dopaminergic lesions induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) are commonly used to model PD, and although MPTP effectively mimics the dopaminergic neuropathology of PD in mice, it fails to produce PD-like motor deficits. We hypothesized that MPTP is unable to recapitulate the motor abnormalities of PD either because the behavioral paradigms used to measure coordinated behavior in mice are not sensitive enough or because MPTP in the absence of NE loss is insufficient to impair motor control. We tested both possibilities by developing a battery of coordinated movement tests and examining motor deficits in dopamine beta-hydroxylase knockout (Dbh-/-) mice that lack NE altogether. We detected no motor abnormalities in MPTP-treated control mice, despite an 80% loss of striatal dopamine (DA) terminals. Dbh-/- mice, on the other hand, were impaired in most tests and also displayed spontaneous dyskinesias, despite their normal striatal DA content. A subset of these impairments was recapitulated in control mice with 80% NE lesions and reversed in Dbh-/- mice, either by restoration of NE or treatment with a DA agonist. MPTP did not exacerbate baseline motor deficits in Dbh-/- mice. Finally, striatal levels of phospho-ERK-1/2 and DeltaFosB/FosB, proteins which are associated with PD and dyskinesias, were elevated in Dbh-/- mice. These results suggest that loss of locus coeruleus neurons contributes to motor dysfunction in PD.
Collapse
Affiliation(s)
| | - G. L. Edwards
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - K. G. Freeman
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | | | - G. W. Miller
- Environmental and Occupational Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322; and
| | - D. Weinshenker
- Departments of *Human Genetics and
- To whom correspondence should be addressed at:
Department of Human Genetics, Emory University, Whitehead 301, 615 Michael Street, Atlanta, GA 30322. E-mail:
| |
Collapse
|
7
|
Abstract
We present a patient who demonstrated transient yet significant improvement of essential tremor (ET) during electroconvulsive therapy. To our knowledge, this is the first such report. The improvement lasted during the course of electroconvulsive therapy and was of a similar magnitude to that which she had experienced on a first-line medication for ET. We discuss the potential pathophysiological implications of this observation in light of recent histopathologic findings in patients with ET.
Collapse
Affiliation(s)
- Steven A Kushner
- New York State Psychiatric Institute, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | |
Collapse
|
8
|
Moxon KA, Devilbiss DM, Chapin JK, Waterhouse BD. Influence of norepinephrine on somatosensory neuronal responses in the rat thalamus: a combined modeling and in vivo multi-channel, multi-neuron recording study. Brain Res 2007; 1147:105-23. [PMID: 17368434 PMCID: PMC4529675 DOI: 10.1016/j.brainres.2007.02.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 01/25/2007] [Accepted: 02/02/2007] [Indexed: 10/23/2022]
Abstract
Norepinephrine released within primary sensory circuits from locus coeruleus afferent fibers can produce a spectrum of modulatory actions on spontaneous or sensory-evoked activity of individual neurons. Within the ventral posterior medial thalamus, membrane currents modulated by norepinephrine have been identified. However, the relationship between the cellular effects of norepinephrine and the impact of norepinephrine release on populations of neurons encoding sensory signals is still open to question. To address this lacuna in understanding the net impact of the noradrenergic system on sensory signal processing, a computational model of the rat trigeminal somatosensory thalamus was generated. The effects of independent manipulation of different cellular actions of norepinephrine on simulated afferent input to the computational model were then examined. The results of these simulations aided in the design of in vivo neural ensemble recording experiments where sensory-driven responses of thalamic neurons were measured before and during locus coeruleus activation in waking animals. Together the simulated and experimental results reveal several key insights regarding the regulation of neural network operation by norepinephrine including: 1) cell-specific modulatory actions of norepinephrine, 2) mechanisms of norepinephrine action that can improve the tuning of the network and increase the signal-to-noise ratio of cellular responses in order to enhance network representation of salient stimulus features and 3) identification of the dynamic range of thalamic neuron function through which norepinephrine operates.
Collapse
Affiliation(s)
- Karen A Moxon
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
9
|
Herold S, Hecker C, Deitmer JW, Brockhaus J. alpha1-Adrenergic modulation of synaptic input to Purkinje neurons in rat cerebellar brain slices. J Neurosci Res 2006; 82:571-9. [PMID: 16237725 DOI: 10.1002/jnr.20660] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The inhibitory activity in the cerebellar network, as investigated in acute brain slices from 14-20 days old rats, is modulated by alpha1-adrenergic stimulation. The specific alpha1-adrenoceptor agonist phenylephrine (PhE; 10 microM) or the alpha-adrenoceptor agonist 6-fluoronoradrenaline (10 microM) increases the frequency and the amplitude of spontaneous postsynaptic currents (sPSC) in Purkinje neurons. The effects are sensitive to the alpha1-adrenoceptor antagonists prazosin (30 microM) and phentolamine (10 microM). The PhE-induced augmentation is suppressed when phospholipase C is blocked by preincubation with U73122 (10 microM) but is not affected by inhibition of protein kinases with H7 (10 microM) or GF109203X (10 microM). Involvement of intracellular Ca(2+) stores was shown by a reduced PhE effect after blocking of SERCA pumps with cyclopiazonic acid (30 microM) and thapsigargin (1 microM). The persistence of the PhE effect on the frequency of miniature postsynaptic currents, as recorded in presence of tetrodotoxin, indicates a presynaptic localization of the alpha1-adrenoceptors. A block of voltage-gated Ca(2+) channels with nifedipine, verapamil, or omega-conotoxin MVIIC did not suppress the PhE-induced increase of the frequency and amplitude of sPSC. The results suggest that alpha1-adrenoceptors at presynaptic terminals mediate an increase of the spontaneous synaptic inhibition of Purkinje neurons in the cerebellar cortex via release of Ca(2+) from intracellular stores.
Collapse
Affiliation(s)
- Sabine Herold
- Abteilung Allgemeine Zoologie, Fachbereich Biologie, Universität Kaiserslautern,Kaiserslautern, Germany
| | | | | | | |
Collapse
|
10
|
Schmitt HP. Neuro-modulation, aminergic neuro-disinhibition and neuro-degeneration. Draft of a comprehensive theory for Alzheimer disease. Med Hypotheses 2005; 65:1106-19. [PMID: 16125326 DOI: 10.1016/j.mehy.2005.06.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2005] [Revised: 06/22/2005] [Accepted: 06/23/2005] [Indexed: 12/18/2022]
Abstract
A comprehensive theory for Alzheimer disease (AD) which can provide a clue to the neuronal selective vulnerability (pathoklisis) is still missing. Based upon evidence from the current literature, the present work is aimed at proposing such a theory, namely the 'aminergic disinhibition theory' of AD. It includes data-based hypotheses as to the pathoklisis, mechanisms of neuro-degeneration and dementia as well as the aetiology of the disease. Alzheimer disease is regarded as a disorder of neural input modulation caused by the degeneration of four modulatory amine transmitter (MAT) systems, namely the serotoninergic, the noradrenergic, the histaminergic, and the cholinergic systems with ascending projections. MATs modulate cognitive processing including arousal, attention, and synaptic plasticity in learning and memory, not only through direct, mostly inhibitory impact on principal neurones but also partially through interaction with local networks of GABA-ergic inter-neurones. The distribution and magnitude of the pathology in AD roughly correlate with the distribution and magnitude of MAT modulation: Regions more densely innervated by ascending MAT projections are, as a rule, more severely affected than areas receiving less MAT innervation. Because the global effect of MATs in the forebrain is inhibition, the degeneration of four MAT systems, some related peptidergic systems and a secondary alleviation of the GABA-ergic transmission means a fundamental loss of inhibitory impact in the neuronal circuitry resulting in neuronal (aminergic) disinhibition. Clearly, the basic mechanism promoting neuronal death in AD is thought to be a chronic disturbance of the inhibition-excitation balance to the advantage of excitation. Chronic over-excitation is conceived to result in Ca2+ dependent cellular excito-toxicity leading to neuro-degeneration including amyloid-beta production and NFT formation. Disinhibited neurons will degenerate while less excited (relatively over-inhibited) neurones will survive. Because the decline of aminergic transmission in AD is likely to start at the receptor level, it is hypothesized that early impairment by a molecular 'hit' to an MAT receptor (or a group of receptors) initiates a pathogenetic cascade that develops in an avalanche-like manner. Based on experimental evidence from the literature, the 'hit' might be the attachment of a targeted pathogen like a small roaming amino acid sequence to the receptor(s), e.g., the serotoninergic 5-HT2A-R. Referential sequence analysis could be a means to identify such a small pathogen hidden in a large receptor molecule.
Collapse
Affiliation(s)
- H Peter Schmitt
- Institute of Pathology, Department for Neuropathology, University of Heidelberg, Im Neuernheimer Feld 220-221, 69120 Heidelberg, Germany.
| |
Collapse
|
11
|
Berridge CW, Waterhouse BD. The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2003; 42:33-84. [PMID: 12668290 DOI: 10.1016/s0165-0173(03)00143-7] [Citation(s) in RCA: 1702] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Through a widespread efferent projection system, the locus coeruleus-noradrenergic system supplies norepinephrine throughout the central nervous system. Initial studies provided critical insight into the basic organization and properties of this system. More recent work identifies a complicated array of behavioral and electrophysiological actions that have in common the facilitation of processing of relevant, or salient, information. This involves two basic levels of action. First, the system contributes to the initiation and maintenance of behavioral and forebrain neuronal activity states appropriate for the collection of sensory information (e.g. waking). Second, within the waking state, this system modulates the collection and processing of salient sensory information through a diversity of concentration-dependent actions within cortical and subcortical sensory, attention, and memory circuits. Norepinephrine-dependent modulation of long-term alterations in synaptic strength, gene transcription and other processes suggest a potentially critical role of this neurotransmitter system in experience-dependent alterations in neural function and behavior. The ability of a given stimulus to increase locus coeruleus discharge activity appears independent of affective valence (appetitive vs. aversive). Combined, these observations suggest that the locus coeruleus-noradrenergic system is a critical component of the neural architecture supporting interaction with, and navigation through, a complex world. These observations further suggest that dysregulation of locus coeruleus-noradrenergic neurotransmission may contribute to cognitive and/or arousal dysfunction associated with a variety of psychiatric disorders, including attention-deficit hyperactivity disorder, sleep and arousal disorders, as well as certain affective disorders, including post-traumatic stress disorder. Independent of an etiological role in these disorders, the locus coeruleus-noradrenergic system represents an appropriate target for pharmacological treatment of specific attention, memory and/or arousal dysfunction associated with a variety of behavioral/cognitive disorders.
Collapse
Affiliation(s)
- Craig W Berridge
- Departments of Psychology and Psychiatry, University of Wisconsin, Madison, WI 53706,USA.
| | | |
Collapse
|
12
|
Strazielle C, Ase AR, Lalonde R, Reader TA. Biochemical and autoradiographic studies of the central noradrenergic system in dystonia musculorum mutant mice. J Chem Neuroanat 2002; 23:143-55. [PMID: 11841918 DOI: 10.1016/s0891-0618(01)00154-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The autosomal recessive mutation dystonia musculorum (dt(J)/dt(J)) causes degenerative alterations of peripheral and central sensory pathways leading to ataxia. To determine the consequences of this pathology on the central noradrenergic (NA) system, NA contents were measured by high-performance liquid chromatography (HPLC) in 22 brain regions and spinal cord, while NA transporters, or uptake sites, were evaluated by quantitative ligand binding autoradiography, using [3H]nisoxetine, in wild-type and dt(J)/dt(J) mutant mice. The only significant differences in NA contents between the two genotypes were increased levels in hypothalamus and mesencephalic dopaminergic regions A9/A10 of dt(J)/dt(J) mutants. The dt(J)/dt(J) spinal cord showed a similar result, but its NA content remained unchanged when taking into account its reduced volume. Binding to NA transporters revealed increased densities in sensory nuclei of cranial nerves, granular layer of the cerebellar cortex, as well as in cerebellar-related and basal ganglia structures, such as the lateral cuneate nucleus, pontine nuclei, substantia nigra, pontine reticular formation, median raphe nucleus and superior colliculus. Forebrain regions were relatively unaffected in the dt(J)/dt(J) mutants, although NA transporter densities were higher in piriform cortex, hippocampal subdivisions and ventro-anterior thalamic nucleus. In contrast, densities of NA transporters were decreased in hypothalamic subregions and in two ventrobasal thalamic nuclei. The results are discussed in relation to expression of the dystonin gene in normal brain, cellular defects resulting from the loss of gene transcription in the dt(J)/dt(J) mutation, functional circuits of the central nervous system and some of the phenotypical characteristics of dystonia musculorum mutants.
Collapse
Affiliation(s)
- C Strazielle
- Département de Physiologie, Centre de Recherche en Sciences Neurologiques, Faculté de Médecine, Université de Montréal, Quebec, H3C 3J7, Montréal, Canada
| | | | | | | |
Collapse
|
13
|
Jiménez-Rivera CA, Segarra O, Jiménez Z, Waterhouse BD. Effects of intravenous cocaine administration on cerebellar Purkinje cell activity. Eur J Pharmacol 2000; 407:91-100. [PMID: 11050295 DOI: 10.1016/s0014-2999(00)00711-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The goal of the present study was to investigate the effects of intravenous cocaine administration on cerebellar Purkinje cell firing. Extracellular neuron activity was recorded and cells were locally excited with spaced microiontophoretic pulses of glutamate. Glutamate-evoked and spontaneous discharges were compared before and immediately following cocaine administration. Cocaine injections (1. 0 and 0.25 mg/kg, i.v.) induced a reversible suppression of both spontaneous activity and glutamate-evoked excitation. Procaine was ineffective in producing similar actions. Cocaine only inhibited glutamate-induced excitation in animals pre-treated with reserpine (5 mg/kg, i.p.). Propranolol injections (10 mg/kg, i.p.) were ineffective in blocking cocaine-induced inhibitions. Yohimbine (5 mg/kg, i.p.) pre-treatment abolished cocaine-induced suppressions of either spontaneous or glutamate-evoked excitation. Therefore, cocaine administration decreases Purkinje cell spontaneous and glutamate-evoked discharges by a mechanism involving alpha(2)-adrenoceptor activation. It is suggested that by changing the normal function of the cerebellum cocaine can produce drug-related alterations in overt behavior and cognition.
Collapse
Affiliation(s)
- C A Jiménez-Rivera
- Department of Physiology and Center for Molecular and Behavioral Neuroscience, Universidad Central del Caribe, Bayamón, Puerto Rico.
| | | | | | | |
Collapse
|
14
|
Strazielle C, Lalonde R, Hébert C, Reader TA. Regional brain distribution of noradrenaline uptake sites, and of alpha1-alpha2- and beta-adrenergic receptors in PCD mutant mice: a quantitative autoradiographic study. Neuroscience 1999; 94:287-304. [PMID: 10613519 DOI: 10.1016/s0306-4522(99)00321-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mouse "Purkinje cell degeneration" (pcd) is characterized by a primary loss of Purkinje cells, as well as by retrograde and secondary partial degeneration of cerebellar granule cells and inferior olivary neurons; this neurological mutant can be considered as an animal model of human degenerative ataxia. To determine the consequences of this cerebellar pathology on the noradrenergic system, noradrenaline transporters as well as alpha1-, alpha2- and beta-adrenergic receptors were evaluated by quantitative ligand binding autoradiography in adult control and pcd mice using, respectively, [3H]nisoxetine, [3H]prazosin, [3H]idazoxan and [3H]CGP12177. In cerebellar cortex and deep nuclei of pcd mutants, [3H]nisoxetine labelling of noradrenaline transporters was higher than in control mice. However, when binding densities were corrected by surface area, they remained unchanged in the cerebellar cortex but associated with 25% and 40% lower levels of labelling of alpha1 and beta receptors, as well as a very important increase (275%) of alpha2 receptors. In deep cerebellar nuclei, surface corrections did not reveal any changes either in transporter or in receptor densities. Higher densities of [3H]nisoxetine labelling were found in several regions related with the cerebellum, namely inferior olive, inferior colliculus, vestibular, reticular, pontine, raphe and red nuclei, as well as in primary motor and sensory cerebral cortex; they may reflect an increased noradrenergic innervation related to motor adjustments for the cerebellar dysfunction. Increased [3H]nisoxetine labelling was also measured in vegetative brainstem regions and in dorsal hypothalamus, implying altered autonomic functions and possible compensation in pcd mutants. Other changes found in extracerebellar regions affected by the mutation, such as thalamus and the olfactory system implicated both noradrenaline transporters and adrenergic receptors. In contrast to the important alterations of the noradrenergic system in cerebellar cortex, the lack of receptor changes in deep cerebellar nuclei suggests that local adaptations may be sufficient to minimize the consequence of the cerebellar atrophy on motor control. An intense labelling by [3H]idazoxan of the inner third of the molecular layer was a novel, albeit unexplained finding, and could represent a postsynaptic subset of alpha2-adrenergic receptors.
Collapse
MESH Headings
- Adrenergic alpha-Antagonists/metabolism
- Adrenergic alpha-Antagonists/pharmacology
- Adrenergic beta-Antagonists/metabolism
- Adrenergic beta-Antagonists/pharmacology
- Animals
- Autoradiography
- Basal Ganglia/chemistry
- Brain Stem/chemistry
- Cerebral Cortex/chemistry
- Disease Models, Animal
- Female
- Fluoxetine/analogs & derivatives
- Fluoxetine/metabolism
- Fluoxetine/pharmacology
- Hypothalamus/chemistry
- Idazoxan/metabolism
- Idazoxan/pharmacology
- Limbic System/chemistry
- Mice
- Mice, Neurologic Mutants
- Norepinephrine/analysis
- Norepinephrine/antagonists & inhibitors
- Norepinephrine/metabolism
- Prazosin/metabolism
- Prazosin/pharmacology
- Propanolamines/metabolism
- Propanolamines/pharmacology
- Purkinje Cells/chemistry
- Purkinje Cells/metabolism
- Radioligand Assay
- Receptors, Adrenergic/analysis
- Receptors, Adrenergic/metabolism
- Receptors, Adrenergic, alpha-1/analysis
- Receptors, Adrenergic, alpha-1/metabolism
- Receptors, Adrenergic, alpha-2/analysis
- Receptors, Adrenergic, alpha-2/metabolism
- Receptors, Adrenergic, beta/analysis
- Receptors, Adrenergic, beta/metabolism
- Spinocerebellar Degenerations/genetics
- Spinocerebellar Degenerations/metabolism
- Thalamus/chemistry
- Tritium
Collapse
Affiliation(s)
- C Strazielle
- Centre de Recherche en Sciences Neurologiques, Département de Physiologie, Faculté de Médecine, Université de Montréal, Québec, Canada
| | | | | | | |
Collapse
|
15
|
Waterhouse BD, Moises HC, Woodward DJ. Phasic activation of the locus coeruleus enhances responses of primary sensory cortical neurons to peripheral receptive field stimulation. Brain Res 1998; 790:33-44. [PMID: 9593812 DOI: 10.1016/s0006-8993(98)00117-6] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the present study we examined the effects of phasic activation of the nucleus locus coeruleus (LC) on transmission of somatosensory information to the rat cerebral cortex. The rationale for this investigation was based on earlier findings that local microiontophoretic application of the putative LC transmitter, norepinephrine (NE), had facilitating actions on cortical neuronal responses to excitatory and inhibitory synaptic stimuli and more recent microdialysis experiments that have demonstrated increases in cortical levels of NE following phasic or tonic activation of LC. Glass micropipets were used to record the extracellular activity of single neurons in the somatosensory cortex of halothane-anesthetized rats. Somatosensory afferent pathways were activated by threshold level mechanical stimulation of the glabrous skin on the contralateral forepaw. Poststimulus time histograms were used to quantitate cortical neuronal responses before and at various time intervals after preconditioning burst activation of the ipsilateral LC. Excitatory and postexcitatory inhibitory responses to forepaw stimulation were enhanced when preceded by phasic activation of LC at conditioning intervals of 200-500 ms. These effects were anatomically specific in that they were only observed upon stimulation of brainstem sites close to (>150 micron) or within LC and were pharmacologically specific in that they were not consistently observed in animals where the LC-NE system had been disrupted by 6-OHDA pretreatment. Overall, these data suggest that following phasic activation of the LC efferent system, the efficacy of signal transmission through sensory networks in mammalian brain is enhanced.
Collapse
Affiliation(s)
- B D Waterhouse
- Department of Neurobiology and Anatomy, Allegheny University of the Health Sciences, Philadelphia, PA 19129, USA.
| | | | | |
Collapse
|
16
|
Cerrito F, Aloisi G, Arminio P, Fanini D. A new GABA-A receptor subtype coupled with Ca++/Cl- synporter modulates aminergic release from rat brain neuron terminals. J Neurosci Res 1998; 51:15-22. [PMID: 9452305 DOI: 10.1002/(sici)1097-4547(19980101)51:1<15::aid-jnr2>3.0.co;2-o] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The aim of the present study was to give a better characterization of GABA receptors that modulate aminergic release. GABA or muscimol (15 microM) increased basal noradrenaline (3H-NA) release but reduced the following K+-evoked 3H-NA release in the synaptosomes from rat cerebellar cortex. Bicuculline and picrotoxin counteracted these two effects. The same GABA modulation resulted to operate also on dopaminergic and serotoninergic neuron terminals. The increased basal noradrenaline release resulted to be both calcium and chloride dependent and associated with an increased entry of 45Ca++ into the synaptosomes. We therefore advance the hypothesis of an involvement of a Cl-/Ca++ synporter system coupled to the receptor. Baclofen also reduced the K+-evoked 3H-NA release, but did not increase basal 3H-NA release; moreover, the interaction of baclofen G with GABA-B receptors resulted to be associated with the inhibition of 45Ca++ entry into synaptosomes. GABA-B receptors resulted to be present also on serotoninergic but not on dopaminergic neuron terminals. The GABA-C receptor agonist cis-4-aminocrotonic acid (CACA) did not influence either basal or K+-evoked 3H-NA release. These results point to a new type of GABA functional role through a different A-family receptor subtype, coupled with calcium influx in aminergic neuron terminals, modulating aminergic release.
Collapse
Affiliation(s)
- F Cerrito
- Department of Experimental Medicine, University of L'Aquila, Italy
| | | | | | | |
Collapse
|
17
|
Guelman LR, Zieher LM, Ríos H, Mayo J, Dopico AM. Motor abnormalities and changes in the noradrenaline content and the cytoarchitecture of developing cerebellum following X-irradiation at birth. MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1993; 20:45-57. [PMID: 8251032 DOI: 10.1007/bf03160069] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have studied the developmental time-course of changes in the noradrenaline (NA) content of cerebellum (CE), cytoarchitecture of the cerebellar cortex, and motor abnormalities induced by the exposure of the cephalic end of rats to a single dose (5 Gy) of X-irradiation immediately after birth. At all ages examined, i.e., from postnatal (PN) d 5 to 90, CE from exposed animals show a marked atrophy, with an agranular cortex that has lost its layered structure. Purkinje cells are scattered at all depths in the cortex, and their primary dendrite is randomly oriented. The motor syndrome includes dystonia-like movements, a fine tremor, and an ataxic gait. Being progressive, the abnormal movements are evident from PN d 10, and fully developed by d 30. On the other hand, no differences in cerebellar NA content between X-irradiated rats and age-matched nonirradiated controls were detected from PN d 5 to 60. However, at PN d 90 a significant increase in NA content of CE from exposed animals is found when compared to either age-matched controls (+36%, p < 0.01), or data from irradiated rats obtained at PN d 5 to 60 (p < 0.01). These results indicate a temporal dissociation between the motor and cytoarchitectural abnormalities and the increase in cerebellar NA content produced by a single dose of X-rays at birth. The late increase in cerebellar NA content might represent a compensatory response of noradrenergic terminals to an altered information flow out of the cerebellar cortex induced by the ionizing noxa.
Collapse
Affiliation(s)
- L R Guelman
- Departamento de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
18
|
Tan HS, van Neerven J, Collewijn H, Pompeiano O. Effects of alpha-noradrenergic substances on the optokinetic and vestibulo-ocular responses in the rabbit: a study with systemic and intrafloccular injections. Brain Res 1991; 562:207-15. [PMID: 1685340 DOI: 10.1016/0006-8993(91)90623-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The effects of microinjection of alpha-noradrenergic agonists and antagonists in the flocculus on the basic gain and adaptibility of vestibulo-ocular and optokinetic responses were investigated. A complementary, previous investigation had shown that the adaptation, but not the basic performance, of compensatory oculomotor responses were markedly influenced by beta-noradrenergic mechanisms in the flocculus. In contrast, the present experiments with bilateral, intrafloccular injections of phenylephrine, prazosin, clonidine and idazoxan failed to reveal any effect of alpha 1- or alpha 2-noradrenergic mechanisms on either basic performance or adaptation of compensatory eye movements. Intravenous administration of clonidine, however, reduced the gain of the optokinetic and vestibulo-ocular responses by about 70 and 50%, respectively, at dosages of 0.07 mg/kg. Recovery from this effect took about 1.5 h. A higher dosage of clonidine (0.7 mg/kg) had a similar, but longer lasting effect, and also markedly increased the frequency of spontaneous saccades. Intravenous administration of phenylephrine did not affect the oculomotor responses. It is concluded that the control of oculomotor responses is not susceptible to alpha-noradrenergic influences at the level of the flocculus, but that alpha 2-agonistic action inhibits these responses through an extra-floccular structure.
Collapse
Affiliation(s)
- H S Tan
- Department of Physiology I, Faculty of Medicine, Erasmus University Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
19
|
Waterhouse BD, Stowe ZN, Jimenez-Rivera CA, Sessler FM, Woodward DJ. Cocaine actions in a central noradrenergic circuit: enhancement of cerebellar Purkinje neuron responses to iontophoretically applied GABA. Brain Res 1991; 546:297-309. [PMID: 2070264 DOI: 10.1016/0006-8993(91)91494-l] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Many recent studies have implicated the mesolimbic dopaminergic pathway as the central neurotransmitter system which is most likely responsible for the euphoria and abuse potential associated with cocaine self-administration. Nevertheless, cocaine also has well established interactions with the norepinephrine- and serotonin-containing pathways of the brain. In order to begin assessing potential non-dopamine-mediated actions of cocaine in central circuits, we have initiated a series of experiments using the cerebellar Purkinje neuron as an electrophysiological test system. The strategy was to use the same experimental protocols employed in previous investigations of noradrenergic influences on putative amino acid transmitter action to examine the effects of exogenously applied cocaine on gamma-aminobutyric acid (GABA)-induced depressant responses of Purkinje cells. Accordingly, the inhibitory responses of Purkinje neurons to microiontophoretically applied GABA were examined before and after systemic or local iontophoretic administration of cocaine. Drug-induced changes in the spontaneous firing rate and GABA responsiveness of individual cells were assessed by quantitative analysis of perievent histograms. The results indicate that, like norepinephrine, cocaine at parenteral or iontophoretic doses subthreshold for producing direct suppression of spontaneous discharge can augment Purkinje neuron responses to GABA. Such potentiating effects of cocaine on GABA-mediated inhibition were not evident in animals pretreated with the selective noradrenergic toxins DSP-4. These findings indicate that cocaine can enhance central neuronal responsiveness to GABA in a manner identical to that shown previously for norepinephrine. Such actions in noradrenergic target circuits throughout the brain could contribute to the net behavioral response observed following cocaine administration.
Collapse
Affiliation(s)
- B D Waterhouse
- Department of Physiology and Biophysics, Hahnemann University, Philadelphia, PA 19102-1192
| | | | | | | | | |
Collapse
|
20
|
Waterhouse BD, Sessler FM, Liu W, Lin CS. Second messenger-mediated actions of norepinephrine on target neurons in central circuits: a new perspective on intracellular mechanisms and functional consequences. PROGRESS IN BRAIN RESEARCH 1991; 88:351-62. [PMID: 1667548 DOI: 10.1016/s0079-6123(08)63822-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ever since the initial demonstration of a widespread distribution of noradrenergic fibers to functionally diverse regions of the mammalian forebrain, there has been considerable interest in determining the electrophysiological effects of norepinephrine (NE) on individual neurons within these target areas. While early studies showed that NE could directly inhibit cell firing via increased intracellular levels of cyclic AMP, more recent work has revealed a spectrum of noradrenergic actions, which are more accurately characterized as neuromodulatory. More specifically, numerous experimental conditions have been described where NE at levels subthreshold for producing direct depressant effects on spontaneous firing can facilitate neuronal responses to both excitatory and inhibitory synaptic stimuli. The goal of this report is to review recent evidence which suggests that the various modulatory actions of NE on central neurons result from the activation of different adrenoceptor-linked second messenger systems. In particular, we have focused on the candidate signal transduction mechanisms that may underlie NE's ability to augment cerebellar and cortical neuronal responsiveness to GABAergic synaptic inputs. The consequences of such NE-induced changes in synaptic efficacy are considered not only with respect to their influences on feature extraction properties of individual sensory cortical neurons but also with regard to the potential impact such actions would have on the signal processing capabilities of a network of noradrenergically innervated cortical cells.
Collapse
Affiliation(s)
- B D Waterhouse
- Department of Physiology and Biophysics, Hahnemann University, Philadelphia, PA
| | | | | | | |
Collapse
|
21
|
Woodward DJ, Moises HC, Waterhouse BD, Yeh HH, Cheun JE. Modulatory actions of norepinephrine on neural circuits. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1991; 287:193-208. [PMID: 1759608 DOI: 10.1007/978-1-4684-5907-4_16] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A spectrum of studies has been conducted on a single aspect of NE function in which, through a beta-one receptor activation, NE appears to mediate a degree of physiological control over the gain of GABA mediated inhibition. It is significant that this single effect has been observed in numerous interrelated preparations ranging from single isolated Purkinje cells from young rats to adult Purkinje cells in awake locomoting rats. With respect to the functional conse-quences of these effects, our best current speculation as to "what NE does" is that NE acts to regulate the strength of these tuned gating mechanisms in both cerebral and cerebellar cortices. There are numerous unanswered questions raised by the past work. One pressing issue is - when and for what reason in normal function does the modulation take place? When does NE release normally occur (is it phasic or tonic), and which of the demonstrated actions appears and for how long in relation to period of receptor activation? Does NE release cause the circuit to "react" to conditions which need "improved neurocomputation" or does NE stabilize the circuit to react predictably in the face of stress? Finally, what is the molecular sequence of events between receptor activation and an alteration of GABA receptor channel opening? What additional molecular control mechanisms exist and how can the diverse inhibitory and modulatory phenomena be reconciled, both short and long term? Issues are defined which need to be clarified at all levels of the current skeleton of basic understanding. Our prediction is that pursuit of these issues will benefit from an exchange of insight gained from investigations at all levels.
Collapse
Affiliation(s)
- D J Woodward
- University of Texas Southwestern Medical Center, Dallas
| | | | | | | | | |
Collapse
|
22
|
Andre P, d'Ascanio P, Pompeiano O. Noradrenergic agents into the cerebellar anterior vermis modify the gain of vestibulospinal reflexes in the cat. PROGRESS IN BRAIN RESEARCH 1991; 88:463-84. [PMID: 1813930 DOI: 10.1016/s0079-6123(08)63828-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The noradrenergic (NA) afferent projection to the cerebellar cortex, which originates mainly from the locus coeruleus (LC), may act on the target neurons by utilizing both alpha- and beta-adrenoceptors. Experiments performed in decerebrate cats have shown that unilateral injection into the vermal cortex of the cerebellar anterior lobe of 0.25 microliter of the alpha 1-adrenergic agonist metoxamine or the alpha 2-agonist clonidine (at 2-8 micrograms/microliters of saline) as well as of the non-selective beta-agonist isoproterenol (at 8-16 micrograms/microliters) decreased the postural activity in the ipsilateral forelimb, while the extensor tonus either remained unmodified or slightly increased on the contralateral side. The same agents also increased the gain of the vestibulospinal (VS) reflexes elicited by recording the multiunit EMG responses of the ipsilateral and the contralateral triceps brachii to roll tilt of the animal (at 0.15 Hz, +/- 10 degrees), leading to sinusoidal stimulation of labyrinth receptors. The crossed effects were more prominent for the alpha 2- than for the alpha 1- and beta-agonists. Only slight changes in the phase angle of the responses were observed. The effects described above appeared 5-10 min after the injection, reached the peak values after 15-30 min and disappeared within 2 h. The effective area was located within the third and/or the fourth folium of the culmen rostral to the fissura prima, 1.4-1.8 mm lateral to the midline. This area corresponded to zone B of the cerebellar cortex, which projects to the ipsilateral lateral vestibular nucleus (LVN), on which it exerts a prominent inhibitory influence. In fact, monopolar stimulation of this area with three negative pulses (at 300/sec) performed prior to the local injection inhibited the spontaneous EMG activity of the ipsilateral triceps brachii. The effects described above were dose-dependent; injection of an equal volume of saline was ineffective. All changes in posture and reflexes elicited by metoxamine or clonidine were impaired by previous injection into the same corticocerebellar area of the corresponding alpha 1- or alpha 2-adrenergic antagonist prazosin or yohimbine, respectively (0.25 microliters at 8-16 micrograms/microliters). However, cross-interactions between alpha 1- and alpha 2-adrenergic agonists and antagonists were also observed. In fact, injection of the alpha 2-adrenergic antagonist yohimbine prevented the occurrence of all the metoxamine effects, while administration of the alpha 1-adrenergic antagonist prazosin prevented the occurrence of the ipsilateral, but not of the contralateral effects induced by clonidine injection.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- P Andre
- Department of Physiology and Biochemistry, University of Pisa, Italy
| | | | | |
Collapse
|
23
|
Woodward DJ, Moises HC, Waterhouse BD, Yeh HH, Cheun JE. The cerebellar norepinephrine system: inhibition, modulation, and gating. PROGRESS IN BRAIN RESEARCH 1991; 88:331-41. [PMID: 1687621 DOI: 10.1016/s0079-6123(08)63820-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A series of studies has been conducted to determine the mode of action on the cerebellar cortical circuitry of the norepinephrine (NE)-containing afferents from the locus coeruleus. NE has been known to exert an "inhibitory" action on the background firing observed in Purkinje cells, due presumably to a shift in conductances favoring hyperpolarization. An additional independent action at low threshold appears to be an enhancement of GABA, the inhibitory transmitter of cerebellar interneurons. Recent whole-cell patch-clamp studies on isolated Purkinje cells indicate that exposure to NE increases the chloride current caused by transient pulses of GABA applied iontophoretically. NE applied to Purkinje cells in the parafloccular lobule during stimulation by moving visual patterns revealed the capacity either to "gate" signals initially not expressed, or to amplify the gain of phasic excitations. The control of emergent circuit functions may be the functional consequence of the multiple modulatory functions of NE.
Collapse
Affiliation(s)
- D J Woodward
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas
| | | | | | | | | |
Collapse
|
24
|
Moises HC, Burne RA, Woodward DJ. Modification of the visual response properties of cerebellar neurons by norepinephrine. Brain Res 1990; 514:259-75. [PMID: 2162710 DOI: 10.1016/0006-8993(90)91421-c] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Extracellular recordings were conducted in the paraflocculus of anesthetized Long-Evans pigmented rats to determine how ionotophoresis of norepinephrine (NE) affects the responsiveness of individual Purkinje cells and interneurons to presentations of visual stimuli within their visual receptive fields. Presentations of moving or stationary visual stimuli during the control (pre-NE) period elicited simple spike excitations or inhibitory responses in slightly more than one-half (55%, n = 32) of the cells tested (20 of 38 Purkinje cells, 12 of 20 interneurons). The predominant effect of NE iontophoresis was to improve visually evoked responses in those neurons which showed modulations in their simple spike discharge to control presentations of visual stimuli. A clear enhancement of visual responses by NE (i.e., absolute increase over control) was observed in 18 of the units, and in 12 of the 14 remaining cells, reductions in stimulus-bound discharge during catecholamine iontophoresis were accompanied by much larger depressions in background activity, resulting in a net enhancement in the ratio of signal-to-noise. NE differentially affected responses to stimulus movement in the preferred and non-preferred direction in one-third of these neurons, such that directional selectivity was increased. However, the orientation bias of individual units was unchanged by NE. Iontophoretic application of the beta-adrenergic antagonist sotalol but not the alpha-adrenergic antagonist phentolamine blocked these facilitating noradrenergic effects. An additional feature of noradrenergic action was revealed in tests conducted in 26 cells which did not respond to control presentations of visual stimuli. Iontophoresis of NE resulted in the elicitation of visual responses in 11 of these units, suggesting the possibility that NE might act in some cases to gate the efficacy of subliminal synaptic input conveyed by classical afferent channels. It is proposed that an important aspect of noradrenergic action within local cerebellar circuits might be to refine the receptive field properties of individual neuronal elements and thereby improve information flow through the cerebellum.
Collapse
Affiliation(s)
- H C Moises
- Department of Physiology, University of Michigan, Ann Arbor 48109
| | | | | |
Collapse
|
25
|
Sessler FM, Mouradian RD, Cheng JT, Yeh HH, Liu WM, Waterhouse BD. Noradrenergic potentiation of cerebellar Purkinje cell responses to GABA: evidence for mediation through the beta-adrenoceptor-coupled cyclic AMP system. Brain Res 1989; 499:27-38. [PMID: 2478258 DOI: 10.1016/0006-8993(89)91132-3] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Previous in vivo studies from our laboratory have consistently shown that iontophoretically applied norepinephrine (NE) can potentiate gamma-aminobutyric acid (GABA)-induced depressant responses of cerebrocortical, cerebellar and hypothalamic neurons. Additional experiments have further suggested that this noradrenergic facilitating action is specific for GABA and results from the activation of a beta-type adrenoceptor. The goal of the present studies was to determine if the cAMP second messenger system might also be a component of the mechanism responsible for this NE modulatory action on GABA-mediated inhibition. In one set of in vitro experiments, we examined cerebellar neuronal responses to GABA before, during and after iontophoretic application of NE, 8-bromo-3',5'-cyclic AMP (BcAMP) or 3-isobutyl-1-methyl xanthine (IBMX) or bath application of forskolin (10-30 microM). In a second group of in vivo studies, extracellularly recorded responses of individual cerebellar Purkinje (P) cells to iontophoretic pulses of GABA or beta-alanine were examined before, during and after NE or BcAMP microiontophoresis. In 20 of 25 cerebellar cells recorded from tissue slices, iontophoretically applied NE markedly enhanced responses to GABA in a manner similar to that observed previously in vivo. In these in vitro preparations, bath application of forskolin was also capable of potentiating GABA-induced inhibition in each of 4 cases tested whereas dideoxy-forskolin was not. Iontophoretic application of IBMX further enhanced the facilitating effects of NE on GABA-induced inhibition in 10 of 11 cases tested. Furthermore, under in vitro conditions, BcAMP augmented inhibitory responses to GABA in all cerebellar neurons tested. In the intact rat brain, iontophoretic administration of BcAMP caused a marked NE-like augmentation of P-cell responses to GABA in 73% of the cells tested. As with NE, BcAMP was ineffective in enhancing P-cell inhibitory responses to beta-alanine, an agent which like GABA causes hyperpolarization, by increasing Cl conductance. In summary, these results indicate that a membrane permeant analog of cAMP, a phosphodiesterase inhibitor and an agent which directly activates adenyl cyclase can mimic the previously observed GABA-potentiating actions of NE. Thus, these findings provide further support for the contention that noradrenergic enhancement of GABA inhibition results from a cascade of transmembrane events which includes beta-receptor activation, adenyl cyclase stimulation and increased intracellular production of cAMP.
Collapse
Affiliation(s)
- F M Sessler
- Department of Physiology and Biophysics, Hahnemann University, Philadelphia, PA 19102
| | | | | | | | | | | |
Collapse
|
26
|
Waterhouse BD, Sessler FM, Cheng JT, Woodward DJ, Azizi SA, Moises HC. New evidence for a gating action of norepinephrine in central neuronal circuits of mammalian brain. Brain Res Bull 1988; 21:425-32. [PMID: 3214748 DOI: 10.1016/0361-9230(88)90154-2] [Citation(s) in RCA: 124] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Many previous studies have examined the effects of norepinephrine (NE) on neuronal responsiveness to synaptic inputs and putative transmitter substances and have described differential depressant actions of NE on stimulus evoked versus spontaneous discharge such that the "signal to noise" ratio of threshold responses was increased. In the present studies, similar experimental strategies employing a combination of microiontophoresis, single unit recording and afferent pathway stimulation in intact anesthetized and brain tissue slice preparations have revealed noradrenergic "gating" actions whereby weak or subthreshold synaptic stimuli can evoke threshold neuronal responses in the presence of iontophoretically applied NE or following electrical stimulation of the locus coeruleus. Overall, these results suggest that potentially threshold excitatory and inhibitory synaptic inputs may normally arrive at central neurons but appear weak or absent except during behavioral conditions favoring the synaptic release of NE. As such, these findings provide evidence that signal to noise ratio may not be the only potential modulatory action expressed by NE in noradrenergic target circuits of the mammalian brain.
Collapse
Affiliation(s)
- B D Waterhouse
- Department of Physiology and Biophysics, Hahnemann University, Philadelphia, PA 19102-1192
| | | | | | | | | | | |
Collapse
|
27
|
McKeon TW, Lorden JF, Beales M, Oltmans GA. Alterations in the noradrenergic projection to the cerebellum of the dystonic (dt) rat. Brain Res 1986; 366:89-97. [PMID: 3008916 DOI: 10.1016/0006-8993(86)91283-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The genetically dystonic rat (dt) has elevated resting levels of cerebellar norepinephrine (NE) in comparison with phenotypically normal littermates. This difference is not secondary to cerebellar hypoplasia. Increased NE is observed as early as postnatal day 12, when clinical symptoms have become evident. The elevation in cerebellar NE levels in the dt rat involves all cerebellar areas, but is not generalized to all terminal fields of the locus coeruleus. Elevations in cerebellar NE are followed developmentally by a reduction in sensitivity to the NE-depleting effects of reserpine, a change which is also confined to the cerebellum. The effects of amphetamine and the tyrosine hydroxylase inhibitor alpha-methyl-para-tyrosine were similar in normal and dt rats. Levels of the major cerebellar metabolite of NE, 3-methoxy-4-hydroxyphenylglycol, did not differ between mutant and normal animals. Nor were any changes noted in the number or affinity of beta-adrenergic receptors. These data indicate that there is a regional alteration in NE storage. Cerebellar morphology appears normal in the dt rat, except for a decrease in Purkinje cell size. This change and other evidence of biochemical abnormalities in the Purkinje cells suggest that the alterations in cerebellar NE in the dt mutant may be a secondary response to a functional change in the target neuron for this system, the Purkinje cell.
Collapse
|