1
|
Kwon T, Hovde BT. Global characterization of biosynthetic gene clusters in non-model eukaryotes using domain architectures. Sci Rep 2024; 14:1534. [PMID: 38233413 PMCID: PMC10794256 DOI: 10.1038/s41598-023-50095-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/15/2023] [Indexed: 01/19/2024] Open
Abstract
The majority of pharmaceuticals are derived from natural products, bioactive compounds naturally synthesized by organisms to provide evolutionary advantages. Although the rich evolutionary history of eukaryotic algal species implicates a high potential for natural product-based drug discovery, it remains largely untouched. This study investigates 2762 putative biosynthetic gene clusters (BGCs) from 212 eukaryotic algal genomes. To analyze a vast set of structurally diverse BGCs, we employed comparative analysis based on the vectorization of biosynthetic domains, referred to as biosynthetic domain architecture (BDA). By characterizing core biosynthetic machineries through BDA, we identified key BDAs of modular BGCs in diverse eukaryotes and introduced 16 candidate modular BGCs with similar BDAs to previously validated BGCs. This study provides a global characterization of eukaryotic algal BGCs, offering an alternative to laborious manual curation for BGC prioritization.
Collapse
Affiliation(s)
- Taehyung Kwon
- Genomics and Bioanalytics Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Blake T Hovde
- Genomics and Bioanalytics Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA.
| |
Collapse
|
2
|
Karimzadeh Barenji E, Beglari S, Tahghighi A, Azerang P, Rohani M. Evaluation of Anti-Bacterial and Anti-Biofilm Activity of Native Probiotic Strains of Lactobacillus Extracts. IRANIAN BIOMEDICAL JOURNAL 2023; 28:102-12. [PMID: 38850020 PMCID: PMC11186614 DOI: 10.61186/ibj.4043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/12/2023] [Indexed: 06/09/2024]
Abstract
Background Lactic acid bacteria produce various beneficial metabolites, including antimicrobial agents. Owing to the fast-rising antibiotic resistance among pathogenic microbes, scientists are exploring antimicrobials beyond antibiotics. In this study, we examined four Lactobacillus strains, namely L. plantarum 42, L. brevis 205, L. rhamnosus 239, and L. delbrueckii 263, isolated from healthy human microbiota, to evaluate their antibacterial and antifungal activity. Methods Lactobacillus strains were cultivated, and the conditioned media were obtained. The supernatant was then used to treat pathogenic bacteria and applied to the growth media containing fungal and bacterial strains. Additionally, the supernatant was separated to achieve the organic and aqueous phases. The two phases were then examined in terms of bacterial and fungal growth rates. Disk diffusion and MIC tests were conducted to determine strains with the most growth inhibition potential. Finally, the potent strains identified through the MIC test were tested on the pathogenic microorganisms to assess their effects on the formation of pathogenic biofilms. Results The organic phase of L. rhamnosus 239 extracts exhibited the highest antibacterial and antibiofilm effects, while that of L. brevis 205 demonstrated the most effective antifungal impact, with a MIC of 125 µg/mL against Saccharomyces cerevisiae. Conclusion This study confirms the significant antimicrobial impacts of the lactic acid bacteria strains on pathogenic bacteria and fungi; hence, they could serve as a reliable alternative to antibiotics for a safe and natural protection against pathogenic microorganisms.
Collapse
Affiliation(s)
- Elmira Karimzadeh Barenji
- Department of Biology, Science and Research branch, Islamic Azad University, Tehran, Iran
- Medicinal Chemistry Laboratory, Department of Clinical Research, Pasteur Institute of Iran, Tehran, Iran
| | - Shokufeh Beglari
- Department of Biology, Science and Research branch, Islamic Azad University, Tehran, Iran
| | - Azar Tahghighi
- Medicinal Chemistry Laboratory, Department of Clinical Research, Pasteur Institute of Iran, Tehran, Iran
| | - Parisa Azerang
- Medicinal Chemistry Laboratory, Department of Clinical Research, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Rohani
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
- Research Center for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
3
|
Stierhof M, Myronovskyi M, Zapp J, Luzhetskyy A. Heterologous Production and Biosynthesis of Threonine-16:0dioic acids with a Hydroxamate Moiety. JOURNAL OF NATURAL PRODUCTS 2023; 86:2258-2269. [PMID: 37728876 PMCID: PMC10616846 DOI: 10.1021/acs.jnatprod.3c00097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Indexed: 09/21/2023]
Abstract
Dereplication and genome mining in Streptomyces aureus LU18118 combined with heterologous expression of selected biosynthetic gene clusters (BGCs) led to the discovery of various threonine-16:0dioic acids named lipothrenins. Lipothrenins consist of the core elements l-Thr, d-allo-Thr, or Dhb, which are linked to hexadecanedioic acid by an amide bond. The main compound lipothrenin A (1) carries the N-hydroxylated d-allo form of threonine and expresses a siderophore activity. The lipothrenin BGC was analyzed by a series of deletion experiments. As a result, a variety of interesting genes involved in the recruitment and selective activation of linear 16:0dioic acids, amide bond formation, and the epimerization of l-Thr were revealed. Furthermore, a diiron N-oxygenase was identified that may be directly involved in the monooxygenation of the amide bond. This is divergent from the usual hydroxamate formation mechanism in siderophores, which involves hydroxylation of the free amine prior to amide bond formation. Siderophore activity was observed for all N-hydroxylated lipothrenins by application of the CAS assay method.
Collapse
Affiliation(s)
- Marc Stierhof
- Department
of Pharmaceutical Biotechnology and Department of Pharmaceutical Biology, Saarland University, 66123 Saarbruecken, Germany
| | - Maksym Myronovskyi
- Department
of Pharmaceutical Biotechnology and Department of Pharmaceutical Biology, Saarland University, 66123 Saarbruecken, Germany
| | - Josef Zapp
- Department
of Pharmaceutical Biotechnology and Department of Pharmaceutical Biology, Saarland University, 66123 Saarbruecken, Germany
| | - Andriy Luzhetskyy
- Department
of Pharmaceutical Biotechnology and Department of Pharmaceutical Biology, Saarland University, 66123 Saarbruecken, Germany
- Helmholtz
Institute for Pharmaceutical Research Saarland, Saarland University, 66123 Saarbruecken, Germany
| |
Collapse
|
4
|
Yang K, Yin J, Yue X, Bieber K, Riemekasten G, Ludwig RJ, Petersen F, Yu X. Luteolin peracetate and gossypolone inhibit immune complex-mediated neutrophil activation in vitro and dermal-epidermal separation in an ex vivo model of epidermolysis bullosa acquisita. Front Immunol 2023; 14:1196116. [PMID: 37720234 PMCID: PMC10503437 DOI: 10.3389/fimmu.2023.1196116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023] Open
Abstract
Introduction Natural products have been shown to an important source of therapeutics for human disease. In this study, we aimed to identify natural compounds as potential therapeutics for epidermolysis bullosa acquisita (EBA), an autoimmune disease caused by autoantibodies to type VII collagen (COL7). Methods Utilizing an in vitro experimental system, we screened a natural product library composed of 800 pure compounds for their inhibitory effect on COL7-anti-COL7 IgG immune complex (IC)-mediated neutrophil activation and on neutrophil-mediated tissue damage. Results Three natural compounds, namely luteolin peracetate, gossypol, and gossypolone were capable in inhibiting the IC-induced neutrophil adhesion and oxygen burst in vitro. Furthermore, luteolin peracetate and gossypolone were able to inhibit the anti-COL7 IgG induced dermal-epidermal separation in an ex vivo model for EBA. Discussion In summary, this study demonstrates that luteolin peracetate and gossypolone are potential therapeutics for experimental EBA, which deserves further investigation.
Collapse
Affiliation(s)
- Kai Yang
- Priority Area Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - Junping Yin
- Priority Area Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - Xiaoyang Yue
- Priority Area Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Gabriela Riemekasten
- Department of Rheumatology and Clinical Immunology, University Clinic of Schleswig Holstein, University of Lübeck, Lübeck, Germany
| | - Ralf J. Ludwig
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Frank Petersen
- Priority Area Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - Xinhua Yu
- Priority Area Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| |
Collapse
|
5
|
D'Ambrosio HK, Keeler AM, Derbyshire ER. Examination of Secondary Metabolite Biosynthesis in Apicomplexa. Chembiochem 2023; 24:e202300263. [PMID: 37171468 DOI: 10.1002/cbic.202300263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/13/2023]
Abstract
Natural product discovery has traditionally relied on the isolation of small molecules from producing species, but genome-sequencing technology and advances in molecular biology techniques have expanded efforts to a wider array of organisms. Protists represent an underexplored kingdom for specialized metabolite searches despite bioinformatic analysis that suggests they harbor distinct biologically active small molecules. Specifically, pathogenic apicomplexan parasites, responsible for billions of global infections, have been found to possess multiple biosynthetic gene clusters, which hints at their capacity to produce polyketide metabolites. Biochemical studies have revealed unique features of apicomplexan polyketide synthases, but to date, the identity and function of the polyketides synthesized by these megaenzymes remains unknown. Herein, we discuss the potential for specialized metabolite production in protists and the possible evolution of polyketide biosynthetic gene clusters in apicomplexan parasites. We then focus on a polyketide synthase from the apicomplexan Toxoplasma gondii to discuss the unique domain architecture and properties of these proteins when compared to previously characterized systems, and further speculate on the possible functions for polyketides in these pathogenic parasites.
Collapse
Affiliation(s)
- Hannah K D'Ambrosio
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA
| | - Aaron M Keeler
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA
| | - Emily R Derbyshire
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Durham, NC 27710, USA
| |
Collapse
|
6
|
Krishnan SR, Skiba A, Luca SV, Marcourt L, Wolfender JL, Skalicka-Woźniak K, Gertsch J. Bioactivity-guided isolation of trypanocidal coumarins and dihydro-pyranochromones from selected Apiaceae plant species. PHYTOCHEMISTRY 2023:113770. [PMID: 37331573 DOI: 10.1016/j.phytochem.2023.113770] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
Bioactivity-guided isolation of natural products from plant matrices is widely used in drug discovery. Here, this strategy was applied to identify trypanocidal coumarins effective against the parasite Trypanosoma cruzi, the etiologic agent of Chagas disease (American trypanosomiasis). Previously, phylogenetic relationships of trypanocidal activity revealed a coumarin-associated antichagasic hotspot in the Apiaceae. In continuation, a total of 35 ethyl acetate extracts of different Apiaceae species were profiled for selective cytotoxicity against T. cruzi epimastigotes over host CHO-K1 and RAW264.7 cells at 10 μg/mL. A flow cytometry-based T. cruzi trypomastigote cellular infection assay was employed to measure toxicity against the intracellular amastigote stage. Among the tested extracts, Seseli andronakii aerial parts, Portenschlagiella ramosissima and Angelica archangelica subsp. litoralis roots exhibited selective trypanocidal activity and were subjected to bioactivity-guided fractionation and isolation by countercurrent chromatography. The khellactone ester isosamidin isolated from the aerial parts of S. andronakii emerged as a selective trypanocidal molecule (selectivity index ∼9) and inhibited amastigote replication in CHO-K1 cells, though it was significantly less potent than benznidazole. The khellactone ester praeruptorin B and the linear dihydropyranochromones 3'-O-acetylhamaudol and ledebouriellol isolated from the roots of P. ramosissima were more potent and efficiently inhibited the intracellular amastigote replication at < 10 μM. The furanocoumarins imperatorin, isoimperatorin and phellopterin from A. archangelica inhibited T. cruzi replication in host cells only in combination, indicative of superadditive effects, while alloimperatorin was more active in fractions. Our study reports preliminary structure-activity relationships of trypanocidal coumarins and shows that pyranocoumarins and dihydropyranochromones are potential chemical scaffolds for antichagasic drug discovery.
Collapse
Affiliation(s)
- Sandhya R Krishnan
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Adrianna Skiba
- Department of Chemistry of Natural Products, Medical University of Lublin, 20-093, Lublin, Poland
| | - Simon Vlad Luca
- Biothermodynamics, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany; Department of Pharmacognosy, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115, Iasi, Romania
| | - Laurence Marcourt
- School of Pharmaceutical Sciences, University of Geneva, CMU, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, CMU, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Krystyna Skalicka-Woźniak
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland; Department of Chemistry of Natural Products, Medical University of Lublin, 20-093, Lublin, Poland.
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland.
| |
Collapse
|
7
|
Schneider YKH, Liaimer A, Isaksson J, Wilhelmsen OSB, Andersen JH, Hansen KØ, Hansen EH. Four new suomilides isolated from the cyanobacterium Nostoc sp. KVJ20 and proposal of their biosynthetic origin. Front Microbiol 2023; 14:1130018. [PMID: 37152725 PMCID: PMC10157211 DOI: 10.3389/fmicb.2023.1130018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/24/2023] [Indexed: 05/09/2023] Open
Abstract
The suomilide and the banyasides are highly modified and functionalized non-ribosomal peptides produced by cyanobacteria of the order Nostocales. These compound classes share several substructures, including a complex azabicyclononane core, which was previously assumed to be derived from the amino acid tyrosine. In our study we were able to isolate and determine the structures of four suomilides, named suomilide B - E (1-4). The compounds differ from the previously isolated suomilide A by the functionalization of the glycosyl group. Compounds 1-4 were assayed for anti-proliferative, anti-biofilm and anti-bacterial activities, but no significant activity was detected. The sequenced genome of the producer organism Nostoc sp. KVJ20 enabled us to propose a biosynthetic gene cluster for suomilides. Our findings indicated that the azabicyclononane core of the suomilides is derived from prephenate and is most likely incorporated by a proline specific non-ribosomal peptide synthetase-unit.
Collapse
Affiliation(s)
- Yannik K.-H. Schneider
- Marbio, Faculty of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, Tromsø, Norway
- *Correspondence: Yannik K.-H. Schneider,
| | - Anton Liaimer
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, Tromsø, Norway
| | - Johan Isaksson
- Department of Chemistry, Faculty of Natural Sciences, UiT—The Arctic University of Norway, Tromsø, Norway
| | - Oda S. B. Wilhelmsen
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, Tromsø, Norway
| | - Jeanette H. Andersen
- Marbio, Faculty of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, Tromsø, Norway
| | - Kine Ø. Hansen
- Marbio, Faculty of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, Tromsø, Norway
| | - Espen H. Hansen
- Marbio, Faculty of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
8
|
Santamaria G, Liao C, Lindberg C, Chen Y, Wang Z, Rhee K, Pinto FR, Yan J, Xavier JB. Evolution and regulation of microbial secondary metabolism. eLife 2022; 11:e76119. [PMID: 36409069 PMCID: PMC9708071 DOI: 10.7554/elife.76119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Microbes have disproportionate impacts on the macroscopic world. This is in part due to their ability to grow to large populations that collectively secrete massive amounts of secondary metabolites and alter their environment. Yet, the conditions favoring secondary metabolism despite the potential costs for primary metabolism remain unclear. Here we investigated the biosurfactants that the bacterium Pseudomonas aeruginosa makes and secretes to decrease the surface tension of surrounding liquid. Using a combination of genomics, metabolomics, transcriptomics, and mathematical modeling we show that the ability to make surfactants from glycerol varies inconsistently across the phylogenetic tree; instead, lineages that lost this ability are also worse at reducing the oxidative stress of primary metabolism on glycerol. Experiments with different carbon sources support a link with oxidative stress that explains the inconsistent distribution across the P. aeruginosa phylogeny and suggests a general principle: P. aeruginosa lineages produce surfactants if they can reduce the oxidative stress produced by primary metabolism and have excess resources, beyond their primary needs, to afford secondary metabolism. These results add a new layer to the regulation of a secondary metabolite unessential for primary metabolism but important to change physical properties of the environments surrounding bacterial populations.
Collapse
Affiliation(s)
- Guillem Santamaria
- Program for Computational and Systems Biology, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
- BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of LisboaLisboaPortugal
| | - Chen Liao
- Program for Computational and Systems Biology, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Chloe Lindberg
- Program for Computational and Systems Biology, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Yanyan Chen
- Program for Computational and Systems Biology, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Zhe Wang
- Department of Medicine, Weill Cornell Medical CollegeNew YorkUnited States
| | - Kyu Rhee
- Department of Medicine, Weill Cornell Medical CollegeNew YorkUnited States
| | - Francisco Rodrigues Pinto
- BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of LisboaLisboaPortugal
| | - Jinyuan Yan
- Program for Computational and Systems Biology, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Joao B Xavier
- Program for Computational and Systems Biology, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| |
Collapse
|
9
|
Li C, Gu R, Lin F, Xiao H. Sorbicillinoids hyperproduction without affecting the cellulosic enzyme production in Trichoderma reesei JNTR5. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:85. [PMID: 35996177 PMCID: PMC9394075 DOI: 10.1186/s13068-022-02183-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/29/2022] [Indexed: 11/12/2022]
Abstract
Background Microbial production of bioactive secondary metabolites is challenging as most of the encoding genes are silent; and even if they are activated, the biosynthetic pathways are usually complex. Sorbicillinoids with multifunctional bioactivities are examples of these problems, which if solved can result in a more sustainable, simple supply of these important compounds to the pharmaceutical industry. As an excellent producer of cellulosic enzymes, Trichoderma reesei can secrete various sorbicillinoids. Results Here, we obtained a T. reesei mutant strain JNTR5 from the random mutation during overexpression of gene Tr69957 in T. reesei RUT-C30. JNTR5 exhibited a significant constitutive increase in sorbicillinoids production without affecting the cellulosic enzyme production. Confocal laser scanning microscope (CLSM) results indicated that sorbicillinoids were distributed in both mycelium and spores of JNTR5 with blue and green fluorescence. Compared with RUT-C30, JNTR5 displayed different cell morphology, reduced growth rate, and increased sporulation, but a similar biomass accumulation. Furthermore, transcriptome analysis revealed that all genes belonging to the sorbicillinoid gene cluster were upregulated, while most cellulase-encoding genes were downregulated. The cell wall integrity of JNTR5 was damaged, which might benefit the cellulase secretion and contribute to the almost unchanged cellulase and hemicellulase activity given that the damaged cell wall can enhance the secretion of the enzymes. Conclusions For the first time, we constructed a sorbicillinoids hyperproduction T. reesei platform with comparable cellulosic enzymes production. This outperformance of JNTR5, which is strain-specific, is proposed to be attributed to the overexpression of gene Tr69957, causing the chromosome remodeling and subsequently changing the cell morphology, structure, and the global gene expression as shown by phenotype and the transcriptome analysis of JNTR5. Overall, JNTR5 shows great potential for industrial microbial production of sorbicillinoids from cellulose and serves as an excellent model for investigating the distribution and secretion of yellow pigments in T. reesei. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02183-1.
Collapse
|
10
|
Oriola AO, Oyedeji AO. Plant-Derived Natural Products as Lead Agents against Common Respiratory Diseases. Molecules 2022; 27:3054. [PMID: 35630531 PMCID: PMC9144277 DOI: 10.3390/molecules27103054] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/23/2022] [Accepted: 05/07/2022] [Indexed: 12/16/2022] Open
Abstract
Never has the world been more challenged by respiratory diseases (RDs) than it has witnessed in the last few decades. This is evident in the plethora of acute and chronic respiratory conditions, ranging from asthma and chronic obstructive pulmonary disease (COPD) to multidrug-resistant tuberculosis, pneumonia, influenza, and more recently, the novel coronavirus (COVID-19) disease. Unfortunately, the emergence of drug-resistant strains of pathogens, drug toxicity and side effects are drawbacks to effective chemotherapeutic management of RDs; hence, our focus on natural sources because of their unique chemical diversities and novel therapeutic applications. This review provides a summary on some common RDs, their management strategies, and the prospect of plant-derived natural products in the search for new drugs against common respiratory diseases.
Collapse
Affiliation(s)
- Ayodeji Oluwabunmi Oriola
- Department of Chemical and Physical Sciences, Faculty of Natural Sciences, Walter Sisulu University, Nelson Mandela Drive, P/Bag X1, Mthatha 5117, South Africa;
| | | |
Collapse
|
11
|
Edwards HM, Sasiene ZJ, Mendis PM, Jackson GP. Structural Characterization of Natural and Synthetic Macrocycles Using Charge-Transfer Dissociation Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:671-680. [PMID: 35195991 DOI: 10.1021/jasms.1c00369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Research in natural products (NPs) has gained interest as drug developers turn to nature to combat problems with drug resistance, drug delivery, and emerging diseases. Whereas NPs offer a tantalizing source of new pharmacologically active compounds, their structural complexity presents a challenge for analytical characterization and organic synthesis. Of particular concern is the characterization of cyclic-, polycyclic-, or macrocyclic compounds. One example of endogenous compounds as inspiration for NP development are cobalamins, like vitamin B12. An example of exogenous NPs is the class of macrolides that includes erythromycin. Both classes of macrocycles feature analogues with a range of modifications on their macrocyclic cores, but because of their cyclic nature, they are generally resistant to fragmentation by collision-induced dissociation (CID). In the present work, charge-transfer dissociation (CTD) was employed, with or without supplemental collisional activation, to produce radical-driven, high-energy fragmentation products of different macrocyclic precursors. With the assistance of collisional activation of CTnoD products, CTD frequently cleaved two covalent bonds within the macrocycle cores to reveal rich, informative spectra that helped identify sites of modification and resolve structural analogues. In a third example of macrocycle fragmentation, CTD enabled an impurity in a biological sample to be characterized as a cyclic polymer of nylon-6,6. In each example, CTD spectra are starkly different from CID and are highly reminiscent of other high-energy fragmentation techniques like extreme ultraviolet dissociative photoionization (XUV-DPI) and electron ionization-induced dissociation (EID). The results indicate that CTD-MS is a useful tool for the characterization of natural and synthetic macrocycles.
Collapse
Affiliation(s)
- Halle M Edwards
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Zachary J Sasiene
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Praneeth M Mendis
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Glen P Jackson
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
- Department of Forensic and Investigative Science, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
12
|
Perry EK, Meirelles LA, Newman DK. From the soil to the clinic: the impact of microbial secondary metabolites on antibiotic tolerance and resistance. Nat Rev Microbiol 2022; 20:129-142. [PMID: 34531577 PMCID: PMC8857043 DOI: 10.1038/s41579-021-00620-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2021] [Indexed: 02/08/2023]
Abstract
Secondary metabolites profoundly affect microbial physiology, metabolism and stress responses. Increasing evidence suggests that these molecules can modulate microbial susceptibility to commonly used antibiotics; however, secondary metabolites are typically excluded from standard antimicrobial susceptibility assays. This may in part account for why infections by diverse opportunistic bacteria that produce secondary metabolites often exhibit discrepancies between clinical antimicrobial susceptibility testing results and clinical treatment outcomes. In this Review, we explore which types of secondary metabolite alter antimicrobial susceptibility, as well as how and why this phenomenon occurs. We discuss examples of molecules that opportunistic and enteric pathogens either generate themselves or are exposed to from their neighbours, and the nuanced impacts these molecules can have on tolerance and resistance to certain antibiotics.
Collapse
Affiliation(s)
- Elena K Perry
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Lucas A Meirelles
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Dianne K Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
13
|
Park YH, Han SI, Oh B, Kim HS, Jeon MS, Kim S, Choi YE. Microalgal secondary metabolite productions as a component of biorefinery: A review. BIORESOURCE TECHNOLOGY 2022; 344:126206. [PMID: 34715342 DOI: 10.1016/j.biortech.2021.126206] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
The interest in developing microalgae for industrial use has been increasing because of concerns about the depletion of petroleum resources and securing sustainable energy sources. Microalgae have high biomass productivity and short culture periods. However, despite these advantages, various barriers need to be overcome for industrial applications. Microalgal cultivation has a high unit price, thus rendering industrial application difficult. It is indispensably necessary to co-produce their primary and secondary metabolites to compensate for these shortcomings. In this regard, this article reviews the following aspects, (1) co-production of primary and secondary metabolites in microalgae, (2) induction methods for the promotion of the biosynthesis of secondary metabolites, and (3) perspectives on the co-production and co-extraction of primary and secondary metabolites. This paper presents various approaches for producing useful metabolites from microalgae and suggests strategies that can be utilized for the co-production of primary and secondary metabolites.
Collapse
Affiliation(s)
- Yun Hwan Park
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Sang-Il Han
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea; Institute of Green Manufacturing Technology, Korea University, Seoul 02841, Republic of Korea
| | - Byeolnim Oh
- Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Hyun Soo Kim
- Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Min Seo Jeon
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Sok Kim
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea; OJEong Resilience Institute, Korea University, Seoul 02841, Republic of Korea
| | - Yoon-E Choi
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
14
|
Anticancer effects of 7,8-dihydromethysticin in human leukemia cells are mediated via cell-cycle dysregulation, inhibition of cell migration and invasion and targeting JAK/STAT pathway. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2021; 71:645-655. [PMID: 36651559 DOI: 10.2478/acph-2021-0037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/27/2020] [Indexed: 01/19/2023]
Abstract
The main focus of this research work was to study the anti-cancer properties of 7,8-dihydromethysticin against HL-60 leukemia cells. Investigations were also performed to check its impact on the phases of the cell cycle, cell migration and invasion, JAK/STAT signalling pathway and intracellular mitochondrial membrane potential (MMP) and reactive oxygen species (ROS). Cell proliferation was assessed through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay and effects on colony formation were examined via clonogenic assay. Flow cytometry and Western blott analysis were performed to investigate the distribution of cell cycle phases. Flow cytometric analysis was performed for the examination of MMP and ROS production. The effect on JAK/STAT signalling pathway was examined through Western blot analysis. Results depicted that 7,8-dihydromethysticin induced concentration- as well as time-dependent inhibition of cell proliferation in leukemia HL-60 cells. Clonogenic assay indicated potential suppression in leukemia HL-60 cell colonies. The 7,8-dihydromethysticin molecule also caused cell cycle arrest at G2/M-phase along with concentration-dependent inhibition of cyclin B1, D1 and E. ROS and MMP measurements indicated significant ROS enhancement and MMP suppression with increasing 7,8-dihydromethysticin concentrations. Additionally, 7,8-dihydromethysticin led to remarkable dose-reliant inhibition of cell invasion as well as cell migration. Therefore, 7,8-dihydromethysticin should be considered a valuable candidate for leukemia research and chemoprevention.
Collapse
|
15
|
Prospects of using bioactive compounds in nanomaterials surface decoration and their biomedical purposes. INTERNATIONAL NANO LETTERS 2021. [DOI: 10.1007/s40089-021-00355-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Nikhitha JN, Swathy KS, Chandran RP. In vitro anticancer activity of ethanol extract of Adhatoda vasica Nees on human ovarian cancer cell lines. J Genet Eng Biotechnol 2021; 19:116. [PMID: 34351536 PMCID: PMC8342666 DOI: 10.1186/s43141-021-00215-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/26/2021] [Indexed: 01/08/2023]
Abstract
Background Ovarian cancer causes more deaths than any other cancer of the female reproductive system because there is no effective screening and most women are diagnosed at advanced stages. The probability of survival at 5 years is less than 30%, and the limitation is that it will not respond to chemotherapy protocol and surgery as well. Moreover, some evidence have shown potential anticancer properties of flavonoids, protective chemicals in plant foods, such as being an antioxidant, antiestrogenic, antiproliferative, and antiinflammatory. In this study, the anticancer activity of crude ethanol extracts of leaves from Adhatoda vasica was investigated. Results By the application of a cell-based assay, the LC 50 value of the A. vasica which showed anticancer effect was used for further studies. The cell line treated with LD 50 value of A. vasica extracts was observed for 0 h, 24 h, and 48 h to reveal the inhibition of the metastatic property in treated PA1 cells. The mRNA isolated from the teratocarcinoma PA1 cells treated with the A. vasica extract was further converted to cDNA and was amplified for the analysis of the p53 gene, p21 gene, and GAPDH gene expression. The expression in treated cells and the untreated control indicated the activity of the A. vasica extract against the ovarian cancer. Conclusion The present study suggested the antiproliferative and antimetastatic effects of medicinal plant A. vasica on PA1 cells.
Collapse
Affiliation(s)
- J N Nikhitha
- Department of Biotechnology and Research, K. V. M. College of Science and Technology, Kokkothamangalam P.O., Cherthala 688527, Alappuzha District, Indore, Kerala State, India
| | - K S Swathy
- Department of Biotechnology, Indhira Gandhi College of Arts and Science, Nellikuzhi, Kothamangalam, Ernakulam District, Indore, Kerala State, India
| | - R Pratap Chandran
- Department of Biotechnology and Research, K. V. M. College of Science and Technology, Kokkothamangalam P.O., Cherthala 688527, Alappuzha District, Indore, Kerala State, India.
| |
Collapse
|
17
|
Conlon BH, Gostinčar C, Fricke J, Kreuzenbeck NB, Daniel JM, Schlosser MS, Peereboom N, Aanen DK, de Beer ZW, Beemelmanns C, Gunde-Cimerman N, Poulsen M. Genome reduction and relaxed selection is associated with the transition to symbiosis in the basidiomycete genus Podaxis. iScience 2021; 24:102680. [PMID: 34189441 PMCID: PMC8220239 DOI: 10.1016/j.isci.2021.102680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/07/2021] [Accepted: 05/28/2021] [Indexed: 11/29/2022] Open
Abstract
Insights into the genomic consequences of symbiosis for basidiomycete fungi associated with social insects remain sparse. Capitalizing on viability of spores from centuries-old herbarium specimens of free-living, facultative, and specialist termite-associated Podaxis fungi, we obtained genomes of 10 specimens, including two type species described by Linnaeus >240 years ago. We document that the transition to termite association was accompanied by significant reductions in genome size and gene content, accelerated evolution in protein-coding genes, and reduced functional capacities for oxidative stress responses and lignin degradation. Functional testing confirmed that termite specialists perform worse under oxidative stress, while all lineages retained some capacity to cleave lignin. Mitochondrial genomes of termite associates were significantly larger; possibly driven by smaller population sizes or reduced competition, supported by apparent loss of certain biosynthetic gene clusters. Our findings point to relaxed selection that mirrors genome traits observed among obligate endosymbiotic bacteria of many insects.
Collapse
Affiliation(s)
- Benjamin H. Conlon
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, Denmark
| | - Cene Gostinčar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Janis Fricke
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoll-Institute, Chemical Biology, 07745 Jena, Germany
| | - Nina B. Kreuzenbeck
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoll-Institute, Chemical Biology, 07745 Jena, Germany
| | - Jan-Martin Daniel
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoll-Institute, Chemical Biology, 07745 Jena, Germany
| | - Malte S.L. Schlosser
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, Denmark
| | - Nils Peereboom
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, Denmark
| | - Duur K. Aanen
- Department of Plant Sciences, Laboratory of Genetics, Wageningen University, 6708 PB Wageningen, the Netherlands
| | - Z. Wilhelm de Beer
- Department of Biochemistry, Genetics, and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa
| | - Christine Beemelmanns
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoll-Institute, Chemical Biology, 07745 Jena, Germany
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Michael Poulsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, Denmark
| |
Collapse
|
18
|
Kuang W, Hu W, Ren H, Shao Y, Liu B. Plant derived coumestrol phytochemical targets human skin carcinoma cells by inducing mitochondrial-mediated apoptosis, cell cycle arrest, inhibition of cell migration and invasion and modulation of m-TOR/PI3K/AKT signalling pathway. Saudi J Biol Sci 2021; 28:2739-2746. [PMID: 34025159 PMCID: PMC8117110 DOI: 10.1016/j.sjbs.2021.03.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 10/27/2022] Open
Abstract
The current study was undertaken to investigate anticancer activity of coumestrol phytoestrogen against human skin cancer. MTT assay was performed for cell viability assessment and clonogenic assay for cell colony formation assessment. Apoptosis was analysed by Annexin V/FITC staining, AO/EB staining and western blotting assays. Effects on the m-TOR/PI3K/AKT signalling pathway were investigated by western blotting. Results indicated that coumestrol induced significant toxicity in human skin cancer cells in contrast to mouse skin cancer cells. The proliferation rate in normal skin cells remained almost intact. Annexin V-FITC and AO/EB staining assays indicated coumestrol induced cytotoxicity in skin cancer cells is mediated through apoptosis stimulation. The apoptosis in skin cancer cells was mediated through caspase-activation. Cell migration and invasion was inhibited by coumestrol in human skin cancer cells via inhibition of MMP-2 and MMP-9 expressions. Moreover, m-TOR/PI3K/AKT signalling pathway in SKEM-5 cells was blocked by coumestrol.
Collapse
Affiliation(s)
- Weiwei Kuang
- Department of Dermatology, The First Affiliated Hospital of Kangda College of Nanjing Medical University, The First People's Hospital of Lianyungang, Lianyungang 222002, China
| | - Wenlong Hu
- Department of Dermatology, The First Affiliated Hospital of Kangda College of Nanjing Medical University, The First People's Hospital of Lianyungang, Lianyungang 222002, China
| | - Hong Ren
- Department of Dermatology, The First Affiliated Hospital of Kangda College of Nanjing Medical University, The First People's Hospital of Lianyungang, Lianyungang 222002, China
| | - Yinhong Shao
- Department of Dermatology, The First Affiliated Hospital of Kangda College of Nanjing Medical University, The First People's Hospital of Lianyungang, Lianyungang 222002, China
| | - Bingqian Liu
- Department of Ophthalmology, The First Affiliated Hospital of Kangda College of Nanjing Medical University, The First People's Hospital of Lianyungang, Lianyungang 222002, China
| |
Collapse
|
19
|
Karageorgis G, Liver S, Nelson A. Activity-Directed Synthesis: A Flexible Approach for Lead Generation. ChemMedChem 2020; 15:1776-1782. [PMID: 32734671 PMCID: PMC7589241 DOI: 10.1002/cmdc.202000524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Indexed: 11/06/2022]
Abstract
Activity-directed synthesis (ADS) is a structure-blind, functional-driven molecular discovery approach. In this Concept, four case studies highlight the general applicability of ADS and showcase its flexibility to support different medicinal chemistry strategies. ADS deliberately harnesses reactions with multiple possible outcomes, and allows many chemotypes to be evaluated in parallel. Resources are focused on bioactive molecules, which emerge in tandem with associated synthetic routes. Some of the future challenges for ADS are highlighted, including the realisation of an autonomous molecular discovery platform. The prospects for ADS to become a mainstream lead generation approach are discussed.
Collapse
Affiliation(s)
- George Karageorgis
- School of Chemistry and Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Samuel Liver
- School of Chemistry and Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
- Rosalind Franklin InstituteHarwell CampusDidcotOX11 0FAUK
| | - Adam Nelson
- School of Chemistry and Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
- Rosalind Franklin InstituteHarwell CampusDidcotOX11 0FAUK
| |
Collapse
|
20
|
Zhang X, Zou G, Li X, Wang L, Xie T, Zhao J, Wang L, Jiao S, Xiang R, Ye H, Shi Y. An isoflavone derivative potently inhibits the angiogenesis and progression of triple-negative breast cancer by targeting the MTA2/SerRS/VEGFA pathway. Cancer Biol Med 2020; 17:693-706. [PMID: 32944400 PMCID: PMC7476100 DOI: 10.20892/j.issn.2095-3941.2020.0010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/07/2020] [Indexed: 12/17/2022] Open
Abstract
Objective: Angiogenesis plays a vital role in tumor growth and metastasis. Here, we aimed to find novel efficient antiangiogenic molecules targeting vascular endothelial growth factor A (VEGFA ) at the transcriptional level to treat triple-negative breast cancer (TNBC). Methods: We used a cell-based seryl tRNA synthetase (SerRS) promoter-driven dual-luciferase reporter system to screen an in-house library of 384 naturally occurring small molecules and their derivatives to find candidate molecules that could upregulate the expression of SerRS, a potent transcriptional repressor of VEGFA. The levels of SerRS and VEGFA were examined by quantitative RT-PCR (qRT-PCR), western blotting, and/or ELISAs in TNBC cells after candidate molecule administration. Zebrafish, the Matrigel plug angiogenesis assay in mice, the TNBC allograft, and xenograft mouse models were used to evaluate the in vivo anti-angiogenic and anti-cancer activities. Furthermore, the potential direct targets of the candidates were identified by proteomics and biochemical studies. Results: We found the most active compound was 3-(4-methoxyphenyl) quinolin-4(1H)-one (MEQ), an isoflavone derivative. In TNBC cells, MEQ treatment resulted in increased SerRS mRNA (P < 0.001) and protein levels and downregulated VEGFA production. Both the vascular development of zebrafish and Matrigel plug angiogenesis in mice were inhibited by MEQ. MEQ also suppressed the angiogenesis in TNBC allografts and xenografts in mice, resulting in inhibited tumor growth and prolonged overall survival (P < 0.05). Finally, we found that MEQ regulated SerRS transcription by interacting with MTA2 (Metastasis Associated 1 Family Member 2). Conclusions: Our findings suggested that the MTA2/SerRS/VEGFA axis is a drug-treatable anti-angiogenic target, and MEQ is a promising anti-tumor molecule that merits further investigation for clinical applications.
Collapse
Affiliation(s)
- Xiaotong Zhang
- School of Medicine, Nankai University, Tianjin 300071, China
- 2011 Project Collaborative Innovation Center for Biotherapy of Ministry of Education, Tianjin 300071, China
| | - Gengyi Zou
- School of Medicine, Nankai University, Tianjin 300071, China
- 2011 Project Collaborative Innovation Center for Biotherapy of Ministry of Education, Tianjin 300071, China
- Department of Oncology, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiyang Li
- School of Medicine, Nankai University, Tianjin 300071, China
- 2011 Project Collaborative Innovation Center for Biotherapy of Ministry of Education, Tianjin 300071, China
| | - Lun Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Tianyu Xie
- School of Medicine, Nankai University, Tianjin 300071, China
- 2011 Project Collaborative Innovation Center for Biotherapy of Ministry of Education, Tianjin 300071, China
- Department of Oncology, Chinese PLA General Hospital, Beijing 100853, China
| | - Jin Zhao
- School of Medicine, Nankai University, Tianjin 300071, China
- 2011 Project Collaborative Innovation Center for Biotherapy of Ministry of Education, Tianjin 300071, China
| | - Longlong Wang
- School of Medicine, Nankai University, Tianjin 300071, China
- 2011 Project Collaborative Innovation Center for Biotherapy of Ministry of Education, Tianjin 300071, China
| | - Shunchang Jiao
- Department of Oncology, Chinese PLA General Hospital, Beijing 100853, China
| | - Rong Xiang
- School of Medicine, Nankai University, Tianjin 300071, China
- 2011 Project Collaborative Innovation Center for Biotherapy of Ministry of Education, Tianjin 300071, China
| | - Haoyu Ye
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yi Shi
- School of Medicine, Nankai University, Tianjin 300071, China
- 2011 Project Collaborative Innovation Center for Biotherapy of Ministry of Education, Tianjin 300071, China
| |
Collapse
|
21
|
Zetzsche LE, Narayan ARH. Broadening the scope of biocatalytic C-C bond formation. Nat Rev Chem 2020; 4:334-346. [PMID: 34430708 PMCID: PMC8382263 DOI: 10.1038/s41570-020-0191-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2020] [Indexed: 12/18/2022]
Abstract
The impeccable control over chemo-, site-, and stereoselectivity possible in enzymatic reactions has led to a surge in the development of new biocatalytic methods. Despite carbon-carbon (C-C) bonds providing the central framework for organic molecules, development of biocatalytic methods for their formation has been largely confined to the use of a select few lyases over the last several decades, limiting the types of C-C bond-forming transformations possible through biocatalytic methods. This Review provides an update on the suite of enzymes available for highly selective biocatalytic C-C bond formation. Examples will be discussed in reference to the (1) native activity of enzymes, (2) alteration of activity through protein or substrate engineering for broader applicability, and (3) utility of the biocatalyst for abiotic synthesis.
Collapse
Affiliation(s)
- Lara E. Zetzsche
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alison R. H. Narayan
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
22
|
Sugier P, Jakubowicz-Gil J, Sugier D, Kowalski R, Gawlik-Dziki U, Kołodziej B, Dziki D. Chemical Characteristics and Anticancer Activity of Essential Oil from Arnica Montana L. Rhizomes and Roots. Molecules 2020; 25:molecules25061284. [PMID: 32178275 PMCID: PMC7143959 DOI: 10.3390/molecules25061284] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/13/2022] Open
Abstract
Arnica montana L. is a medicinal plant with diverse biological activities commonly used in pharmacy and cosmetics. The attributes of A. montana are mainly related to the concentration and chemical composition of essential oils (EOs). Therefore, the objective of this study was to characterize the chemical composition of EOs derived from A. montana rhizomes and roots taking into account the age of the plants and to investigate the effect of the analyzed EOs on induction of apoptosis, necrosis, and autophagy in human glioblastoma multiforme T98G and anaplastic astrocytoma MOGGCCM cell lines. Rhizomes and roots of mountain arnica were harvested at the end of the third and fourth vegetation periods. The chemical composition of essential oils was determined with the GC–MS technique. Among the 37 components of the essential oil of A. montana, 2,5-dimethoxy-p-cymene (46.47%–60.31%), 2,6-diisopropylanisole (14.48%–23.10%), thymol methyl ether (5.31%–17.79%), p-methoxyheptanophenone (5.07%–9.65%), and α-isocomene (0.68%–2.87%), were detected in the rhizomes and roots of the three-year-old plants and in the rhizomes and roots of the four-year-old plants. The plant part (rhizome, root) and plant age can be determinants of the essential oil composition and, consequently, their biological activity. The induction of apoptosis (but not autophagy nor necrosis) at a level of 28.5%–32.3% is a promising result, for which 2,5-dimethoxy-p-cymene, 2,6-diisopropylanisole, thymol methyl ether, and p-methoxyheptanophenone are probably mainly responsible. The present study is the first report on the anticancer activities of essential oils from A. montana rhizomes and roots.
Collapse
Affiliation(s)
- Piotr Sugier
- Department of Botany, Mycology and Ecology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka Street, 20-033 Lublin, Poland;
| | - Joanna Jakubowicz-Gil
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka Street, 20-033 Lublin, Poland;
| | - Danuta Sugier
- Department of Industrial and Medicinal Plants, University of Life Sciences in Lublin, 15 Akademicka Street, 20-950 Lublin, Poland; (D.S.); (B.K.)
| | - Radosław Kowalski
- Department of Analysis and Evaluation of Food Quality, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland;
| | - Urszula Gawlik-Dziki
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna 8, 20-704 Lublin, Poland
- Correspondence:
| | - Barbara Kołodziej
- Department of Industrial and Medicinal Plants, University of Life Sciences in Lublin, 15 Akademicka Street, 20-950 Lublin, Poland; (D.S.); (B.K.)
| | - Dariusz Dziki
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences, Głęboka 31, 20-612 Lublin, Poland;
| |
Collapse
|
23
|
Feyaerts AF, Luyten W, Van Dijck P. Striking essential oil: tapping into a largely unexplored source for drug discovery. Sci Rep 2020; 10:2867. [PMID: 32071337 PMCID: PMC7028914 DOI: 10.1038/s41598-020-59332-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/24/2020] [Indexed: 12/27/2022] Open
Abstract
Essential oils (EOs) have been used therapeutically for centuries. In recent decades, randomized controlled (clinical) trials have supported efficacy in specific therapeutic indications for a few of them. Some EOs, their components or derivatives thereof have been approved as drugs. Nevertheless, they are still considered products that are mainly used in complementary and alternative medicine. EO components occupy a special niche in chemical space, that offers unique opportunities based on their unusual physicochemical properties, because they are typically volatile and hydrophobic. Here we evaluate selected physicochemical parameters, used in conventional drug discovery, of EO components present in a range of commercially available EOs. We show that, contrary to generally held belief, most EO components meet current-day requirements of medicinal chemistry for good drug candidates. Moreover, they also offer attractive opportunities for lead optimization or even fragment-based drug discovery. Because their therapeutic potential is still under-scrutinized, we propose that this be explored more vigorously with present-day methods.
Collapse
Affiliation(s)
- Adam F Feyaerts
- VIB Center for Microbiology, KU Leuven, 3001, Leuven, Belgium.
- Laboratory of Molecular Cell Biology, KU Leuven, 3001, Leuven, Belgium.
| | - Walter Luyten
- Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | - Patrick Van Dijck
- VIB Center for Microbiology, KU Leuven, 3001, Leuven, Belgium.
- Laboratory of Molecular Cell Biology, KU Leuven, 3001, Leuven, Belgium.
| |
Collapse
|
24
|
Coleman CM, Ferreira D. Oligosaccharides and Complex Carbohydrates: A New Paradigm for Cranberry Bioactivity. Molecules 2020; 25:E881. [PMID: 32079271 PMCID: PMC7070526 DOI: 10.3390/molecules25040881] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/04/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023] Open
Abstract
Cranberry is a well-known functional food, but the compounds directly responsible for many of its reported health benefits remain unidentified. Complex carbohydrates, specifically xyloglucan and pectic oligosaccharides, are the newest recognized class of biologically active compounds identified in cranberry materials. Cranberry oligosaccharides have shown similar biological properties as other dietary oligosaccharides, including effects on bacterial adhesion, biofilm formation, and microbial growth. Immunomodulatory and anti-inflammatory activity has also been observed. Oligosaccharides may therefore be significant contributors to many of the health benefits associated with cranberry products. Soluble oligosaccharides are present at relatively high concentrations (~20% w/w or greater) in many cranberry materials, and yet their possible contributions to biological activity have remained unrecognized. This is partly due to the inherent difficulty of detecting these compounds without intentionally seeking them. Inconsistencies in product descriptions and terminology have led to additional confusion regarding cranberry product composition and the possible presence of oligosaccharides. This review will present our current understanding of cranberry oligosaccharides and will discuss their occurrence, structures, ADME, biological properties, and possible prebiotic effects for both gut and urinary tract microbiota. Our hope is that future investigators will consider these compounds as possible significant contributors to the observed biological effects of cranberry.
Collapse
Affiliation(s)
- Christina M. Coleman
- Department of BioMolecular Sciences, Division of Pharmacognosy, and the Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | | |
Collapse
|
25
|
Ganley JG, Derbyshire ER. Linking Genes to Molecules in Eukaryotic Sources: An Endeavor to Expand Our Biosynthetic Repertoire. Molecules 2020; 25:E625. [PMID: 32023950 PMCID: PMC7036892 DOI: 10.3390/molecules25030625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 01/23/2020] [Accepted: 01/30/2020] [Indexed: 02/06/2023] Open
Abstract
The discovery of natural products continues to interest chemists and biologists for their utility in medicine as well as facilitating our understanding of signaling, pathogenesis, and evolution. Despite an attenuation in the discovery rate of new molecules, the current genomics and transcriptomics revolution has illuminated the untapped biosynthetic potential of many diverse organisms. Today, natural product discovery can be driven by biosynthetic gene cluster (BGC) analysis, which is capable of predicting enzymes that catalyze novel reactions and organisms that synthesize new chemical structures. This approach has been particularly effective in mining bacterial and fungal genomes where it has facilitated the discovery of new molecules, increased the understanding of metabolite assembly, and in some instances uncovered enzymes with intriguing synthetic utility. While relatively less is known about the biosynthetic potential of non-fungal eukaryotes, there is compelling evidence to suggest many encode biosynthetic enzymes that produce molecules with unique bioactivities. In this review, we highlight how the advances in genomics and transcriptomics have aided natural product discovery in sources from eukaryotic lineages. We summarize work that has successfully connected genes to previously identified molecules and how advancing these techniques can lead to genetics-guided discovery of novel chemical structures and reactions distributed throughout the tree of life. Ultimately, we discuss the advantage of increasing the known biosynthetic space to ease access to complex natural and non-natural small molecules.
Collapse
Affiliation(s)
- Jack G Ganley
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708-0346, USA
| | - Emily R Derbyshire
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708-0346, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Durham, NC 27710, USA
| |
Collapse
|
26
|
Fundamental physical and chemical concepts behind “drug-likeness” and “natural product-likeness”. PHYSICAL SCIENCES REVIEWS 2019. [DOI: 10.1515/psr-2018-0101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The discovery of a drug is known to be quite cumbersome, both in terms of the microscopic fundamental research behind it and the industrial scale manufacturing process. A major concern in drug discovery is the acceleration of the process and cost reduction. The fact that clinical trials cannot be accelerated, therefore, emphasizes the need to accelerate the strategies for identifying lead compounds at an early stage. We, herein, focus on the definition of what would be regarded as a “drug-like” molecule and a “lead-like” one. In particular, “drug-likeness” is referred to as resemblance to existing drugs, whereas “lead-likeness” is characterized by the similarity with structural and physicochemical properties of a “lead”compound, i.e. a reference compound or a starting point for further drug development. It is now well known that a huge proportion of the drug discovery is inspired or derived from natural products (NPs), which have larger complexity as well as size when compared with synthetic compounds. Therefore, similar definitions of “drug-likeness” and “lead-likeness” cannot be applied for the NP-likeness. Rather, there is the dire need to define and explain NP-likeness in regard to chemical structure. An attempt has been made here to give an overview of the general concepts associated with NP discovery, and to provide the foundational basis for defining a molecule as a “drug”, a “lead” or a “natural compound.”
Collapse
|
27
|
Romano JD, Tatonetti NP. Informatics and Computational Methods in Natural Product Drug Discovery: A Review and Perspectives. Front Genet 2019; 10:368. [PMID: 31114606 PMCID: PMC6503039 DOI: 10.3389/fgene.2019.00368] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/05/2019] [Indexed: 12/17/2022] Open
Abstract
The discovery of new pharmaceutical drugs is one of the preeminent tasks-scientifically, economically, and socially-in biomedical research. Advances in informatics and computational biology have increased productivity at many stages of the drug discovery pipeline. Nevertheless, drug discovery has slowed, largely due to the reliance on small molecules as the primary source of novel hypotheses. Natural products (such as plant metabolites, animal toxins, and immunological components) comprise a vast and diverse source of bioactive compounds, some of which are supported by thousands of years of traditional medicine, and are largely disjoint from the set of small molecules used commonly for discovery. However, natural products possess unique characteristics that distinguish them from traditional small molecule drug candidates, requiring new methods and approaches for assessing their therapeutic potential. In this review, we investigate a number of state-of-the-art techniques in bioinformatics, cheminformatics, and knowledge engineering for data-driven drug discovery from natural products. We focus on methods that aim to bridge the gap between traditional small-molecule drug candidates and different classes of natural products. We also explore the current informatics knowledge gaps and other barriers that need to be overcome to fully leverage these compounds for drug discovery. Finally, we conclude with a "road map" of research priorities that seeks to realize this goal.
Collapse
Affiliation(s)
- Joseph D. Romano
- Department of Biomedical Informatics, Columbia University, New York, NY, United States
- Department of Systems Biology, Columbia University, New York, NY, United States
- Department of Medicine, Columbia University, New York, NY, United States
- Data Science Institute, Columbia University, New York, NY, United States
| | - Nicholas P. Tatonetti
- Department of Biomedical Informatics, Columbia University, New York, NY, United States
- Department of Systems Biology, Columbia University, New York, NY, United States
- Department of Medicine, Columbia University, New York, NY, United States
- Data Science Institute, Columbia University, New York, NY, United States
| |
Collapse
|
28
|
Enrico C. Nanotechnology-Based Drug Delivery of Natural Compounds and Phytochemicals for the Treatment of Cancer and Other Diseases. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2019. [DOI: 10.1016/b978-0-444-64185-4.00003-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
29
|
Heravi MM, Zadsirjan V, Saedi P, Momeni T. Applications of Friedel-Crafts reactions in total synthesis of natural products. RSC Adv 2018; 8:40061-40163. [PMID: 35558228 PMCID: PMC9091380 DOI: 10.1039/c8ra07325b] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/03/2018] [Indexed: 12/17/2022] Open
Abstract
Over the years, Friedel-Crafts (FC) reactions have been acknowledged as the most useful and powerful synthetic tools for the construction of a special kind of carbon-carbon bond involving an aromatic moiety. Its stoichiometric and, more recently, its catalytic procedures have extensively been studied. This reaction in recent years has frequently been used as a key step (steps) in the total synthesis of natural products and targeted complex bioactive molecules. In this review, we try to underscore the applications of intermolecular and intramolecular FC reactions in the total syntheses of natural products and complex molecules, exhibiting diverse biological properties.
Collapse
Affiliation(s)
- Majid M Heravi
- Department of Chemistry, School of Science, Alzahra University Vanak Tehran Iran +98 2188041344 +98 9121329147
| | - Vahideh Zadsirjan
- Department of Chemistry, School of Science, Alzahra University Vanak Tehran Iran +98 2188041344 +98 9121329147
| | - Pegah Saedi
- Department of Chemistry, School of Science, Alzahra University Vanak Tehran Iran +98 2188041344 +98 9121329147
| | - Tayebeh Momeni
- Department of Chemistry, School of Science, Alzahra University Vanak Tehran Iran +98 2188041344 +98 9121329147
| |
Collapse
|
30
|
Jennings LK, Ahmed I, Munn AL, Carroll AR. Yeast-based screening of natural product extracts results in the identification of prion inhibitors from a marine sponge. Prion 2018; 12:234-244. [PMID: 30165789 PMCID: PMC6277187 DOI: 10.1080/19336896.2018.1513315] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/16/2018] [Accepted: 08/07/2018] [Indexed: 10/28/2022] Open
Abstract
One of the major medical challenges of the twenty-first century is the treatment of incurable and fatal neurodegenerative disorders caused by misfolded prion proteins. Since the discovery of these diseases a number of studies have been conducted to identify small molecules for their treatment, however to date no curative treatment is available. These studies can be highly expensive and time consuming, but more recent experimental approaches indicate a significant application for yeast prions in these studies. We therefore used yeast prions to optimize previous high-throughput methods for the cheaper, easier and more rapid screening of natural extracts. Through this approach we aimed to identify natural yeast-prion inhibitors that could be useful in the development of novel treatment strategies for neurodegenerative disorders. We screened 500 marine invertebrate extracts from temperate waters in Australia allowing the identification of yeast-prion inhibiting extracts. Through the bioassay-driven chemical investigation of an active Suberites sponge extract, a group of bromotyrosine derivatives were identified as potent yeast-prion inhibitors. This study outlines the importance of natural products and yeast prions as a first-stage screen for the identification of new chemically diverse and bioactive compounds.
Collapse
Affiliation(s)
- Laurence K. Jennings
- School of Environment and Science, Environmental Futures Research Institute, Griffith University (Gold Coast campus), Southport, QLD 4222, Australia
| | - Ishtiaq Ahmed
- School of Medical Science, Understanding Chronic Conditions Program, Menzies Health Institute Queensland, Griffith University (Gold Coast campus), Southport, QLD 4222, Australia
| | - Alan L. Munn
- School of Medical Science, Understanding Chronic Conditions Program, Menzies Health Institute Queensland, Griffith University (Gold Coast campus), Southport, QLD 4222, Australia
| | - Anthony R. Carroll
- School of Environment and Science, Environmental Futures Research Institute, Griffith University (Gold Coast campus), Southport, QLD 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University (Brisbane Innovation Park), Nathan, QLD 4111, Australia
| |
Collapse
|
31
|
|
32
|
Mignani S, Rodrigues J, Tomas H, Zablocka M, Shi X, Caminade AM, Majoral JP. Dendrimers in combination with natural products and analogues as anti-cancer agents. Chem Soc Rev 2018; 47:514-532. [PMID: 29154385 DOI: 10.1039/c7cs00550d] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
For the first time, an overview of dendrimers in combination with natural products and analogues as anti-cancer agents is presented. This reflects the development of drug delivery systems, such as dendrimers, to tackle cancers. The most significant advantages of using dendrimers in nanomedicine are their high biocompatibility, good water solubility, and their entry - with or without encapsulated, complexed or conjugated drugs - through an endocytosis process. This strategy has accelerated over the years in order to develop nanosystems as nanocarriers, to decrease the intrinsic toxicity of anti-cancer agents, to decrease the drug side effects, to increase the efficacy of the treatment, and consequently to improve patient compliance.
Collapse
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45, rue des Saints Peres, 75006, Paris, France
| | | | | | | | | | | | | |
Collapse
|
33
|
Aimon A, Karageorgis G, Masters J, Dow M, Craven PGE, Ohsten M, Willaume A, Morgentin R, Ruiz-Llamas N, Lemoine H, Kalliokoski T, Eatherton AJ, Foley DJ, Marsden SP, Nelson A. Realisation of small molecule libraries based on frameworks distantly related to natural products. Org Biomol Chem 2018; 16:3160-3167. [DOI: 10.1039/c8ob00688a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Design and synthesis of compound libraries with focused molecular properties, based on NP-like scaffolds.
Collapse
Affiliation(s)
- Anthony Aimon
- School of Chemistry
- University of Leeds
- Leeds LS2 9JT
- UK
| | - George Karageorgis
- School of Chemistry
- University of Leeds
- Leeds LS2 9JT
- UK
- Astbury Centre for Structural Molecular Biology
| | - Jacob Masters
- School of Chemistry
- University of Leeds
- Leeds LS2 9JT
- UK
- Astbury Centre for Structural Molecular Biology
| | - Mark Dow
- School of Chemistry
- University of Leeds
- Leeds LS2 9JT
- UK
| | | | | | | | | | | | | | | | | | - Daniel J. Foley
- School of Chemistry
- University of Leeds
- Leeds LS2 9JT
- UK
- Astbury Centre for Structural Molecular Biology
| | | | - Adam Nelson
- School of Chemistry
- University of Leeds
- Leeds LS2 9JT
- UK
- Astbury Centre for Structural Molecular Biology
| |
Collapse
|
34
|
Mignani S, Rodrigues J, Tomas H, Zablocka M, Shi X, Caminade AM, Majoral JP. Dendrimers in combination with natural products and analogues as anti-cancer agents. Chem Soc Rev 2018. [DOI: https://doi.org/10.1039/c7cs00550d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Overview of the use of dendrimers in combination with encapsulated and conjugated natural products and analogues as anti-cancer agents.
Collapse
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique
- Paris
- France
- CQM – Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada
- Funchal
| | - João Rodrigues
- CQM – Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada
- Funchal
- Portugal
- School of Materials Science and Engineering/Center for Nano Energy Materials, Northwestern Polytechnical University
- Xi’an
| | - Helena Tomas
- CQM – Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada
- Funchal
- Portugal
| | - Maria Zablocka
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences
- 90-363 Lodz
- Poland
| | - Xiangyang Shi
- CQM – Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada
- Funchal
- Portugal
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University
- Shanghai 201620
| | - Anne-Marie Caminade
- Laboratoire de Chimie de Coordination du CNRS
- 31077 Toulouse Cedex 4
- France
- Université de Toulouse, UPS, INPT
- 31077 Toulouse Cedex
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS
- 31077 Toulouse Cedex 4
- France
- Université de Toulouse, UPS, INPT
- 31077 Toulouse Cedex
| |
Collapse
|
35
|
Mignani S, Rodrigues J, Tomas H, Zablocka M, Shi X, Caminade AM, Majoral JP. Dendrimers in combination with natural products and analogues as anti-cancer agents. Chem Soc Rev 2018. [DOI: https:/doi.org/10.1039/c7cs00550d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
Overview of the use of dendrimers in combination with encapsulated and conjugated natural products and analogues as anti-cancer agents.
Collapse
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique
- Paris
- France
- CQM – Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada
- Funchal
| | - João Rodrigues
- CQM – Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada
- Funchal
- Portugal
- School of Materials Science and Engineering/Center for Nano Energy Materials, Northwestern Polytechnical University
- Xi’an
| | - Helena Tomas
- CQM – Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada
- Funchal
- Portugal
| | - Maria Zablocka
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences
- 90-363 Lodz
- Poland
| | - Xiangyang Shi
- CQM – Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada
- Funchal
- Portugal
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University
- Shanghai 201620
| | - Anne-Marie Caminade
- Laboratoire de Chimie de Coordination du CNRS
- 31077 Toulouse Cedex 4
- France
- Université de Toulouse, UPS, INPT
- 31077 Toulouse Cedex
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS
- 31077 Toulouse Cedex 4
- France
- Université de Toulouse, UPS, INPT
- 31077 Toulouse Cedex
| |
Collapse
|
36
|
Šimončicová J, Kaliňáková B, Kryštofová S. Aflatoxins: biosynthesis, prevention and eradication. ACTA CHIMICA SLOVACA 2017. [DOI: 10.1515/acs-2017-0021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Abstract
Filamentous fungi belonging to Aspergilli genera produce many compounds through various biosynthetic pathways. These compounds include a spectrum of products with beneficial medical properties (lovastatin) as well as those that are toxic and/or carcinogenic which are called mycotoxins. Aspergillus flavus, one of the most abundant soil-borne fungi, is a saprobe that is able growing on many organic nutrient sources, such as peanuts, corn and cotton seed. In many countries, food contamination by A. flavus is a huge problem, mainly due to the production of the most toxic and carcinogenic compounds known as aflatoxins. In this paper, we briefly cover current progress in aflatoxin biosynthesis and regulation, pre- and postharvest preventive measures, and decontamination procedures.
Collapse
Affiliation(s)
- Juliana Šimončicová
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava , Slovakia
| | - Barbora Kaliňáková
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava Slovakia
| | - Svetlana Kryštofová
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava Slovakia
| |
Collapse
|
37
|
Foley DJ, Craven PGE, Collins PM, Doveston RG, Aimon A, Talon R, Churcher I, von Delft F, Marsden SP, Nelson A. Synthesis and Demonstration of the Biological Relevance of sp 3 -rich Scaffolds Distantly Related to Natural Product Frameworks. Chemistry 2017; 23:15227-15232. [PMID: 28983993 PMCID: PMC5703167 DOI: 10.1002/chem.201704169] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Indexed: 12/18/2022]
Abstract
The productive exploration of chemical space is an enduring challenge in chemical biology and medicinal chemistry. Natural products are biologically relevant, and their frameworks have facilitated chemical tool and drug discovery. A "top-down" synthetic approach is described that enabled a range of complex bridged intermediates to be converted with high step efficiency into 26 diverse sp3 -rich scaffolds. The scaffolds have local natural product-like features, but are only distantly related to specific natural product frameworks. To assess biological relevance, a set of 52 fragments was prepared, and screened by high-throughput crystallography against three targets from two protein families (ATAD2, BRD1 and JMJD2D). In each case, 3D fragment hits were identified that would serve as distinctive starting points for ligand discovery. This demonstrates that frameworks that are distantly related to natural products can facilitate discovery of new biologically relevant regions within chemical space.
Collapse
Affiliation(s)
- Daniel J. Foley
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
- School of ChemistryUniversity of LeedsLeedsLS2 9JTUK
| | - Philip G. E. Craven
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
- School of ChemistryUniversity of LeedsLeedsLS2 9JTUK
| | - Patrick M. Collins
- Diamond Light Source LtdHarwell Science and Innovation CampusDidcotOX11 0QXUK
| | - Richard G. Doveston
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
- School of ChemistryUniversity of LeedsLeedsLS2 9JTUK
| | - Anthony Aimon
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
- School of ChemistryUniversity of LeedsLeedsLS2 9JTUK
| | - Romain Talon
- Structural Genomics Consortium, Nuffield Department of MedicineUniversity of Oxford, Roosevelt DriveOxfordOX3 7DQUK
| | - Ian Churcher
- GlaxoSmithKline Medicines Research CentreStevenageSG1 2NYUK,BenevolentBio, ChurchwayLondonNW1 1LWUK
| | - Frank von Delft
- Diamond Light Source LtdHarwell Science and Innovation CampusDidcotOX11 0QXUK
- Structural Genomics Consortium, Nuffield Department of MedicineUniversity of Oxford, Roosevelt DriveOxfordOX3 7DQUK
| | | | - Adam Nelson
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
- School of ChemistryUniversity of LeedsLeedsLS2 9JTUK
| |
Collapse
|
38
|
Greiffo FR, Eickelberg O, Fernandez IE. Systems medicine advances in interstitial lung disease. Eur Respir Rev 2017; 26:26/145/170021. [PMID: 28954764 DOI: 10.1183/16000617.0021-2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/15/2017] [Indexed: 01/17/2023] Open
Abstract
Fibrotic lung diseases involve subject-environment interactions, together with dysregulated homeostatic processes, impaired DNA repair and distorted immune functions. Systems medicine-based approaches are used to analyse diseases in a holistic manner, by integrating systems biology platforms along with clinical parameters, for the purpose of understanding disease origin, progression, exacerbation and remission.Interstitial lung diseases (ILDs) refer to a heterogeneous group of complex fibrotic diseases. The increase of systems medicine-based approaches in the understanding of ILDs provides exceptional advantages by improving diagnostics, unravelling phenotypical differences, and stratifying patient populations by predictable outcomes and personalised treatments. This review discusses the state-of-the-art contributions of systems medicine-based approaches in ILDs over the past 5 years.
Collapse
Affiliation(s)
- Flavia R Greiffo
- Comprehensive Pneumology Center, Ludwig-Maximilians-Universität, University Hospital Grosshadern and Helmholtz Zentrum München and Member of the German Center for Lung Research, Munich, Germany
| | - Oliver Eickelberg
- Comprehensive Pneumology Center, Ludwig-Maximilians-Universität, University Hospital Grosshadern and Helmholtz Zentrum München and Member of the German Center for Lung Research, Munich, Germany.,Division of Respiratory Sciences and Critical Care Medicine, Dept of Medicine, University of Colorado, Denver, CO, USA
| | - Isis E Fernandez
- Comprehensive Pneumology Center, Ludwig-Maximilians-Universität, University Hospital Grosshadern and Helmholtz Zentrum München and Member of the German Center for Lung Research, Munich, Germany
| |
Collapse
|
39
|
Kadioglu O, Law BYK, Mok SWF, Xu SW, Efferth T, Wong VKW. Mode of Action Analyses of Neferine, a Bisbenzylisoquinoline Alkaloid of Lotus ( Nelumbo nucifera) against Multidrug-Resistant Tumor Cells. Front Pharmacol 2017; 8:238. [PMID: 28529482 PMCID: PMC5418350 DOI: 10.3389/fphar.2017.00238] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 04/18/2017] [Indexed: 12/28/2022] Open
Abstract
Neferine, a bisbenzylisoquinoline alkaloid isolated from the green seed embryos of Lotus (Nelumbo nucifera Gaertn), has been previously shown to have various anti-cancer effects. In the present study, we evaluated the effect of neferine in terms of P-glycoprotein (P-gp) inhibition via in vitro cytotoxicity assays, R123 uptake assays in drug-resistant cancer cells, in silico molecular docking analysis on human P-gp and in silico absorption, distribution, metabolism, and excretion (ADME), quantitative structure activity relationships (QSAR) and toxicity analyses. Lipinski rule of five were mainly considered for the ADME evaluation and the preset descriptors including number of hydrogen bond donor, acceptor, hERG IC50, logp, logD were considered for the QSAR analyses. Neferine revealed higher toxicity toward paclitaxel- and doxorubicin-resistant breast, lung or colon cancer cells, implying collateral sensitivity of these cells toward neferine. Increased R123 uptake was observed in a comparable manner to the control P-gp inhibitor, verapamil. Molecular docking analyses revealed that neferine still interacts with P-gp, even if R123 was pre-bound. Bioinformatical ADME and toxicity analyses revealed that neferine possesses the druggability parameters with no predicted toxicity. In conclusion, neferine may allocate the P-gp drug-binding pocket and prevent R123 binding in agreement with P-gp inhibition experiments, where neferine increased R123 uptake.
Collapse
Affiliation(s)
- Onat Kadioglu
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of MainzMainz, Germany
| | - Betty Y. K. Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and TechnologyMacau, China
| | - Simon W. F. Mok
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and TechnologyMacau, China
| | - Su-Wei Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and TechnologyMacau, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of MainzMainz, Germany
| | - Vincent K. W. Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and TechnologyMacau, China
| |
Collapse
|
40
|
Khan S, ur Rahman L. Pathway Modulation of Medicinal and Aromatic Plants Through Metabolic Engineering Using Agrobacterium tumefaciens. REFERENCE SERIES IN PHYTOCHEMISTRY 2017. [DOI: 10.1007/978-3-319-28669-3_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
41
|
Alkaliphilic Bacteria and Thermophilic Actinomycetes as New Sources of Antimicrobial Compounds. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1201/b19347-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
42
|
Satterlee T, Cary JW, Calvo AM. RmtA, a Putative Arginine Methyltransferase, Regulates Secondary Metabolism and Development in Aspergillus flavus. PLoS One 2016; 11:e0155575. [PMID: 27213959 PMCID: PMC4877107 DOI: 10.1371/journal.pone.0155575] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/01/2016] [Indexed: 12/31/2022] Open
Abstract
Aspergillus flavus colonizes numerous oil seed crops such as corn, peanuts, treenuts and cotton worldwide, contaminating them with aflatoxin and other harmful potent toxins. In the phylogenetically related model fungus Aspergillus nidulans, the methyltransferase, RmtA, has been described to be involved in epigenetics regulation through histone modification. Epigenetics regulation affects a variety of cellular processes, including morphogenesis and secondary metabolism. Our study shows that deletion of rmtA in A. flavus results in hyperconidiating colonies, indicating that rmtA is a repressor of asexual development in this fungus. The increase in conidiation in the absence of rmtA coincides with greater expression of brlA, abaA, and wetA compared to that in the wild type. Additionally, the rmtA deletion mutant presents a drastic reduction or loss of sclerotial production, while forced expression of this gene increased the ability of this fungus to generate these resistant structures, revealing rmtA as a positive regulator of sclerotial formation. Importantly, rmtA is also required for the production of aflatoxin B1 in A. flavus, affecting the expression of aflJ. Furthermore, biosynthesis of additional metabolites is also controlled by rmtA, indicating a broad regulatory output in the control of secondary metabolism. This study also revealed that rmtA positively regulates the expression of the global regulatory gene veA, which could contribute to mediate the effects of rmtA on development and secondary metabolism in this relevant opportunistic plant pathogen.
Collapse
Affiliation(s)
- Timothy Satterlee
- Department of Biological Sciences, Northern Illinois University, Dekalb, IL, 60115, United States of America
| | - Jeffrey W. Cary
- USDA, ARS, Southern Regional Research Center, New Orleans, LA, 70124, United States of America
| | - Ana M. Calvo
- Department of Biological Sciences, Northern Illinois University, Dekalb, IL, 60115, United States of America
- * E-mail:
| |
Collapse
|
43
|
Culture-independent discovery of natural products from soil metagenomes. J Ind Microbiol Biotechnol 2015; 43:129-41. [PMID: 26586404 DOI: 10.1007/s10295-015-1706-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 10/29/2015] [Indexed: 12/20/2022]
Abstract
Bacterial natural products have proven to be invaluable starting points in the development of many currently used therapeutic agents. Unfortunately, traditional culture-based methods for natural product discovery have been deemphasized by pharmaceutical companies due in large part to high rediscovery rates. Culture-independent, or "metagenomic," methods, which rely on the heterologous expression of DNA extracted directly from environmental samples (eDNA), have the potential to provide access to metabolites encoded by a large fraction of the earth's microbial biosynthetic diversity. As soil is both ubiquitous and rich in bacterial diversity, it is an appealing starting point for culture-independent natural product discovery efforts. This review provides an overview of the history of soil metagenome-driven natural product discovery studies and elaborates on the recent development of new tools for sequence-based, high-throughput profiling of environmental samples used in discovering novel natural product biosynthetic gene clusters. We conclude with several examples of these new tools being employed to facilitate the recovery of novel secondary metabolite encoding gene clusters from soil metagenomes and the subsequent heterologous expression of these clusters to produce bioactive small molecules.
Collapse
|
44
|
Karageorgis G, Dow M, Aimon A, Warriner S, Nelson A. Activity-Directed Synthesis with Intermolecular Reactions: Development of a Fragment into a Range of Androgen Receptor Agonists. Angew Chem Int Ed Engl 2015; 54:13538-44. [PMID: 26358926 PMCID: PMC4648041 DOI: 10.1002/anie.201506944] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Indexed: 11/09/2022]
Abstract
Activity-directed synthesis (ADS), a novel discovery approach in which bioactive molecules emerge in parallel with associated syntheses, was exploited to develop a weakly binding fragment into novel androgen receptor agonists. Harnessing promiscuous intermolecular reactions of carbenoid compounds enabled highly efficient exploration of chemical space. Four substrates were prepared, yet exploited in 326 reactions to explore diverse chemical space; guided by bioactivity alone, the products of just nine of the reactions were purified to reveal diverse novel agonists with up to 125-fold improved activity. Remarkably, one agonist stemmed from a novel enantioselective transformation; this is the first time that an asymmetric reaction has been discovered solely on the basis of the biological activity of the product. It was shown that ADS is a significant addition to the lead generation toolkit, enabling the efficient and rapid discovery of novel, yet synthetically accessible, bioactive chemotypes.
Collapse
Affiliation(s)
- George Karageorgis
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of LeedsLeeds, LS2 9JT (UK) E-mail:
| | - Mark Dow
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of LeedsLeeds, LS2 9JT (UK) E-mail:
| | - Anthony Aimon
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of LeedsLeeds, LS2 9JT (UK) E-mail:
| | - Stuart Warriner
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of LeedsLeeds, LS2 9JT (UK) E-mail:
| | - Adam Nelson
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of LeedsLeeds, LS2 9JT (UK) E-mail:
| |
Collapse
|
45
|
Karageorgis G, Dow M, Aimon A, Warriner S, Nelson A. Activity-Directed Synthesis with Intermolecular Reactions: Development of a Fragment into a Range of Androgen Receptor Agonists. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201506944] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
46
|
Ncube B, Van Staden J. Tilting Plant Metabolism for Improved Metabolite Biosynthesis and Enhanced Human Benefit. Molecules 2015; 20:12698-731. [PMID: 26184148 PMCID: PMC6331799 DOI: 10.3390/molecules200712698] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/29/2015] [Accepted: 05/12/2015] [Indexed: 01/05/2023] Open
Abstract
The immense chemical diversity of plant-derived secondary metabolites coupled with their vast array of biological functions has seen this group of compounds attract considerable research interest across a range of research disciplines. Medicinal and aromatic plants, in particular, have been exploited for this biogenic pool of phytochemicals for products such as pharmaceuticals, fragrances, dyes, and insecticides, among others. With consumers showing increasing interests in these products, innovative biotechnological techniques are being developed and employed to alter plant secondary metabolism in efforts to improve on the quality and quantity of specific metabolites of interest. This review provides an overview of the biosynthesis for phytochemical compounds with medicinal and other related properties and their associated biological activities. It also provides an insight into how their biosynthesis/biosynthetic pathways have been modified/altered to enhance production.
Collapse
Affiliation(s)
- Bhekumthetho Ncube
- Research Centre for Plant Growth and Development, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa.
| | - Johannes Van Staden
- Research Centre for Plant Growth and Development, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa.
| |
Collapse
|
47
|
Design, synthesis and decoration of molecular scaffolds for exploitation in the production of alkaloid-like libraries. Bioorg Med Chem 2015; 23:2629-35. [DOI: 10.1016/j.bmc.2014.12.048] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 12/16/2014] [Accepted: 12/18/2014] [Indexed: 11/19/2022]
|
48
|
Pseudomonas aeruginosa-induced IL-1β production is inhibited by Sophora flavescens via the NF-κB/inflammasome pathways. J Microbiol 2014; 52:1044-9. [DOI: 10.1007/s12275-014-4512-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/21/2014] [Accepted: 10/21/2014] [Indexed: 10/24/2022]
|
49
|
Efficient discovery of bioactive scaffolds by activity-directed synthesis. Nat Chem 2014; 6:872-6. [PMID: 25242481 DOI: 10.1038/nchem.2034] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 07/16/2014] [Indexed: 11/08/2022]
Abstract
The structures and biological activities of natural products have often provided inspiration in drug discovery. The functional benefits of natural products to the host organism steers the evolution of their biosynthetic pathways. Here, we describe a discovery approach--which we term activity-directed synthesis--in which reactions with alternative outcomes are steered towards functional products. Arrays of catalysed reactions of α-diazo amides, whose outcome was critically dependent on the specific conditions used, were performed. The products were assayed at increasingly low concentration, with the results informing the design of a subsequent reaction array. Finally, promising reactions were scaled up and, after purification, submicromolar ligands based on two scaffolds with no previous annotated activity against the androgen receptor were discovered. The approach enables the discovery, in tandem, of both bioactive small molecules and associated synthetic routes, analogous to the evolution of biosynthetic pathways to yield natural products.
Collapse
|
50
|
Bhujade A, Gupta G, Talmale S, Das SK, Patil MB. Induction of apoptosis in A431 skin cancer cells by Cissus quadrangularis Linn stem extract by altering Bax-Bcl-2 ratio, release of cytochrome c from mitochondria and PARP cleavage. Food Funct 2013; 4:338-46. [PMID: 23175101 DOI: 10.1039/c2fo30167a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Skin is generally damaged through genetic and environmental factors such as smoking, exposure to xenobiotics, heat, hormonal changes, and ultraviolet light. These factors can cause skin diseases. Cissus quadrangularis Linn. (CQ) has been used in folk medicine for the treatment of skin diseases since ancient times. Taking in to consideration the medicinal properties exhibited by this genus, it was decided to investigate the anti-cancer activity of CQ. Extracts obtained from CQ and their phenolic contents were subjected to in vitro evaluation of anticancer activity by using A431 (skin epidermoid carcinoma, human) cell line. The A431 cells were treated with different extracts of CQ in a dose dependent manner. Out of five extracts, the acetone extract demonstrated significant anti-cancer activity in the A431 cell line. Hexane, chloroform, ethyl acetate and methanol extracts also exhibited cytotoxicity but to a comparatively lesser extent than the acetone extract. The GI(50) value of the acetone extract was found to be 8 μg mL(-1), whereas GI(50) value of purified fraction of acetone extract, termed as AFCQ (active acetone fraction of CQ) with respect to A431 cells, was found to be 4.8 μg mL(-1). Furthermore, the mechanism of anticancer activity exhibited by AFCQ was investigated by comparing its effect with the standard anticancer drug Doxorubicin (DOX) by evaluating the status of apoptotic markers after treatment of A431 cells with AFCQ and DOX. Bax-Bcl-2 ratio along with the release of cytochrome c from mitochondria to cytoplasm, which is a hallmark of apoptosis, was also evaluated. Cleavage of PARP revealed that AFCQ induces apoptosis in A431 cells with reference to DOX.
Collapse
Affiliation(s)
- Arti Bhujade
- Department of Biochemistry, Nagpur University, LIT Premises, Nagpur, Maharashtra, India.
| | | | | | | | | |
Collapse
|