1
|
Lee S, Heo S, Lee G, Moon Y, Kim M, Kwak MS, Jeong DW. Antibiotic Susceptibility and Technological Properties of Leuconostoc citreum for Selecting Starter Candidates. Microorganisms 2024; 12:2636. [PMID: 39770838 PMCID: PMC11679923 DOI: 10.3390/microorganisms12122636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Antibiotic susceptibilities, hemolytic activities, and technological properties of 46 Leuconostoc citreum isolates from kimchi were evaluated to select starter candidates. All strains were susceptible to clindamycin and erythromycin, while some exhibited resistance to ampicillin, chloramphenicol, gentamicin, streptomycin, and tetracycline; all were resistant to kanamycin based on the EFSA breakpoint values for Leuconostoc species. PCR analysis did not detect resistance genes for these six antibiotics in any strain. None of the strains demonstrated clear α- or β-hemolytic activity. All strains thrived in a medium supplemented with 6% NaCl, displaying protease activity and acid in media containing 6% and 3% NaCl, respectively. Consequently, five strains, AK5T17, AK5T19, AK10M04, DMLC16, and YK10T20, were identified as starter candidates, with L. citreum strain DMLC16 emerging as the top choice due to its elevated protease and acid production capacities. These findings support the safe application of L. citreum strain DMLC16 as a starter candidate in fermented food production.
Collapse
Affiliation(s)
- Sumin Lee
- Department of Food and Nutrition, Dongduk Women’s University, Seoul 02748, Republic of Korea; (S.L.); (S.H.); (G.L.); (Y.M.); (M.K.)
| | - Sojeong Heo
- Department of Food and Nutrition, Dongduk Women’s University, Seoul 02748, Republic of Korea; (S.L.); (S.H.); (G.L.); (Y.M.); (M.K.)
| | - Gawon Lee
- Department of Food and Nutrition, Dongduk Women’s University, Seoul 02748, Republic of Korea; (S.L.); (S.H.); (G.L.); (Y.M.); (M.K.)
| | - Yura Moon
- Department of Food and Nutrition, Dongduk Women’s University, Seoul 02748, Republic of Korea; (S.L.); (S.H.); (G.L.); (Y.M.); (M.K.)
| | - Minkyeong Kim
- Department of Food and Nutrition, Dongduk Women’s University, Seoul 02748, Republic of Korea; (S.L.); (S.H.); (G.L.); (Y.M.); (M.K.)
| | - Mi-Sun Kwak
- Kookmin Bio Corporation, Seoul 02826, Republic of Korea;
| | - Do-Won Jeong
- Department of Food and Nutrition, Dongduk Women’s University, Seoul 02748, Republic of Korea; (S.L.); (S.H.); (G.L.); (Y.M.); (M.K.)
| |
Collapse
|
2
|
Adedeji-Olulana AF, Wacnik K, Lafage L, Pasquina-Lemonche L, Tinajero-Trejo M, Sutton JAF, Bilyk B, Irving SE, Portman Ross CJ, Meacock OJ, Randerson SA, Beattie E, Owen DS, Florence J, Durham WM, Hornby DP, Corrigan RM, Green J, Hobbs JK, Foster SJ. Two codependent routes lead to high-level MRSA. Science 2024; 386:573-580. [PMID: 39480932 DOI: 10.1126/science.adn1369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 06/13/2024] [Accepted: 08/30/2024] [Indexed: 11/02/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), in which acquisition of mecA [which encodes the cell wall peptidoglycan biosynthesis component penicillin-binding protein 2a (PBP2a)] confers resistance to β-lactam antibiotics, is of major clinical concern. We show that, in the presence of antibiotics, MRSA adopts an alternative mode of cell division and shows an altered peptidoglycan architecture at the division septum. PBP2a can replace the transpeptidase activity of the endogenous and essential PBP2 but not that of PBP1, which is responsible for the distinctive native septal peptidoglycan architecture. Successful division without PBP1 activity requires the alternative division mode and is enabled by several possible chromosomal potentiator (pot) mutations. MRSA resensitizing agents differentially interfere with the two codependent mechanisms required for high-level antibiotic resistance, which provides opportunities for new interventions.
Collapse
Affiliation(s)
| | - Katarzyna Wacnik
- School of Biosciences, University of Sheffield, Sheffield, UK
- The Florey Institute, University of Sheffield, Sheffield, UK
| | - Lucia Lafage
- School of Biosciences, University of Sheffield, Sheffield, UK
- The Florey Institute, University of Sheffield, Sheffield, UK
| | - Laia Pasquina-Lemonche
- School of Mathematical and Physical Sciences, University of Sheffield, Sheffield, UK
- The Florey Institute, University of Sheffield, Sheffield, UK
| | - Mariana Tinajero-Trejo
- School of Biosciences, University of Sheffield, Sheffield, UK
- The Florey Institute, University of Sheffield, Sheffield, UK
| | - Joshua A F Sutton
- School of Biosciences, University of Sheffield, Sheffield, UK
- The Florey Institute, University of Sheffield, Sheffield, UK
| | - Bohdan Bilyk
- School of Biosciences, University of Sheffield, Sheffield, UK
- The Florey Institute, University of Sheffield, Sheffield, UK
| | - Sophie E Irving
- School of Biosciences, University of Sheffield, Sheffield, UK
- The Florey Institute, University of Sheffield, Sheffield, UK
| | - Callum J Portman Ross
- School of Biosciences, University of Sheffield, Sheffield, UK
- The Florey Institute, University of Sheffield, Sheffield, UK
| | - Oliver J Meacock
- School of Mathematical and Physical Sciences, University of Sheffield, Sheffield, UK
| | - Sam A Randerson
- School of Mathematical and Physical Sciences, University of Sheffield, Sheffield, UK
| | - Ewan Beattie
- School of Mathematical and Physical Sciences, University of Sheffield, Sheffield, UK
| | - David S Owen
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - James Florence
- School of Biosciences, University of Sheffield, Sheffield, UK
- The Florey Institute, University of Sheffield, Sheffield, UK
| | - William M Durham
- School of Mathematical and Physical Sciences, University of Sheffield, Sheffield, UK
| | - David P Hornby
- School of Biosciences, University of Sheffield, Sheffield, UK
- The Florey Institute, University of Sheffield, Sheffield, UK
| | - Rebecca M Corrigan
- School of Biosciences, University of Sheffield, Sheffield, UK
- The Florey Institute, University of Sheffield, Sheffield, UK
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Jeffrey Green
- School of Biosciences, University of Sheffield, Sheffield, UK
- The Florey Institute, University of Sheffield, Sheffield, UK
| | - Jamie K Hobbs
- School of Mathematical and Physical Sciences, University of Sheffield, Sheffield, UK
| | - Simon J Foster
- School of Biosciences, University of Sheffield, Sheffield, UK
- The Florey Institute, University of Sheffield, Sheffield, UK
| |
Collapse
|
3
|
Xu Y, Xiao Y, Zhao H, Wang B, Yu J, Shang Y, Zhou Y, Wu X, Guo Y, Yu F. Phenotypic and genetic characterization of daptomycin non-susceptible Staphylococcus aureus strains selected by adaptive laboratory evolution. Front Cell Infect Microbiol 2024; 14:1453233. [PMID: 39512591 PMCID: PMC11540788 DOI: 10.3389/fcimb.2024.1453233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/30/2024] [Indexed: 11/15/2024] Open
Abstract
Background Daptomycin non-susceptible Staphylococcus aureus (DNS) strains pose a serious clinical threat, yet their characteristics remain poorly understood. Methods DNS derivatives were generated by exposing S. aureus strains to subinhibitory concentrations of daptomycin. Competition experiment and growth kinetics experiment were used to observe the growth of bacteria. Galleria mellonella larvae and mouse skin abscess models were used to observe the virulence of bacteria. Transmission electron microscopy (TEM), cytochrome C experiment and biofilm formation experiment were used to observe the drug resistance phenotype. And homologous recombination was used to study the role of mutations. Results Phenotypic profiling of DNS strains revealed impaired growth, increased cell wall thickness, enhanced biofilm formation, reduced negative surface charge, and attenuated virulence compared to their wild-type strains. Whole genome sequencing identified mutations in mprF, cls2, and saeR in DNS strains. Allelic replacement experiments validated the roles of MprF L341F and Cls2 F60S substitutions in augmenting daptomycin non-susceptibility in Newman. Deletion of saeR in the NewmanMprFL341F strain and complementation of saeR in the Newman-DNS strain did not directly alter daptomycin susceptibility. However, the deletion of saeR was found to enhance competitive fitness under daptomycin pressure. Conclusion This work validates adaptive laboratory evolution (ALE) for modeling clinical DNS strains and uncovers contributions of mprF, cls2, and saeR mutations to the adaptation and resistance mechanisms of S. aureus against daptomycin. These findings enrich our understanding of how S. aureus acquired resistance to daptomycin, thus paving the way for the development of more effective treatment strategies and offering potential molecular markers for resistance surveillance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yinjuan Guo
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fangyou Yu
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
4
|
Panda S, Jayasinghe YP, Shinde DD, Bueno E, Stastny A, Bertrand BP, Chaudhari SS, Kielian T, Cava F, Ronning DR, Thomas VC. Staphylococcus aureus counters organic acid anion-mediated inhibition of peptidoglycan cross-linking through robust alanine racemase activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575639. [PMID: 38293037 PMCID: PMC10827132 DOI: 10.1101/2024.01.15.575639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Weak organic acids are commonly found in host niches colonized by bacteria, and they can inhibit bacterial growth as the environment becomes acidic. This inhibition is often attributed to the toxicity resulting from the accumulation of high concentrations of organic anions in the cytosol, which disrupts cellular homeostasis. However, the precise cellular targets that organic anions poison and the mechanisms used to counter organic anion intoxication in bacteria have not been elucidated. Here, we utilize acetic acid, a weak organic acid abundantly found in the gut to investigate its impact on the growth of Staphylococcus aureus. We demonstrate that acetate anions bind to and inhibit d-alanyl-d-alanine ligase (Ddl) activity in S. aureus. Ddl inhibition reduces intracellular d-alanyl-d-alanine (d-Ala-d-Ala) levels, compromising staphylococcal peptidoglycan cross-linking and cell wall integrity. To overcome the effects of acetate-mediated Ddl inhibition, S. aureus maintains a substantial intracellular d-Ala pool through alanine racemase (Alr1) activity and additionally limits the flux of d-Ala to d-glutamate by controlling d-alanine aminotransferase (Dat) activity. Surprisingly, the modus operandi of acetate intoxication in S. aureus is common to multiple biologically relevant weak organic acids indicating that Ddl is a conserved target of small organic anions. These findings suggest that S. aureus may have evolved to maintain high intracellular d-Ala concentrations, partly to counter organic anion intoxication.
Collapse
Affiliation(s)
- Sasmita Panda
- Center for Staphylococcal Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5900, USA
| | - Yahani P. Jayasinghe
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Dhananjay D. Shinde
- Center for Staphylococcal Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5900, USA
| | - Emilio Bueno
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Center for Microbial Research (UCMR), Department of Molecular Biology, Umeå University, Umea SE-90187, Sweden
| | - Amanda Stastny
- Center for Staphylococcal Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5900, USA
| | - Blake P. Bertrand
- Center for Staphylococcal Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5900, USA
| | - Sujata S. Chaudhari
- Center for Staphylococcal Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5900, USA
| | - Tammy Kielian
- Center for Staphylococcal Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5900, USA
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Center for Microbial Research (UCMR), Department of Molecular Biology, Umeå University, Umea SE-90187, Sweden
| | - Donald R. Ronning
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Vinai C. Thomas
- Center for Staphylococcal Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5900, USA
| |
Collapse
|
5
|
Schürmann J, Fischer MA, Herzberg M, Reemtsma T, Strommenger B, Werner G, Schuster CF, Layer-Nicolaou F. The genes mgtE and spoVG are involved in zinc tolerance of Staphylococcus aureus. Appl Environ Microbiol 2024; 90:e0045324. [PMID: 38752746 PMCID: PMC11218649 DOI: 10.1128/aem.00453-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/16/2024] [Indexed: 06/19/2024] Open
Abstract
Metals are essential for all living organisms, but the type of metal and its concentration determines its action. Even low concentrations of metals may have toxic effects on organisms and therefore exhibit antimicrobial activities. In this study, we investigate the evolutionary adaptation processes of Staphylococcus aureus to metals and common genes for metal tolerance. Laboratory and clinical isolates were treated with manganese, cobalt, zinc, or nickel metal salts to generate growth-adapted mutants. After growth in medium supplemented with zinc, whole-genome sequencing identified, among others, two genes, mgtE (SAUSA300_0910), a putative magnesium transporter and spoVG (SAUSA300_0475), a global transcriptional regulator, as hot spots for stress-induced single-nucleotide polymorphisms (SNPs). SNPs in mgtE were also detected in mutants treated with high levels of cobalt or nickel salts. To investigate the effect of these genes on metal tolerance, deletion mutants and complementation strains in an S. aureus USA300 LAC* laboratory strain were generated. Both, the mgtE and spoVG deletion strains were more tolerant to cobalt, manganese, and zinc. The mgtE mutant was also more tolerant to nickel exposure. Inductively coupled plasma mass spectrometry analysis demonstrated that the mgtE deletion mutant accumulated less intracellular zinc than the wild type, explaining increased tolerance. From these results, we conclude that mgtE gene inactivation increases zinc tolerance presumably due to reduced uptake of zinc. For the SpoVG mutant, no direct effect on the intracellular zinc concentration was detected, indicating toward different pathways to increase tolerance. Importantly, inactivation of these genes offers a growth advantage in environments containing certain metals, pointing toward a common tolerance mechanism. IMPORTANCE Staphylococcus aureus is an opportunistic pathogen causing tremendous public health burden and high mortality in invasive infections. Treatment is becoming increasingly difficult due to antimicrobial resistances. The use of metals in animal husbandry and aquaculture to reduce bacterial growth and subsequent acquisition of metal resistances has been shown to co-select for antimicrobial resistance. Therefore, understanding adaptive mechanisms that help S. aureus to survive metal exposure is essential. Using a screening approach, we were able to identify two genes encoding the transporter MgtE and the transcriptional regulator SpoVG, which conferred increased tolerance to specific metals such as zinc when inactivated. Further testing showed that the deletion of mgtE leads to reduced intracellular zinc levels, suggesting a role in zinc uptake. The accumulation of mutations in these genes when exposed to other metals suggests that inactivation of these genes could be a common mechanism for intrinsic tolerance to certain metals.
Collapse
Affiliation(s)
- Jacqueline Schürmann
- Department of Infectious Diseases, Division of Nosocomial Pathogens and Antibiotic Resistances, Robert Koch Institute, Wernigerode, Germany
| | - Martin A. Fischer
- Department of Infectious Diseases, Division of Nosocomial Pathogens and Antibiotic Resistances, Robert Koch Institute, Wernigerode, Germany
| | - Martin Herzberg
- Department Environmental Analytical Chemistry, Helmholtz-Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Thorsten Reemtsma
- Department Environmental Analytical Chemistry, Helmholtz-Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Birgit Strommenger
- Department of Infectious Diseases, Division of Nosocomial Pathogens and Antibiotic Resistances, Robert Koch Institute, Wernigerode, Germany
| | - Guido Werner
- Department of Infectious Diseases, Division of Nosocomial Pathogens and Antibiotic Resistances, Robert Koch Institute, Wernigerode, Germany
| | - Christopher F. Schuster
- Department of Infectious Diseases, Division of Nosocomial Pathogens and Antibiotic Resistances, Robert Koch Institute, Wernigerode, Germany
| | - Franziska Layer-Nicolaou
- Department of Infectious Diseases, Division of Nosocomial Pathogens and Antibiotic Resistances, Robert Koch Institute, Wernigerode, Germany
| |
Collapse
|
6
|
dos Santos Ferreira MC, Pendleton A, Yeo W, Málaga Gadea FC, Camelo D, McGuire M, Brinsmade SR. In Staphylococcus aureus, the acyl-CoA synthetase MbcS supports branched-chain fatty acid synthesis from carboxylic acid and aldehyde precursors. Mol Microbiol 2024; 121:865-881. [PMID: 38366323 PMCID: PMC11167679 DOI: 10.1111/mmi.15237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/18/2024]
Abstract
In the human pathogen Staphylococcus aureus, branched-chain fatty acids (BCFAs) are the most abundant fatty acids in membrane phospholipids. Strains deficient for BCFAs synthesis experience auxotrophy in laboratory culture and attenuated virulence during infection. Furthermore, the membrane of S. aureus is among the main targets for antibiotic therapy. Therefore, determining the mechanisms involved in BCFAs synthesis is critical to manage S. aureus infections. Here, we report that the overexpression of SAUSA300_2542 (annotated to encode an acyl-CoA synthetase) restores BCFAs synthesis in strains lacking the canonical biosynthetic pathway catalyzed by the branched-chain α-keto acid dehydrogenase (BKDH) complex. We demonstrate that the acyl-CoA synthetase activity of MbcS activates branched-chain carboxylic acids (BCCAs), and is required by S. aureus to utilize the isoleucine derivative 2-methylbutyraldehyde to restore BCFAs synthesis in S. aureus. Based on the ability of some staphylococci to convert branched-chain aldehydes into their respective BCCAs and our findings demonstrating that branched-chain aldehydes are in fact BCFAs precursors, we propose that MbcS promotes the scavenging of exogenous BCCAs and mediates BCFA synthesis via a de novo alternative pathway.
Collapse
Affiliation(s)
| | - Augustus Pendleton
- Department of BiologyGeorgetown UniversityWashingtonDistrict of ColumbiaUSA
- Present address:
Department of MicrobiologyCornell UniversityIthacaNew YorkUSA
| | - Won‐Sik Yeo
- Department of BiologyGeorgetown UniversityWashingtonDistrict of ColumbiaUSA
| | | | - Danna Camelo
- Department of BiologyGeorgetown UniversityWashingtonDistrict of ColumbiaUSA
| | - Maeve McGuire
- Department of BiologyGeorgetown UniversityWashingtonDistrict of ColumbiaUSA
| | - Shaun R. Brinsmade
- Department of BiologyGeorgetown UniversityWashingtonDistrict of ColumbiaUSA
| |
Collapse
|
7
|
Shields KE, Ranava D, Tan Y, Zhang D, Yap MNF. Epitranscriptional m6A modification of rRNA negatively impacts translation and host colonization in Staphylococcus aureus. PLoS Pathog 2024; 20:e1011968. [PMID: 38252661 PMCID: PMC10833563 DOI: 10.1371/journal.ppat.1011968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/01/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Macrolides, lincosamides, and streptogramin B (MLS) are structurally distinct molecules that are among the safest antibiotics for prophylactic use and for the treatment of bacterial infections. The family of erythromycin resistance methyltransferases (Erm) invariantly install either one or two methyl groups onto the N6,6-adenosine of 2058 nucleotide (m6A2058) of the bacterial 23S rRNA, leading to bacterial cross-resistance to all MLS antibiotics. Despite extensive structural studies on the mechanism of Erm-mediated MLS resistance, how the m6A epitranscriptomic mark affects ribosome function and bacterial physiology is not well understood. Here, we show that Staphylococcus aureus cells harboring m6A2058 ribosomes are outcompeted by cells carrying unmodified ribosomes during infections and are severely impaired in colonization in the absence of an unmodified counterpart. The competitive advantage of m6A2058 ribosomes is manifested only upon antibiotic challenge. Using ribosome profiling (Ribo-Seq) and a dual-fluorescence reporter to measure ribosome occupancy and translational fidelity, we found that specific genes involved in host interactions, metabolism, and information processing are disproportionally deregulated in mRNA translation. This dysregulation is linked to a substantial reduction in translational capacity and fidelity in m6A2058 ribosomes. These findings point to a general "inefficient translation" mechanism of trade-offs associated with multidrug-resistant ribosomes.
Collapse
Affiliation(s)
- Kathryn E. Shields
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - David Ranava
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Yongjun Tan
- Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, Missouri, United States of America
| | - Dapeng Zhang
- Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, Missouri, United States of America
- Program of Bioinformatics and Computational Biology, College of Arts and Sciences, St. Louis, Missouri, United States of America
| | - Mee-Ngan F. Yap
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| |
Collapse
|
8
|
Tao Z, Ke K, Shi D, Zhu L. Development of a dual fluorescent reporter system to identify inhibitors of Staphylococcus aureus virulence factors. Appl Environ Microbiol 2023; 89:e0097823. [PMID: 37889047 PMCID: PMC10686081 DOI: 10.1128/aem.00978-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/15/2023] [Indexed: 10/28/2023] Open
Abstract
IMPORTANCE Staphylococcus aureus is a formidable pathogen responsible for a wide range of infections, and the emergence of antibiotic-resistant strains has posed significant challenges in treating these infections. In this study, we have established a novel dual reporter system capable of concurrently monitoring the activities of two critical virulence regulators in S. aureus. By incorporating both reporters into a single screening platform, we provide a time- and cost-efficient approach for assessing the activity of compounds against two distinct targets in a single screening round. This innovative dual reporter system presents a promising strategy for the identification of molecules capable of modulating virulence gene expression in S. aureus, potentially expediting the development of antivirulence therapies.
Collapse
Affiliation(s)
- Zhanhua Tao
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning, China
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Nanning, China
| | - Ke Ke
- Guangxi Academy of Sciences, Nanning, China
| | | | - Libo Zhu
- Guangxi Academy of Sciences, Nanning, China
| |
Collapse
|
9
|
Ramos-León F, Anjuwon-Foster BR, Anantharaman V, Ferreira CN, Ibrahim AM, Tai CH, Missiakas DM, Camberg JL, Aravind L, Ramamurthi KS. Protein coopted from a phage restriction system dictates orthogonal cell division plane selection in Staphylococcus aureus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.03.556088. [PMID: 37886572 PMCID: PMC10602043 DOI: 10.1101/2023.09.03.556088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The spherical bacterium Staphylococcus aureus, a leading cause of nosocomial infections, undergoes binary fission by dividing in two alternating orthogonal planes, but the mechanism by which S. aureus correctly selects the next cell division plane is not known. To identify cell division placement factors, we performed a chemical genetic screen that revealed a gene which we termed pcdA. We show that PcdA is a member of the McrB family of AAA+ NTPases that has undergone structural changes and a concomitant functional shift from a restriction enzyme subunit to an early cell division protein. PcdA directly interacts with the tubulin-like central divisome component FtsZ and localizes to future cell division sites before membrane invagination initiates. This parallels the action of another McrB family protein, CTTNBP2, which stabilizes microtubules in animals. We show that PcdA also interacts with the structural protein DivIVA and propose that the DivIVA/PcdA complex recruits unpolymerized FtsZ to assemble along the proper cell division plane. Deletion of pcdA conferred abnormal, non-orthogonal division plane selection, increased sensitivity to cell wall-targeting antibiotics, and reduced virulence in a murine infection model. Targeting PcdA could therefore highlight a treatment strategy for combatting antibiotic-resistant strains of S. aureus.
Collapse
Affiliation(s)
- Félix Ramos-León
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Brandon R. Anjuwon-Foster
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, USA
| | - Colby N. Ferreira
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, USA
| | - Amany M. Ibrahim
- Department of Microbiology, Howard Taylor Ricketts Laboratory, University of Chicago, Lemont, USA
| | - Chin-Hsien Tai
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Dominique M. Missiakas
- Department of Microbiology, Howard Taylor Ricketts Laboratory, University of Chicago, Lemont, USA
| | - Jodi L. Camberg
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, USA
| | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, USA
| | - Kumaran S. Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, USA
| |
Collapse
|
10
|
Pei H, Zhu C, Shu F, Lu Z, Wang H, Ma K, Wang J, Lan R, Shang F, Xue T. CodY: An Essential Transcriptional Regulator Involved in Environmental Stress Tolerance in Foodborne Staphylococcus aureus RMSA24. Foods 2023; 12:3166. [PMID: 37685098 PMCID: PMC10486358 DOI: 10.3390/foods12173166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/04/2023] [Accepted: 08/15/2023] [Indexed: 09/10/2023] Open
Abstract
Staphylococcus aureus (S. aureus), as the main pathogen in milk and dairy products, usually causes intoxication with vomiting and various kinds of inflammation after entering the human body. CodY, an important transcriptional regulator in S. aureus, plays an important role in regulating metabolism, growth, and virulence. However, little is known about the role of CodY on environmental stress tolerance. In this research, we revealed the role of CodY in environmental stress tolerance in foodborne S. aureus RMSA24. codY mutation significantly reduced the tolerance of S. aureus to desiccation and oxidative, salt, and high-temperature stresses. However, S. aureus was more tolerant to low temperature stress due to mutation of codY. We found that the expressions of two important heat shock proteins-GroEL and DanJ-were significantly down-regulated in the mutant codY. This suggests that CodY may indirectly regulate the high- and low-temperature tolerance of S. aureus by regulating the expressions of groEL and danJ. This study reveals a new mechanism of environmental stress tolerance in S. aureus and provides new insights into controlling the contamination and harm caused by S. aureus in the food industry.
Collapse
Affiliation(s)
- Hao Pei
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
| | - Chengfeng Zhu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
| | - Fang Shu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
| | - Zhengfei Lu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
| | - Hui Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
| | - Kai Ma
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
| | - Jun Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
| | - Ranxiang Lan
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
| | - Fei Shang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
- Food Procession Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Ting Xue
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
- Food Procession Research Institute, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
11
|
Huang H, Wan P, Luo X, Lu Y, Li X, Xiong W, Zeng Z. Tigecycline Resistance-Associated Mutations in the MepA Efflux Pump in Staphylococcus aureus. Microbiol Spectr 2023; 11:e0063423. [PMID: 37432114 PMCID: PMC10434020 DOI: 10.1128/spectrum.00634-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/24/2023] [Indexed: 07/12/2023] Open
Abstract
Tigecycline is an important antibacterial drug for treating infection by clinical multidrug-resistant bacteria, and tigecycline-resistant Staphylococcus aureus (TRSA) has been increasingly reported in recent years. Notably, only rpsJ and mepA are associated with the tigecycline resistance of S. aureus. The mepA gene encodes MepA efflux pumps, and the overexpression of mepA has been confirmed to be directly related to tigecycline resistance. Although the mutations of MepA widely occur, the associations between TRSA and mutations of MepA are still unclear. In this study, we explored mutations in the mepA genes from various sources. Then, tigecycline resistance-associated mutations T29I, E287G, and T29I+E287G in MepA were identified, and their effects were evaluated through mutant deletion and complementation, tigecycline accumulation assay, and molecular docking experiments. Results showed that the MICs of tigecycline, gentamicin, and amikacin increased in special complementary transformants and recovered after the addition of the efflux pump inhibitor carbonyl cyanide 3-chlorophenylhydrazone (CCCP). The tigecycline accumulation assay of the mepA-deleted mutant strain and its complementary transformants showed that T29I, E287G, and T29I+E287G mutations promoted tigecycline efflux, and molecular docking showed that mutations T29I, E287G, and T29I+E287G decreased the binding energy and contributed to ligand binding. Moreover, we inferred the evolutionary trajectory of S. aureus under the selective pressure of tigecycline in vitro. Overall, our study indicated that mutations in MepA play important roles in tigecycline resistance in S. aureus. IMPORTANCE Previous analysis has shown that overexpression of MepA is an exact mechanism involved in tigecycline resistance apart from the rpsJ mutation and is usually dependent on the mutant mepR. However, no research has evaluated the effects of diverse mutations discovered in TRSA in MepA. This study demonstrates that the mutations in MepA confer resistance to tigecycline without overexpression and provides genotypic references for identifying TRSA. Although tigecycline resistance-associated mutations in MepA identified in this study have not been observed in clinical isolates, the mechanism should be explored given that S. aureus strains are prevalent in the environment. Measures should be implemented to contain TRSA within the time window before tigecycline resistance-associated mutations in MepA are prevalent.
Collapse
Affiliation(s)
- Honghao Huang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Peng Wan
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Xinyue Luo
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Yixing Lu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Xiaoshen Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Wenguang Xiong
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Zhenling Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| |
Collapse
|
12
|
Li Y, Zhu F, Manna AC, Chen L, Jiang J, Hong JI, Proctor RA, Bayer AS, Cheung AL, Xiong YQ. Gp05, a Prophage-Encoded Virulence Factor, Contributes to Persistent Methicillin-Resistant Staphylococcus aureus Endovascular Infection. Microbiol Spectr 2023; 11:e0060023. [PMID: 37358448 PMCID: PMC10434118 DOI: 10.1128/spectrum.00600-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/24/2023] [Indexed: 06/27/2023] Open
Abstract
Persistent methicillin-resistant Staphylococcus aureus (MRSA) endovascular infections represent a serious public health threat. We recently demonstrated that the presence of a novel prophage ϕSA169 was associated with vancomycin (VAN) treatment failure in experimental MRSA endocarditis. In this study, we assessed the role of a ϕSA169 gene, ϕ80α_gp05 (gp05), in VAN-persistent outcome using gp05 isogenic MRSA strain sets. Of note, Gp05 significantly influences the intersection of MRSA virulence factors, host immune responses, and antibiotic treatment efficacy, including the following: (i) activity of the significant energy-yielding metabolic pathway (e.g., tricarboxylic acid cycle); (ii) carotenoid pigment production; (iii) (p)ppGpp (guanosine tetra- and pentaphosphate) production, which activates the stringent response and subsequent downstream functional factors (e.g., phenol-soluble modulins and polymorphonuclear neutrophil bactericidal activity); and (iv) persistence to VAN treatment in an experimental infective endocarditis model. These data suggest that Gp05 is a significant virulence factor which contributes to the persistent outcomes in MRSA endovascular infection by multiple pathways. IMPORTANCE Persistent endovascular infections are often caused by MRSA strains that are susceptible to anti-MRSA antibiotics in vitro by CLSI breakpoints. Thus, the persistent outcome represents a unique variant of traditional antibiotic resistance mechanisms and a significant therapeutic challenge. Prophage, a critical mobile genetic element carried by most MRSA isolates, provides their bacterial host with metabolic advantages and resistance mechanisms. However, how prophage-encoded virulence factors interact with the host defense system and antibiotics, driving the persistent outcome, is not well known. In the current study, we demonstrated that a novel prophage gene, gp05, significantly impacts tricarboxylic acid cycle activity, stringent response, and pigmentation, as well as vancomycin treatment outcome in an experimental endocarditis model using isogenic gp05 overexpression and chromosomal deletion mutant MRSA strain sets. The findings significantly advance our understanding of the role of Gp05 in persistent MRSA endovascular infection and provide a potential target for development of novel drugs against these life-threatening infections.
Collapse
Affiliation(s)
- Yi Li
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Fengli Zhu
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Adhar C. Manna
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Liang Chen
- Center for Discovery and Innovation, Nutley, New Jersey, USA
| | - Jason Jiang
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Jong-In Hong
- Department of Chemistry, Seoul National University, Seoul, South Korea
| | - Richard A. Proctor
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Arnold S. Bayer
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Ambrose L. Cheung
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Yan Q. Xiong
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
13
|
Zeden MS, Gallagher LA, Bueno E, Nolan AC, Ahn J, Shinde D, Razvi F, Sladek M, Burke Ó, O’Neill E, Fey PD, Cava F, Thomas VC, O’Gara JP. Metabolic reprogramming and altered cell envelope characteristics in a pentose phosphate pathway mutant increases MRSA resistance to β-lactam antibiotics. PLoS Pathog 2023; 19:e1011536. [PMID: 37486930 PMCID: PMC10399904 DOI: 10.1371/journal.ppat.1011536] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/03/2023] [Accepted: 07/04/2023] [Indexed: 07/26/2023] Open
Abstract
Central metabolic pathways control virulence and antibiotic resistance, and constitute potential targets for antibacterial drugs. In Staphylococcus aureus the role of the pentose phosphate pathway (PPP) remains largely unexplored. Mutation of the 6-phosphogluconolactonase gene pgl, which encodes the only non-essential enzyme in the oxidative phase of the PPP, significantly increased MRSA resistance to β-lactam antibiotics, particularly in chemically defined media with physiologically-relevant concentrations of glucose, and reduced oxacillin (OX)-induced lysis. Expression of the methicillin-resistance penicillin binding protein 2a and peptidoglycan architecture were unaffected. Carbon tracing and metabolomics revealed extensive metabolic reprogramming in the pgl mutant including increased flux to glycolysis, the TCA cycle, and several cell envelope precursors, which was consistent with increased β-lactam resistance. Morphologically, pgl mutant cells were smaller than wild-type with a thicker cell wall and ruffled surface when grown in OX. The pgl mutation reduced resistance to Congo Red, sulfamethoxazole and oxidative stress, and increased resistance to targocil, fosfomycin and vancomycin. Levels of lipoteichoic acids (LTAs) were significantly reduced in pgl, which may limit cell lysis, while the surface charge of pgl cells was significantly more positive. A vraG mutation in pgl reversed the increased OX resistance phenotype, and partially restored wild-type surface charge, but not LTA levels. Mutations in vraF or graRS from the VraFG/GraRS complex that regulates DltABCD-mediated d-alanylation of teichoic acids (which in turn controls β-lactam resistance and surface charge), also restored wild-type OX susceptibility. Collectively these data show that reduced levels of LTAs and OX-induced lysis combined with a VraFG/GraRS-dependent increase in cell surface positive charge are accompanied by significantly increased OX resistance in an MRSA pgl mutant.
Collapse
Affiliation(s)
- Merve S. Zeden
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Laura A. Gallagher
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Emilio Bueno
- Department of Molecular Biology, Umeå University, MIMS—Laboratory for Molecular Infection Medicine Sweden, Umeå, Sweden
| | - Aaron C. Nolan
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Jongsam Ahn
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Dhananjay Shinde
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Fareha Razvi
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Margaret Sladek
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Órla Burke
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Eoghan O’Neill
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Paul D. Fey
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Felipe Cava
- Department of Molecular Biology, Umeå University, MIMS—Laboratory for Molecular Infection Medicine Sweden, Umeå, Sweden
| | - Vinai C. Thomas
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - James P. O’Gara
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| |
Collapse
|
14
|
Tao Z, Wang H, Ke K, Shi D, Zhu L. Flavone inhibits Staphylococcus aureus virulence via inhibiting the sae two component system. Microb Pathog 2023; 180:106128. [PMID: 37148922 DOI: 10.1016/j.micpath.2023.106128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/08/2023] [Accepted: 04/26/2023] [Indexed: 05/08/2023]
Abstract
The rising prevalence of antibiotic resistance in Staphylococcus aureus calls for the development of innovative antimicrobial agents targeting novel pathways. S. aureus generates various virulence factors that compromise host defense mechanisms. Flavone, a core structure of flavonoids, has been shown to diminish the production of staphyloxanthin and alpha-hemolysin. Nonetheless, the influence of flavone on the majority of other virulence factors in S. aureus and its underlying molecular mechanism remain elusive. In this study, we examined the impact of flavone on the transcriptional profile of S. aureus using transcriptome sequencing. Our findings revealed that flavone substantially downregulated the expression of over 30 virulence factors implicated in immune evasion by the pathogen. Gene set enrichment analysis of the fold change-ranked gene list in relation to the Sae regulon indicated a robust association between flavone-induced downregulation and membership in the Sae regulon. Through the analysis of Sae target promoter-gfp fusion expression patterns, we observed a dose-dependent inhibition of Sae target promoter activity by flavone. Moreover, we discovered that flavone protected human neutrophils from S. aureus-mediated killing. Flavone also decreased the expression of alpha-hemolysin and other hemolytic toxins, resulting in a reduction in S. aureus' hemolytic capacity. Additionally, our data suggested that the inhibitory effect of flavone on the Sae system operates independently of its capacity to lower staphyloxanthin levels. In conclusion, our study proposes that flavone exhibits a broad inhibitory action on multiple virulence factors of S. aureus by targeting the Sae system, consequently diminishing the bacterium's pathogenicity.
Collapse
Affiliation(s)
- Zhanhua Tao
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning, 530003, Guangxi, China; Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Nanning, 530003, Guangxi, China.
| | - Haoren Wang
- The First Affiliated Hospital of Jiamusi University, Jiamusi, 154002, Heilongjiang, China.
| | - Ke Ke
- Guangxi Academy of Sciences, Nanning, 530003, Guangxi, China.
| | - Deqiang Shi
- Guangxi Academy of Sciences, Nanning, 530003, Guangxi, China.
| | - Libo Zhu
- Guangxi Academy of Sciences, Nanning, 530003, Guangxi, China.
| |
Collapse
|
15
|
Zeden MS, Gallagher LA, Bueno E, Nolan AC, Ahn J, Shinde D, Razvi F, Sladek M, Burke Ó, O'Neill E, Fey PD, Cava F, Thomas VC, O'Gara JP. Metabolic reprogramming and flux to cell envelope precursors in a pentose phosphate pathway mutant increases MRSA resistance to β-lactam antibiotics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.03.530734. [PMID: 36945400 PMCID: PMC10028837 DOI: 10.1101/2023.03.03.530734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Central metabolic pathways controls virulence and antibiotic resistance, and constitute potential targets for antibacterial drugs. In Staphylococcus aureus the role of the pentose phosphate pathway (PPP) remains largely unexplored. Mutation of the 6-phosphogluconolactonase gene pgl, which encodes the only non-essential enzyme in the oxidative phase of the PPP, significantly increased MRSA resistance to β-lactam antibiotics, particularly in chemically defined media with glucose, and reduced oxacillin (OX)-induced lysis. Expression of the methicillin-resistance penicillin binding protein 2a and peptidoglycan architecture were unaffected. Carbon tracing and metabolomics revealed extensive metabolic reprogramming in the pgl mutant including increased flux to glycolysis, the TCA cycle, and several cell envelope precursors, which was consistent with increased β-lactam resistance. Morphologically, pgl mutant cells were smaller than wild-type with a thicker cell wall and ruffled surface when grown in OX. Further evidence of the pleiotropic effect of the pgl mutation was reduced resistance to Congo Red, sulfamethoxazole and oxidative stress, and increased resistance to targocil, fosfomycin and vancomycin. Reduced binding of wheat germ agglutinin (WGA) to pgl was indicative of lower wall teichoic acid/lipoteichoic acid levels or altered teichoic acid structures. Mutations in the vraFG or graRS loci reversed the increased OX resistance phenotype and restored WGA binding to wild-type levels. VraFG/GraRS was previously implicated in susceptibility to cationic antimicrobial peptides and vancomycin, and these data reveal a broader role for this multienzyme membrane complex in the export of cell envelope precursors or modifying subunits required for resistance to diverse antimicrobial agents. Altogether our study highlights important roles for the PPP and VraFG/GraRS in β-lactam resistance, which will support efforts to identify new drug targets and reintroduce β-lactams in combination with adjuvants or other antibiotics for infections caused by MRSA and other β-lactam resistant pathogens. Author summary High-level resistance to penicillin-type (β-lactam) antibiotics significantly limits the therapeutic options for patients with MRSA infections necessitating the use of newer agents, for which reduced susceptibility has already been described. Here we report for the first time that the central metabolism pentose phosphate pathway controls MRSA resistance to penicillin-type antibiotics. We comprehensively demonstrated that mutation of the PPP gene pgl perturbed metabolism in MRSA leading to increased flux to cell envelope precursors to drive increased antibiotic resistance. Moreover, increased resistance was dependent on the VraRG/GraRS multienzyme membrane complex previously implicated in resistance to antimicrobial peptides and vancomycin. Our data thus provide new insights on MRSA mechanisms of β-lactam resistance, which will support efforts to expand the treatment options for infections caused by this and other antimicrobial resistant pathogens.
Collapse
|
16
|
Pei H, Wang J, Zhu C, Wang H, Fang M, Shu F, Wang H, Hu Y, Li B, Xue T. A novel gdmH-related gene, ghl, involved in environmental stress tolerance and vancomycin susceptibility in milk-derived Staphylococcus aureus. Food Res Int 2023; 167:112720. [PMID: 37087277 DOI: 10.1016/j.foodres.2023.112720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/27/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
Staphylococcus aureus is one of the main microorganisms that contaminate dairy products and pickled foods, and has a great impact on economy and human health. GdmH-related proteins, as important functional units widely present in Staphylococcus species, have not been reported in S. aureus so far. In this study, we identified a gdmH-related gene, named ghl. We found that mutation of ghl gene could decrease the tolerance of environmental stresses (heat, desiccation, salt and hydrogen peroxide) of S. aureus and enhanced the capacities of biofilm formation. In addition, the ghl mutant was more sensitive to vancomycin on CAMHB solid plates but more resistant to vancomycin in CAMHB liquid medium compared to wild type RMSA24. These results indicated that ghl is an important factor to respond to environmental stress in foodborne S. aureus. This paper for the first time reported that a GdmH-related protein plays an important role in environmental tolerance, providing a new direction for the follow-up study of GdmH-related proteins, as well as a potential target gene for further research on the tolerance mechanism of Staphylococcus aureus in food processing and the control of biofilm formation.
Collapse
|
17
|
Characterization of the Secreted Acid Phosphatase SapS Reveals a Novel Virulence Factor of Staphylococcus aureus That Contributes to Survival and Virulence in Mice. Int J Mol Sci 2022; 23:ijms232214031. [PMID: 36430506 PMCID: PMC9692844 DOI: 10.3390/ijms232214031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Staphylococcus aureus possesses a large arsenal of immune-modulating factors, enabling it to bypass the immune system's response. Here, we demonstrate that the acid phosphatase SapS is secreted during macrophage infection and promotes its intracellular survival in this type of immune cell. In animal models, the SA564 sapS mutant demonstrated a significantly lower bacterial burden in liver and renal tissues of mice at four days post infection in comparison to the wild type, along with lower pathogenicity in a zebrafish infection model. The SA564 sapS mutant elicits a lower inflammatory response in mice than the wild-type strain, while S. aureus cells harbouring a functional sapS induce a chemokine response that favours the recruitment of neutrophils to the infection site. Our in vitro and quantitative transcript analysis show that SapS has an effect on S. aureus capacity to adapt to oxidative stress during growth. SapS is also involved in S. aureus biofilm formation. Thus, this study shows for the first time that SapS plays a significant role during infection, most likely through inhibiting a variety of the host's defence mechanisms.
Collapse
|
18
|
Pan T, Guan J, Li Y, Sun B. LcpB Is a Pyrophosphatase Responsible for Wall Teichoic Acid Synthesis and Virulence in Staphylococcus aureus Clinical Isolate ST59. Front Microbiol 2021; 12:788500. [PMID: 34975809 PMCID: PMC8716876 DOI: 10.3389/fmicb.2021.788500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022] Open
Abstract
The community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) causes severe pandemics primarily consisting of skin and soft tissue infections. However, the underlying pathomechanisms of the bacterium are yet to fully understood. The present study identifies LcpB protein, which belongs to the LytR-A-Psr (LCP) family, is crucial for cell wall synthesis and virulence in S. aureus. The findings revealed that LcpB is a pyrophosphatase responsible for wall teichoic acid synthesis. The results also showed that LcpB regulates enzyme activity through specific key arginine sites in its LCP domain. Furthermore, knockout of lcpB in the CA-MRSA isolate ST59 resulted in enhanced hemolytic activity, enlarged of abscesses, and increased leukocyte infiltration. Meanwhile, we also found that LcpB regulates virulence in agr-independent manner and the key sites for pyrophosphatase of LcpB play critical roles in regulating the virulence. In addition, the results showed that the role of LcpB was different between methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive Staphylococcus aureus (MSSA). This study therefore highlights the dual role of LcpB in cell wall synthesis and regulation of virulence. These insights on the underlying molecular mechanisms can thus guide the development of novel anti-infective strategies.
Collapse
Affiliation(s)
- Ting Pan
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jing Guan
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yujie Li
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Baolin Sun
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
19
|
Kristensen CS, Varming AK, Leinweber HAK, Hammer K, Lo Leggio L, Ingmer H, Kilstrup M. Characterization of the genetic switch from phage ɸ13 important for Staphylococcus aureus colonization in humans. Microbiologyopen 2021; 10:e1245. [PMID: 34713608 PMCID: PMC8516035 DOI: 10.1002/mbo3.1245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/30/2021] [Indexed: 11/09/2022] Open
Abstract
Temperate phages are bacterial viruses that after infection either reside integrated into a bacterial genome as prophages forming lysogens or multiply in a lytic lifecycle. The decision between lifestyles is determined by a switch involving a phage-encoded repressor, CI, and a promoter region from which lytic and lysogenic genes are divergently transcribed. Here, we investigate the switch of phage ɸ13 from the human pathogen Staphylococcus aureus. ɸ13 encodes several virulence factors and is prevalent in S. aureus strains colonizing humans. We show that the ɸ13 switch harbors a cI gene, a predicted mor (modulator of repression) gene, and three high-affinity operator sites binding CI. To quantify the decision between lytic and lysogenic lifestyle, we introduced reporter plasmids that carry the 1.3 kb switch region from ɸ13 with the lytic promoter fused to lacZ into S. aureus and Bacillus subtilis. Analysis of β-galactosidase expression indicated that decision frequency is independent of host factors. The white "lysogenic" phenotype, which relies on the expression of cI, could be switched to a stable blue "lytic" phenotype by DNA damaging agents. We have characterized lifestyle decisions of phage ɸ13, and our approach may be applied to other temperate phages encoding virulence factors in S. aureus.
Collapse
Affiliation(s)
- Camilla S. Kristensen
- Department of Biotechnology and BiomedicineTechnical University of DenmarkLyngbyDenmark
| | | | | | - Karin Hammer
- Department of Biotechnology and BiomedicineTechnical University of DenmarkLyngbyDenmark
| | - Leila Lo Leggio
- Department of ChemistryUniversity of CopenhagenKobenhavnDenmark
| | - Hanne Ingmer
- Department of Veterinary and Animal SciencesUniversity of CopenhagenKobenhavnDenmark
| | - Mogens Kilstrup
- Department of Biotechnology and BiomedicineTechnical University of DenmarkLyngbyDenmark
| |
Collapse
|
20
|
Zhang R, Shebes MA, Kho K, Scaffidi SJ, Meredith TC, Yu W. Spatial regulation of protein A in Staphylococcus aureus. Mol Microbiol 2021; 116:589-605. [PMID: 33949015 DOI: 10.1111/mmi.14734] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/31/2022]
Abstract
Surface proteins of Staphylococcus aureus play vital roles in bacterial physiology and pathogenesis. Recent work suggests that surface proteins are spatially regulated by a YSIRK/GXXS signal peptide that promotes cross-wall targeting at the mid-cell, though the mechanisms remain unclear. We previously showed that protein A (SpA), a YSIRK/GXXS protein and key staphylococcal virulence factor, mis-localizes in a ltaS mutant deficient in lipoteichoic acid (LTA) production. Here, we identified that SpA contains another cross-wall targeting signal, the LysM domain, which, in addition to the YSIRK/GXXS signal peptide, significantly enhances SpA cross-wall targeting. We show that LTA synthesis, but not LtaS, is required for SpA septal anchoring and cross-wall deposition. Interestingly, LTA is predominantly found at the peripheral cell membrane and is diminished at the septum of dividing staphylococcal cells, suggesting a restriction mechanism for SpA septal localization. Finally, we show that D-alanylation of LTA abolishes SpA cross-wall deposition by disrupting SpA distribution in the peptidoglycan layer without altering SpA septal anchoring. Our study reveals that multiple factors contribute to the spatial regulation and cross-wall targeting of SpA via different mechanisms, which coordinately ensures efficient incorporation of surface proteins into the growing peptidoglycan during the cell cycle.
Collapse
Affiliation(s)
- Ran Zhang
- Department of Cell Biology, Microbiology and Molecular Biology (CMMB), University of South Florida, Tampa, FL, USA
| | - Mac A Shebes
- Department of Cell Biology, Microbiology and Molecular Biology (CMMB), University of South Florida, Tampa, FL, USA
| | - Kelvin Kho
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Salvatore J Scaffidi
- Department of Cell Biology, Microbiology and Molecular Biology (CMMB), University of South Florida, Tampa, FL, USA
| | - Timothy C Meredith
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Wenqi Yu
- Department of Cell Biology, Microbiology and Molecular Biology (CMMB), University of South Florida, Tampa, FL, USA
| |
Collapse
|
21
|
Yang Q, Zhu Y, Schwarz S, Wang L, Liu W, Yang W, Luan T, Liu S, Zhang W. A novel plasmid from Aerococcus urinaeequi of porcine origin co-harboring the tetracycline resistance genes tet(58) and tet(61). Vet Microbiol 2021; 257:109065. [PMID: 33866063 DOI: 10.1016/j.vetmic.2021.109065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/02/2021] [Indexed: 11/15/2022]
Abstract
Tetracyclines are the broad-spectrum agents used in veterinary medicine and food animal production. Known mechanisms of tetracycline resistance include ribosome protection, active efflux and enzymatic inactivation. However, the presence of two different tet genes conferring different resistance mechanisms on the same plasmid has rarely been reported. In this study, we identified the tandem tetracycline resistance genes tet(61)-tet(58) on the novel plasmid pT4303. These tet genes were identified for the first time in Aerococcus urinaeequi. Reduced susceptibility to doxycycline was observed in S. aureus RN4220 harboring tet(61) when an extra tet(58) was expressed. Plasmid pT4303 was electrotransformed into S. aureus RN4220, E. faecalis JH2-2, S. suis BAA and E. coli DH5α and conferred tetracycline resistance (MIC ≥ 16) in both Gram-positive and Gram-negative bacteria, assuming that it might serve as a vehicle for the dissemination of the tetracycline resistance genes tet(61) and tet(58).
Collapse
Affiliation(s)
- Qin Yang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Yao Zhu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Lingli Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Wenyu Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Wenlin Yang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Tian Luan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Siguo Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Wanjiang Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| |
Collapse
|
22
|
The Staphylococcus aureus CidA and LrgA Proteins Are Functional Holins Involved in the Transport of By-Products of Carbohydrate Metabolism. mBio 2021; 13:e0282721. [PMID: 35100878 PMCID: PMC8805020 DOI: 10.1128/mbio.02827-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Staphylococcus aureus cidABC and lrgAB operons encode members of a well-conserved family of proteins thought to be involved in programmed cell death (PCD). Based on the structural similarities that CidA and LrgA share with bacteriophage holins, we have hypothesized that these proteins function by forming pores within the cytoplasmic membrane. To test this, we utilized a "lysis cassette" system that demonstrated the abilities of the cidA and lrgA genes to support bacteriophage endolysin-induced cell lysis. Typical of holins, CidA- and LrgA-induced lysis was dependent on the coexpression of endolysin, consistent with the proposed holin-like functions of these proteins. In addition, the CidA and LrgA proteins were shown to localize to the surface of membrane vesicles and cause leakage of small molecules, providing direct evidence of their hole-forming potential. Consistent with recent reports demonstrating a role for the lrgAB homologues in other bacterial and plant species in the transport of by-products of carbohydrate metabolism, we also show that lrgAB is important for S. aureus to utilize pyruvate during microaerobic and anaerobic growth, by promoting the uptake of pyruvate under these conditions. Combined, these data reveal that the CidA and LrgA membrane proteins possess holin-like properties that play an important role in the transport of small by-products of carbohydrate metabolism. IMPORTANCE The Staphylococcus aureus cidABC and lrgAB operons represent the founding members of a large, highly conserved family of genes that span multiple kingdoms of life. Despite the fact that they have been shown to be involved in bacterial PCD, very little is known about the molecular/biochemical functions of the proteins they encode. The results presented in this study reveal that the cidA and lrgA genes encode proteins with bacteriophage holin-like functions, consistent with their roles in cell death. However, these studies also demonstrate that these operons are involved in the transport of small metabolic by-products of carbohydrate metabolism, suggesting an intriguing link between these two seemingly disparate processes.
Collapse
|
23
|
Lei MG, Lee CY. MgrA Activates Staphylococcal Capsule via SigA-Dependent Promoter. J Bacteriol 2020; 203:e00495-20. [PMID: 33077637 PMCID: PMC7950413 DOI: 10.1128/jb.00495-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/14/2020] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus capsule polysaccharide is an important antiphagocytic virulence factor. The cap genes are regulated at the promoter element (Pcap) upstream of the cap operon. Pcap, which consists of a dominant SigB-dependent promoter and a weaker upstream SigA-dependent promoter, is activated by global regulator MgrA. How MgrA activates capsule is unclear. Here, we showed that MgrA directly bound to the Pcap region and affected the SigA-dependent promoter. Interestingly, an electrophoretic mobility shift assay showed that MgrA bound to a large region of Pcap, mainly downstream of the SigA-dependent promoter. We further showed that the ArlRS two-component system and the Agr quorum sensing system activated capsule primarily through MgrA in the early growth phases.IMPORTANCE The virulence of Staphylococcus aureus depends on the expression of various virulence factors, which is governed by a complex regulatory network. We have been using capsule as a model virulence factor to study virulence gene regulation in S. aureus MgrA is one of the regulators of capsule and has a major effect on capsule production. However, how MgrA regulates capsule genes is not understood. In this study, we were able to define the mechanism involving MgrA regulation of capsule. In addition, we also delineated the role of MgrA in capsule regulatory pathways involving the key virulence regulators Agr and Arl. This study further advances our understanding of virulence gene regulation in S. aureus, an important human pathogen.
Collapse
Affiliation(s)
- Mei G Lei
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Chia Y Lee
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
24
|
Liu B, Sun B. Rsp promotes the transcription of virulence factors in an agr-independent manner in Staphylococcus aureus. Emerg Microbes Infect 2020; 9:796-812. [PMID: 32248753 PMCID: PMC7241556 DOI: 10.1080/22221751.2020.1752116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Staphylococcus aureus is a major human pathogen that causes a great diversity of community- and hospital-acquired infections. Rsp, a member of AraC/XylS family of transcriptional regulators (AFTRs), has been reported to play an important role in the regulation of virulence determinants in S. aureus via an agr-dependent pathway. Here we demonstrated that Rsp could bind to the rsp promoter to positively regulate its own expression. We then constructed an isogenic rsp deletion strain and compared the haemolysis in the wild-type and rsp mutant strains. Our results indicated that the rsp mutant strain displayed decreased haemolytic activity, which was correlated with a dramatic decrease in the expression of hla and psm. Furthermore, we analysed the regulatory effects of Rsp in the agr mutant strain and found that they are agr-independent. Electrophoretic mobility shift assay indicated that Rsp can directly bind to the promoter regions of hla and psm. The mouse model of subcutaneous abscess showed that the rsp mutant strain displayed a significant defect in virulence compared to the wild-type strain. These findings reveal that Rsp positively regulates the virulence of S. aureus by promoting the expression of hla and psm through direct binding to their promoter regions.
Collapse
Affiliation(s)
- Banghui Liu
- Department of Oncology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, People's Republic of China
| | - Baolin Sun
- Department of Oncology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, People's Republic of China
| |
Collapse
|
25
|
Willing S, Dyer E, Schneewind O, Missiakas D. FmhA and FmhC of Staphylococcus aureus incorporate serine residues into peptidoglycan cross-bridges. J Biol Chem 2020; 295:13664-13676. [PMID: 32759309 PMCID: PMC7521636 DOI: 10.1074/jbc.ra120.014371] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/03/2020] [Indexed: 12/16/2022] Open
Abstract
Staphylococcal peptidoglycan is characterized by pentaglycine cross-bridges that are cross-linked between adjacent wall peptides by penicillin-binding proteins to confer robustness and flexibility. In Staphylococcus aureus, pentaglycine cross-bridges are synthesized by three proteins: FemX adds the first glycine, and the homodimers FemA and FemB sequentially add two Gly-Gly dipeptides. Occasionally, serine residues are also incorporated into the cross-bridges by enzymes that have heretofore not been identified. Here, we show that the FemA/FemB homologues FmhA and FmhC pair with FemA and FemB to incorporate Gly-Ser dipeptides into cross-bridges and to confer resistance to lysostaphin, a secreted bacteriocin that cleaves the pentaglycine cross-bridge. FmhA incorporates serine residues at positions 3 and 5 of the cross-bridge. In contrast, FmhC incorporates a single serine at position 5. Serine incorporation also lowers resistance toward oxacillin, an antibiotic that targets penicillin-binding proteins, in both methicillin-sensitive and methicillin-resistant strains of S. aureus FmhC is encoded by a gene immediately adjacent to lytN, which specifies a hydrolase that cleaves the bond between the fifth glycine of cross-bridges and the alanine of the adjacent stem peptide. In this manner, LytN facilitates the separation of daughter cells. Cell wall damage induced upon lytN overexpression can be alleviated by overexpression of fmhC. Together, these observations suggest that FmhA and FmhC generate peptidoglycan cross-bridges with unique serine patterns that provide protection from endogenous murein hydrolases governing cell division and from bacteriocins produced by microbial competitors.
Collapse
Affiliation(s)
- Stephanie Willing
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Emma Dyer
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Olaf Schneewind
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Dominique Missiakas
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA; Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA.
| |
Collapse
|
26
|
Lipoprotein N-Acylation in Staphylococcus aureus Is Catalyzed by a Two-Component Acyl Transferase System. mBio 2020; 11:mBio.01619-20. [PMID: 32723923 PMCID: PMC7387801 DOI: 10.1128/mbio.01619-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Although it has long been known that S. aureus forms triacylated Lpps, a lack of homologs to known N-acylation genes found in Gram-negative bacteria has until now precluded identification of the genes responsible for this Lpp modification. Here, we demonstrate N-terminal Lpp acylation and chemotype conversion to the tri-acylated state is directed by a unique acyl transferase system encoded by two noncontiguous staphylococci genes (lnsAB). Since triacylated Lpps stimulate TLR2 more weakly than their diacylated counterparts, Lpp N-acylation is an important TLR2 immunoevasion factor for determining tolerance or nontolerance in niches such as in the skin microbiota. The discovery of the LnsAB system expands the known diversity of Lpp biosynthesis pathways and acyl transfer biochemistry in bacteria, advances our understanding of Lpp structural heterogeneity, and helps differentiate commensal and noncommensal microbiota. Bacterial lipoproteins (Lpps) are a class of membrane-associated proteins universally distributed among all bacteria. A characteristic N-terminal cysteine residue that is variably acylated anchors C-terminal globular domains to the extracellular surface, where they serve numerous roles, including in the capture and transport of essential nutrients. Lpps are also ligands for the Toll-like receptor 2 (TLR2) family, a key component of the innate immune system tasked with bacterial recognition. While Lpp function is conserved in all prokaryotes, structural heterogeneity in the N-terminal acylation state is widespread among Firmicutes and can differ between otherwise closely related species. In this study, we identify a novel two-gene system that directs the synthesis of N-acylated Lpps in the commensal and opportunistic pathogen subset of staphylococci. The two genes, which we have named the lipoprotein N-acylation transferase system (Lns), bear no resemblance to previously characterized N-terminal Lpp tailoring enzymes. LnsA (SAOUHSC_00822) is an NlpC/P60 superfamily enzyme, whereas LnsB (SAOHSC_02761) has remote homology to the CAAX protease and bacteriocin-processing enzyme (CPBP) family. Both LnsA and LnsB are together necessary and alone sufficient for N-acylation in Staphylococcus aureus and convert the Lpp chemotype from diacyl to triacyl when heterologously expressed in Listeria monocytogenes. Acquisition of lnsAB decreases TLR2-mediated detection of S. aureus by nearly 10-fold and shifts the activated TLR2 complex from TLR2/6 to TLR2/1. LnsAB thus has a dual role in attenuating TLR2 signaling in addition to a broader role in bacterial cell envelope physiology.
Collapse
|
27
|
SpoVG Modulates Cell Aggregation in Staphylococcus aureus by Regulating sasC Expression and Extracellular DNA Release. Appl Environ Microbiol 2020; 86:AEM.00591-20. [PMID: 32444467 PMCID: PMC7376557 DOI: 10.1128/aem.00591-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/06/2020] [Indexed: 11/20/2022] Open
Abstract
This study revealed that SpoVG can modulate cell aggregation by repressing sasC expression and extracellular DNA (eDNA) release. Furthermore, we have demonstrated the potential linkage between cell aggregation and antibiotic resistance. Our findings provide novel insights into the regulatory mechanisms of SpoVG involved in cell aggregation and in biofilm development and formation in Staphylococcus aureus. Biofilm formation is involved in numerous Staphylococcus aureus infections such as endocarditis, septic arthritis, osteomyelitis, and infections of indwelling medical devices. In these diseases, S. aureus forms biofilms as cell aggregates interspersed in host matrix material. Here, we have observed that the level of cell aggregation was significantly higher in the isogenic spoVG-deletion strain than in the wild-type strain. Reverse transcription-quantitative PCR data indicated that SpoVG could repress the expression of sasC, which codes for S. aureus surface protein C and is involved in cell aggregation and biofilm accumulation. Electromagnetic mobility shift assay demonstrated that SpoVG could specifically bind to the promoter region of sasC, indicating that SpoVG is a negative regulator and directly represses the expression of sasC. In addition, deletion of the SasC aggregation domain in the spoVG-deletion strain indicated that high-level expression of sasC could be the underlying cause of significantly increased cell aggregation formation. Our previous study showed that SpoVG is involved in oxacillin resistance of methicillin-resistant S. aureus by regulating the expression of genes involved in cell wall synthesis and degradation. In this study, we also found that SpoVG was able to negatively modulate the S. aureus drug tolerance under conditions of a high concentration of oxacillin treatment. These findings can broaden our understanding of the regulation of biofilm formation and drug tolerance in S. aureus. IMPORTANCE This study revealed that SpoVG can modulate cell aggregation by repressing sasC expression and extracellular DNA (eDNA) release. Furthermore, we have demonstrated the potential linkage between cell aggregation and antibiotic resistance. Our findings provide novel insights into the regulatory mechanisms of SpoVG involved in cell aggregation and in biofilm development and formation in Staphylococcus aureus.
Collapse
|
28
|
Transcriptional regulation of virulence factors Hla and phenol-soluble modulins α by AraC-type regulator Rbf in Staphylococcus aureus. Int J Med Microbiol 2020; 310:151436. [PMID: 32654771 DOI: 10.1016/j.ijmm.2020.151436] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 05/25/2020] [Accepted: 06/14/2020] [Indexed: 12/15/2022] Open
Abstract
Staphylococcus aureus is a gram-positive pathogenic bacterium and is capable of secreting numerous toxins interfering directly with the host to cause acute infections. Rbf, a transcriptional regulator of AraC/XylS family, has been reported to promote biofilm formation in polysaccharide intercellular adhesion (PIA) mediated manner to cause chronic infections. In this study, we revealed the new virulence-mediated role of Rbf that can negatively regulate the hemolytic activity. Furthermore, Rbf can specifically bind to the hla and psmα promoters to repress their expression, resulting in significantly decreased production of phenol-soluble modulins α (PSMα) and alpha-toxin. Accordingly, the rbf mutant strain exhibited the increased pathogenicity compared to the wild-type (WT) strain in a mouse subcutaneous abscess model, representing a type of acute infection by S. aureus. Collectively, our results provide a novel insight into the virulence regulation and acute infections mediated by Rbf in S. aureus.
Collapse
|
29
|
Basu A, Shields KE, Yap MNF. The hibernating 100S complex is a target of ribosome-recycling factor and elongation factor G in Staphylococcus aureus. J Biol Chem 2020; 295:6053-6063. [PMID: 32209660 PMCID: PMC7196661 DOI: 10.1074/jbc.ra119.012307] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/18/2020] [Indexed: 12/24/2022] Open
Abstract
The formation of translationally inactive 70S dimers (called 100S ribosomes) by hibernation-promoting factor is a widespread survival strategy among bacteria. Ribosome dimerization is thought to be reversible, with the dissociation of the 100S complexes enabling ribosome recycling for participation in new rounds of translation. The precise pathway of 100S ribosome recycling has been unclear. We previously found that the heat-shock GTPase HflX in the human pathogen Staphylococcus aureus is a minor disassembly factor. Cells lacking hflX do not accumulate 100S ribosomes unless they are subjected to heat exposure, suggesting the existence of an alternative pathway during nonstressed conditions. Here, we provide biochemical and genetic evidence that two essential translation factors, ribosome-recycling factor (RRF) and GTPase elongation factor G (EF-G), synergistically split 100S ribosomes in a GTP-dependent but tRNA translocation-independent manner. We found that although HflX and the RRF/EF-G pair are functionally interchangeable, HflX is expressed at low levels and is dispensable under normal growth conditions. The bacterial RRF/EF-G pair was previously known to target only the post-termination 70S complexes; our results reveal a new role in the reversal of ribosome hibernation that is intimately linked to bacterial pathogenesis, persister formation, stress responses, and ribosome integrity.
Collapse
Affiliation(s)
- Arnab Basu
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104
| | - Kathryn E Shields
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104
| | - Mee-Ngan F Yap
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104; Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611.
| |
Collapse
|
30
|
Abstract
Performing genetic manipulation is often key to understanding bacterial gene function. In this chapter, we present the method of allelic exchange using temperature-sensitive plasmids to generate mutations in Staphylococcus, including single-nucleotide mutations, insertions, and gene deletions. In addition, this chapter summarizes other key genetic technologies used for the manipulation of S. aureus, including the CRISPR/Cas9 system and complementation.
Collapse
Affiliation(s)
- Crystal M Austin
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jeffrey L Bose
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
31
|
Schuster CF, Wiedemann DM, Kirsebom FCM, Santiago M, Walker S, Gründling A. High-throughput transposon sequencing highlights the cell wall as an important barrier for osmotic stress in methicillin resistant Staphylococcus aureus and underlines a tailored response to different osmotic stressors. Mol Microbiol 2019; 113:699-717. [PMID: 31770461 PMCID: PMC7176532 DOI: 10.1111/mmi.14433] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 11/24/2019] [Indexed: 12/28/2022]
Abstract
Staphylococcus aureus is an opportunistic pathogen that can cause soft tissue infections but is also a frequent cause of foodborne illnesses. One contributing factor for this food association is its high salt tolerance allowing this organism to survive commonly used food preservation methods. How this resistance is mediated is poorly understood, particularly during long-term exposure. In this study, we used transposon sequencing (TN-seq) to understand how the responses to osmotic stressors differ. Our results revealed distinctly different long-term responses to NaCl, KCl and sucrose stresses. In addition, we identified the DUF2538 domain containing gene SAUSA300_0957 (gene 957) as essential under salt stress. Interestingly, a 957 mutant was less susceptible to oxacillin and showed increased peptidoglycan crosslinking. The salt sensitivity phenotype could be suppressed by amino acid substitutions in the transglycosylase domain of the penicillin-binding protein Pbp2, and these changes restored the peptidoglycan crosslinking to WT levels. These results indicate that increased crosslinking of the peptidoglycan polymer can be detrimental and highlight a critical role of the bacterial cell wall for osmotic stress resistance. This study will serve as a starting point for future research on osmotic stress response and help develop better strategies to tackle foodborne staphylococcal infections.
Collapse
Affiliation(s)
- Christopher F Schuster
- Section of Molecular Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - David M Wiedemann
- Section of Molecular Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Freja C M Kirsebom
- Section of Molecular Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Marina Santiago
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Suzanne Walker
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Angelika Gründling
- Section of Molecular Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| |
Collapse
|
32
|
Zhou W, Wang Z, Mo H, Zhao Y, Li H, Zhang H, Hu L, Zhou X. Thymol Mediates Bactericidal Activity against Staphylococcus aureus by Targeting an Aldo-Keto Reductase and Consequent Depletion of NADPH. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8382-8392. [PMID: 31271032 DOI: 10.1021/acs.jafc.9b03517] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Staphylococcus aureus is a common pathogen that can cause life-threatening infections. Treatment of antibiotic-resistant S. aureus infection needs effective antibacterial agents. Thymol, a generally recognized safe natural compound, has potential as an alternative to treat S. aureus infections. However, the targets and mechanisms of action of thymol were not fully understood. Bioinformatics analysis showed that IolS, a predicted aldo-keto reductase (AKR) in S. aureus, could be a potential target of thymol. Isothermal titration calorimetry (ITC) analysis demonstrated that thymol directly binds IolS and amino acid residues (Y30 and L33) are essential for such binding. Deletion of IolS or mutation of Y30A and L33A reduced the bactericidal activity of thymol at the concentration of 200 μg/mL, suggesting that thymol mediates bactericidal activity via binding with IolS. Biochemical analysis showed that addition of thymol significantly increased AKR activity of IolS from 1.6 ± 0.1 to 2.4 ± 0.2 U (p < 0.05). The content of NADPH within S. aureus cells decreased significantly from 105 ± 5 to 72 ± 3 pmol/108 cells (p < 0.05) following thymol treatment at the concentration of 200 μg/mL. Importantly, addition of NADPH could alleviate the bactericidal effect of thymol on S. aureus, indicating that the depletion of NADPH is responsible for thymol-mediated bactericidal activity. Overall, these results demonstrated that thymol could directly bind IolS and increase its AKR activity, leading to the depletion of NADPH and bactericidal effect. AKR activity of IolS could be a promising target for the development of new antimicrobials.
Collapse
Affiliation(s)
- Wei Zhou
- School of Food Science , Henan Institute of Science and Technology , Xinxiang 453003 , Henan China
| | - Zhen Wang
- School of Food Science , Henan Institute of Science and Technology , Xinxiang 453003 , Henan China
| | - Haizhen Mo
- School of Food Science , Henan Institute of Science and Technology , Xinxiang 453003 , Henan China
| | - Yanyan Zhao
- School of Food Science , Henan Institute of Science and Technology , Xinxiang 453003 , Henan China
| | - Hongbo Li
- School of Food Science , Henan Institute of Science and Technology , Xinxiang 453003 , Henan China
| | - Hao Zhang
- School of Food Science , Henan Institute of Science and Technology , Xinxiang 453003 , Henan China
| | - Liangbin Hu
- School of Food Science , Henan Institute of Science and Technology , Xinxiang 453003 , Henan China
| | - Xiaohui Zhou
- Department of Pathobiology and Veterinary Science , University of Connecticut , Storrs , Connecticut 06269 , United States
| |
Collapse
|
33
|
Bhawini A, Pandey P, Dubey AP, Zehra A, Nath G, Mishra MN. RelQ Mediates the Expression of β-Lactam Resistance in Methicillin-Resistant Staphylococcus aureus. Front Microbiol 2019; 10:339. [PMID: 30915038 PMCID: PMC6421274 DOI: 10.3389/fmicb.2019.00339] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/08/2019] [Indexed: 11/18/2022] Open
Abstract
An induced stringent response, which is established by an increased level of (p)ppGpp, is required for the expression of β-lactam resistance in methicillin-resistant Staphylococcus aureus (MRSA). However, it is not clear whether RSH (enzyme mediating stringent response to amino acid starvation) or small alarmone synthetases (SASs) are involved in the maintenance of (p)ppGpp level in response to β-lactams. Since the S. aureus genome encodes two active SASs (RelP and RelQ), their contribution to the expression of β-lactam resistance in MRSA was investigated. It was determined that relQ deletion renders community-associated MRSA (CA-MRSA) sensitive to β-lactams by negatively affecting the expression of mecA, and induction of (p)ppGpp synthesis by mupirocin bypasses the requirement of relQ for the expression of high-level β-lactam resistance. Surprisingly, relP deletion increased the level of β-lactam resistance. Such contradictory observations could be attributed to the fact that relQ promoter is ~5-fold stronger than the relP and is induced by oxacillin as well as deletion of either of the SASs, while relP promoter responds only to oxacillin. The stronger promoter activity of relQ, coupled with the inducibility of the relQ promoter in response to the lack of relP, results in efficient expression of relQ in the relP-deleted background. This positively affects mecA expression and renders the ΔrelP strain highly resistant. These findings indicate an important role for RelQ in the expression of high-level β-lactam resistance in MRSA.
Collapse
Affiliation(s)
- Ajita Bhawini
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Parul Pandey
- School of Biotechnology, Faculty of Science, Banaras Hindu University, Varanasi, India
| | | | - Aafreen Zehra
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Gopal Nath
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Mukti Nath Mishra
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India.,Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| |
Collapse
|
34
|
Taglialegna A, Varela MC, Rosato RR, Rosato AE. VraSR and Virulence Trait Modulation during Daptomycin Resistance in Methicillin-Resistant Staphylococcus aureus Infection. mSphere 2019; 4:e00557-18. [PMID: 30760612 PMCID: PMC6374592 DOI: 10.1128/msphere.00557-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/20/2019] [Indexed: 12/21/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) threatens human health in hospital and community settings. The lipopeptide antibiotic daptomycin (DAP) is a frequently used treatment option for MRSA infection. DAP exposure can cause bacterial resistance because mutations are induced in genes implicated in cell membrane and cell wall metabolism. Adaptations aimed at surviving antimicrobial pressure can affect bacterial physiology and modify in vivo aptitude and pathogenesis. In this study, clinical DAP-susceptible (DAPs) and DAP-resistant (DAPr) MRSA isolates were used to investigate associations between DAP resistance and staphylococcal virulence. We previously found that VraSR is a critical sensor of cell membrane/wall homeostasis associated with DAP acquisition during MRSA infection. The present study found that DAPr CB1634 and CB5014 MRSA strains with vraSR upregulation were less virulent than their susceptible counterparts, CB1631 and CB5013. Differential gene-transcription profile analysis revealed that DAPr CB1634 had decreased agr two-component system expression, virulence factors, and highly suppressed hemolysis activity. Functional genetic analysis performed in DAPr CB1634 strains using vraSR inactivation followed by gene complementation found that vraSR acted as a transcriptional agrA regulator. These results indicated that VraSR has a broad range of regulatory functions. VraSR also appeared to affect DAPr adherence to epithelial cells, which would affect DAPr strain colonization and survival in the host. The correlation between DAP resistance and decreased virulence was also found in the CB5013 (DAPs) and CB5014 (DAPr) pair. Taken together, these findings are the first evidence that DAP resistance and MRSA virulence are tightly connected and involve compromised expression of regulatory and virulence determinants.IMPORTANCE Methicillin-resistant S. aureus continues to develop resistance to antimicrobials, including those in current clinical use as daptomycin (DAP). Resistance to DAP arises by mutations in cell membrane and cell wall genes and/or upregulation of the two-component VraSR system. However, less is known about the connection between the pathogen and virulence traits during DAP resistance development. We provide new insights into VraSR and its regulatory role for virulence factors during DAP resistance, highlighting coordinated interactions that favor the higher persistence of MRSA DAP-resistant strains in the infected host.
Collapse
Affiliation(s)
- Agustina Taglialegna
- Department of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas, USA
| | - Maria C Varela
- Department of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas, USA
| | - Roberto R Rosato
- Houston Methodist Cancer Center, Houston Methodist Hospital, Houston, Texas, USA
| | - Adriana E Rosato
- Department of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas, USA
| |
Collapse
|
35
|
Thermal and Nutritional Regulation of Ribosome Hibernation in Staphylococcus aureus. J Bacteriol 2018; 200:JB.00426-18. [PMID: 30297357 PMCID: PMC6256015 DOI: 10.1128/jb.00426-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 09/25/2018] [Indexed: 12/13/2022] Open
Abstract
The dimerization of 70S ribosomes (100S complex) plays an important role in translational regulation and infectivity of the major human pathogen Staphylococcus aureus. Although the dimerizing factor HPF has been characterized biochemically, the pathways that regulate 100S ribosome abundance remain elusive. We identified a metabolite- and nutrient-sensing transcription factor, CodY, that serves both as an activator and a repressor of hpf expression in nutrient- and temperature-dependent manners. Furthermore, CodY-mediated activation of hpf masks a secondary hpf transcript derived from a general stress response SigB promoter. CodY and SigB regulate a repertoire of virulence genes. The unexpected link between ribosome homeostasis and the two master virulence regulators provides new opportunities for alternative druggable sites. The translationally silent 100S ribosome is a poorly understood form of the dimeric 70S complex that is ubiquitously found in all bacterial phyla. The elimination of the hibernating 100S ribosome leads to translational derepression, ribosome instability, antibiotic sensitivity, and biofilm defects in some bacteria. In Firmicutes, such as the opportunistic pathogen Staphylococcus aureus, a 190-amino acid protein called hibernating-promoting factor (HPF) dimerizes and conjoins two 70S ribosomes through a direct interaction between the HPF homodimer, with each HPF monomer tethered on an individual 70S complex. While the formation of the 100S ribosome in gammaproteobacteria and cyanobacteria is exclusively induced during postexponential growth phase and darkness, respectively, the 100S ribosomes in Firmicutes are constitutively produced from the lag-logarithmic phase through the post-stationary phase. Very little is known about the regulatory pathways that control hpf expression and 100S ribosome abundance. Here, we show that a general stress response (GSR) sigma factor (SigB) and a GTP-sensing transcription factor (CodY) integrate nutrient and thermal signals to regulate hpf synthesis in S. aureus, resulting in an enhanced virulence of the pathogen in a mouse model of septicemic infection. CodY-dependent regulation of hpf is strain specific. An epistasis analysis further demonstrated that CodY functions upstream of the GSR pathway in a condition-dependent manner. The results reveal an important link between S. aureus stress physiology, ribosome metabolism, and infection biology. IMPORTANCE The dimerization of 70S ribosomes (100S complex) plays an important role in translational regulation and infectivity of the major human pathogen Staphylococcus aureus. Although the dimerizing factor HPF has been characterized biochemically, the pathways that regulate 100S ribosome abundance remain elusive. We identified a metabolite- and nutrient-sensing transcription factor, CodY, that serves both as an activator and a repressor of hpf expression in nutrient- and temperature-dependent manners. Furthermore, CodY-mediated activation of hpf masks a secondary hpf transcript derived from a general stress response SigB promoter. CodY and SigB regulate a repertoire of virulence genes. The unexpected link between ribosome homeostasis and the two master virulence regulators provides new opportunities for alternative druggable sites.
Collapse
|
36
|
Zhu Q, Wen W, Wang W, Sun B. Transcriptional regulation of virulence factors Spa and ClfB by the SpoVG-Rot cascade in Staphylococcus aureus. Int J Med Microbiol 2018; 309:39-53. [PMID: 30392856 DOI: 10.1016/j.ijmm.2018.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/25/2018] [Accepted: 10/18/2018] [Indexed: 12/15/2022] Open
Abstract
Staphylococcus aureus can produce numerous surface proteins involved in the adhesion and internalization of host cells, immune evasion, and inflammation initiation. Among these surface proteins, the microbial surface components recognizing adhesive matrix molecules contain many crucial cell wall-anchored virulence factors. The Sar-family regulatory protein Rot has been reported to regulate many important extracellular virulence factors at the transcriptional level, including Spa and clumping factor B. SpoVG, a global regulator in S. aureus, is known to control the expression of numerous genes. Here, we demonstrate that SpoVG can positively regulate the transcription of rot by directly binding to its promoter. SpoVG can also positively regulate the transcription of spa and clfB through direct-binding to their promoters and in a Rot-mediated manner. Furthermore, SpoVG can positively modulate the human fibrinogen-binding ability of S. aureus. In addition, phosphorylation of SpoVG by the serine/threonine kinase, Stk1, can positively regulate its binding to the promoters of rot, spa, and clfB. The human cell infection assay showed that the adhesion and internalization abilities were reduced in the spoVG mutant strain in comparison to those in the wild-type strain. Collectively, our data reveal a SpoVG-Rot regulatory cascade and novel molecular mechanisms in the virulence control in S. aureus.
Collapse
Affiliation(s)
- Qing Zhu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, China
| | - Wen Wen
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, China
| | - Wanying Wang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, China
| | - Baolin Sun
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, China.
| |
Collapse
|
37
|
Repression of Capsule Production by XdrA and CodY in Staphylococcus aureus. J Bacteriol 2018; 200:JB.00203-18. [PMID: 29967117 DOI: 10.1128/jb.00203-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/22/2018] [Indexed: 12/25/2022] Open
Abstract
Capsule is one of many virulence factors produced by Staphylococcus aureus, and its expression is highly regulated. Here, we report the repression of capsule by direct interaction of XdrA and CodY with the capsule promoter region. We found, by footprinting analyses, that XdrA repressed capsule by binding to a broad region that extended from upstream of the -35 region of the promoter to the coding region of capA, the first gene of the 16-gene cap operon. Footprinting analyses also revealed that CodY bound to a large region that overlapped extensively with that of XdrA. We found that repression of the cap genes in the xdrA mutant could be achieved by the overexpression of codY but not vice versa, suggesting codY is epistatic to xdrA However, we found XdrA had no effect on CodY expression. These results suggest that XdrA plays a secondary role in capsule regulation by promoting CodY repression of the cap genes. Oxacillin slightly induced xdrA expression and reduced cap promoter activity, but the effect of oxacillin on capsule was not mediated through XdrA.IMPORTANCEStaphylococcus aureus employs a complex regulatory network to coordinate the expression of various virulence genes to achieve successful infections. How virulence genes are coordinately regulated is still poorly understood. We have been studying capsule regulation as a model system to explore regulatory networking in S. aureus In this study, we found that XdrA and CodY have broad binding sites that overlap extensively in the capsule promoter region. Our results also suggest that XdrA assists CodY in the repression of capsule. As capsule gene regulation by DNA-binding regulators has not been fully investigated, the results presented here fill an important knowledge gap, thereby further advancing our understanding of the global virulence regulatory network in S. aureus.
Collapse
|
38
|
Azam AH, Hoshiga F, Takeuchi I, Miyanaga K, Tanji Y. Analysis of phage resistance in Staphylococcus aureus SA003 reveals different binding mechanisms for the closely related Twort-like phages ɸSA012 and ɸSA039. Appl Microbiol Biotechnol 2018; 102:8963-8977. [DOI: 10.1007/s00253-018-9269-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/15/2018] [Accepted: 07/22/2018] [Indexed: 02/01/2023]
|
39
|
MntC-Dependent Manganese Transport Is Essential for Staphylococcus aureus Oxidative Stress Resistance and Virulence. mSphere 2018; 3:3/4/e00336-18. [PMID: 30021878 PMCID: PMC6052334 DOI: 10.1128/msphere.00336-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Work outlined in this report demonstrated that MntC-dependent manganese transport is required for S. aureus virulence. These study results support the model that MntC-specific antibodies elicited by a vaccine have the potential to disrupt S. aureus manganese transport and thus abrogate to its virulence. Staphylococcus aureus is a human pathogen that has developed several approaches to evade the immune system, including a strategy to resist oxidative killing by phagocytes. This resistance is mediated by production of superoxide dismutase (SOD) enzymes which use manganese as a cofactor. S. aureus encodes two manganese ion transporters, MntABC and MntH, and a possible Nramp family manganese transporter, exemplified by S. aureus N315 SA1432. Their relative contributions to manganese transport have not been well defined in clinically relevant isolates. For this purpose, insertional inactivation mutations were introduced into mntC, mntH, and SA1432 individually and in combination. mntC was necessary for full resistance to methyl viologen, a compound that generates intracellular free radicals. In contrast, strains with an intact mntH gene had a minimal increase in resistance that was revealed only in mntC strains, and no change was observed upon mutation of SA1432 in strains lacking both mntC and mntH. Similarly, MntC alone was required for high cellular SOD activity. In addition, mntC strains were attenuated in a murine sepsis model. To further link these observations to manganese transport, an S. aureus MntC protein lacking manganese binding activity was designed, expressed, and purified. While circular dichroism experiments demonstrated that the secondary and tertiary structures of this protein were unaltered, a defect in manganese binding was confirmed by isothermal titration calorimetry. Unlike complementation with wild-type mntC, introduction of the manganese-binding defective allele into the chromosome of an mntC strain did not restore resistance to oxidative stress or virulence. Collectively, these results underscore the importance of MntC-dependent manganese transport in S. aureus oxidative stress resistance and virulence. IMPORTANCE Work outlined in this report demonstrated that MntC-dependent manganese transport is required for S. aureus virulence. These study results support the model that MntC-specific antibodies elicited by a vaccine have the potential to disrupt S. aureus manganese transport and thus abrogate to its virulence.
Collapse
|
40
|
Pollitt EJG, Szkuta PT, Burns N, Foster SJ. Staphylococcus aureus infection dynamics. PLoS Pathog 2018; 14:e1007112. [PMID: 29902272 PMCID: PMC6019756 DOI: 10.1371/journal.ppat.1007112] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/26/2018] [Accepted: 05/21/2018] [Indexed: 01/22/2023] Open
Abstract
Staphylococcus aureus is a human commensal that can also cause systemic infections. This transition requires evasion of the immune response and the ability to exploit different niches within the host. However, the disease mechanisms and the dominant immune mediators against infection are poorly understood. Previously it has been shown that the infecting S. aureus population goes through a population bottleneck, from which very few bacteria escape to establish the abscesses that are characteristic of many infections. Here we examine the host factors underlying the population bottleneck and subsequent clonal expansion in S. aureus infection models, to identify underpinning principles of infection. The bottleneck is a common feature between models and is independent of S. aureus strain. Interestingly, the high doses of S. aureus required for the widely used "survival" model results in a reduced population bottleneck, suggesting that host defences have been simply overloaded. This brings into question the applicability of the survival model. Depletion of immune mediators revealed key breakpoints and the dynamics of systemic infection. Loss of macrophages, including the liver Kupffer cells, led to increased sensitivity to infection as expected but also loss of the population bottleneck and the spread to other organs still occurred. Conversely, neutrophil depletion led to greater susceptibility to disease but with a concomitant maintenance of the bottleneck and lack of systemic spread. We also used a novel microscopy approach to examine abscess architecture and distribution within organs. From these observations we developed a conceptual model for S. aureus disease from initial infection to mature abscess. This work highlights the need to understand the complexities of the infectious process to be able to assign functions for host and bacterial components, and why S. aureus disease requires a seemingly high infectious dose and how interventions such as a vaccine may be more rationally developed.
Collapse
Affiliation(s)
- Eric J. G. Pollitt
- Department of Molecular Biology and Biotechnology, Firth Court, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | - Piotr T. Szkuta
- Department of Molecular Biology and Biotechnology, Firth Court, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | - Nicola Burns
- Department of Molecular Biology and Biotechnology, Firth Court, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | - Simon J. Foster
- Department of Molecular Biology and Biotechnology, Firth Court, University of Sheffield, Western Bank, Sheffield, United Kingdom
| |
Collapse
|
41
|
Salt-Induced Stress Stimulates a Lipoteichoic Acid-Specific Three-Component Glycosylation System in Staphylococcus aureus. J Bacteriol 2018; 200:JB.00017-18. [PMID: 29632092 DOI: 10.1128/jb.00017-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/03/2018] [Indexed: 01/01/2023] Open
Abstract
Lipoteichoic acid (LTA) in Staphylococcus aureus is a poly-glycerophosphate polymer anchored to the outer surface of the cell membrane. LTA has numerous roles in cell envelope physiology, including regulating cell autolysis, coordinating cell division, and adapting to environmental growth conditions. LTA is often further modified with substituents, including d-alanine and glycosyl groups, to alter cellular function. While the genetic determinants of d-alanylation have been largely defined, the route of LTA glycosylation and its role in cell envelope physiology have remained unknown, in part due to the low levels of basal LTA glycosylation in S. aureus We demonstrate here that S. aureus utilizes a membrane-associated three-component glycosylation system composed of an undecaprenol (Und) N-acetylglucosamine (GlcNAc) charging enzyme (CsbB; SAOUHSC_00713), a putative flippase to transport loaded substrate to the outside surface of the cell (GtcA; SAOUHSC_02722), and finally an LTA-specific glycosyltransferase that adds α-GlcNAc moieties to LTA (YfhO; SAOUHSC_01213). We demonstrate that this system is specific for LTA with no cross recognition of the structurally similar polyribitol phosphate containing wall teichoic acids. We show that while wild-type S. aureus LTA has only a trace of GlcNAcylated LTA under normal growth conditions, amounts are raised upon either overexpressing CsbB, reducing endogenous d-alanylation activity, expressing the cell envelope stress responsive alternative sigma factor SigB, or by exposure to environmental stress-inducing culture conditions, including growth media containing high levels of sodium chloride.IMPORTANCE The role of glycosylation in the structure and function of Staphylococcus aureus lipoteichoic acid (LTA) is largely unknown. By defining key components of the LTA three-component glycosylation pathway and uncovering stress-induced regulation by the alternative sigma factor SigB, the role of N-acetylglucosamine tailoring during adaptation to environmental stresses can now be elucidated. As the dlt and glycosylation pathways compete for the same sites on LTA and induction of glycosylation results in decreased d-alanylation, the interplay between the two modification systems holds implications for resistance to antibiotics and antimicrobial peptides.
Collapse
|
42
|
Yu W, Missiakas D, Schneewind O. Septal secretion of protein A in Staphylococcus aureus requires SecA and lipoteichoic acid synthesis. eLife 2018; 7:34092. [PMID: 29757141 PMCID: PMC5962339 DOI: 10.7554/elife.34092] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/05/2018] [Indexed: 12/26/2022] Open
Abstract
Surface proteins of Staphylococcus aureus are secreted across septal membranes for assembly into the bacterial cross-wall. This localized secretion requires the YSIRK/GXXS motif signal peptide, however the mechanisms supporting precursor trafficking are not known. We show here that the signal peptide of staphylococcal protein A (SpA) is cleaved at the YSIRK/GXXS motif. A SpA signal peptide mutant defective for YSIRK/GXXS cleavage is also impaired for septal secretion and co-purifies with SecA, SecDF and LtaS. SecA depletion blocks precursor targeting to septal membranes, whereas deletion of secDF diminishes SpA secretion into the cross-wall. Depletion of LtaS blocks lipoteichoic acid synthesis and abolishes SpA precursor trafficking to septal membranes. We propose a model whereby SecA directs SpA precursors to lipoteichoic acid-rich septal membranes for YSIRK/GXXS motif cleavage and secretion into the cross-wall.
Collapse
Affiliation(s)
- Wenqi Yu
- Department of Microbiology, University of Chicago, Chicago, United States
| | | | - Olaf Schneewind
- Department of Microbiology, University of Chicago, Chicago, United States
| |
Collapse
|
43
|
Tlapák H, Köppen K, Rydzewski K, Grunow R, Heuner K. Construction of a New Phage Integration Vector pFIV-Val for Use in Different Francisella Species. Front Cell Infect Microbiol 2018; 8:75. [PMID: 29594068 PMCID: PMC5861138 DOI: 10.3389/fcimb.2018.00075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/27/2018] [Indexed: 11/13/2022] Open
Abstract
We recently identified and described a putative prophage on the genomic island FhaGI-1 located within the genome of Francisella hispaniensis AS02-814 (F. tularensis subsp. novicida-like 3523). In this study, we constructed two variants of a Francisella phage integration vector, called pFIV1-Val and pFIV2-Val (Francisella Integration Vector-tRNAVal-specific), using the attL/R-sites and the site-specific integrase (FN3523_1033) of FhaGI-1, a chloramphenicol resistance cassette and a sacB gene for counter selection of transformants against the vector backbone. We inserted the respective sites and genes into vector pUC57-Kana to allow for propagation in Escherichia coli. The constructs generated a circular episomal form in E. coli which could be used to transform Francisella spp. where FIV-Val stably integrated site specifically into the tRNAVal gene of the genome, whereas pUC57-Kana is lost due to counter selection. Functionality of the new vector was demonstrated by the successfully complementation of a Francisella mutant strain. The vectors were stable in vitro and during host-cell infection without selective pressure. Thus, the vectors can be applied as a further genetic tool in Francisella research, expanding the present genetic tools by an integrative element. This new element is suitable to perform long-term experiments with different Francisella species.
Collapse
Affiliation(s)
- Hana Tlapák
- Division 2 (ZBS 2), Cellular Interactions of Bacterial Pathogens, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Kristin Köppen
- Division 2 (ZBS 2), Cellular Interactions of Bacterial Pathogens, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Kerstin Rydzewski
- Division 2 (ZBS 2), Cellular Interactions of Bacterial Pathogens, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Roland Grunow
- Division 2 (ZBS 2), Highly Pathogenic Microorganisms, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Klaus Heuner
- Division 2 (ZBS 2), Cellular Interactions of Bacterial Pathogens, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
44
|
Lund VA, Wacnik K, Turner RD, Cotterell BE, Walther CG, Fenn SJ, Grein F, Wollman AJ, Leake MC, Olivier N, Cadby A, Mesnage S, Jones S, Foster SJ. Molecular coordination of Staphylococcus aureus cell division. eLife 2018; 7:32057. [PMID: 29465397 PMCID: PMC5821461 DOI: 10.7554/elife.32057] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 01/26/2018] [Indexed: 12/21/2022] Open
Abstract
The bacterial cell wall is essential for viability, but despite its ability to withstand internal turgor must remain dynamic to permit growth and division. Peptidoglycan is the major cell wall structural polymer, whose synthesis requires multiple interacting components. The human pathogen Staphylococcus aureus is a prolate spheroid that divides in three orthogonal planes. Here, we have integrated cellular morphology during division with molecular level resolution imaging of peptidoglycan synthesis and the components responsible. Synthesis occurs across the developing septal surface in a diffuse pattern, a necessity of the observed septal geometry, that is matched by variegated division component distribution. Synthesis continues after septal annulus completion, where the core division component FtsZ remains. The novel molecular level information requires re-evaluation of the growth and division processes leading to a new conceptual model, whereby the cell cycle is expedited by a set of functionally connected but not regularly distributed components.
Collapse
Affiliation(s)
- Victoria A Lund
- Krebs Institute, University of Sheffield, Sheffield, United Kingdom.,Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Katarzyna Wacnik
- Krebs Institute, University of Sheffield, Sheffield, United Kingdom.,Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Robert D Turner
- Krebs Institute, University of Sheffield, Sheffield, United Kingdom.,Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom.,Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
| | - Bryony E Cotterell
- Krebs Institute, University of Sheffield, Sheffield, United Kingdom.,Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom.,Department of Chemistry, University of Sheffield, Sheffield, United Kingdom
| | - Christa G Walther
- Krebs Institute, University of Sheffield, Sheffield, United Kingdom.,Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Samuel J Fenn
- Krebs Institute, University of Sheffield, Sheffield, United Kingdom.,Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Fabian Grein
- Institute for Pharmaceutical Microbiology, German Center for Infection Research (DZIF), University of Bonn, Bonn, Germany
| | - Adam Jm Wollman
- Biological Physical Sciences Institute, University of York, York, United Kingdom
| | - Mark C Leake
- Biological Physical Sciences Institute, University of York, York, United Kingdom
| | - Nicolas Olivier
- Krebs Institute, University of Sheffield, Sheffield, United Kingdom.,Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
| | - Ashley Cadby
- Krebs Institute, University of Sheffield, Sheffield, United Kingdom.,Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
| | - Stéphane Mesnage
- Krebs Institute, University of Sheffield, Sheffield, United Kingdom.,Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Simon Jones
- Department of Chemistry, University of Sheffield, Sheffield, United Kingdom
| | - Simon J Foster
- Krebs Institute, University of Sheffield, Sheffield, United Kingdom.,Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
45
|
Lee JH, Heo S, Jeong DW. Genomic insights into Staphylococcus equorum KS1039 as a potential starter culture for the fermentation of high-salt foods. BMC Genomics 2018; 19:136. [PMID: 29433437 PMCID: PMC5810056 DOI: 10.1186/s12864-018-4532-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 02/05/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Our previous comparative genomic analysis of Staphylococcus equorum KS1039 with five S. equorum strains illuminated the genomic basis of its safety and salt tolerance. However, a comprehensive picture of the cellular components and metabolic pathways involved in the degradation of macromolecules and development of sensory properties has not been obtained for S. equorum. Therefore, in this study, we examined the general metabolism of S. equorum based on information obtained from published complete genome sequences of six S. equorum strains isolated from different niches. Additionally, the utility of strain KS1039 as a starter culture for high-salt food fermentations was examined. RESULTS All six S. equorum strains contained genes involved in glycolysis, the tricarboxylic acid cycle, and amino acid metabolic pathways, as well as color development. Moreover, the strains had the potential to produce acetoin, butanediol, and branched chain fatty acids, all of which are important flavor compounds. None of the strains contained decarboxylase genes, which are required for histamine and tyramine production. Strain KS1039 contained bacteriocin and CRISPR/Cas gene clusters, and experimental results suggested that these genes were functional in vitro. CONCLUSIONS The comparative genomic analysis carried out herein provides important information on the usefulness of S. equorum KS1039 as a starter culture for the fermentation of high-salt foods in terms of safety, salt tolerance, bacteriocin production, and foreign plasmid restriction.
Collapse
Affiliation(s)
- Jong-Hoon Lee
- Department of Food Science and Biotechnology, Kyonggi University, Suwon, 16227, Republic of Korea
| | - Sojeong Heo
- Department of Food Science and Biotechnology, Kyonggi University, Suwon, 16227, Republic of Korea
- Department of Food and Nutrition, Dongduk Women's University, Seoul, 02748, Republic of Korea
| | - Do-Won Jeong
- Department of Food and Nutrition, Dongduk Women's University, Seoul, 02748, Republic of Korea.
| |
Collapse
|
46
|
The Electron Transport Chain Sensitizes Staphylococcus aureus and Enterococcus faecalis to the Oxidative Burst. Infect Immun 2017; 85:IAI.00659-17. [PMID: 28993457 DOI: 10.1128/iai.00659-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 09/28/2017] [Indexed: 12/16/2022] Open
Abstract
Small-colony variants (SCVs) of Staphylococcus aureus typically lack a functional electron transport chain and cannot produce virulence factors such as leukocidins, hemolysins, or the antioxidant staphyloxanthin. Despite this, SCVs are associated with persistent infections of the bloodstream, bones, and prosthetic devices. The survival of SCVs in the host has been ascribed to intracellular residency, biofilm formation, and resistance to antibiotics. However, the ability of SCVs to resist host defenses is largely uncharacterized. To address this, we measured the survival of wild-type and SCV S. aureus in whole human blood, which contains high numbers of neutrophils, the key defense against staphylococcal infection. Despite the loss of leukocidin production and staphyloxanthin biosynthesis, SCVs defective for heme or menaquinone biosynthesis were significantly more resistant to the oxidative burst than wild-type bacteria in human blood or the presence of purified neutrophils. Supplementation of the culture medium of the heme-auxotrophic SCV with heme, but not iron, restored growth, hemolysin and staphyloxanthin production, and sensitivity to the oxidative burst. Since Enterococcus faecalis is a natural heme auxotroph and cause of bloodstream infection, we explored whether restoration of the electron transport chain in this organism also affected survival in blood. Incubation of E. faecalis with heme increased growth and restored catalase activity but resulted in decreased survival in human blood via increased sensitivity to the oxidative burst. Therefore, the lack of functional electron transport chains in SCV S. aureus and wild-type E. faecalis results in reduced growth rate but provides resistance to a key immune defense mechanism.
Collapse
|
47
|
Chromosomal Targeting by the Type III-A CRISPR-Cas System Can Reshape Genomes in Staphylococcus aureus. mSphere 2017; 2:mSphere00403-17. [PMID: 29152580 PMCID: PMC5687920 DOI: 10.1128/msphere.00403-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/18/2017] [Indexed: 12/26/2022] Open
Abstract
Staphylococcus aureus is a pathogen that can cause a wide range of infections in humans. Studies have suggested that CRISPR-Cas systems can drive the loss of integrated mobile genetic elements (MGEs) by chromosomal targeting. Here we demonstrate that CRISPR-mediated cleavage contributes to the partial deletion of integrated SCCmec in methicillin-resistant S. aureus (MRSA), which provides a strategy for the treatment of MRSA infections. The spacer within artificial CRISPR arrays should contain more than 25 nucleotides for immunity, and consecutive trinucleotide pairings between a selected target and the 5′ tag of crRNA can block targeting. These findings add to our understanding of the molecular mechanisms of the type III-A CRISPR-Cas system and provide a novel strategy for the exploitation of engineered CRISPR immunity against integrated MGEs in bacteria for clinical and industrial applications. CRISPR-Cas (clustered regularly interspaced short palindromic repeat [CRISPR]-CRISPR-associated protein [Cas]) systems can provide protection against invading genetic elements by using CRISPR RNAs (crRNAs) as a guide to locate and degrade the target DNA. CRISPR-Cas systems have been classified into two classes and five types according to the content of cas genes. Previous studies have indicated that CRISPR-Cas systems can avoid viral infection and block plasmid transfer. Here we show that chromosomal targeting by the Staphylococcus aureus type III-A CRISPR-Cas system can drive large-scale genome deletion and alteration within integrated staphylococcal cassette chromosome mec (SCCmec). The targeting activity of the CRISPR-Cas system is associated with the complementarity between crRNAs and protospacers, and 10- to 13-nucleotide truncations of spacers partially block CRISPR attack and more than 13-nucleotide truncation can fully abolish targeting, suggesting that a minimal length is required to license cleavage. Avoiding base pairings in the upstream region of protospacers is also necessary for CRISPR targeting. Successive trinucleotide complementarity between the 5′ tag of crRNAs and protospacers can disrupt targeting. Our findings reveal that type III-A CRISPR-Cas systems can modulate bacterial genome stability and may serve as a high-efficiency tool for deleting resistance or virulence genes in bacteria. IMPORTANCEStaphylococcus aureus is a pathogen that can cause a wide range of infections in humans. Studies have suggested that CRISPR-Cas systems can drive the loss of integrated mobile genetic elements (MGEs) by chromosomal targeting. Here we demonstrate that CRISPR-mediated cleavage contributes to the partial deletion of integrated SCCmec in methicillin-resistant S. aureus (MRSA), which provides a strategy for the treatment of MRSA infections. The spacer within artificial CRISPR arrays should contain more than 25 nucleotides for immunity, and consecutive trinucleotide pairings between a selected target and the 5′ tag of crRNA can block targeting. These findings add to our understanding of the molecular mechanisms of the type III-A CRISPR-Cas system and provide a novel strategy for the exploitation of engineered CRISPR immunity against integrated MGEs in bacteria for clinical and industrial applications.
Collapse
|
48
|
Marincola G, Wolz C. Downstream element determines RNase Y cleavage of the saePQRS operon in Staphylococcus aureus. Nucleic Acids Res 2017; 45:5980-5994. [PMID: 28453818 PMCID: PMC5449607 DOI: 10.1093/nar/gkx296] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 04/12/2017] [Indexed: 12/19/2022] Open
Abstract
In gram-positive bacteria, RNase J1, RNase J2 and RNase Y are thought to be major contributors to mRNA degradation and maturation. In Staphylococcus aureus, RNase Y activity is restricted to regulating the mRNA decay of only certain transcripts. Here the saePQRS operon was used as a model to analyze RNase Y specificity in living cells. A RNase Y cleavage site is located in an intergenic region between saeP and saeQ. This cleavage resulted in rapid degradation of the upstream fragment and stabilization of the downstream fragment. Thereby, the expression ratio of the different components of the operon was shifted towards saeRS, emphasizing the regulatory role of RNase Y activity. To assess cleavage specificity different regions surrounding the sae CS were cloned upstream of truncated gfp, and processing was analyzed in vivo using probes up- and downstream of CS. RNase Y cleavage was not determined by the cleavage site sequence. Instead a 24-bp double-stranded recognition structure was identified that was required to initiate cleavage 6 nt upstream. The results indicate that RNase Y activity is determined by secondary structure recognition determinants, which guide cleavage from a distance.
Collapse
Affiliation(s)
- Gabriella Marincola
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen 72076, Germany
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen 72076, Germany
| |
Collapse
|
49
|
Matzov D, Aibara S, Basu A, Zimmerman E, Bashan A, Yap MNF, Amunts A, Yonath AE. The cryo-EM structure of hibernating 100S ribosome dimer from pathogenic Staphylococcus aureus. Nat Commun 2017; 8:723. [PMID: 28959035 PMCID: PMC5620080 DOI: 10.1038/s41467-017-00753-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 07/25/2017] [Indexed: 02/02/2023] Open
Abstract
Formation of 100S ribosome dimer is generally associated with translation suppression in bacteria. Trans-acting factors ribosome modulation factor (RMF) and hibernating promoting factor (HPF) were shown to directly mediate this process in E. coli. Gram-positive S. aureus lacks an RMF homolog and the structural basis for its 100S formation was not known. Here we report the cryo-electron microscopy structure of the native 100S ribosome from S. aureus, revealing the molecular mechanism of its formation. The structure is distinct from previously reported analogs and relies on the HPF C-terminal extension forming the binding platform for the interactions between both of the small ribosomal subunits. The 100S dimer is formed through interactions between rRNA h26, h40, and protein uS2, involving conformational changes of the head as well as surface regions that could potentially prevent RNA polymerase from docking to the ribosome.Under conditions of nutrient limitation, bacterial ribosomes undergo dimerization, forming a 100S complex that is translationally inactive. Here the authors present the structural basis for formation of the 100S complexes in Gram-positive bacteria, shedding light on the mechanism of translation suppression by the ribosome-silencing factors.
Collapse
Affiliation(s)
- Donna Matzov
- Faculty of Chemistry, Department of Structural Biology, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Shintaro Aibara
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden
| | - Arnab Basu
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Ella Zimmerman
- Faculty of Chemistry, Department of Structural Biology, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Anat Bashan
- Faculty of Chemistry, Department of Structural Biology, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Mee-Ngan F Yap
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA.
| | - Alexey Amunts
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden.
| | - Ada E Yonath
- Faculty of Chemistry, Department of Structural Biology, The Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
50
|
Disassembly of the Staphylococcus aureus hibernating 100S ribosome by an evolutionarily conserved GTPase. Proc Natl Acad Sci U S A 2017; 114:E8165-E8173. [PMID: 28894000 DOI: 10.1073/pnas.1709588114] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The bacterial hibernating 100S ribosome is a poorly understood form of the dimeric 70S particle that has been linked to pathogenesis, translational repression, starvation responses, and ribosome turnover. In the opportunistic pathogen Staphylococcus aureus and most other bacteria, hibernation-promoting factor (HPF) homodimerizes the 70S ribosomes to form a translationally silent 100S complex. Conversely, the 100S ribosomes dissociate into subunits and are presumably recycled for new rounds of translation. The regulation and disassembly of the 100S ribosome are largely unknown because the temporal abundance of the 100S ribosome varies considerably among different bacterial phyla. Here, we identify a universally conserved GTPase (HflX) as a bona fide dissociation factor of the S. aureus 100S ribosome. The expression levels hpf and hflX are coregulated by general stress and stringent responses in a temperature-dependent manner. While all tested guanosine analogs stimulate the splitting activity of HflX on the 70S ribosome, only GTP can completely dissociate the 100S ribosome. Our results reveal the antagonistic relationship of HPF and HflX and uncover the key regulators of 70S and 100S ribosome homeostasis that are intimately associated with bacterial survival.
Collapse
|