1
|
Fan G, Yu Y, Zhang X, Jiang J, Wang S, Zhou B, Jiang T. Comprehensive analysis of the stress associated protein (SAP) family and the function of PagSAP9 from Populus alba × P. glandulosa in salt stress. PHYTOCHEMISTRY 2025; 232:114367. [PMID: 39701200 DOI: 10.1016/j.phytochem.2024.114367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
Poplar tree growth is frequently hindered by environmental stressors, particularly soil salinization. Enhancing salt tolerance is essential for improving their adaptability and biomass under these conditions. The Stress-Associated Protein (SAP) family, characterized by A20/AN1 zinc finger domains, plays a crucial role in plants' tolerance to abiotic stress. However, functional investigations on SAP proteins in poplar are limited. In our study, we identified 19 SAP members in poplar, distributed unevenly across ten chromosomes and classified them into two major groups based on phylogenetic relationship and structure characteristics. Notably, only three segmental duplications were found, while no tandem duplications were detected. The PagSAP9 gene from Populus alba x P. glandulosa, featured both A20 and AN1 domains, was successfully characterized and localized to both cytoplasm and nucleus. It was predominantly expressed in roots and leaves and showed significantly upregulation under salt stress. And the overexpressing PagSAP9 transgenic poplars enhanced the activities of peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT), alongside reduced malondialdehyde (MDA) content. Additionally, DAB and NBT histological stainings further confirmed the positive effects of PagSAP9 gene. Collectively, these findings highlight the potential of the PagSAP9 gene to improve salt tolerance in poplar, emphasizing the broader applicability of SAP genes in plant stress resistance and providing valuable genetic resources for developing resilient plant varieties.
Collapse
Affiliation(s)
- Gaofeng Fan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Yingying Yu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Xiao Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Jiahui Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Shuang Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Boru Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China.
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
2
|
Ben Saad R, Ben Romdhane W, Čmiková N, Baazaoui N, Bouteraa MT, Ben Akacha B, Chouaibi Y, Maisto M, Ben Hsouna A, Garzoli S, Wiszniewska A, Kačániová M. Research progress on plant stress-associated protein (SAP) family: Master regulators to deal with environmental stresses. Bioessays 2024; 46:e2400097. [PMID: 39248672 DOI: 10.1002/bies.202400097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024]
Abstract
Every year, unfavorable environmental factors significantly affect crop productivity and threaten food security. Plants are sessile; they cannot move to escape unfavorable environmental conditions, and therefore, they activate a variety of defense pathways. Among them are processes regulated by stress-associated proteins (SAPs). SAPs have a specific zinc finger domain (A20) at the N-terminus and either AN1 or C2H2 at the C-terminus. SAP proteins are involved in many biological processes and in response to various abiotic or biotic constraints. Most SAPs play a role in conferring transgenic stress resistance and are stress-inducible. The emerging field of SAPs in abiotic or biotic stress response regulation has attracted the attention of researchers. Although SAPs interact with various proteins to perform their functions, the exact mechanisms of these interactions remain incompletely understood. This review aims to provide a comprehensive understanding of SAPs, covering their diversity, structure, expression, and subcellular localization. SAPs play a pivotal role in enabling crosstalk between abiotic and biotic stress signaling pathways, making them essential for developing stress-tolerant crops without yield penalties. Collectively, understanding the complex regulation of SAPs in stress responses can contribute to enhancing tolerance against various environmental stresses through several techniques such as transgenesis, classical breeding, or gene editing.
Collapse
Affiliation(s)
- Rania Ben Saad
- Center of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, Sfax, Tunisia
| | - Walid Ben Romdhane
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Natália Čmiková
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Nitra, Slovakia
| | - Narjes Baazaoui
- Biology department, College of Sciences and Arts Muhayil Assir, King Khalid University, Abha, Saudi Arabia
| | - Mohamed Taieb Bouteraa
- Center of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, Sfax, Tunisia
| | - Bouthaina Ben Akacha
- Center of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, Sfax, Tunisia
| | - Yosra Chouaibi
- Center of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, Sfax, Tunisia
| | - Maria Maisto
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Anis Ben Hsouna
- Center of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, Sfax, Tunisia
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Mahdia, Tunisia
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, Rome, Italy
| | - Alina Wiszniewska
- Department of Botany, Physiology and Plant Protection, University of Agriculture in Kraków, Kraków, Poland
| | - Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Nitra, Slovakia
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Warszawa, Poland
| |
Collapse
|
3
|
Zhang C, Zhang X, Wu Y, Li X, Du C, Di N, Chen Y. Genome-wide identification and evolution of the SAP gene family in sunflower ( Helianthus annuus L.) and expression analysis under salt and drought stress. PeerJ 2024; 12:e17808. [PMID: 39099650 PMCID: PMC11296301 DOI: 10.7717/peerj.17808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/03/2024] [Indexed: 08/06/2024] Open
Abstract
Stress-associated proteins (SAPs) are known to play an important role in plant responses to abiotic stresses. This study systematically identified members of the sunflower SAP gene family using sunflower genome data. The genes of the sunflower SAP gene family were analyzed using bioinformatic methods, and gene expression was assessed through fluorescence quantification (qRT-PCR) under salt and drought stress. A comprehensive analysis was also performed on the number, structure, collinearity, and phylogeny of seven Compositae species and eight other plant SAP gene families. The sunflower genome was found to have 27 SAP genes, distributed across 14 chromosomes. The evolutionary analysis revealed that the SAP family genes could be divided into three subgroups. Notably, the annuus variety exhibited amplification of the SAP gene for Group 3. Among the Compositae species, C. morifolium demonstrated the highest number of collinearity gene pairs and the closest distance on the phylogenetic tree, suggesting relative conservation in the evolutionary process. An analysis of gene structure revealed that Group 1 exhibited the most complex gene structure, while the majority of HaSAP genes in Group 2 and Group 3 lacked introns. The promoter analysis revealed the presence of cis-acting elements related to ABA, indicating their involvement in stress responses. The expression analysis indicated the potential involvement of 10 genes (HaSAP1, HaSAP3, HaSAP8, HaSAP10, HaSAP15, HaSAP16, HaSAP21, HaSAP22, HaSAP23, and HaSAP26) in sunflower salt tolerance. The expression of these 10 genes were then examined under salt and drought stress using qRT-PCR, and the tissue-specific expression patterns of these 10 genes were also analyzed. HaSAP1, HaSAP21, and HaSAP23 exhibited consistent expression patterns under both salt and drought stress, indicating these genes play a role in both salt tolerance and drought resistance in sunflower. The findings of this study highlight the significant contribution of the SAP gene family to salt tolerance and drought resistance in sunflower.
Collapse
Affiliation(s)
| | - Xiaohong Zhang
- Bayannur Institute of Agriculture and Animal Science, Bayannur, China
| | - Yue Wu
- Bayannur Institute of Agriculture and Animal Science, Bayannur, China
| | | | - Chao Du
- Bayannur Institute of Agriculture and Animal Science, Bayannur, China
| | - Na Di
- Hetao College, Bayannur, China
| | | |
Collapse
|
4
|
Comprehensive Identification and Functional Analysis of Stress-Associated Protein (SAP) Genes in Osmotic Stress in Maize. Int J Mol Sci 2022; 23:ijms232214010. [PMID: 36430489 PMCID: PMC9692755 DOI: 10.3390/ijms232214010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Stress-associated proteins (SAPs) are a kind of zinc finger protein with an A20/AN1 domain and contribute to plants' adaption to various abiotic and biological stimuli. However, little is known about the SAP genes in maize (Zea mays L.). In the present study, the SAP genes were identified from the maize genome. Subsequently, the protein properties, gene structure and duplication, chromosomal location, and cis-acting elements were analyzed by bioinformatic methods. Finally, their expression profiles under osmotic stresses, including drought and salinity, as well as ABA, and overexpression in Saccharomyces cerevisiae W303a cells, were performed to uncover the potential function. The results showed that a total of 10 SAP genes were identified and named ZmSAP1 to ZmSAP10 in maize, which was unevenly distributed on six of the ten maize chromosomes. The ZmSAP1, ZmSAP4, ZmSAP5, ZmSAP6, ZmSAP7, ZmSAP8 and ZmSAP10 had an A20 domain at N terminus and AN1 domain at C terminus, respectively. Only ZmSAP2 possessed a single AN1 domain at the N terminus. ZmSAP3 and ZmSAP9 both contained two AN1 domains without an A20 domain. Most ZmSAP genes lost introns and had abundant stress- and hormone-responsive cis-elements in their promoter region. The results of quantitative real-time PCR showed that all ZmSAP genes were regulated by drought and saline stresses, as well as ABA induction. Moreover, heterologous expression of ZmSAP2 and ZmSAP7 significantly improved the saline tolerance of yeast cells. The study provides insights into further underlying the function of ZmSAPs in regulating stress response in maize.
Collapse
|
5
|
Genome-Wide Identification of the A20/AN1 Zinc Finger Protein Family Genes in Ipomoea batatas and Its Two Relatives and Function Analysis of IbSAP16 in Salinity Tolerance. Int J Mol Sci 2022; 23:ijms231911551. [PMID: 36232853 PMCID: PMC9570247 DOI: 10.3390/ijms231911551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022] Open
Abstract
Stress-associated protein (SAP) genes—encoding A20/AN1 zinc-finger domain-containing proteins—play pivotal roles in regulating stress responses, growth, and development in plants. They are considered suitable candidates to improve abiotic stress tolerance in plants. However, the SAP gene family in sweetpotato (Ipomoea batatas) and its relatives is yet to be investigated. In this study, 20 SAPs in sweetpotato, and 23 and 26 SAPs in its wild diploid relatives Ipomoea triloba and Ipomoea trifida were identified. The chromosome locations, gene structures, protein physiological properties, conserved domains, and phylogenetic relationships of these SAPs were analyzed systematically. Binding motif analysis of IbSAPs indicated that hormone and stress responsive cis-acting elements were distributed in their promoters. RT-qPCR or RNA-seq data revealed that the expression patterns of IbSAP, ItbSAP, and ItfSAP genes varied in different organs and responded to salinity, drought, or ABA (abscisic acid) treatments differently. Moreover, we found that IbSAP16 driven by the 35 S promoter conferred salinity tolerance in transgenic Arabidopsis. These results provided a genome-wide characterization of SAP genes in sweetpotato and its two relatives and suggested that IbSAP16 is involved in salinity stress responses. Our research laid the groundwork for studying SAP-mediated stress response mechanisms in sweetpotato.
Collapse
|
6
|
Billah SA, Khan NZ, Ali W, Aasim M, Usman M, Alezzawi MA, Ullah H. Genome-wide in silico identification and characterization of the stress associated protein (SAP) gene family encoding A20/AN1 zinc-finger proteins in potato (Solanum tuberosum L.). PLoS One 2022; 17:e0273416. [PMID: 35998181 PMCID: PMC9398024 DOI: 10.1371/journal.pone.0273416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022] Open
Abstract
Stress associated proteins (SAPs) in plants have a key role in providing tolerance to multiple abiotic stresses. SAP gene family in Solanum tuberosum has not been fully studied before. This study identified 17 StSAP genes in S. tuberosum which code for A20/AN1 zinc-finger proteins. All the genes were distributed on ten different chromosomes and six segmental duplication events were identified. The SAPs in S. tuberosum and its orthologs in Arabidopsis thaliana were classified into six groups through the phylogenetic analysis. Introns across StSAP genes were identified in four genes. The promotor study of the StSAP genes showed different hormone and stress-related cis-elements that could potentially have a role in environmental stress response. The expression of StSAP genes in response to heat, mannitol, and salt were analyzed through in silico transcriptomic analysis. This study could potentially help in further understanding the functions of SAP genes in S. tuberosum.
Collapse
Affiliation(s)
- Syyed Asim Billah
- Department of Biotechnology, University of Malakand, Chakdara, Khyber Pakhtunkhwa, Pakistan
| | - Nadir Zaman Khan
- Department of Biotechnology, University of Malakand, Chakdara, Khyber Pakhtunkhwa, Pakistan
- * E-mail:
| | - Waqar Ali
- Department of Biotechnology, University of Malakand, Chakdara, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Aasim
- Department of Biotechnology, University of Malakand, Chakdara, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Usman
- Department of Biotechnology, University of Malakand, Chakdara, Khyber Pakhtunkhwa, Pakistan
| | | | - Habib Ullah
- Department of Biotechnology, University of Malakand, Chakdara, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
7
|
Genome-Wide Analyses of Tea Plant Stress-Associated Proteins (SAPs) Reveal the Role of CsSAP12 in Increased Drought Tolerance in Transgenic Tomatoes. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Plant stress-associated proteins (SAPs) contain A20/AN1 zinc finger domains and are involved in plant response to abiotic stresses. In this study, we aimed to explore the biological function of tea plant CsSAPs. A total of 14 CsSAP genes were identified in the tea plant genome using a reference genome database (Camellia sinensis var. sinensis). The CsSAPs were divided into the following two groups: Group I, containing one AN1 domain and/or one A20 domain; and Group II, containing two AN1 domains and/or two C2H2 domains. The sequence alignments and conserved domains analysis indicated that the CsSAPs were highly structurally conserved in terms of amino acid sequence and protein structure. The CsSAPs showed different transcript levels in spatio-temporal expression and in response to cold and drought stress in tea plants. Furthermore, the expression of CsSAP12 was considerably upregulated under drought stress. The overexpression of CsSAP12 in transgenic tomatoes showed increased tolerance to drought stress compared with the wild type. Altogether, the results showed that CsSAP12 might be involved in drought stress. Thus, CsSAP12 might be a target gene in genetic engineering to improve drought tolerance in tea plants.
Collapse
|
8
|
Bae Y, Lim CW, Lee SC. Differential Functions of Pepper Stress-Associated Proteins in Response to Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2021; 12:756068. [PMID: 34956259 PMCID: PMC8702622 DOI: 10.3389/fpls.2021.756068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
Stress-associated proteins (SAPs), a group of zinc-finger-type proteins, have been identified as novel regulators of plant abiotic and biotic stresses. However, although they have been discovered in different plant species, their precise functional roles remain unclear. Here, we identified 14 SAP subfamily genes in the pepper genome. An investigation of the promoter regions of these genes for cis-regulatory elements associated with abiotic stress responses revealed the presence of multiple stress-related elements. Domain and phylogenetic analyses using the corresponding protein sequences revealed that the CaSAP genes can be classified into six groups (I-VI) and sorted into two broad types. Expression levels of the CaSAP genes were found to be differentially induced by low temperature, the dehydration stress, or exogenous abscisic acid. Group II and IV genes were highly induced by the low temperature and dehydration treatments, respectively. Moreover, subcellular localization analysis indicated that the proteins in these two groups are distributed in the nucleus, cytoplasm, and plasma membrane. Among the pepper plants silenced with the three identified group II CaSAP genes, the CA02g10410-silenced plants showed tolerance to low temperature, whereas the CA03g17080-silenced plants were found to have temperature-sensitive phenotypes. Interestingly, group IV CaSAP-silenced pepper plants showed drought-tolerant phenotypes. These findings contribute to a preliminary characterization of CaSAP genes and provide directions for future research on the biological role of CaSAPs in response to different abiotic stresses.
Collapse
|
9
|
Muthuramalingam P, Jeyasri R, Selvaraj A, Kalaiyarasi D, Aruni W, Pandian STK, Ramesh M. Global transcriptome analysis of novel stress associated protein ( SAP) genes expression dynamism of combined abiotic stresses in Oryza sativa (L.). J Biomol Struct Dyn 2020; 39:2106-2117. [PMID: 32212961 DOI: 10.1080/07391102.2020.1747548] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Genes encoding proteins with A20/AN1 zinc-finger domains, belonging to the stress associated protein (SAP) gene family, are present in all eukaryotes and play a decisive role in plant response to diverse physiological and molecular activities particularly on biotic and abiotic stresses (AbS). In this first and foremost study, global transcriptome analysis of members of the SAP gene family was carried out in C3 model-Oryza sativa (OsSAP) aiming at the identification of OsSAP genes activated in response to unique or Combined AbS (CAbS). Based on the available spatio-temporal and phytohormonal RNA-Seq expression profile datasets, nine OsSAP genes were filtered out and identified by a differential expression signature noted in various tissues as well as plant hormones. Comparative genome ideogram of OsSAP genes confirmed the orthologous collinearity with C4 panicoid genomes. Interactome of these genes, revealed the molecular cross-talks of OsSAP. Thus, the computational expression signature of OsSAP genes led to a better understanding of gene dynamism in diverse developmental tissues/organs. Transcriptional regulation analysis of key OsSAP genes in response to stress (drought and salinity) suggested the novel role of OsSAP1, OsSAP2, OsSAP5, OsSAP7, OsSAP8 and OsSAP11 in AbS. Altogether, the study provides deeper insights on molecular characteristics of OsSAP genes, which could be deployed further to decipher their precise functional roles in AbS responses.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Rajendran Jeyasri
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Anthonymuthu Selvaraj
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Dhamodharan Kalaiyarasi
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, India.,Department of Biochemistry and Biotechnology, Annamalai University, Chidambaram, Tamil Nadu, India
| | - Wilson Aruni
- Division of Microbiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | | | - Manikandan Ramesh
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, India
| |
Collapse
|
10
|
Ben Saad R, Safi H, Ben Hsouna A, Brini F, Ben Romdhane W. Functional domain analysis of LmSAP protein reveals the crucial role of the zinc-finger A20 domain in abiotic stress tolerance. PROTOPLASMA 2019; 256:1333-1344. [PMID: 31062172 DOI: 10.1007/s00709-019-01390-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/24/2019] [Indexed: 05/13/2023]
Abstract
Stress-associated proteins (SAPs), such as A20/AN1 zinc-finger domain-containing proteins, have emerged as a novel class of proteins involved in abiotic stress signaling, and they are important candidates for preventing the loss of yield caused by exposure to environmental stresses. In a previous report, it was found that the ectopic-expression of Lobularia maritima stress-associated protein, LmSAP, conferred tolerance to abiotic and heavy metal stresses in transgenic tobacco plants. This study aimed to investigate the functions of the A20 and AN1 domains of LmSAP in salt and osmotic stress tolerance. To this end, in addition to the full-length LmSAP gene, we have generated three LmSAP-truncated forms (LmSAPΔA20, LmSAPΔAN1, and LmSAPΔA20-ΔAN1). Heterologous expression in Saccharomyces cerevisiae of different truncated forms of LmSAP revealed that the A20 domain is essential to increase cell tolerance to salt, ionic, and osmotic stresses. Transgenic tobacco plants overexpressing LmSAP and LmSAPΔAN1 constructs exhibited higher tolerance to salt and osmotic stresses in comparison to the non-transgenic plants (NT) and lines transformed with LmSAPΔA20 and LmSAPΔA20-ΔAN1 constructs. Similarly, transgenic plants overexpressing the full-length LmSAP gene and LmSAPΔAN1 truncated domain maintained higher superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) enzymatic activities due to the high expression levels of the genes encoding these key antioxidant enzymes, MnSOD, POD, and CAT1, as well as accumulated lower levels of malondialdehyde (MDA) under salt and osmotic stresses compared to NT and LmSAPΔA20 and LmSAPΔA20-ΔAN1 forms. These findings provide insights into the pivotal role of A20 and AN1 domains of LmSAP protein in salt and osmotic stress tolerance.
Collapse
Affiliation(s)
- Rania Ben Saad
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P "1177", 3018, Sfax, Tunisia
| | - Hela Safi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P "1177", 3018, Sfax, Tunisia
| | - Anis Ben Hsouna
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P "1177", 3018, Sfax, Tunisia
- Department of Life Sciences, Faculty of Sciences of Gafsa, Zarroug, 2112, Gafsa, Tunisia
| | - Faical Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P "1177", 3018, Sfax, Tunisia
| | - Walid Ben Romdhane
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P "1177", 3018, Sfax, Tunisia.
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
11
|
Genome-Wide Analysis and Cloning of the Apple Stress-Associated Protein Gene Family Reveals MdSAP15, Which Confers Tolerance to Drought and Osmotic Stresses in Transgenic Arabidopsis. Int J Mol Sci 2018; 19:ijms19092478. [PMID: 30134640 PMCID: PMC6164895 DOI: 10.3390/ijms19092478] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 08/13/2018] [Accepted: 08/13/2018] [Indexed: 12/29/2022] Open
Abstract
Stress-associated proteins (SAPs) are novel A20/AN1 zinc finger domain-containing proteins that are now favorable targets to improve abiotic stress tolerance in plants. However, the SAP gene family and their biological functions have not been identified in the important fruit crop apple (Malus × domestica Borkh.). We conducted a genome-wide analysis and cloning of this gene family in apple and determined that the overexpression of MdSAP15 enhances drought tolerance in Arabidopsis plants. We identified 30 SAP genes in the apple genome. Phylogenetic analysis revealed two major groups within that family. Results from sequence alignments and analyses of 3D structures, phylogenetics, genomics structure, and conserved domains indicated that apple SAPs are highly and structurally conserved. Comprehensive qRT-PCR analysis found various expression patterns for MdSAPs in different tissues and in response to a water deficit. A transgenic analysis showed that the overexpression of MdSAP15 in transgenic Arabidopsis plants markedly enhanced their tolerance to osmotic and drought stresses. Our results demonstrate that the SAP genes are highly conserved in plant species, and that MdSAP15 can be used as a target gene in genetic engineering approaches to improve drought tolerance.
Collapse
|
12
|
Isolation of multi-metal tolerant ubiquitin fusion protein from metal polluted soil by metatranscriptomic approach. J Microbiol Methods 2018; 152:119-125. [PMID: 30077694 DOI: 10.1016/j.mimet.2018.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 11/21/2022]
Abstract
Release of heavy metals into the soil pose a significant threat to the environment and public health because of their toxicity accumulation in the food chain and persistence in nature. The potential of soil microbial diversity of cadmium (Cd) contaminated site was exploited through functional metatranscriptomics by construction of cDNA libraries A (0.1-0.5 kb), B (0.5-1.0 kb), and C (1-4 kb) of variable size, from the eukaryotic mRNA. The cDNA library B was further screened for cadmium tolerant transcripts through yeast complementation system. We are reporting one of the transformants ycf1ΔPLBe1 capable of tolerating high concentrations of Cd (40 μM - 80 μM). Sequence analysis revealed that PLBe1 cDNA showed homology with ubiquitin domain containing protein fused with AN1 type zinc finger protein of Acanthameoba castellani. Further, this cDNA was tested for its tolerance towards other heavy metals such as copper (Cu), zinc (Zn) and cobalt (Co). Functional complementation assay of cDNA PLBe1 showed a range of tolerance towards copper (150 μM - 300 μM), zinc (10 mM - 12 mM) and cobalt (2 mM - 4 mM). This study promulgates PLBe1 as credible member of multi-metal tolerant gene in the eukaryotic soil microbial community and can be used as potential member to revitalise the heavy metal contaminated sites or can be used as a biomarker to detect heavy metal contamination in the soil environment.
Collapse
|
13
|
Sun ZYJ, Bhanu MK, Allan MG, Arthanari H, Wagner G, Hanna J. Solution Structure of the Cuz1 AN1 Zinc Finger Domain: An Exposed LDFLP Motif Defines a Subfamily of AN1 Proteins. PLoS One 2016; 11:e0163660. [PMID: 27662200 PMCID: PMC5035049 DOI: 10.1371/journal.pone.0163660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/12/2016] [Indexed: 12/24/2022] Open
Abstract
Zinc binding domains are common and versatile protein structural motifs that mediate diverse cellular functions. Among the many structurally distinct families of zinc finger (ZnF) proteins, the AN1 domain remains poorly characterized. Cuz1 is one of two AN1 ZnF proteins in the yeast S. cerevisiae, and is a stress-inducible protein that functions in protein degradation through direct interaction with the proteasome and Cdc48. Here we report the solution structure of the Cuz1 AN1 ZnF which reveals a compact C6H2 zinc-coordinating domain that resembles a two-finger hand holding a tri-helical clamp. A central phenylalanine residue sits between the two zinc-coordinating centers. The position of this phenylalanine, just before the penultimate zinc-chelating cysteine, is strongly conserved from yeast to man. This phenylalanine shows an exceptionally slow ring-flipping rate which likely contributes to the high rigidity and stability of the AN1 domain. In addition to the zinc-chelating residues, sequence analysis of Cuz1 indicates a second highly evolutionarily conserved motif. This LDFLP motif is shared with three human proteins-Zfand1, AIRAP, and AIRAP-L-the latter two of which share similar cellular functions with Cuz1. The LDFLP motif, while embedded within the zinc finger domain, is surface exposed, largely uninvolved in zinc chelation, and not required for the overall fold of the domain. The LDFLP motif was dispensable for Cuz1's major known functions, proteasome- and Cdc48-binding. These results provide the first structural characterization of the AN1 zinc finger domain, and suggest that the LDFLP motif may define a sub-family of evolutionarily conserved AN1 zinc finger proteins.
Collapse
Affiliation(s)
- Zhen-Yu J. Sun
- Department of Biological Chemistry and Molecular Physiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Meera K. Bhanu
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Martin G. Allan
- Department of Biological Chemistry and Molecular Physiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Haribabu Arthanari
- Department of Biological Chemistry and Molecular Physiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Physiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - John Hanna
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
14
|
Claußen M, Lingner T, Pommerenke C, Opitz L, Salinas G, Pieler T. Global analysis of asymmetric RNA enrichment in oocytes reveals low conservation between closely related Xenopus species. Mol Biol Cell 2015; 26:3777-87. [PMID: 26337391 PMCID: PMC4626063 DOI: 10.1091/mbc.e15-02-0115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 08/28/2015] [Indexed: 12/27/2022] Open
Abstract
Subcellular localization of mRNAs contributes to the generation of cellular asymmetries and cell fate determination. A comparative global analysis is given of animally and vegetally enriched RNAs in oocytes from two closely related Xenopus species. RNAs that localize to the vegetal cortex during Xenopus laevis oogenesis have been reported to function in germ layer patterning, axis determination, and development of the primordial germ cells. Here we report on the genome-wide, comparative analysis of differentially localizing RNAs in Xenopus laevis and Xenopus tropicalis oocytes, revealing a surprisingly weak degree of conservation in respect to the identity of animally as well as vegetally enriched transcripts in these closely related species. Heterologous RNA injections and protein binding studies indicate that the different RNA localization patterns in these two species are due to gain/loss of cis-acting localization signals rather than to differences in the RNA-localizing machinery.
Collapse
Affiliation(s)
- Maike Claußen
- Institute of Developmental Biochemistry, University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Thomas Lingner
- Microarray and Deep-Sequencing Core Facility, University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Claudia Pommerenke
- Microarray and Deep-Sequencing Core Facility, University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Lennart Opitz
- Microarray and Deep-Sequencing Core Facility, University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Gabriela Salinas
- Microarray and Deep-Sequencing Core Facility, University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Tomas Pieler
- Institute of Developmental Biochemistry, University Medical Center Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
15
|
Sharma G, Giri J, Tyagi AK. Rice OsiSAP7 negatively regulates ABA stress signalling and imparts sensitivity to water-deficit stress in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 237:80-92. [PMID: 26089154 DOI: 10.1016/j.plantsci.2015.05.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/13/2015] [Accepted: 05/14/2015] [Indexed: 05/19/2023]
Abstract
Stress associated protein (SAP) genes in plants regulate abiotic stress responses. SAP gene family consists of 18 members in rice. Although their abiotic stress responsiveness is well established, the mechanism of their action is poorly understood. OsiSAP7 was chosen to investigate the mechanism of its action based on the dual nature of its sub-cellular localization preferentially in the nucleus or sub-nuclear speckles upon transient expression in onion epidermal cells. Its expression was down-regulated in rice seedlings under abiotic stresses. OsiSAP7 was localized evenly in the nucleus under unstressed conditions and in sub-nuclear speckles on MG132 treatment. OsiSAP7 exhibits E3 ubiquitin ligase activity in vitro. Abiotic stress responses of OsiSAP7 were assessed by its overexpression in Arabidopsis under the control of a stress inducible promoter rd29A. Stress response assessment was done at seed germination and advanced stages of development. Transgenics were ABA insensitive at seed germination stage and sensitive to water-deficit stress at advanced stage as compared to wild type (WT). They were also impaired in ABA and stress-responsive gene expression. Our study suggests that OsiSAP7 acts as a negative regulator of ABA and water-deficit stress signalling by acting as an E3 ubiquitin ligase.
Collapse
Affiliation(s)
- Gunjan Sharma
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi 110067, India.
| | - Jitender Giri
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi 110067, India.
| | - Akhilesh K Tyagi
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi 110067, India.
| |
Collapse
|
16
|
Leikauf GD, Concel VJ, Bein K, Liu P, Berndt A, Martin TM, Ganguly K, Jang AS, Brant KA, Dopico RA, Upadhyay S, Cario C, Di YPP, Vuga LJ, Kostem E, Eskin E, You M, Kaminski N, Prows DR, Knoell DL, Fabisiak JP. Functional genomic assessment of phosgene-induced acute lung injury in mice. Am J Respir Cell Mol Biol 2013; 49:368-83. [PMID: 23590305 DOI: 10.1165/rcmb.2012-0337oc] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In this study, a genetically diverse panel of 43 mouse strains was exposed to phosgene and genome-wide association mapping performed using a high-density single nucleotide polymorphism (SNP) assembly. Transcriptomic analysis was also used to improve the genetic resolution in the identification of genetic determinants of phosgene-induced acute lung injury (ALI). We prioritized the identified genes based on whether the encoded protein was previously associated with lung injury or contained a nonsynonymous SNP within a functional domain. Candidates were selected that contained a promoter SNP that could alter a putative transcription factor binding site and had variable expression by transcriptomic analyses. The latter two criteria also required that ≥10% of mice carried the minor allele and that this allele could account for ≥10% of the phenotypic difference noted between the strains at the phenotypic extremes. This integrative, functional approach revealed 14 candidate genes that included Atp1a1, Alox5, Galnt11, Hrh1, Mbd4, Phactr2, Plxnd1, Ptprt, Reln, and Zfand4, which had significant SNP associations, and Itga9, Man1a2, Mapk14, and Vwf, which had suggestive SNP associations. Of the genes with significant SNP associations, Atp1a1, Alox5, Plxnd1, Ptprt, and Zfand4 could be associated with ALI in several ways. Using a competitive electrophoretic mobility shift analysis, Atp1a1 promoter (rs215053185) oligonucleotide containing the minor G allele formed a major distinct faster-migrating complex. In addition, a gene with a suggestive SNP association, Itga9, is linked to transforming growth factor β1 signaling, which previously has been associated with the susceptibility to ALI in mice.
Collapse
Affiliation(s)
- George D Leikauf
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, PA 15219, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Milani L, Ghiselli F, Nuzhdin SV, Passamonti M. Nuclear genes with sex bias in Ruditapes philippinarum (Bivalvia, veneridae): Mitochondrial inheritance and sex determination in DUI species. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 320:442-54. [PMID: 23873694 DOI: 10.1002/jez.b.22520] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2003] [Revised: 05/16/2013] [Accepted: 06/03/2013] [Indexed: 01/13/2023]
Abstract
Mitochondria are inherited maternally in most metazoans, but in bivalves with Doubly Uniparental Inheritance (DUI) a mitochondrial lineage is transmitted through eggs (F-type), and another through sperm (M-type). In DUI species, a sex-ratio distortion of the progeny was observed: some females produce a female-biased offspring (female-biased family), others a male-biased progeny (male-biased family), and others a 50:50 sex-ratio. A peculiar segregation pattern of M-type mitochondria in DUI organisms appears to be correlated with the sex bias of these families. According to a proposed model for the inheritance of M-type mitochondria in DUI, the transmission of sperm mitochondria is controlled by three nuclear genes, named W, X, and Z. An additional S gene with different dosage effect would be involved in sex determination. In this study, we analyzed structure and localization of three transcripts (psa, birc, and anubl1) with specific sex and family biases in the Manila clam Ruditapes philippinarum. In situ hybridization confirmed the localization of these transcripts in gametogenic cells. In other animals, homologs of these genes are involved in reproduction and ubiquitination. We hypothesized that these genes may have a role in sex determination and could also be responsible for the maintenance/degradation of spermatozoon mitochondria during embryo development of the DUI species R. philippinarum, so that we propose them as candidate factors of the W/X/Z/S system.
Collapse
Affiliation(s)
- Liliana Milani
- Dipartimento di Scienze Biologiche, Geologiche ed Ambientali, University of Bologna, Bologna, Italy
| | | | | | | |
Collapse
|
18
|
Charrier A, Lelièvre E, Limami AM, Planchet E. Medicago truncatula stress associated protein 1 gene (MtSAP1) overexpression confers tolerance to abiotic stress and impacts proline accumulation in transgenic tobacco. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:874-7. [PMID: 23399404 DOI: 10.1016/j.jplph.2013.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 01/11/2013] [Accepted: 01/12/2013] [Indexed: 06/01/2023]
Abstract
Stress associated proteins (SAP) have been already reported to play a role in tolerance acquisition of some abiotic stresses. In the present study, the role of MtSAP1 (Medicago truncatula) in tolerance to temperature, osmotic and salt stresses has been studied in tobacco transgenic seedlings. Compared to wild type, MtSAP1 overexpressors were less affected in their growth and development under all tested stress conditions. These results confirm that MtSAP1 is involved in the response processes to various abiotic constraints. In parallel, we have performed studies on an eventual link between MtSAP1 overexpression and proline, a major player in stress response. In an interesting way, the results for the transgenic lines did not show any increase of proline content under osmotic and salt stress, contrary to the WT which usually accumulated proline in response to stress. These data strongly suggest that MtSAP1 is not involved in signaling pathway responsible for the proline accumulation in stress conditions. This could be due to the fact that the overexpression of MtSAP1 provides sufficient tolerance to seedlings to cope with stress without requiring the free proline action. Beyond that, the processes by which the MtSAP1 overexpression lead to the suppression of proline accumulation will be discussed in relation with data from our previous study involving nitric oxide.
Collapse
Affiliation(s)
- Aurélie Charrier
- University of Angers, Institut de Recherche en Horticulture et Semences UMR 1345, SFR 4207 QUASAV, 2 Bd Lavoisier, F-49045 Angers, France
| | | | | | | |
Collapse
|
19
|
Giri J, Dansana PK, Kothari KS, Sharma G, Vij S, Tyagi AK. SAPs as novel regulators of abiotic stress response in plants. Bioessays 2013; 35:639-48. [PMID: 23640876 DOI: 10.1002/bies.201200181] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Stress associated proteins (SAPs), novel A20/AN1 zinc-finger domain-containing proteins, are fast emerging as potential candidates for biotechnological approaches in order to improve abiotic stress tolerance in plants - the ultimate aim of which is crop-yield protection. Until relatively recently, such proteins had only been identified in humans, where they had been shown to be key regulators of innate immunity. Their phylogenetic relationship and recruitment of diverse protein domains reflect an architectural and mechanistic diversity. Emerging evidence suggests that SAPs may act as ubiquitin ligase, redox sensor, and regulator of gene expression during stress. Here, we evaluate the new knowledge on SAPs with a view to understand their mechanism of action. Furthermore, we set an agenda for investigating hitherto unexplored roles of these proteins.
Collapse
Affiliation(s)
- Jitender Giri
- National Institute of Plant Genome Research, New Delhi, India
| | | | | | | | | | | |
Collapse
|
20
|
Charrier A, Planchet E, Cerveau D, Gimeno-Gilles C, Verdu I, Limami AM, Lelièvre E. Overexpression of a Medicago truncatula stress-associated protein gene (MtSAP1) leads to nitric oxide accumulation and confers osmotic and salt stress tolerance in transgenic tobacco. PLANTA 2012; 236:567-77. [PMID: 22476292 DOI: 10.1007/s00425-012-1635-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 03/23/2012] [Indexed: 05/31/2023]
Abstract
The impact of Medicago truncatula stress-associated protein gene (MtSAP1) overexpression has been investigated in Nicotiana tabacum transgenic seedlings. Under optimal conditions, transgenic lines overexpressing MtSAP1 revealed better plant development and higher chlorophyll content as compared to wild type seedlings. Interestingly, transgenic lines showed a stronger accumulation of nitric oxide (NO), a signaling molecule involved in growth and development processes. This NO production seemed to be partially nitrate reductase dependent. Due to the fact that NO has been also reported to play a role in tolerance acquisition of plants to abiotic stresses, the responses of MtSAP1 overexpressors to osmotic and salt stress have been studied. Compared to the wild type, transgenic lines were less affected in their growth and development. Moreover, NO content in MtSAP1 overexpressors was always higher than that detected in wild seedlings under stress conditions. It seems that this better tolerance induced by MtSAP1 overexpression could be associated with this higher NO production that would enable seedlings to reach a high protection level to prepare them to cope with abiotic stresses.
Collapse
Affiliation(s)
- Aurélie Charrier
- University of Angers, UMR 1345 Research Institute of Horticulture and Seeds (INRA, Agrocampus-Ouest, University of Angers), SFR 4207 Quasav, 2 Bd Lavoisier, 49045, Angers cedex, France
| | | | | | | | | | | | | |
Collapse
|
21
|
Identification and characterization of a salt stress-inducible zinc finger protein from Festuca arundinacea. BMC Res Notes 2012; 5:66. [PMID: 22272737 PMCID: PMC3305619 DOI: 10.1186/1756-0500-5-66] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 01/24/2012] [Indexed: 11/21/2022] Open
Abstract
Background Increased biotic and abiotic plant stresses due to climate change together with an expected global human population of over 9 billion by 2050 intensifies the demand for agricultural production on marginal lands. Soil salinity is one of the major abiotic stresses responsible for reduced crop productivity worldwide and the salinization of arable land has dramatically increased over the last few decades. Consequently, as land becomes less amenable for conventional agriculture, plants grown on marginal soils will be exposed to higher levels of soil salinity. Forage grasses are a critical component of feed used in livestock production worldwide, with many of these same species of grasses being utilized for lawns, erosion prevention, and recreation. Consequently, it is important to develop a better understanding of salt tolerance in forage and related grass species. Findings A gene encoding a ZnF protein was identified during the analysis of a salt-stress suppression subtractive hybridization (SSH) expression library from the forage grass species Festuca arundinacea. The expression pattern of FaZnF was compared to that of the well characterized gene for delta 1-pyrroline-5-carboxylate synthetase (P5CS), a key enzyme in proline biosynthesis, which was also identified in the salt-stress SSH library. The FaZnF and P5CS genes were both up-regulated in response to salt and drought stresses suggesting a role in dehydration stress. FaZnF was also up-regulated in response to heat and wounding, suggesting that it might have a more general function in multiple abiotic stress responses. Additionally, potential downstream targets of FaZnF (a MAPK [Mitogen-Activated Protein Kinase], GST [Glutathione-S-Transferase] and lipoxygenase L2) were found to be up-regulated in calli overexpressing FaZnF when compared to control cell lines. Conclusions This work provides evidence that FaZnF is an AN1/A20 zinc finger protein that is involved in the regulation of at least two pathways initiated by the salt stress response, thus furthering our understanding of the mechanisms of cellular action during a stress that is applicable to commercial crops worldwide.
Collapse
|
22
|
King ML, Messitt TJ, Mowry KL. Putting RNAs in the right place at the right time: RNA localization in the frog oocyte. Biol Cell 2012; 97:19-33. [PMID: 15601255 DOI: 10.1042/bc20040067] [Citation(s) in RCA: 243] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Localization of maternal mRNAs in many developing organisms provides the basis for both initial polarity during oogenesis and patterning during embryogenesis. Prominent examples of this phenomenon are found in Xenopus laevis, where localized maternal mRNAs generate developmental polarity along the animal/vegetal axis. Targeting of mRNA molecules to specific subcellular regions is a fundamental mechanism for spatial regulation of gene expression, and considerable progress has been made in defining the underlying molecular pathways.
Collapse
Affiliation(s)
- Mary Lou King
- Department of Cell Biology and Anatomy, University of Miami School of Medicine, 1011 NW 15th St., Miami, FL 33136, USA.
| | | | | |
Collapse
|
23
|
Otake S, Endo D, Park MK. Molecular characterization of two isoforms of ZFAND3 cDNA from the Japanese quail and the leopard gecko, and different expression patterns between testis and ovary. Gene 2011; 488:23-34. [PMID: 21914466 DOI: 10.1016/j.gene.2011.08.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 08/19/2011] [Accepted: 08/26/2011] [Indexed: 01/08/2023]
Abstract
Zing finger AN1-type domain 3 (ZFAND3), also known as testis expressed sequence 27 (Tex27), is a gene found in the mouse testis, but its physiological function is unknown. We identified the full-length sequences of two isoforms (short and long) of ZFAND3 cDNA from Japanese quail and leopard gecko. This is the first cloning of avian and reptilian ZFAND3 cDNA. The two isoforms are generated by alternative polyadenylation in the 3'UTR and have the same ORF sequences encoding identical proteins. There were highly conserved regions in the 3'UTR of the long form near the polyadenylation sites from mammals to amphibians, suggesting that the features for determining the stability of mRNA or translation efficiency differ between isoforms. The deduced amino acid sequence of ZFAND3 has two putative zinc finger domains, an A20-like zinc finger domain at the N-terminal and an AN1-like zinc finger domain at the C-terminal. Sequence analysis revealed an additional exon in the genomic structures of the avian and reptilian ZFAND3 genes which is not present in mammals, amphibians, or fish, and this exon produces additional amino acid residues in the A20-like zinc finger domain. Expression analysis in Japanese quail revealed that the expression level of ZFAND3 mRNA was high in not only the testis but also the ovary, and ZFAND3 mRNA was expressed in both spermatides of the testis and oocytes of the ovary. While the short form mRNA was mainly expressed in the testis, the expression level of the long form mRNA was high in the ovary. These results suggest that ZFAND3 has physiological functions related to germ cell maturation and regulatory mechanisms that differ between the testis and ovary.
Collapse
Affiliation(s)
- Shigeo Otake
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
24
|
Burroughs AM, Iyer LM, Aravind L. Functional diversification of the RING finger and other binuclear treble clef domains in prokaryotes and the early evolution of the ubiquitin system. MOLECULAR BIOSYSTEMS 2011; 7:2261-77. [PMID: 21547297 PMCID: PMC5938088 DOI: 10.1039/c1mb05061c] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent studies point to a diverse assemblage of prokaryotic cognates of the eukaryotic ubiquitin (Ub) system. These systems span an entire spectrum, ranging from those catalyzing cofactor and amino acid biosynthesis, with only adenylating E1-like enzymes and ubiquitin-like proteins (Ubls), to those that are closer to eukaryotic systems by virtue of possessing E2 enzymes. Until recently E3 enzymes were unknown in such prokaryotic systems. Using contextual information from comparative genomics, we uncover a diverse group of RING finger E3s in prokaryotes that are likely to function with E1s, E2s, JAB domain peptidases and Ubls. These E1s, E2s and RING fingers suggest that features hitherto believed to be unique to eukaryotic versions of these proteins emerged progressively in such prokaryotic systems. These include the specific configuration of residues associated with oxyanion-hole formation in E2s and the C-terminal UFD in the E1 enzyme, which presents the E2 to its active site. Our study suggests for the first time that YukD-like Ubls might be conjugated by some of these systems in a manner similar to eukaryotic Ubls. We also show that prokaryotic RING fingers possess considerable functional diversity and that not all of them are involved in Ub-related functions. In eukaryotes, other than RING fingers, a number of distinct binuclear (chelating two Zn atoms) and mononuclear (chelating one zinc atom) treble clef domains are involved in Ub-related functions. Through detailed structural analysis we delineated the higher order relationships and interaction modes of binuclear treble clef domains. This indicated that the FYVE domain acquired the binuclear state independently of the other binuclear forms and that different treble clef domains have convergently acquired Ub-related functions independently of the RING finger. Among these, we uncover evidence for notable prokaryotic radiations of the ZF-UBP, B-box, AN1 and LIM clades of treble clef domains and present contextual evidence to support their role in functions unrelated to the Ub-system in prokaryotes. In particular, we show that bacterial ZF-UBP domains are part of a novel cyclic nucleotide-dependent redox signaling system, whereas prokaryotic B-box, AN1 and LIM domains have related functions as partners of diverse membrane-associated peptidases in processing proteins. This information, in conjunction with structural analysis, suggests that these treble clef domains might have been independently recruited to the eukaryotic Ub-system due to an ancient conserved mode of interaction with peptides.
Collapse
Affiliation(s)
- A Maxwell Burroughs
- Omics Science Center, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama-shi, 230-0045 Kanagawa, Japan
| | | | | |
Collapse
|
25
|
Dixit AR, Dhankher OP. A novel stress-associated protein 'AtSAP10' from Arabidopsis thaliana confers tolerance to nickel, manganese, zinc, and high temperature stress. PLoS One 2011; 6:e20921. [PMID: 21695274 PMCID: PMC3111467 DOI: 10.1371/journal.pone.0020921] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 05/16/2011] [Indexed: 11/18/2022] Open
Abstract
We describe here the functional characterization of a novel AtSAP10, a member of the Stress Associated Protein (SAP) gene family, from Arabidopsis thaliana ecotype Columbia. AtSAP10 contains an A20 and AN1 zinc-finger domain at the N- and C-terminal, respectively. Arabidopsis SAP10 showed differential regulation by various abiotic stresses such as heavy metals and metalloids (Ni, Cd, Mn, Zn, and As), high and low temperatures, cold, and ABA. Overexpression of AtSAP10 in Arabidopsis conferred strong tolerance to heavy metals such as Ni, Mn, and Zn and to high temperature stress. AtSAP10 transgenic plants under these stress conditions grew green and healthy, attained several-fold more biomass, and had longer roots as compared to wild type plants. Further, while these transgenic plants accumulated significantly greater amounts of Ni and Mn in both shoots and root tissues, there was no significant difference in the accumulation of Zn. AtSAP10 promoter-GUS fusion studies revealed a root and floral organ-specific expression of AtSAP10. Overexpression of AtSAP10-GFP fusion protein showed the localization in both nucleus and cytoplasm. Taken together, these results showed that AtSAP10 is a potentially useful candidate gene for engineering tolerance to heavy metals and to abiotic stress in cultivated plants.
Collapse
Affiliation(s)
- Anirudha R. Dixit
- Department of Plant, Soil, and Insect Sciences, and Plant Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Om Parkash Dhankher
- Department of Plant, Soil, and Insect Sciences, and Plant Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
26
|
Gimeno-Gilles C, Gervais ML, Planchet E, Satour P, Limami AM, Lelievre E. A stress-associated protein containing A20/AN1 zing-finger domains expressed in Medicago truncatula seeds. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:303-10. [PMID: 21296585 DOI: 10.1016/j.plaphy.2011.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 12/16/2010] [Accepted: 01/02/2011] [Indexed: 05/01/2023]
Abstract
MtSAP1 (Medicago truncatula stress-associated protein 1) was revealed as a down-regulated gene by suppressive subtractive hybridization between two mRNA populations of embryo axes harvested before and after radicle emergence. MtSAP1 is the first gene encoding a SAP with A20 and AN1 zinc-finger domains characterized in M. truncatula. MtSAP1 protein shares 54% and 62% homology with AtSAP7 (Arabidopsis thaliana) and OsiSAP8 (Oryza sativa) respectively, with in particular a strong homology in the A20 and AN1 conserved domains. MtSAP1 gene expression increased in the embryos during the acquisition of tolerance to desiccation, reached its maximum in dry seed and decreased dramatically during the first hours of imbibition. Abiotic stresses (cold and hypoxia), abscisic acid and desiccation treatments induced MtSAP1 gene expression and protein accumulation in embryo axis, while mild drought stress did not affect significantly its expression. This profile of expression along with the presence of anaerobic response elements and ABRE sequences in the upstream region of the gene is consistent with a role of MtSAP1 in the tolerance of low oxygen availability and desiccation during late stages of seed maturation. Silencing of MtSAP1 by RNA interference (RNAi) showed that the function of the encoded protein is required for adequate accumulation of storage globulin proteins, vicilin and legumin, and for the development of embryos able to achieve successful germination.
Collapse
Affiliation(s)
- Christine Gimeno-Gilles
- University of Angers, UMR-1191 Physiologie Moléculaire des Semences, IFR 149 Quasav, 2 Boulevard Lavoisier, Angers Cedex 01, France
| | | | | | | | | | | |
Collapse
|
27
|
Ben Saad R, Zouari N, Ben Ramdhan W, Azaza J, Meynard D, Guiderdoni E, Hassairi A. Improved drought and salt stress tolerance in transgenic tobacco overexpressing a novel A20/AN1 zinc-finger "AlSAP" gene isolated from the halophyte grass Aeluropus littoralis. PLANT MOLECULAR BIOLOGY 2010; 72:171-90. [PMID: 19838809 DOI: 10.1007/s11103-009-9560-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 10/05/2009] [Indexed: 05/11/2023]
Abstract
We describe here the isolation of a novel gene, designated AlSAP, from A. littoralis in a first step to exploit the potential of this halophyte grass as a genetic resource to improve salt and drought tolerance in plants and, particularly, in cereals. The Aeluropus genome contains a single AlSAP gene which has an intron at its 5'UTR. Sequence homology analysis showed that the AlSAP protein is characterized by the presence of two conserved zinc-finger domains A20 and AN1. AlSAP is induced not only by various abiotic stresses such as salt, osmotic, heat and cold but, also by abscisic acid (ABA) and salicylic acid (SA). Tobacco plants expressing the AlSAP gene under the control of the duplicated CaMV35S promoter exhibited an enhanced tolerance to abiotic stresses such as salinity (350 mM NaCl), drought (soil Relative Water Content (RWC) = 25%), heat (55 degrees C for 2.5 h) and freezing (-20 degrees C for 3 h). Moreover, under high salt and drought conditions, the transgenic plants were able to complete their life cycle and to produce viable seeds while the wild-type plants died at the vegetative stage. Measurements of the leaf RWC and of the root and leaf endogenous Na(+) and K(+) levels in AlSAP transgenic lines compared to wild-type tobacco, showed an evident lower water loss rate and a higher Na(+) accumulation in senescent-basal leaves, respectively. Finally, we found that the steady state levels of transcripts of eight stress-related genes were higher in AlSAP transgenic lines than in wild-type tobacco. Taken together, these results show that AlSAP is a potentially useful candidate gene for engineering drought and salt tolerance in cultivated plants.
Collapse
Affiliation(s)
- Rania Ben Saad
- Centre of Biotechnology of Sfax, BP1117, 3018, Sfax, Tunisia
| | | | | | | | | | | | | |
Collapse
|
28
|
Grabbe C, Dikic I. Functional Roles of Ubiquitin-Like Domain (ULD) and Ubiquitin-Binding Domain (UBD) Containing Proteins. Chem Rev 2009; 109:1481-94. [DOI: 10.1021/cr800413p] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Caroline Grabbe
- Institute of Biochemistry II and Cluster of Excellence Macromolecular Complexes, Goethe University Frankfurt am Main, Theodor-Stern-Kai 7, D-60590 Frankfurt (Main), Germany, Mediterranean Institute for Life Sciences, 21000 Split, Croatia, and Department of Immunology, School of Medicine, University of Split, Soltanska 2, 21 000 Split, Croatia
| | - Ivan Dikic
- Institute of Biochemistry II and Cluster of Excellence Macromolecular Complexes, Goethe University Frankfurt am Main, Theodor-Stern-Kai 7, D-60590 Frankfurt (Main), Germany, Mediterranean Institute for Life Sciences, 21000 Split, Croatia, and Department of Immunology, School of Medicine, University of Split, Soltanska 2, 21 000 Split, Croatia
| |
Collapse
|
29
|
Breeze E, Harrison E, Page T, Warner N, Shen C, Zhang C, Buchanan-Wollaston V. Transcriptional regulation of plant senescence: from functional genomics to systems biology. PLANT BIOLOGY (STUTTGART, GERMANY) 2008; 10 Suppl 1:99-109. [PMID: 18721315 DOI: 10.1111/j.1438-8677.2008.00076.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Leaf senescence is an active process that involves the increased expression of many hundreds of genes. Many putative transcription factors show enhanced transcription during leaf senescence in Arabidopsis and functional analysis of these should help to indicate their role in controlling gene expression during leaf senescence. In this paper, we describe the analysis of knockout insertion mutants in two different senescence-enhanced genes, one encodes a heat shock transcription factor and the other a zinc finger protein. Plants mutated in these genes show accelerated leaf senescence and reduced tolerance to drought stress, indicating that expression of these genes during senescence has a protective role to maintain viability during this essential developmental process. Analysis of gene expression changes in both mutants compared to the wild-type plants indicates an increased rate of senescence but does not show clearly the pathway that is dependent on these genes for expression. The complexities of signalling networks in plant stress and the plasticity of plant responses mean that the direct consequences of mutation are very difficult to define. The usefulness of this type of approach to address the burning question of how senescence is regulated is discussed, and an alternative approach aimed at a more global analysis of gene regulation using systems biology methods is described.
Collapse
Affiliation(s)
- E Breeze
- Warwick HRI, University of Warwick, Wellesbourne, Warwick, UK
| | | | | | | | | | | | | |
Collapse
|
30
|
Kanneganti V, Gupta AK. Overexpression of OsiSAP8, a member of stress associated protein (SAP) gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice. PLANT MOLECULAR BIOLOGY 2008; 66:445-62. [PMID: 18205020 DOI: 10.1007/s11103-007-9284-2] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Accepted: 12/21/2007] [Indexed: 05/02/2023]
Abstract
We describe here the isolation and characterization of OsiSAP8, a member of stress Associated protein (SAP) gene family from rice characterized by the presence of A20 and AN1 type Zinc finger domains. OsiSAP8 is a multiple stress inducible gene, induced by various stresses, namely heat, cold, salt, desiccation, submergence, wounding, heavy metals as well as stress hormone Abscisic acid. OsiSAP8 protein fused to GFP was localized towards the periphery of the cells in the epidermal cells of infiltrated Nicotiana benthamiana leaves. Yeast two hybrid analysis revealed that A20 and AN1 type zinc-finger domains of OsiSAP8 interact with each other. Overexpression of the gene in both transgenic tobacco and rice conferred tolerance to salt, drought and cold stress at seed germination/seedling stage as reflected by percentage of germination and gain in fresh weight after stress recovery. Transgenic rice plants were tolerant to salt and drought during anthesis stage without any yield penalty as compared to unstressed transgenic plants.
Collapse
Affiliation(s)
- Vydehi Kanneganti
- Department of Plant Biotechnology, Madurai Kamaraj University, Madurai, 625021, TamilNadu, India
| | | |
Collapse
|
31
|
Godard P, Urrestarazu A, Vissers S, Kontos K, Bontempi G, van Helden J, André B. Effect of 21 different nitrogen sources on global gene expression in the yeast Saccharomyces cerevisiae. Mol Cell Biol 2007; 27:3065-86. [PMID: 17308034 PMCID: PMC1899933 DOI: 10.1128/mcb.01084-06] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 07/24/2006] [Accepted: 01/16/2007] [Indexed: 11/20/2022] Open
Abstract
We compared the transcriptomes of Saccharomyces cerevisiae cells growing under steady-state conditions on 21 unique sources of nitrogen. We found 506 genes differentially regulated by nitrogen and estimated the activation degrees of all identified nitrogen-responding transcriptional controls according to the nitrogen source. One main group of nitrogenous compounds supports fast growth and a highly active nitrogen catabolite repression (NCR) control. Catabolism of these compounds typically yields carbon derivatives directly assimilable by a cell's metabolism. Another group of nitrogen compounds supports slower growth, is associated with excretion by cells of nonmetabolizable carbon compounds such as fusel oils, and is characterized by activation of the general control of amino acid biosynthesis (GAAC). Furthermore, NCR and GAAC appear interlinked, since expression of the GCN4 gene encoding the transcription factor that mediates GAAC is subject to NCR. We also observed that several transcriptional-regulation systems are active under a wider range of nitrogen supply conditions than anticipated. Other transcriptional-regulation systems acting on genes not involved in nitrogen metabolism, e.g., the pleiotropic-drug resistance and the unfolded-protein response systems, also respond to nitrogen. We have completed the lists of target genes of several nitrogen-sensitive regulons and have used sequence comparison tools to propose functions for about 20 orphan genes. Similar studies conducted for other nutrients should provide a more complete view of alternative metabolic pathways in yeast and contribute to the attribution of functions to many other orphan genes.
Collapse
Affiliation(s)
- Patrice Godard
- Physiologie Moléculaire de la Cellule, IBMM, Université Libre de Bruxelles, Rue des Pr. Jeener et Brachet 12, 6041 Gosselies, Belgium
| | | | | | | | | | | | | |
Collapse
|
32
|
Vij S, Tyagi AK. Genome-wide analysis of the stress associated protein (SAP) gene family containing A20/AN1 zinc-finger(s) in rice and their phylogenetic relationship with Arabidopsis. Mol Genet Genomics 2006; 276:565-75. [PMID: 17033811 DOI: 10.1007/s00438-006-0165-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Accepted: 08/31/2006] [Indexed: 10/24/2022]
Abstract
Proteins with the A20/AN1 zinc-finger domain are present in all eukaryotes and are well characterized in animals, but little is known about their function in plants. Earlier, we have identified an A20/AN1 zinc-finger containing stress associated protein 1 gene (SAP1) in rice and validated its function in abiotic stress tolerance. In this study, genome-wide survey of genes encoding proteins possessing A20/AN1 zinc-finger, named SAP gene family, has been carried out in rice and Arabidopsis. The genomic distribution and gene architecture as well as domain structure and phylogenetic relationship of encoded proteins numbering 18 and 14 in rice and Arabidopsis, respectively, have been studied. Expression analysis of the rice SAP family was done to investigate their response under abiotic stress conditions. All the genes were inducible by one or the other abiotic stresses indicating that the OsSAP gene family is an important component of stress response in rice. Manipulation of their expression and identification of their superior alleles should help confer stress tolerance in target crops.
Collapse
Affiliation(s)
- Shubha Vij
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | | |
Collapse
|
33
|
Hishiya A, Ikeda K, Watanabe K. A RANKL-inducible gene Znf216 in osteoclast differentiation. J Recept Signal Transduct Res 2005; 25:199-216. [PMID: 16194934 DOI: 10.1080/10799890500240781] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Osteoclasts possess catabolic activity in mineralized tissues and are involved in bone remodeling coordinating with osteoblasts. Although the pathway using receptor and activator of NF-kappa B (RANK) and its ligand, RANKL, is known to be essential for osteoclast differentiation, their precise mechanisms are not fully understood. Using DNA microarray technology, we searched for genes that were up-regulated after RANKL stimulation in the macrophage cell line, RAW264.7 cells. A gene, Znf216, which encodes a zinc-finger protein, was detected among those genes up-regulated after RANKL stimulation. Expression of Znf216 was also induced by other cytokines such as TNFalpha and IL-1beta. Although ectopic expression of full-length ZNF216 abrogated osteoclast differentiation, its truncated forms accelerated it. No significant inhibitory effect on the NF-kappa B pathway was observed, however. These results suggest that ZNF216 is a potent inhibitory factor for osteoclast differentiation and that the mechanism is unlikely due to direct attenuation of the NF-kappa B pathway.
Collapse
Affiliation(s)
- Akinori Hishiya
- Department of Bone and Joint Disease, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | | | | |
Collapse
|
34
|
Hori T, Taguchi Y, Uesugi S, Kurihara Y. The RNA ligands for mouse proline-rich RNA-binding protein (mouse Prrp) contain two consensus sequences in separate loop structure. Nucleic Acids Res 2005; 33:190-200. [PMID: 15647502 PMCID: PMC546141 DOI: 10.1093/nar/gki153] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mouse proline-rich RNA-binding protein (mPrrp) is a mouse ortholog of Xenopus Prrp, which binds to a vegetal localization element (VLE) in the 3′-untranslated region (3′-UTR) of Vg1 mRNA and is expected to be involved in the transport and/or localization of Vg1 mRNA to the vegetal cortex of oocytes. In mouse testis, mPrrp protein is abundantly expressed in the nuclei of pachytene spermatocytes and round spermatids, and shifts to the cytoplasm in elongating spermatids. To gain an insight into the function of mPrrp in male germ cells, we performed in vitro RNA selection (SELEX) to determine the RNA ligand sequence of mPrrp. This analysis revealed that many of the selected clones contained both of two conserved elements, AAAUAG and GU1–3AG. RNA-binding study on deletion mutants and secondary structure analyses of the selected RNA revealed that a two-loop structure containing the conserved elements is required for high-affinity binding to mPrrp. Furthermore, we found that the target mRNAs of Xenopus Prrp contain intact AAAUAG and GU1–3AG sequences in the 3′-UTR, suggesting that these binding sequences are shared by Prrps of Xenopus and mouse.
Collapse
Affiliation(s)
| | | | | | - Yasuyuki Kurihara
- To whom correspondence should be addressed. Tel/Fax: +81 45 339 4263;
| |
Collapse
|
35
|
Mukhopadhyay A, Vij S, Tyagi AK. Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proc Natl Acad Sci U S A 2004; 101:6309-14. [PMID: 15079051 PMCID: PMC395965 DOI: 10.1073/pnas.0401572101] [Citation(s) in RCA: 260] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2003] [Indexed: 01/14/2023] Open
Abstract
Stress perception and signal transduction leading to tolerance involve a complex interplay of different gene products. We describe here the isolation and characterization of an intronless gene (OSISAP1) from rice encoding a zinc-finger protein that is induced after different types of stresses, namely cold, desiccation, salt, submergence, and heavy metals as well as injury. The gene is also induced by stress hormone abscisic acid. Overexpression of the gene in transgenic tobacco conferred tolerance to cold, dehydration, and salt stress at the seed-germination/seedling stage as reflected by the percentage of germination/green seedlings, the fresh weight of seedlings, and their developmental pattern. Thus, OSISAP1 seems to be an important determinant of stress response in plants.
Collapse
Affiliation(s)
- Arnab Mukhopadhyay
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110 021, India
| | | | | |
Collapse
|
36
|
Huang J, Teng L, Li L, Liu T, Li L, Chen D, Xu LG, Zhai Z, Shu HB. ZNF216 Is an A20-like and IκB Kinase γ-Interacting Inhibitor of NFκB Activation. J Biol Chem 2004; 279:16847-53. [PMID: 14754897 DOI: 10.1074/jbc.m309491200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcription factor NFkappaB plays important roles in immune regulation, inflammatory responses, and anti-apoptosis. Activation of NFkappaB requires the activity of IkappaB kinase, a kinase complex that contains two catalytic subunits, IKKalpha and IKKbeta, and a non-enzymatic regulatory subunit, IKKgamma. To understand how NFkappaB activation is regulated at the IKKgamma level, we searched for IKKgamma-interacting proteins by the yeast two-hybrid system. This search identified ZNF216, a zinc finger protein with unknown biological functions. ZNF216 contains an A20-like zinc finger domain (ZnF-A20) at its N terminus and an AN1-like domain (ZnF-AN1) at its C terminus. Similar to A20, ZNF216 interacted with IKKgamma, RIP, and TRAF6 in co-immunoprecipitation experiments. Domain mapping experiments indicated that the ZnF-A20 domain was responsible for interacting with IKKgamma and RIP, whereas the ZnF-AN1 domain interacted with TRAF6. ZNF216 inhibited NFkappaB activation triggered by overexpression of RIP and TRAF6 but not of p65. ZNF216 also inhibited tumor necrosis factor (TNF)-, interleukin-1-, and Toll-like receptor 4-induced NFkappaB activation in a dose-dependent manner. The ZnF-A20 domain was essential for ZNF216-mediated inhibition of NFkappaB activation. The ZnF-A20 and ZnF-AN1 domains of ZNF216 could interact with each other, whereas ZNF216 could form homo-oligomers or hetero-oligomers with A20. Unlike A20, which inhibits TNF-induced apoptosis, overexpression of ZNF216 sensitized cells to TNF-induced apoptosis. Our findings suggest that ZNF216 and A20 have redundant and distinct roles in regulating NFkappaB activation and apoptosis.
Collapse
Affiliation(s)
- Jun Huang
- Department of Cell Biology and Genetics, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Henry JJ, Carinato ME, Schaefer JJ, Wolfe AD, Walter BE, Perry KJ, Elbl TN. Characterizing gene expression during lens formation in Xenopus laevis: evaluating the model for embryonic lens induction. Dev Dyn 2002; 224:168-85. [PMID: 12112470 DOI: 10.1002/dvdy.10097] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Few directed searches have been undertaken to identify the genes involved in vertebrate lens formation. In the frog Xenopus, the larval cornea can undergo a process of transdifferentiation to form a new lens once the original lens is removed. Based on preliminary evidence, we have shown that this process shares many elements of a common molecular/genetic pathway to that involved in embryonic lens development. A subtracted cDNA library, enriched for genes expressed during cornea-lens transdifferentiation, was prepared. The similarities/identities of specific clones isolated from the subtracted cDNA library define an expression profile of cells undergoing cornea-lens transdifferentiation ("lens regeneration") and corneal wound healing (the latter representing a consequence of the surgery required to trigger transdifferentiation). Screens were undertaken to search for genes expressed during both transdifferentiation and embryonic lens development. Significantly, new genes were recovered that are also expressed during embryonic lens development. The expression of these genes, as well as others known to be expressed during embryonic development in Xenopus, can be correlated with different periods of embryonic lens induction and development, in an attempt to define these events in a molecular context. This information is considered in light of our current working model of embryonic lens induction, in which specific tissue properties and phases of induction have been previously defined in an experimental context. Expression data reveal the existence of further levels of complexity in this process and suggests that individual phases of lens induction and specific tissue properties are not strictly characterized or defined by expression of individual genes.
Collapse
Affiliation(s)
- Jonathan J Henry
- Department of Cell and Structural Biology, University of Illinois, Urbana, Illinois 61801, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Kloc M, Bilinski S, Chan AP, Allen LH, Zearfoss NR, Etkin LD. RNA localization and germ cell determination in Xenopus. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 203:63-91. [PMID: 11131528 DOI: 10.1016/s0074-7696(01)03004-2] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
In many organisms the proper development of the embryo depends on the asymmetrical distribution of maternal RNAs and proteins in the egg. Although the Xenopus oocyte is radially symmetrical it contains distinct populations of maternal RNAs that are localized either in the animal or vegetal pole. The process of localization of RNAs in Xenopus oocytes occurs during the long period of oocyte differentiation and growth that is accompanied by the elaboration of oocyte polarity. Some of the vegetally localized RNAs, such as Vg1, VegT, and Xwnt11, are involved in axial patterning and germ layer specification. Others, such as Xdazl and Xcat2, which are located in the germ plasm, are likely to play a role in the specification of germ cell fate. We will discuss the different aspects of RNA localization in Xenopus in the context of the differentiation of the germ cells and the development of the oocyte polarity.
Collapse
Affiliation(s)
- M Kloc
- Department of Molecular Genetics, University of Texas M. D. Anderson Cancer Center, Houston 77030, USA
| | | | | | | | | | | |
Collapse
|
39
|
Tsukahara M, Suemori H, Noguchi S, Ji ZS, Tsunoo H. Novel nucleolar protein, midnolin, is expressed in the mesencephalon during mouse development. Gene 2000; 254:45-55. [PMID: 10974535 DOI: 10.1016/s0378-1119(00)00259-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Using the gene trap method and the selection of embryonic stem cells in vitro, we have identified several novel genes involved in mouse development. The detailed analysis of one of these, named midnolin (midbrain nucleolar protein), is reported here. Expression of the midnolin gene is developmentally regulated: it is strongly expressed at the mesencephalon (midbrain) of the embryo in day 12.5 (E12.5) mice. The midnolin encodes a protein of 508 amino acids (aa), which contains a Ubiquitin-like domain. The intracellular distribution of the midnolin was studied by using midnolin-green fluorescent protein (GFP) fusion proteins. Midnolin was found to be localized in the nucleus and nucleolus, but not in the cytoplasm. The nucleolar localization signal was determined to be a 28aa peptide (440-QQKRLRRKARRDARGPYHWTPSRKAGRS-467) located at the C-terminal region of the midnolin. Our results suggest that midnolin is involved in regulation of genes related to neurogenesis in the nucleolus.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- CHO Cells
- Cell Line
- Cloning, Molecular
- Cricetinae
- DNA/chemistry
- DNA/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Embryo, Mammalian/metabolism
- Female
- Gene Expression
- Gene Expression Regulation, Developmental
- Green Fluorescent Proteins
- In Situ Hybridization
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Male
- Mesencephalon/embryology
- Mesencephalon/metabolism
- Mice
- Mice, Inbred C57BL
- Microscopy, Fluorescence
- Molecular Sequence Data
- Nuclear Proteins/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Sequence Analysis, DNA
- Sequence Deletion
- Sequence Homology, Amino Acid
- Tissue Distribution
Collapse
Affiliation(s)
- M Tsukahara
- Bio Signal Pathway Project, Kanagawa Academy of Science and Technology in Meiji Institute of Health Science, 540 Naruda, Odawara-shi, 250-0862, Kanagawa, Japan
| | | | | | | | | |
Collapse
|
40
|
Abstract
Modification of proteins by the covalent attachment of ubiquitin is known to target them for degradation by proteasomes. Several proteins have been discovered recently that are related to ubiquitin or function similarly. Some of these proteins act as modifiers; others bear ubiquitin-like domains embedded in their polypeptide chain but do not form conjugates with cellular proteins. Ubiquitin-like proteins mediate an impressive range of cellular functions, including cell-cycle progression, DNA repair and apoptosis. Recent discoveries endorse the view that, in many cases, the function of the relatives of ubiquitin is linked to the ubiquitin pathway.
Collapse
Affiliation(s)
- S Jentsch
- Dept of Molecular Cell Biology, Max Planck Institute for Biochemistry, Martinsried, Germany
| | | |
Collapse
|
41
|
Carotenuto R, Vaccaro MC, Capriglione T, Petrucci TC, Campanella C. alpha-Spectrin has a stage-specific asymmetrical localization during Xenopus oogenesis. Mol Reprod Dev 2000; 55:229-39. [PMID: 10618663 DOI: 10.1002/(sici)1098-2795(200002)55:2<229::aid-mrd13>3.0.co;2-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Xenopus oocyte organization largely depends upon the cytoskeleton distribution, which is dynamically regulated during oogenesis. An actin-based cytoskeleton is present in the cortex starting from stage 1. At stages 4-6, a complex and polarized cytoskeleton network forms in the cytoplasm. In this paper, we studied the distribution of spectrin, a molecule that has binding sites for several cytoskeletal proteins and is responsible for the determination of regionalized membrane territories. The localization of alpha-spectrin mRNA was analyzed during Xenopus oogenesis by in situ hybridization on both whole mount and sections, utilizing a cDNA probe encoding a portion of Xenopus alpha-spectrin. Furthermore, an antibody against mammalian alpha-spectrin was used to localize the protein. Our results showed a stage-dependent mRNA localization and suggested that spectrin may participate in the formation of specific domains in oocytes at stages 1 and 2 and 4-6. Mol. Reprod. Dev. 55:229-239, 2000.
Collapse
Affiliation(s)
- R Carotenuto
- Dipartimento di Biologia Evolutiva e Comparata, Universitá di Napoli, Napoli, Italy
| | | | | | | | | |
Collapse
|
42
|
Shim S, Yoon CS, Han JK. A novel gene family with a developmentally regulated expression in Xenopus laevis. Biochem Biophys Res Commun 2000; 267:558-64. [PMID: 10631101 DOI: 10.1006/bbrc.1999.1899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We have isolated a new maternal gene called 4G2. 4G2 cDNA encodes a predicted protein of 501 amino acids, and its apparent molecular mass of 61 kDa was determined by SDS-PAGE of 4G2 recombinant protein expressed in E. coli or in vitro translated in rabbit reticulocyte lysate. Amino acid analysis of 4G2 revealed the RGD and LDV motif with a potential cell attachment activity. The open reading frames (ORF) also contained a consensus bipartite nuclear localization signal (NLS). There were number of expressed tag sequences (ESTs) from Drosophila, zebrafish, chicken, mouse, and human origin that encode a high degree of identity to the predicted 4G2 protein, thereby suggesting that 4G2 may constitute a novel gene family whose function has not been elucidated. We also present evidence that 4G2 transcript is maternally synthesized in stage IV oocyte, localized to animal hemisphere of egg, and zygotically reactivated in mid-neurula stage.
Collapse
Affiliation(s)
- S Shim
- Department of Life Science, Pohang University of Science and Technology, San 31 Hyoja-Dong, Pohang, Kyungbuk, 790-784, South Korea
| | | | | |
Collapse
|
43
|
Chan AP, Kloc M, Etkin LD. fatvg encodes a new localized RNA that uses a 25-nucleotide element (FVLE1) to localize to the vegetal cortex of Xenopus oocytes. Development 1999; 126:4943-53. [PMID: 10529413 DOI: 10.1242/dev.126.22.4943] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vegetally localized transcripts have been implicated in a number of important biological functions, including cell fate determination and embryonic patterning. We have isolated a cDNA, fatvg, which encodes a localized maternal transcript that exhibits a localization pattern reminiscent of Vg1 mRNA. fatvg is the homologue of a mammalian gene expressed in adipose tissues. The fatvg transcript, unlike Vg1 which localizes strictly through the Late pathway, also associates with the mitochondrial cloud that is characteristic of the METRO or Early pathway. This suggests that fatvg mRNA may utilize both the METRO and Late pathways to localize to the vegetal cortex during oogenesis. We have dissected the cis-acting localization elements of fatvg mRNA and compared these elements with Vg1 mRNA. Our results indicate that, like most localized RNAs, in a variety of systems, transcripts of fatvg contain localization elements in the 3′UTR. The 3′UTR of fatvg mRNA contains multiple elements that are able to function independently; however, it functions most efficiently when all of the elements are present. We have defined a short 25-nucleotide element that can direct vegetal localization as a single copy. This element differs in sequence from previously described Vg1 localization elements, suggesting that different localization elements are involved in the localization of RNAs through the Late pathway.
Collapse
Affiliation(s)
- A P Chan
- Department of Molecular Genetics, University of Texas, MD Anderson Cancer Center, Houston TX 77030, USA
| | | | | |
Collapse
|
44
|
Sloper-Mould KE, Eyre HJ, Wang XW, Sutherland GR, Baker RT. Characterization and chromosomal localization of USP3, a novel human ubiquitin-specific protease. J Biol Chem 1999; 274:26878-84. [PMID: 10480896 DOI: 10.1074/jbc.274.38.26878] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Conjugation to the small eukaryotic protein ubiquitin can functionally modify or target proteins for degradation by the proteasome. Removal of the ubiquitin modification, or deubiquitination, is performed by ubiquitin-specific proteases and is an important mechanism regulating this pathway. Here we describe a novel human ubiquitin-specific protease, USP3, initially identified as a partial cDNA clone similar to one of two highly conserved sequence regions common to all ubiquitin-specific proteases. We have isolated a complete USP3 cDNA clone containing both of these conserved sequence regions. The USP3 gene appears to be single copy and maps to human chromosome 15q22.3. A USP3 probe detects two mRNA transcripts, one of which corresponds in length to the cDNA. Both are expressed at low levels in all tissues examined, with highest expression in pancreas. The USP3 protein is a functional ubiquitin-specific protease in vitro, and is able to inhibit ubiquitin-dependent degradation of both an N-end Rule substrate and abnormal endogenous proteins in yeast. USP3 is also only the second known ubiquitin-specific protease capable of efficiently cleaving a ubiquitin-proline bond.
Collapse
Affiliation(s)
- K E Sloper-Mould
- Molecular Genetics Group, John Curtin School of Medical Research, Australian National University, G. P. O. Box 334, Canberra, Australian Capital Territory 2601, Australia
| | | | | | | | | |
Collapse
|
45
|
Baker RT, Wang XW, Woollatt E, White JA, Sutherland GR. Identification, functional characterization, and chromosomal localization of USP15, a novel human ubiquitin-specific protease related to the UNP oncoprotein, and a systematic nomenclature for human ubiquitin-specific proteases. Genomics 1999; 59:264-74. [PMID: 10444327 DOI: 10.1006/geno.1999.5879] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have identified a novel gene, USP15, encoding a human ubiquitin-specific protease (USP). The USP15 protein consists of 952 amino acids with a predicted molecular mass of 109.2 kDa and contains the highly conserved Cys and His boxes present in all members of the UBP family of deubiquitinating enzymes. USP15 shares 60.5% sequence identity and 76% sequence similarity with the human homolog (UNP/Unph/USP4) of the mouse Unp proto-oncogene. Recombinant USP15 demonstrated ubiquitin-specific protease activity against engineered linear fusions of ubiquitin to beta-galactosidase and glutathione S-transferase. USP15 can also cleave the ubiquitin-proline bond, a property previously unique to Unp/UNP. Chromosomal mapping by fluorescence in situ hybridization and radiation hybrid analyses localized the USP15 gene to chromosome band 12q14, a different location than that of UNP (3p21.3). Analysis of expressed sequence tag databases reveals evidence of alternate polyadenylation sites in the USP15 gene and also indicates that the gene may possess an exon/intron structure similar to that of the Unp gene, suggesting they have descended from a common ancestor. A systematic nomenclature for the human USPs is proposed.
Collapse
Affiliation(s)
- R T Baker
- Division of Molecular Medicine, Australian National University, Canberra, ACT, 2601, Australia.
| | | | | | | | | |
Collapse
|
46
|
Ponting CP, Aravind L, Schultz J, Bork P, Koonin EV. Eukaryotic signalling domain homologues in archaea and bacteria. Ancient ancestry and horizontal gene transfer. J Mol Biol 1999; 289:729-45. [PMID: 10369758 DOI: 10.1006/jmbi.1999.2827] [Citation(s) in RCA: 243] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phyletic distributions of eukaryotic signalling domains were studied using recently developed sensitive methods for protein sequence analysis, with an emphasis on the detection and accurate enumeration of homologues in bacteria and archaea. A major difference was found between the distributions of enzyme families that are typically found in all three divisions of cellular life and non-enzymatic domain families that are usually eukaryote-specific. Previously undetected bacterial homologues were identified for# plant pathogenesis-related proteins, Pad1, von Willebrand factor type A, src homology 3 and YWTD repeat-containing domains. Comparisons of the domain distributions in eukaryotes and prokaryotes enabled distinctions to be made between the domains originating prior to the last common ancestor of all known life forms and those apparently originating as consequences of horizontal gene transfer events. A number of transfers of signalling domains from eukaryotes to bacteria were confidently identified, in contrast to only a single case of apparent transfer from eukaryotes to archaea.
Collapse
Affiliation(s)
- C P Ponting
- National Center for Biotechnology Information National Library of Medicine, National Institutes of Health, Bldg. 38A, Bethesda, MD, 20894, USA.
| | | | | | | | | |
Collapse
|
47
|
de Luis O, López-Fernández LA, del Mazo J. Tex27, a gene containing a zinc-finger domain, is up-regulated during the haploid stages of spermatogenesis. Exp Cell Res 1999; 249:320-6. [PMID: 10366431 DOI: 10.1006/excr.1999.4482] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Tex27 is a gene encoding a protein containing a zinc-finger domain in the carboxy terminal region and a transactivation domain in the amino terminal region. The Tex27 cDNA was isolated from a subtractive library that was enriched for genes preferentially expressed during the development of the seminiferous epithelium. Northern and in situ hybridization analyses demonstrated that Tex27 is differentially expressed in the testis, showing an increased expression in the germ cells corresponding to postmeiotic stages of spermatogenesis. This expression pattern in testis has been described for other C2H2-type zinc-finger proteins in mouse and human, like CTfin51, Zpf29, Sp1, and Zpf37. RFLP-Southern assays revealed that Tex27 is conserved in mammals. The polypeptide analysis and expression pattern suggest that Tex27 is a potential transcription factor preferentially expressed in postmeiotic cells during mouse spermatogenesis.
Collapse
Affiliation(s)
- O de Luis
- Departamento de Biología Celular y Desarrollo, Centro de Investigaciones Biológicas (CSIC), Velázquez 144, Madrid, 28006, Spain
| | | | | |
Collapse
|
48
|
Abstract
Cytoplasmic localization of mRNA molecules has emerged as a powerful mechanism for generating spatially restricted gene expression. This process is an important contributor to cell polarity in both somatic cells and oocytes, and can provide the basis for patterning during embryonic development. In vertebrates, this phenomenon is perhaps best documented in the frog, Xenopus laevis, where polarity along the animal-vegetal axis coincides with the localization of numerous mRNA molecules. Research over the last several years has made exciting progress toward understanding the molecular mechanisms underlying cytoplasmic mRNA localization.
Collapse
Affiliation(s)
- K L Mowry
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA.
| | | |
Collapse
|
49
|
Goto T, Kinoshita T. Maternal transcripts of mitotic checkpoint gene, Xbub3, are accumulated in the animal blastomeres of Xenopus early embryo. DNA Cell Biol 1999; 18:227-34. [PMID: 10098604 DOI: 10.1089/104454999315448] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Maternally transcribed mRNAs play the important role during early embryogenesis. Especially in patterning, distribution of the maternal transcripts has a causal relation to axis formation in the early embryo. We compared the quantity of mRNAs among four blastomeres of Xenopus 8-cell-stage embryos by the differential display method. A novel gene, Xbub3, was cloned by screening the oocyte cDNA library with an animal blastomere-enriched PCR product. Xbub3 is a homolog of the human mitotic checkpoint gene hBub3. A transcript of Xbub3 was 2940 bp and encoded a predicted protein of 330 amino acids with six WD repeats. Expression of Xbub3 was observed from oocyte to tadpole. Whole-mount in situ hybridization showed that Xbub3 mRNAs were uniformly distributed in the early stages of oogenesis but gradually localized to the animal hemisphere, especially in the perinuclear cytoplasm of full-grown oocytes. In the cleavage-stage embryos, the maternal transcripts of Xbub3 were recruited into each blastomere, associating closely with chromosomes. Zygotic expression of Xbub3 was widely detected in gastrula ectoderm and was gradually restricted to the central nervous systems, eyes, and branchial arches by the tadpole stage. This evidence contributes to understanding of the regulatory mechanism of the cell cycle and cell differentiation in the early embryo.
Collapse
Affiliation(s)
- T Goto
- Developmental Biology, Faculty of Science, Kwansei Gakuin University, Nishinomiya, Japan
| | | |
Collapse
|
50
|
Rao-Naik C, delaCruz W, Laplaza JM, Tan S, Callis J, Fisher AJ. The rub family of ubiquitin-like proteins. Crystal structure of Arabidopsis rub1 and expression of multiple rubs in Arabidopsis. J Biol Chem 1998; 273:34976-82. [PMID: 9857029 DOI: 10.1074/jbc.273.52.34976] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several proteins with significant identity to ubiquitin have been characterized recently. In contrast to ubiquitin's main role in targeting proteins for degradation, a described function of one family of ubiquitin-related proteins, the Rub family, is to serve as a stable post-translational modification of a complex involved in the G1-to-S cell cycle transition. Rub proteins have been found in animals, plants, and fungi and consist of 76 residues with 52-63% identity to ubiquitin. In this study three different RUB proteins within the plant Arabidopsis are identified; two differ by only 1 amino acid, while the third is only 77.6% identical to the other two. Genes encoding all three are expressed in multiple organs. In addition, we report the crystal structure of higher plant RUB1 at 1.7-A resolution to help elucidate the functional differences between Rub and ubiquitin. RUB1 contains a single globular domain with a flexible COOH-terminal extension. The overall RUB1 structure is very similar to ubiquitin. The majority of the amino acid differences between RUB1 and ubiquitin map to the surface. These changes alter the electrostatic surface potential in two regions and likely confer specificity between ubiquitin and RUB1 and their ubiquitin-activating enzyme (E1) or E1-like activating enzymes.
Collapse
Affiliation(s)
- C Rao-Naik
- Section of Molecular and Cellular Biology, University of California, Davis, California 95616, USA
| | | | | | | | | | | |
Collapse
|