1
|
Li G, Walker MJ, De Oliveira DMP. Vancomycin Resistance in Enterococcus and Staphylococcus aureus. Microorganisms 2022; 11:microorganisms11010024. [PMID: 36677316 PMCID: PMC9866002 DOI: 10.3390/microorganisms11010024] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Enterococcus faecalis, Enterococcus faecium and Staphylococcus aureus are both common commensals and major opportunistic human pathogens. In recent decades, these bacteria have acquired broad resistance to several major classes of antibiotics, including commonly employed glycopeptides. Exemplified by resistance to vancomycin, glycopeptide resistance is mediated through intrinsic gene mutations, and/or transferrable van resistance gene cassette-carrying mobile genetic elements. Here, this review will discuss the epidemiology of vancomycin-resistant Enterococcus and S. aureus in healthcare, community, and agricultural settings, explore vancomycin resistance in the context of van and non-van mediated resistance development and provide insights into alternative therapeutic approaches aimed at treating drug-resistant Enterococcus and S. aureus infections.
Collapse
|
2
|
Raghuram V, Alexander AM, Loo HQ, Petit RA, Goldberg JB, Read TD. Species-Wide Phylogenomics of the Staphylococcus aureus Agr Operon Revealed Convergent Evolution of Frameshift Mutations. Microbiol Spectr 2022; 10:e0133421. [PMID: 35044202 PMCID: PMC8768832 DOI: 10.1128/spectrum.01334-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/03/2022] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus is a prominent nosocomial pathogen that causes several life-threatening diseases, such as pneumonia and bacteremia. S. aureus modulates the expression of its arsenal of virulence factors through sensing and integrating responses to environmental signals. The agr (accessory gene regulator) quorum sensing (QS) system is a major regulator of virulence phenotypes in S. aureus. There are four agr specificity groups each with a different autoinducer peptide sequence encoded by the agrD gene. Although agr is critical for the expression of many toxins, paradoxically, S. aureus strains often have nonfunctional agr activity due to loss-of-function mutations in the four-gene agr operon. To understand patterns in agr variability across S. aureus, we undertook a species-wide genomic investigation. We developed a software tool (AgrVATE; https://github.com/VishnuRaghuram94/AgrVATE) for typing and detecting frameshift mutations in the agr operon. In an analysis of over 40,000 S. aureus genomes, we showed a close association between agr type and S. aureus clonal complex. We also found a strong linkage between agrBDC alleles (encoding the peptidase, autoinducing peptide itself, and peptide sensor, respectively) but not agrA (encoding the response regulator). More than 5% of the genomes were found to have frameshift mutations in the agr operon. While 52% of these frameshifts occurred only once in the entire species, we observed cases where the recurring mutations evolved convergently across different clonal lineages with no evidence of long-term phylogenetic transmission, suggesting that strains with agr frameshifts were evolutionarily short-lived. Overall, genomic analysis of agr operon suggests evolution through multiple processes with functional consequences that are not fully understood. IMPORTANCE Staphylococcus aureus is a globally pervasive pathogen that produces a plethora of toxic molecules that can harm host immune cells. Production of these toxins is mainly controlled by an active agr quorum-sensing system, which senses and responds to bacterial cell density. However, there are many reports of S. aureus strains with genetic changes leading to impaired agr activity that are often found during chronic bloodstream infections and may be associated with increased disease severity. We developed an open-source software called AgrVATE to type agr systems and identify mutations. We used AgrVATE for a species-wide genomic survey of S. aureus, finding that more than 5% of strains in the public database had nonfunctional agr systems. We also provided new insights into the evolution of these genetic mutations in the agr system. Overall, this study contributes to our understanding of a common but relatively understudied means of virulence regulation in S. aureus.
Collapse
Affiliation(s)
- Vishnu Raghuram
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Ashley M. Alexander
- Population Biology, Ecology, and Evolution Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Hui Qi Loo
- Department of Biology, Emory University, Atlanta, Georgia, USA
| | - Robert A. Petit
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Joanna B. Goldberg
- Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Timothy D. Read
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Johnson CN, Sheriff EK, Duerkop BA, Chatterjee A. Let Me Upgrade You: Impact of Mobile Genetic Elements on Enterococcal Adaptation and Evolution. J Bacteriol 2021; 203:e0017721. [PMID: 34370561 PMCID: PMC8508098 DOI: 10.1128/jb.00177-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterococci are Gram-positive bacteria that have evolved to thrive as both commensals and pathogens, largely due to their accumulation of mobile genetic elements via horizontal gene transfer (HGT). Common agents of HGT include plasmids, transposable elements, and temperate bacteriophages. These vehicles of HGT have facilitated the evolution of the enterococci, specifically Enterococcus faecalis and Enterococcus faecium, into multidrug-resistant hospital-acquired pathogens. On the other hand, commensal strains of Enterococcus harbor CRISPR-Cas systems that prevent the acquisition of foreign DNA, restricting the accumulation of mobile genetic elements. In this review, we discuss enterococcal mobile genetic elements by highlighting their contributions to bacterial fitness, examine the impact of CRISPR-Cas on their acquisition, and identify key areas of research that can improve our understanding of enterococcal evolution and ecology.
Collapse
Affiliation(s)
- Cydney N. Johnson
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Emma K. Sheriff
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Breck A. Duerkop
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Anushila Chatterjee
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
4
|
Guffey AA, Loll PJ. Regulation of Resistance in Vancomycin-Resistant Enterococci: The VanRS Two-Component System. Microorganisms 2021; 9:2026. [PMID: 34683347 PMCID: PMC8541618 DOI: 10.3390/microorganisms9102026] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 01/20/2023] Open
Abstract
Vancomycin-resistant enterococci (VRE) are a serious threat to human health, with few treatment options being available. New therapeutics are urgently needed to relieve the health and economic burdens presented by VRE. A potential target for new therapeutics is the VanRS two-component system, which regulates the expression of vancomycin resistance in VRE. VanS is a sensor histidine kinase that detects vancomycin and in turn activates VanR; VanR is a response regulator that, when activated, directs expression of vancomycin-resistance genes. This review of VanRS examines how the expression of vancomycin resistance is regulated, and provides an update on one of the field's most pressing questions: How does VanS sense vancomycin?
Collapse
Affiliation(s)
| | - Patrick J. Loll
- Department of Biochemistry & Molecular Biology, College of Medicine, Drexel University, Philadelphia, PA 19102, USA;
| |
Collapse
|
5
|
Biggel M, Nüesch-Inderbinen M, Raschle S, Stevens MJA, Stephan R. Spread of vancomycin-resistant Enterococcus faecium ST133 in the aquatic environment in Switzerland. J Glob Antimicrob Resist 2021; 27:31-36. [PMID: 34428595 DOI: 10.1016/j.jgar.2021.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVES The global dissemination of vancomycin-resistant enterococci (VRE) has become a serious public-health concern. Although outbreaks are typically caused by nosocomial transmission, contaminated food and water may contribute to the spread of VRE. The aim of this study was to assess the presence of VRE in flowing surface water bodies in Switzerland and to characterise the isolates. METHODS Surface water was sampled from rivers, streams and canals throughout Switzerland and was screened for the presence of VRE. Whole-genome sequencing was used to identify antimicrobial resistance genes and the phylogenetic similarity of the obtained isolates. RESULTS VRE were detected in 6 (3.1%) of 191 water samples. The six VRE-containing samples were all collected near treated wastewater discharge sites. The six isolates were identified as Enterococcus faecium sequence type 133 (ST133) and harboured the vancomycin resistance-conferring vanA gene cluster on transposon Tn1546. They showed a close phylogenetic relationship to ST133 swine faecal isolates obtained during a previously reported screening in Switzerland. CONCLUSION Our results suggest that surface water contributes to the environmental dissemination of VRE. Repeated identification of ST133 clones in geographically distinct water sampling sites and swine faecal samples collected in slaughterhouses may indicate a local dominance of this VRE lineage in Switzerland.
Collapse
Affiliation(s)
- Michael Biggel
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 272, CH-8057 Zurich, Switzerland
| | - Magdalena Nüesch-Inderbinen
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 272, CH-8057 Zurich, Switzerland; Swiss National Center for Enteropathogenic Bacteria and Listeria (NENT), University of Zurich, Winterthurerstrasse 272, 8057 Zurich, Switzerland
| | - Susanne Raschle
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 272, CH-8057 Zurich, Switzerland
| | - Marc J A Stevens
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 272, CH-8057 Zurich, Switzerland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 272, CH-8057 Zurich, Switzerland.
| |
Collapse
|
6
|
Oruc O, Ceti̇n O, Onal Darilmaz D, Yüsekdag ZN. Determination of the biosafety of potential probiotic Enterococcus faecalis and Enterococcus faecium strains isolated from traditional white cheeses. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111741] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Xanthopoulou K, Wille J, Zweigner J, Lucaßen K, Wille T, Seifert H, Higgins PG. Characterization of a vancomycin-resistant Enterococcus faecium isolate and a vancomycin-susceptible E. faecium isolate from the same blood culture. J Antimicrob Chemother 2021; 76:883-886. [PMID: 33370443 DOI: 10.1093/jac/dkaa532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/25/2020] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES To characterize two Enterococcus faecium isolates with different resistance phenotypes obtained from the same blood culture. METHODS The isolates were identified by MALDI-TOF MS and antimicrobial susceptibility testing (AST) was performed using a VITEK® 2 AST P592 card and Etest. WGS was performed on the MiSeq and MinION sequencer platforms. Core-genome MLST (cgMLST) and seven-loci MLST were performed. Plasmid analysis was performed using S1-PFGE followed by Southern-blot hybridization. RESULTS Both E. faecium isolates were ST203. AST revealed that one was a vancomycin-resistant E. faecium (VREfm) isolate and the other was a vancomycin-susceptible E. faecium (VSEfm) isolate. The VREfm isolate harboured the vanA gene cluster as part of a Tn1546-type transposon encoded on a 49 kb multireplicon (rep1, rep2 and rep7a) plasmid (pAML0157.1). On the same plasmid, ant(6)-Ia, cat-like and erm(B) were encoded. The VSEfm isolate harboured a rep2 plasmid (pAML0158.1), 12 kb in size, which was present in full length as part of pAML0157.1 from the VREfm isolate. The vanA-encoding pAML0157.1 was a chimera of the rep2 pAML0158.1 and a second DNA segment harbouring vanA, ant(6)-Ia, erm(B) and cat-like, as well as the replicons rep1 and rep7a. By cgMLST analysis, the VREfm and VSEfm isolates were identical. CONCLUSIONS Our results demonstrate that the VREfm and VSEfm blood culture isolates represented ST203 and were identical. The investigated heterogeneous resistance phenotypes resulted from the acquisition or loss of plasmid segments in the enterococcal isolates. These data illustrate that mobile genetic elements may contribute to the spread of vancomycin resistance among enterococci and to the genotypic and phenotypic variation within clonal isolates.
Collapse
Affiliation(s)
- Kyriaki Xanthopoulou
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Julia Wille
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Janine Zweigner
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany.,Department of Infection Control and Hospital Hygiene, University Hospital Cologne, Cologne, Germany
| | - Kai Lucaßen
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
| | - Thorsten Wille
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
| | - Harald Seifert
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Paul G Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| |
Collapse
|
8
|
Arredondo-Alonso S, Top J, Corander J, Willems RJL, Schürch AC. Mode and dynamics of vanA-type vancomycin resistance dissemination in Dutch hospitals. Genome Med 2021; 13:9. [PMID: 33472670 PMCID: PMC7816424 DOI: 10.1186/s13073-020-00825-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/30/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Enterococcus faecium is a commensal of the gastrointestinal tract of animals and humans but also a causative agent of hospital-acquired infections. Resistance against glycopeptides and to vancomycin has motivated the inclusion of E. faecium in the WHO global priority list. Vancomycin resistance can be conferred by the vanA gene cluster on the transposon Tn1546, which is frequently present in plasmids. The vanA gene cluster can be disseminated clonally but also horizontally either by plasmid dissemination or by Tn1546 transposition between different genomic locations. METHODS We performed a retrospective study of the genomic epidemiology of 309 vancomycin-resistant E. faecium (VRE) isolates across 32 Dutch hospitals (2012-2015). Genomic information regarding clonality and Tn1546 characterization was extracted using hierBAPS sequence clusters (SC) and TETyper, respectively. Plasmids were predicted using gplas in combination with a network approach based on shared k-mer content. Next, we conducted a pairwise comparison between isolates sharing a potential epidemiological link to elucidate whether clonal, plasmid, or Tn1546 spread accounted for vanA-type resistance dissemination. RESULTS On average, we estimated that 59% of VRE cases with a potential epidemiological link were unrelated which was defined as VRE pairs with a distinct Tn1546 variant. Clonal dissemination accounted for 32% cases in which the same SC and Tn1546 variants were identified. Horizontal plasmid dissemination accounted for 7% of VRE cases, in which we observed VRE pairs belonging to a distinct SC but carrying an identical plasmid and Tn1546 variant. In 2% of cases, we observed the same Tn1546 variant in distinct SC and plasmid types which could be explained by mixed and consecutive events of clonal and plasmid dissemination. CONCLUSIONS In related VRE cases, the dissemination of the vanA gene cluster in Dutch hospitals between 2012 and 2015 was dominated by clonal spread. However, we also identified outbreak settings with high frequencies of plasmid dissemination in which the spread of resistance was mainly driven by horizontal gene transfer (HGT). This study demonstrates the feasibility of distinguishing between modes of dissemination with short-read data and provides a novel assessment to estimate the relative contribution of nested genomic elements in the dissemination of vanA-type resistance.
Collapse
Affiliation(s)
- Sergio Arredondo-Alonso
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Biostatistics, University of Oslo, Oslo, Norway
| | - Janetta Top
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jukka Corander
- Department of Biostatistics, University of Oslo, Oslo, Norway.,Pathogen Genomics, Wellcome Trust Sanger Institute, Cambridge, CB10 1SA, UK.,Department of Mathematics and Statistics, Helsinki Institute of Information Technology (HIIT), FI-00014 University of Helsinki, Helsinki, Finland
| | - Rob J L Willems
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Anita C Schürch
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
9
|
Stępień-Pyśniak D, Hauschild T, Dec M, Marek A, Urban-Chmiel R, Kosikowska U. Phenotypic and genotypic characterization of Enterococcus spp. from yolk sac infections in broiler chicks with a focus on virulence factors. Poult Sci 2021; 100:100985. [PMID: 33647720 PMCID: PMC7933482 DOI: 10.1016/j.psj.2021.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/19/2020] [Accepted: 01/01/2021] [Indexed: 11/29/2022] Open
Abstract
Bacterial infections of yolk sacs contribute to increased mortality of chicks, chronic infections during their rearing, or increased selection in the flock, which in turn leads to high economic losses in poultry production worldwide. The aim of this study was a phenotypic and genotypic characterization of enterococci isolated from yolk sac infections (YSI) of broiler chickens from Poland and the Netherlands. Biochemical, matrix-assisted laser desorption/ionization (MALDI)–time-of-flight (TOF) MS, and rpoA gene sequencing identification was performed. Moreover, phenotypic and genotypic characterization of virulence factors and analysis of the clonal relationship of isolates by MALDI-TOF MS and enterobacterial repetitive intergenic consensus—polymerase chain reaction (ERIC-PCR) were performed. The biochemical test identified 70 isolates as Enterococcus faecalis and 6 as Enterococcus mundtii. The results of MALDI-TOF MS were 100% concordant with those obtained by rpoA gene sequencing, and all 76 isolates were identified as E. faecalis. Differences were noted in the β-glucuronidase, β-glucosidase, α-galactosidase, phosphatase, melibiose, lactose, and raffinose tests that is going about the results of biochemical identification. None of the isolates were beta-hemolytic on blood agar in aerobic conditions, but all but one were gelatinase positive. Among biofilm-forming isolates (30/76; 39.5%), as many as 66.7% (20/30) were Polish E. faecalis strains. Most of the isolates carried virulence genes, that is gelE, ace, asa1, efaAfs, fsrA, fsrB, fsrC, cob, cpd, and ccf, but none had the hyl gene. Some isolates harbored cyl operon genes. One Polish strain (ST16) had all of the tested cyl genes and the esp gene, considered clinically important, and showed the highest biofilm-forming ability. Nearly 50% of the isolates showed close genetic relatedness in ERIC typing. In contrast with MALDI-TOF MS cluster analysis, ERIC-PCR results did not show a relationship with the origin of the strains. Using MALDI-TOF MS, 7 peaks were found in Polish and Dutch isolates, which may type them as species-specific biomarkers in E. faecalis from YSI.
Collapse
Affiliation(s)
- Dagmara Stępień-Pyśniak
- Department of Veterinary Prevention and Avian Diseases, Institute of Biological Bases of Animal Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-612 Lublin, Poland.
| | - Tomasz Hauschild
- Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 15-245 Białystok, Poland
| | - Marta Dec
- Department of Veterinary Prevention and Avian Diseases, Institute of Biological Bases of Animal Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-612 Lublin, Poland
| | - Agnieszka Marek
- Department of Veterinary Prevention and Avian Diseases, Institute of Biological Bases of Animal Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-612 Lublin, Poland
| | - Renata Urban-Chmiel
- Department of Veterinary Prevention and Avian Diseases, Institute of Biological Bases of Animal Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-612 Lublin, Poland
| | - Urszula Kosikowska
- Department of Pharmaceutical Microbiology, Medical University in Lublin, 20-093 Lublin, Poland
| |
Collapse
|
10
|
Lin YT, Tseng SP, Hung WW, Chang CC, Chen YH, Jao YT, Chen YH, Teng LJ, Hung WC. A Possible Role of Insertion Sequence IS 1216V in Dissemination of Multidrug-Resistant Elements MES PM1 and MES 6272-2 between Enterococcus and ST59 Staphylococcus aureus. Microorganisms 2020; 8:E1905. [PMID: 33266174 PMCID: PMC7760966 DOI: 10.3390/microorganisms8121905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 12/02/2022] Open
Abstract
Sequence type 59 (ST59) is the dominant type of community-associated methicillin-resistant Staphylococcus aureus (MRSA) in Taiwan. Previously, we reported that ST59 MRSA harbors enterococcal IS1216V-mediated multidrug-resistant composite transposons MESPM1 or MES6272-2. The MES were found to have a mosaic structure, largely originating in enterococci and partly native to S. aureus. The current study aimed to track the origin of the MES and how they disseminated from enterococci to ST59 S. aureus. A total of 270 enterococcal isolates were analyzed, showing that two ST64 Enterococcus faecalis isolated in 1992 and 11 clonal complex 17 Enterococcus faecium harbored MESPM1-like and MES6272-2-like structures, respectively. Sequence analysis revealed that ST64 E. faecalis strain N48 acquired the MESPM1-like structure on the plasmid pEflis48. The pEflis48 harbored the enterococci-originated region (erythromycin, kanamycin, and streptomycin resistances) and the S.aureus-originated region (chloramphenicol resistance) of MESPM1 but was separated by the replication region of the plasmid. Homologous recombination between the two direct repeats of IS1216V resulted in excision of the replication region of the plasmid to regenerate MESPM1. The p4780-1 and pV19 of E. faecium carried MES6272-2-like structures with IS1216V, albeit with multiple insertions by other insertion sequences. The findings show that IS1216V plays important roles in bidirectional gene transfer of multidrug resistance between enterococci and S. aureus.
Collapse
Affiliation(s)
- Yu-Tzu Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404333, Taiwan;
| | - Sung-Pin Tseng
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan;
| | - Wei-Wen Hung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan;
| | - Chen-Chia Chang
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (C.-C.C.); (Y.-H.C.)
| | - You-Han Chen
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (C.-C.C.); (Y.-H.C.)
| | - Ya-Ting Jao
- Infection Control Center, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan;
| | - Yen-Hsu Chen
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan;
- School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Center of Tropical Medicine and Infectious Diseases, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu 300093, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| | - Lee-Jene Teng
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei 100229, Taiwan;
| | - Wei-Chun Hung
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (C.-C.C.); (Y.-H.C.)
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
| |
Collapse
|
11
|
Sterling AJ, Snelling WJ, Naughton PJ, Ternan NG, Dooley JSG. Competent but complex communication: The phenomena of pheromone-responsive plasmids. PLoS Pathog 2020; 16:e1008310. [PMID: 32240270 PMCID: PMC7117660 DOI: 10.1371/journal.ppat.1008310] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Enterococci are robust gram-positive bacteria that are found in a variety of surroundings and that cause a significant number of healthcare-associated infections. The genus possesses a high-efficiency pheromone-responsive plasmid (PRP) transfer system for genetic exchange that allows antimicrobial-resistance determinants to spread within bacterial populations. The pCF10 plasmid system is the best characterised, and although other PRP systems are structurally similar, they lack exact functional homologues of pCF10-encoded genes. In this review, we provide an overview of the enterococcal PRP systems, incorporating functional details for the less-well-defined systems. We catalogue the virulence-associated elements of the PRPs that have been identified to date, and we argue that this reinforces the requirement for elucidation of the less studied systems.
Collapse
Affiliation(s)
- Amy J. Sterling
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, Londonderry, Northern Ireland
- * E-mail:
| | - William J. Snelling
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, Londonderry, Northern Ireland
| | - Patrick J. Naughton
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, Londonderry, Northern Ireland
| | - Nigel G. Ternan
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, Londonderry, Northern Ireland
| | - James S. G. Dooley
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, Londonderry, Northern Ireland
| |
Collapse
|
12
|
Terra MR, Tosoni NF, Furlaneto MC, Furlaneto-Maia L. Assessment of vancomycin resistance transfer among enterococci of clinical importance in milk matrix. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2019; 54:925-929. [PMID: 31382830 DOI: 10.1080/03601234.2019.1647753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Dissemination of vancomycin resistance in enterococci has been associated with horizontal transfer of mobile genetic elements. Aim of the study was to evaluate if milk matrix is a suitable environment to support transferability of vancomycin resistance (vanA) gene from clinical vancomycin-resistant Enterococcus faecium to vancomycin-sensitive Enterococcus faecalis. Enterococci strains were firstly screened for the presence of cpd (inducible sex pheromone determinant) gene, vanA and tetL genes (vancomycin and tetracycline resistance markers, respectively) and the gelE (extracellular metalloendopeptidase) gene to define the mating pairs. Based on these selection markers, we investigated the transferability of eight plasmid-borne vanA harbored by E. faecium (vanA+, cpd-, tetL- and gelE-) into two E. faecalis (vanA-, cpd+, tetL + and gelE+) recipient strains in milk matrix. The strains were mated in a 1:1 ratio in 7% reconstituted milk and incubated at 37 °C. Transconjugants emerged from all 16 matings within 2 h of incubation and were evidenced by dual antibiotic resistance (vancomycin and tetracycline). The vancomycin-resistance of trasconjugants was maintained even after ten subsequent passages on nonselective medium. Transconjugants were positive for vanA, tetL and gelE genes. This study indicates milk matrix as suitable environment to support gene exchange between Enterococcus species.
Collapse
Affiliation(s)
- Marcia R Terra
- Department of Microbiology, Universitry Campus, State University of Londrina, Londrina, Brazil
| | - Natara F Tosoni
- Department of Food Technology, Campus of Londrina, Federal Technological University of Paraná, Londrina, Brazil
| | - Marcia C Furlaneto
- Department of Microbiology, Universitry Campus, State University of Londrina, Londrina, Brazil
| | - Luciana Furlaneto-Maia
- Department of Food Technology, Campus of Londrina, Federal Technological University of Paraná, Londrina, Brazil
| |
Collapse
|
13
|
Stępień-Pyśniak D, Hauschild T, Kosikowska U, Dec M, Urban-Chmiel R. Biofilm formation capacity and presence of virulence factors among commensal Enterococcus spp. from wild birds. Sci Rep 2019; 9:11204. [PMID: 31371744 PMCID: PMC6671946 DOI: 10.1038/s41598-019-47602-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 07/19/2019] [Indexed: 12/31/2022] Open
Abstract
Enterococci are opportunistic pathogens that can form biofilms during infections and many virulence determinants are involved in this process. Although the virulence factors are often analysed in Enterococcus spp. from humans and food animals, little is known about gut enterococcal isolates from wild birds. Therefore, the determination of virulence factors among enterococci isolated from wild birds may provide new information about a possible source of infection for humans and animals or vice versa via the environment. We analysed different phenotypic and genotypic traits in enterococci from wild birds related to potential virulence in humans and animals and to evaluate biofilm formation and its relationship to virulence genes. The E. faecalis isolates were characterised by greater frequency of biofilm formation in BHI than E. faecium. There was a correlation between hydrophobicity and biofilm formation in BHI broth in E. faecalis. None of the isolates was haemolytic. The presence of some adhesion and gelatinase genes was detected in biofilm-positive isolates. The enterococcal pathogenic factors (esp, hyl, and cyl operon genes) did not seem to be necessary or sufficient for production of biofilm by analysed bacteria. Enterococcus species isolated from wild birds should be considered as a possible source of some virulence determinants.
Collapse
Affiliation(s)
- Dagmara Stępień-Pyśniak
- Department of Veterinary Prevention and Avian Diseases, Institute of Biological Bases of Animal Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland.
| | - Tomasz Hauschild
- Department of Microbiology, Institute of Biology, University of Bialystok, Białystok, Poland
| | - Urszula Kosikowska
- Department of Pharmaceutical Microbiology with Laboratory for Microbiological Diagnostics, Medical University in Lublin, Lublin, Poland
| | - Marta Dec
- Department of Veterinary Prevention and Avian Diseases, Institute of Biological Bases of Animal Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Renata Urban-Chmiel
- Department of Veterinary Prevention and Avian Diseases, Institute of Biological Bases of Animal Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| |
Collapse
|
14
|
Abstract
The study of the genetics of enterococci has focused heavily on mobile genetic elements present in these organisms, the complex regulatory circuits used to control their mobility, and the antibiotic resistance genes they frequently carry. Recently, more focus has been placed on the regulation of genes involved in the virulence of the opportunistic pathogenic species Enterococcus faecalis and Enterococcus faecium. Little information is available concerning fundamental aspects of DNA replication, partition, and division; this article begins with a brief overview of what little is known about these issues, primarily by comparison with better-studied model organisms. A variety of transcriptional and posttranscriptional mechanisms of regulation of gene expression are then discussed, including a section on the genetics and regulation of vancomycin resistance in enterococci. The article then provides extensive coverage of the pheromone-responsive conjugation plasmids, including sections on regulation of the pheromone response, the conjugative apparatus, and replication and stable inheritance. The article then focuses on conjugative transposons, now referred to as integrated, conjugative elements, or ICEs, and concludes with several smaller sections covering emerging areas of interest concerning the enterococcal mobilome, including nonpheromone plasmids of particular interest, toxin-antitoxin systems, pathogenicity islands, bacteriophages, and genome defense.
Collapse
|
15
|
Lee T, Pang S, Abraham S, Coombs GW. Antimicrobial-resistant CC17 Enterococcus faecium: The past, the present and the future. J Glob Antimicrob Resist 2018; 16:36-47. [PMID: 30149193 DOI: 10.1016/j.jgar.2018.08.016] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 08/17/2018] [Accepted: 08/18/2018] [Indexed: 01/23/2023] Open
Abstract
Enterococcus faecium is a robust opportunistic pathogen that is most commonly found as a commensal of the human and animal gut but can also survive in the environment. Since the introduction and use of antimicrobials, E. faecium has been found to rapidly acquire resistance genes that, when expressed, can effectively circumvent the effects of most antimicrobials. The rapid acquisition of multiple antimicrobial resistances has led to the adaptation of specific E. faecium clones in the hospital environment, collectively known as clonal complex 17 (CC17). CC17 E. faecium are responsible for a significant proportion of hospital-associated infections, which can cause severe morbidity and mortality. Here we review the history of E. faecium from commensal to a significant hospital-associated pathogen, its robust phenotypic characteristics, commonly used laboratory typing schemes, and antimicrobial resistances with a focus on vancomycin and its associated mechanism of resistance. Finally, we review the global epidemiology of vancomycin-resistant E. faecium and potential solutions to problems faced in public health.
Collapse
Affiliation(s)
- Terence Lee
- Antimicrobial Resistance and Infectious Diseases Research Laboratory, Murdoch University, Perth, WA, Australia
| | - Stanley Pang
- Antimicrobial Resistance and Infectious Diseases Research Laboratory, Murdoch University, Perth, WA, Australia; PathWest Laboratory Medicine, Nedlands, WA, Australia
| | - Sam Abraham
- Antimicrobial Resistance and Infectious Diseases Research Laboratory, Murdoch University, Perth, WA, Australia
| | - Geoffrey W Coombs
- Antimicrobial Resistance and Infectious Diseases Research Laboratory, Murdoch University, Perth, WA, Australia; PathWest Laboratory Medicine, Nedlands, WA, Australia.
| |
Collapse
|
16
|
Abstract
The Enterococcus genus comprises over 50 species that live as commensal bacteria in the gastrointestinal (GI) tracts of insects, birds, reptiles, and mammals. Named "entero" to emphasize their intestinal habitat, Enterococcus faecalis and Enterococcus faecium were first isolated in the early 1900s and are the most abundant species of this genus found in the human fecal microbiota. In the past 3 decades, enterococci have developed increased resistance to several classes of antibiotics and emerged as a prevalent causative agent of health care-related infections. In U.S. hospitals, antibiotic use has increased the transmission of multidrug-resistant enterococci. Antibiotic treatment depletes broad communities of commensal microbes from the GI tract, allowing resistant enterococci to densely colonize the gut. The reestablishment of a diverse intestinal microbiota is an emerging approach to combat infections caused by antibiotic-resistant bacteria in the GI tract. Because enterococci exist as commensals, modifying the intestinal microbiome to eliminate enterococcal clinical pathogens poses a challenge. To better understand how enterococci exist as both commensals and pathogens, in this article we discuss their clinical importance, antibiotic resistance, diversity in genomic composition and habitats, and interaction with the intestinal microbiome that may be used to prevent clinical infection.
Collapse
|
17
|
Novel Structure of Enterococcus faecium-Originated ermB-Positive Tn1546-Like Element in Staphylococcus aureus. Antimicrob Agents Chemother 2016; 60:6108-14. [PMID: 27480862 DOI: 10.1128/aac.01096-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/22/2016] [Indexed: 11/20/2022] Open
Abstract
We determined the resistance determinants in 274 erythromycin-resistant methicillin-susceptible Staphylococcus aureus (MSSA) isolates during a 13-year period, 2000 to 2012. The resistance phenotypes, inducible macrolide-lincosamide-streptogramin (iMLS), constitutive MLS (cMLS), and macrolide-streptogramin (MS) resistance phenotypes, were examined by a double-disk diffusion D test. The ermB gene was more frequent (35%; 97/274) than ermC (27%; 75/274) or ermA (21%; 58/274). All 97 ermB-positive isolates harbored Tn551 and IS1216V The majority (89/97) of ermB-positive isolates displayed the cMLS phenotype and carried mobile element structure (MES)-like structures, which has been previously reported in sequence type 59 (ST59) methicillin-resistant S. aureus (MRSA). The remaining 8 ermB-carrying isolates, belonging to ST7 (n = 4), ST5 (n = 3), and ST59 (n = 1), were sasK intact and did not carry MES-like structures. Unlike a MES-like structure that was located on the chromosome, the ermB elements on sasK-intact isolates were located on plasmids by S1 nuclease pulsed-field gel electrophoresis (PFGE) analysis and conjugation tests. Sequence data for the ermB-containing region (14,566 bp) from ST59 NTUH_3874 revealed that the best match was a Tn1546-like element in plasmid pMCCL2 DNA (GenBank accession number AP009486) of Macrococcus caseolyticus Tn1546 is recognized as an enterococcal transposon and was known from the vancomycin resistance gene cluster in vancomycin-resistant Enterococcus (VRE). So far, acquisitions of Tn1546 in S. aureus have occurred in clonal complex 5 (CC5) MRSA, but not in MSSA. This is the first report that MSSA harbors an Enterococcus faecium-originated ermB-positive Tn1546-like element located on a plasmid.
Collapse
|
18
|
Lata P, Ram S, Shanker R. Multiplex PCR based genotypic characterization of pathogenic vancomycin resistant Enterococcus faecalis recovered from an Indian river along a city landscape. SPRINGERPLUS 2016; 5:1199. [PMID: 27516937 PMCID: PMC4963349 DOI: 10.1186/s40064-016-2870-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 07/19/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Enterococci are normal commensals of human gut, but vancomycin-resistant enterococci (VRE) are a severe threat to human health. Antimicrobial-resistant enterococci have been reported previously from Indian surface waters. However, the presence of antimicrobial resistance and virulence markers in Enterococcus faecalis, the most dominant enterococci is yet to be investigated. OBJECTIVES The goal of this study was to analyse concentration of enterococci and distribution of antimicrobial resistance and virulence markers in E. faecalis isolates from river waters along an important north Indian city landscape. METHODS We enumerated enterococci in river water samples (n = 60) collected from five sites across the Lucknow city landscape using the most probable number and membrane-filtration methods. The antimicrobial sensitivity profile of E. faecalis isolate was generated with the Kirby-Bauer antimicrobial disc diffusion assay. The multiplex PCR was used for genotypic characterization of vancomycin-resistance and virulence in E. faecalis isolates. RESULTS Enterococci density (p < 0.0001) increased from up-to-down-stream sites. Multiplex PCR based genotypic characterization has shown a significant distribution of virulence-markers gelE, ace or efaA in the E. faecalis isolates (p < 0.05). The range of antimicrobial-resistance varied from 5 to 12 in the landscape with the frequency of vancomycin-resistant E. faecalis (VRE) ranging from 22 to 100 %. CONCLUSION The occurrence of pathogenic VRE in river Gomti surface water is an important health concern. The observed high background pool of resistance and virulence in E. faecalis in river waters has the potential to disseminate more alarming antimicrobial resistance in the environment and poses serious health risk in developing countries like India as VRE infections could lead to increased cost of healthcare.
Collapse
Affiliation(s)
- Pushpa Lata
- CSIR-Indian Institute of Toxicology Research, PO Box 80, MG Marg, Lucknow, U.P. 226001 India
| | - Siya Ram
- CSIR-Indian Institute of Toxicology Research, PO Box 80, MG Marg, Lucknow, U.P. 226001 India
| | - Rishi Shanker
- CSIR-Indian Institute of Toxicology Research, PO Box 80, MG Marg, Lucknow, U.P. 226001 India
- Institute of Life Sciences, School of Science and Technology, Ahmedabad University, University Road, Ahmedabad, 380009 India
| |
Collapse
|
19
|
Joghataei M, Yavarmanesh M, Dovom MRE. Safety Evaluation and Antibacterial Activity of Enterococci Isolated from Lighvan Cheese. J Food Saf 2016. [DOI: 10.1111/jfs.12289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mehri Joghataei
- Department of Food science and Technology, Faculty of Agriculture; Ferdowsi University of Mashhad; Mashhad Iran
| | - Masoud Yavarmanesh
- Department of Food science and Technology, Faculty of Agriculture; Ferdowsi University of Mashhad; Mashhad Iran
| | | |
Collapse
|
20
|
Satomi M. Effect of Histamine-producing Bacteria on Fermented Fishery Products. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2016. [DOI: 10.3136/fstr.22.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Masataka Satomi
- Food Hygiene and Management Research Group, Research Center for Biochemistry and Food Technology, National Research Institute of Fisheries Science, Fisheries Research Agency
| |
Collapse
|
21
|
Hashem YA, Yassin AS, Amin MA. Molecular characterization of Enterococcus spp. clinical isolates from Cairo, Egypt. Indian J Med Microbiol 2015; 33 Suppl:80-6. [DOI: 10.4103/0255-0857.148836] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Choi JM, Woo GJ. Transfer of tetracycline resistance genes with aggregation substance in food-borne Enterococcus faecalis. Curr Microbiol 2014; 70:476-84. [PMID: 25487115 PMCID: PMC4338359 DOI: 10.1007/s00284-014-0742-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 10/29/2014] [Indexed: 11/16/2022]
Abstract
Enterococcus faecalis has the ability to conjugate with the aid of aggregation substance (AS) and inducible sex pheromones to exchange genetic elements in food matrix. To evaluate the food safety condition and the transferable factor, 250 tetracycline-resistant food-borne E. faecalis were collected in Korea. Among the isolates, a majority of tetracycline-resistant isolates (49.6 %) harbored both the tet(M) and tet(L) genes together, followed by tet(M) (19.6 %), and tet(L) (6.8 %) alone. Also, we found the combination of tet(L)/tet(M)/tet(O) or tet(M)/tet(O). We identified two tet(S) genes including the isolate carrying tet(M) + tet(S) genes. Additionally, most E. faecalis were positive for cpd and ccf (both 96.8 %) followed by cob (57.2 %). Through mating experiments, we confirmed E. faecalis possessing the Int-Tn gene and/or any AS gene successfully transferred tet genes to JH2-2 E. faecalis, whereas neither E. faecalis carrying AS genes nor the Int-Tn gene showed the conjugation. Pulsed-field gel electrophoresis results supported a distinct pattern, implying transfer of genetic information. Our study revealed a high occurrence of tetracycline resistance genes in E. faecalis from various foods. The widespread dissemination of tetracycline resistance genes would be promoted to transfer tetracycline resistance genes by pheromone-mediated conjugation systems.
Collapse
Affiliation(s)
- Jong-Mi Choi
- Laboratory of Food Safety and Evaluation, Department of Food Bioscience and Technology, Korea University, Anam-dong 5-ga, Seongbuk-Gu, Seoul, 136-713, Korea
| | | |
Collapse
|
23
|
Abstract
The Enterococcus genus comprises over 50 species that live as commensal bacteria in the gastrointestinal (GI) tracts of insects, birds, reptiles, and mammals. Named "entero" to emphasize their intestinal habitat, Enterococcus faecalis and Enterococcus faecium were first isolated in the early 1900s and are the most abundant species of this genus found in the human fecal microbiota. In the past 3 decades, enterococci have developed increased resistance to several classes of antibiotics and emerged as a prevalent causative agent of health care-related infections. In U.S. hospitals, antibiotic use has increased the transmission of multidrug-resistant enterococci. Antibiotic treatment depletes broad communities of commensal microbes from the GI tract, allowing resistant enterococci to densely colonize the gut. The reestablishment of a diverse intestinal microbiota is an emerging approach to combat infections caused by antibiotic-resistant bacteria in the GI tract. Because enterococci exist as commensals, modifying the intestinal microbiome to eliminate enterococcal clinical pathogens poses a challenge. To better understand how enterococci exist as both commensals and pathogens, in this article we discuss their clinical importance, antibiotic resistance, diversity in genomic composition and habitats, and interaction with the intestinal microbiome that may be used to prevent clinical infection.
Collapse
|
24
|
Fones H, Preston GM. The impact of transition metals on bacterial plant disease. FEMS Microbiol Rev 2013; 37:495-519. [DOI: 10.1111/1574-6976.12004] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Revised: 09/05/2012] [Accepted: 09/14/2012] [Indexed: 12/24/2022] Open
|
25
|
Werner G, Coque TM, Franz CMAP, Grohmann E, Hegstad K, Jensen L, van Schaik W, Weaver K. Antibiotic resistant enterococci-tales of a drug resistance gene trafficker. Int J Med Microbiol 2013; 303:360-79. [PMID: 23602510 DOI: 10.1016/j.ijmm.2013.03.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Enterococci have been recognized as important hospital-acquired pathogens in recent years, and isolates of E. faecalis and E. faecium are the third- to fourth-most prevalent nosocomial pathogen worldwide. Acquired resistances, especially against penicilin/ampicillin, aminoglycosides (high-level) and glycopeptides are therapeutically important and reported in increasing numbers. On the other hand, isolates of E. faecalis and E. faecium are commensals of the intestines of humans, many vertebrate and invertebrate animals and may also constitute an active part of the plant flora. Certain enterococcal isolates are used as starter cultures or supplements in food fermentation and food preservation. Due to their preferred intestinal habitat, their wide occurrence, robustness and ease of cultivation, enterococci are used as indicators for fecal pollution assessing hygiene standards for fresh- and bathing water and they serve as important key indicator bacteria for various veterinary and human resistance surveillance systems. Enterococci are widely prevalent and genetically capable of acquiring, conserving and disseminating genetic traits including resistance determinants among enterococci and related Gram-positive bacteria. In the present review we aimed at summarizing recent advances in the current understanding of the population biology of enterococci, the role mobile genetic elements including plasmids play in shaping the population structure and spreading resistance. We explain how these elements could be classified and discuss mechanisms of plasmid transfer and regulation and the role and cross-talk of enterococcal isolates from food and food animals to humans.
Collapse
Affiliation(s)
- Guido Werner
- National Reference Centre for Stapyhlococci and Enterococci, Division of Nosocomial Pathogens and Antibiotic Resistances, Robert Koch Institute, Wernigerode Branch, Burgstr. 37, 38855 Wernigerode, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Hung WC, Takano T, Higuchi W, Iwao Y, Khokhlova O, Teng LJ, Yamamoto T. Comparative genomics of community-acquired ST59 methicillin-resistant Staphylococcus aureus in Taiwan: novel mobile resistance structures with IS1216V. PLoS One 2012; 7:e46987. [PMID: 23071689 PMCID: PMC3465296 DOI: 10.1371/journal.pone.0046987] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 09/07/2012] [Indexed: 12/20/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) with ST59/SCCmecV and Panton-Valentine leukocidin gene is a major community-acquired MRSA (CA-MRSA) lineage in Taiwan and has been multidrug-resistant since its initial isolation. In this study, we studied the acquisition mechanism of multidrug resistance in an ST59 CA-MRSA strain (PM1) by comparative genomics. PM1’s non-β-lactam resistance was encoded by two unique genetic traits. One was a 21,832-bp composite mobile element structure (MESPM1), which was flanked by direct repeats of enterococcal IS1216V and was inserted into the chromosomal sasK gene; the target sequence (att) was 8 bp long and was duplicated at both ends of MESPM1. MESPM1 consisted of two regions: the 5′-end side 12.4-kb region carrying Tn551 (with ermB) and Tn5405-like (with aph[3′]-IIIa and aadE), similar to an Enterococcus faecalis plasmid, and the 3′-end side 6,587-bp region (MEScat) that carries cat and is flanked by inverted repeats of IS1216V. MEScat possessed att duplication at both ends and additional two copies of IS1216V inside. MESPM1 represents the first enterococcal IS1216V-mediated composite transposon emerged in MRSA. IS1216V-mediated deletion likely occurred in IS1216V-rich MESPM1, resulting in distinct resistance patterns in PM1-derivative strains. Another structure was a 6,025-bp tet-carrying element (MEStet) on a 25,961-bp novel mosaic penicillinase plasmid (pPM1); MEStet was flanked by direct repeats of IS431, but with no target sequence repeats. Moreover, the PM1 genome was deficient in a copy of the restriction and modification genes (hsdM and hsdS), which might have contributed to the acquisition of enterococcal multidrug resistance.
Collapse
Affiliation(s)
- Wei-Chun Hung
- Division of Bacteriology, Department of Infectious Disease Control and International Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tomomi Takano
- Division of Bacteriology, Department of Infectious Disease Control and International Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Wataru Higuchi
- Division of Bacteriology, Department of Infectious Disease Control and International Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yasuhisa Iwao
- Division of Bacteriology, Department of Infectious Disease Control and International Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Olga Khokhlova
- Division of Bacteriology, Department of Infectious Disease Control and International Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Lee-Jene Teng
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tatsuo Yamamoto
- Division of Bacteriology, Department of Infectious Disease Control and International Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- * E-mail:
| |
Collapse
|
27
|
Sharifi Y, Hasani A, Ghotaslou R, Varshochi M, Hasani A, Aghazadeh M, Milani M. Survey of Virulence Determinants among Vancomycin Resistant Enterococcus faecalis and Enterococcus faecium Isolated from Clinical Specimens of Hospitalized Patients of North west of Iran. Open Microbiol J 2012; 6:34-9. [PMID: 22582098 PMCID: PMC3349944 DOI: 10.2174/1874285801206010034] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 09/23/2011] [Accepted: 12/02/2011] [Indexed: 01/12/2023] Open
Abstract
Recent data indicates an increasing rate of vancomycin resistance in clinical enterococcal isolates worldwide. The nosocomial enterococci are likely to harbor virulence elements that increase their ability to colonize hospitalized patients. The aim of this study was to characterize virulence determinants in vancomycin-resistant enterococci (VRE) obtained from various clinical sources. During the years 2008 to 2010, a total of 48 VRE isolates were obtained from three University teaching hospitals in Northwest, Iran. Initially, phenotypic speciation was done and minimum inhibitory concentrations (MICs) of vancomycin were determined by agar dilution method and E-test. Then, species identification and resistance genotypes along with detection of virulence genes (asa1, esp, gelE, ace and cpd) of the isolates were performed by multiplex PCR. Thirty eight isolates were identified as vancomycin-resistant Enterococcus faecium (VREfm) and ten as E. faecalis (VREfs). Irrespective of the species, vanA gene (89.58%) was dominant and three phenotypically vancomycin susceptible E. faecium isolates carried the vanB gene. Among virulence genes investigated, the esp was found in 27(71%) VREfm strains, but did not in any VREfs. Other virulence determinants were highly detected in VREfs strains. Our data indicate a high prevalence of E. faecium harboring vancomycin resistance with vanA genotype and the two VRE species displayed different virulence genes.
Collapse
Affiliation(s)
- Yaeghob Sharifi
- Research Center of Infectious Diseases and Tropical Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | | | | | | | |
Collapse
|
28
|
Satomi M, Furushita M, Oikawa H, Yano Y. Diversity of plasmids encoding histidine decarboxylase gene in Tetragenococcus spp. isolated from Japanese fish sauce. Int J Food Microbiol 2011; 148:60-5. [PMID: 21616548 DOI: 10.1016/j.ijfoodmicro.2011.04.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 04/14/2011] [Accepted: 04/29/2011] [Indexed: 11/29/2022]
Abstract
Nineteen isolates of histamine producing halophilic bacteria were isolated from four fish sauce mashes, each mash accumulating over 1000 ppm of histamine. The complete sequences of the plasmids encoding the pyruvoyl dependent histidine decarboxylase gene (hdcA), which is harbored in histamine producing bacteria, were determined. In conjunction, the sequence regions adjacent to hdcA were analyzed to provide information regarding its genetic origin. As reference strains, Tetragenococcus halophilus H and T. muriaticus JCM10006(T) were also studied. Phenotypic and 16S rRNA gene sequence analyses identified all isolates as T. halophilus, a predominant histamine producing bacteria present during fish sauce fermentation. Genetic analyses (PCR, Southern blot, and complete plasmid sequencing) of the histamine producing isolates confirmed that all the isolates harbored approximately 21-37 kbp plasmids encoding a single copy of the hdc cluster consisting of four genes related to histamine production. Analysis of hdc clusters, including spacer regions, indicated >99% sequence similarity among the isolates. All of the plasmids sequenced encoded traA, however genes related to plasmid conjugation, namely mob genes and oriT, were not identified. Two putative mobile genetic elements, ISLP1-like and IS200-like, respectively, were identified in the up- and downstream region of the hdc cluster of all plasmids. Most of the sequences, except hdc cluster and two adjacent IS elements, were diverse among plasmids, suggesting that each histamine producers harbored a different histamine-related plasmid. These results suggested that the hdc cluster was not spread by clonal dissemination depending on the specific plasmid and that the hdc cluster in tetragenococcal plasmid was likely encoded on transformable elements.
Collapse
Affiliation(s)
- Masataka Satomi
- National Research Institute of Fisheries Science, Fisheries Research Agency, Fukuura, Kanazawa-ku, Yokohama, Japan.
| | | | | | | |
Collapse
|
29
|
Hegstad K, Mikalsen T, Coque TM, Werner G, Sundsfjord A. Mobile genetic elements and their contribution to the emergence of antimicrobial resistant Enterococcus faecalis and Enterococcus faecium. Clin Microbiol Infect 2011; 16:541-54. [PMID: 20569265 DOI: 10.1111/j.1469-0691.2010.03226.x] [Citation(s) in RCA: 234] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mobile genetic elements (MGEs) including plasmids and transposons are pivotal in the dissemination and persistence of antimicrobial resistance in Enterococcus faecalis and Enterococcus faecium. Enterococcal MGEs have also been shown to be able to transfer resistance determinants to more pathogenic bacteria such as Staphylococcus aureus. Despite their importance, we have a limited knowledge about the prevalence, distribution and genetic content of specific MGEs in enterococcal populations. Molecular epidemiological studies of enterococcal MGEs have been hampered by the lack of standardized molecular typing methods and relevant genome information. This review focuses on recent developments in the detection of MGEs and their contribution to the spread of antimicrobial resistance in clinically relevant enterococci.
Collapse
Affiliation(s)
- K Hegstad
- Reference Centre for Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North-Norway.
| | | | | | | | | |
Collapse
|
30
|
Genetic characterization of plasmid-associated benzalkonium chloride resistance determinants in a Listeria monocytogenes strain from the 1998-1999 outbreak. Appl Environ Microbiol 2010; 76:8231-8. [PMID: 20971860 DOI: 10.1128/aem.02056-10] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Quaternary ammonium compounds such as benzalkonium chloride (BC) are widely used as disinfectants in both food processing and medical environments. BC-resistant strains of Listeria monocytogenes have been implicated in multistate outbreaks of listeriosis and have been frequently isolated from food processing plants. However, the genetic basis for BC resistance in L. monocytogenes remains poorly understood. In this study, we have characterized a plasmid (pLM80)-associated BC resistance cassette in L. monocytogenes H7550, a strain implicated in the 1998-1999 multistate outbreak involving contaminated hot dogs. The BC resistance cassette (bcrABC) restored resistance to BC (MIC, 40 μg/ml) in a plasmid-cured derivative of H7550. All three genes of the cassette were essential for imparting BC resistance. The transcription of H7550 BC resistance genes was increased under sublethal (10 μg/ml) BC exposure and was higher at reduced temperatures (4, 8, or 25°C) than at 37°C. The level of transcription was higher at 10 μg/ml than at 20 or 40 μg/ml. In silico analysis suggested that the BC resistance cassette was harbored by an IS1216 composite transposon along with other genes whose functions are yet to be determined. The findings from this study will further our understanding of the adaptations of this organism to disinfectants such as BC and may contribute to the elucidation of possible BC resistance dissemination in L. monocytogenes.
Collapse
|
31
|
vanM, a new glycopeptide resistance gene cluster found in Enterococcus faecium. Antimicrob Agents Chemother 2010; 54:4643-7. [PMID: 20733041 DOI: 10.1128/aac.01710-09] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Since glycopeptide-resistant enterococci (GRE) were reported in 1988, they have appeared in hospitals worldwide. Seven van gene cluster types (vanA, vanB, vanC, vanD, vanE, vanG, and vanL) are currently known. We investigated a clinical strain of Enterococcus faecium Efm-HS0661 that was isolated in 2006 from an inpatient with intra-abdominal infection in Shanghai. It was resistant to most antimicrobials, including vancomycin (MIC, >256 μg/ml) and teicoplanin (MIC, 96 μg/ml). Glycopeptide resistance could be transferred to E. faecium BM4105RF by conjugation. The donor and its transconjugant were negative by PCR for the known van genes. By cloning and primer walk sequencing, we discovered a novel van gene cluster, designated vanM. The vanM ligase gene was 1,032-bp in length and encoded a 343-amino-acid protein that shared 79.9, 70.8, 66.3, and 78.8% amino acid identity with VanA, VanB, VanD, and VanF, respectively. Although the vanM DNA sequence was closest to vanA, the organization of the vanM gene cluster was most similar to that of vanD. Upstream from the vanM cluster was an IS1216-like element, which may play a role in the dissemination of this resistance determinant. Liquid chromatography-mass spectrometry analysis of peptidoglycan precursors extracted from the VanM-type strain Efm-HS0661 treated with vancomycin or teicoplanin revealed a modified precursor (UDP-N-acetylmuramic acid [MurNAc]-tetrapeptide-D-Lac), indicating that VanM, like VanA, confers glycopeptide resistance by the inducible synthesis of precursor ending in D-Ala-D-Lac.
Collapse
|
32
|
Sletvold H, Johnsen PJ, Wikmark OG, Simonsen GS, Sundsfjord A, Nielsen KM. Tn1546 is part of a larger plasmid-encoded genetic unit horizontally disseminated among clonal Enterococcus faecium lineages. J Antimicrob Chemother 2010; 65:1894-906. [PMID: 20558469 PMCID: PMC2920175 DOI: 10.1093/jac/dkq219] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To determine the genetic composition of the first VanA-type plasmid (pIP816) reported, which was isolated from a clinical Enterococcus faecium (BM4147) strain in France in 1986, and to reveal the genetic units responsible for the dissemination of the vanA gene cluster by comparisons with current, published and additionally generated vanA-spanning plasmid sequences obtained from a heterogeneous E. faecium strain collection (n = 28). METHODS Plasmid sequences were produced by shotgun sequencing using ABI dye chemistry and primer walking, and were subsequently annotated. Comparative sequence analysis of the vanA region was done with published plasmids, with a partial vanA plasmid (pVEF4) reported here and to >140 kb of sequence obtained from a collection of vanA-harbouring plasmid fragments. RESULTS Bioinformatic analyses revealed that pIP816 from 1986 and contemporary vanA plasmids shared a conserved genetic fragment of 25 kb, spanning the 10.85 kb vanA cluster encoded by Tn1546, and that the larger unit is present in both clinical and animal complexes of E. faecium. A new group II intron in pVEF4 was characterized. CONCLUSIONS Comparative DNA analyses suggest that Tn1546 disseminates in and between clonal complexes of E. faecium as part of a larger genetic unit, possibly as a composite transposon flanked by IS1216 elements.
Collapse
Affiliation(s)
- H Sletvold
- Department of Pharmacy, Faculty of Medicine, University of Tromsø, 9037 Tromsø, Norway
| | | | | | | | | | | |
Collapse
|
33
|
Jensen LB, Garcia-Migura L, Valenzuela AJS, Løhr M, Hasman H, Aarestrup FM. A classification system for plasmids from enterococci and other Gram-positive bacteria. J Microbiol Methods 2009; 80:25-43. [PMID: 19879906 DOI: 10.1016/j.mimet.2009.10.012] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 10/19/2009] [Accepted: 10/20/2009] [Indexed: 11/18/2022]
Abstract
A classification system for plasmids isolated from enterococci and other Gram-positive bacteria was developed based on 111 published plasmid sequences from enterococci and other Gram-positive bacteria; mostly staphylococci. Based on PCR amplification of conserved areas of the replication initiating genes (rep), alignment of these sequences and using a cutoff value of 80% identity on both protein and DNA level, 19 replicon families (rep-families) were defined together with several unique sequences. The prevalence of these rep-families was tested on 79 enterococcal isolates from a collection of isolates of animal and human origin. Difference in prevalence of the designed rep-families were detected with rep(9) being most prevalent in Enterococcus faecalis and rep(2) in Enterococcus faecium. In 33% of the tested E. faecium and 32% of the tested E. faecalis no positive amplicons were detected. Furthermore, conjugation experiments were performed obtaining 30 transconjugants when selecting for antimicrobial resistance. Among them 19 gave no positive amplicons indicating presence of rep-families not tested for in this experimental setup.
Collapse
Affiliation(s)
- L B Jensen
- National Food Institute, DTU, Division of Microbiology and Risk Assessment, Bülowsvej 27, DK-1790 Copenhagen V, Denmark.
| | | | | | | | | | | |
Collapse
|
34
|
Lata P, Ram S, Agrawal M, Shanker R. Enterococci in river Ganga surface waters: propensity of species distribution, dissemination of antimicrobial-resistance and virulence-markers among species along landscape. BMC Microbiol 2009; 9:140. [PMID: 19615089 PMCID: PMC2722665 DOI: 10.1186/1471-2180-9-140] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Accepted: 07/18/2009] [Indexed: 12/02/2022] Open
Abstract
Background Surface waters quality has declined in developing countries due to rapid industrialization and population growth. The microbiological quality of river Ganga, a life-sustaining surface water resource for large population of northern India, is adversely affected by several point and non-point sources of pollution. Further, untreated surface waters are consumed for drinking and various household tasks in India making the public vulnerable to water-borne diseases and outbreaks. Enterococci, the 'indicator' of water quality, correlates best with the incidence of gastrointestinal diseases as well as prevalence of other pathogenic microorganisms. Therefore, this study aims to determine the distribution of species diversity, dissemination of antimicrobial-resistance and virulence-markers in enterococci with respect to rural-urban landscape along river Ganga in northern India. Results Enterococci density (χ2: 1900, df: 1; p < 0.0001) increased from up-to-down gradient sites in the landscape. Species diversity exhibit significant (χ2: 100.4, df: 20; p < 0.0001) and progressive distribution of E. faecalis, E. faecium, E. durans and E. hirae down the gradient. Statistically discernible (p: 0.0156 – < 0.0001) background pool of resistance and virulence was observed among different Enterococcus spp. recovered from five sites in the up-to-down gradient landscape. A significant correlation was observed in the distribution of multiple-antimicrobial-resistance (viz., erythromycin-rifampicin-gentamicin-methicillin and vancomycin-gentamicin-streptomycin; rs: 0.9747; p: 0.0083) and multiple-virulence-markers (viz., gelE+esp+; rs: 0.9747; p: 0.0083; gelE+efaA+; rs: 0.8944; p: 0.0417) among different Enterococcus spp. Conclusion Our observations show prevalence of multiple-antimicrobial-resistance as well as multiple-virulence traits among different Enterococcus spp. The observed high background pool of resistance and virulence in enterococci in river waters of populous countries has the potential to disseminate more alarming antimicrobial-resistant pathogenic bacteria of same or other lineage in the environment. Therefore, the presence of elevated levels of virulent enterococci with emerging vancomycin resistance in surface waters poses serious health risk in developing countries like India.
Collapse
Affiliation(s)
- Pushpa Lata
- Environmental Microbiology Division, Indian Institute Toxicology Research (CSIR), Post Box 80, Mahatma Gandhi Marg, Lucknow-226001, U.P, India.
| | | | | | | |
Collapse
|
35
|
Garcia-Migura L, Liebana E, Jensen LB. Transposon characterization of vancomycin-resistant Enterococcus faecium (VREF) and dissemination of resistance associated with transferable plasmids. J Antimicrob Chemother 2007; 60:263-8. [PMID: 17561499 DOI: 10.1093/jac/dkm186] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES VanA glycopeptide resistance has persisted on broiler farms in the UK despite the absence of the antimicrobial selective pressure, avoparcin. This study aimed to investigate the contribution of horizontal gene transfer of Tn1546 versus clonal spread in the dissemination of the resistance. METHODS AND RESULTS One hundred and one vancomycin-resistant Enterococcus faecium isolated from 19 unrelated farms have been investigated. Tn1546 characterization by long PCR and ClaI-digestions of amplicons showed a very low diversity of Tn types (n=4) in comparison to the high genotypic diversity demonstrated by PFGE (n=62). Conjugation experiments were carried out to assess the transfer of vancomycin resistance. Co-transfer of vanA together with erm(B) positioned on the same conjugative plasmid containing a replicon similar to pRE25 was demonstrated and also the presence of different plasmid replicons, associated with antimicrobial resistance on several unrelated farms. CONCLUSIONS Horizontal transfer of vancomycin resistance may play a more important role in the persistence of antimicrobial resistance than clonal spread. The presence of different plasmid replicons, associated with antimicrobial resistance on several unrelated farms, illustrates the ability of these enterococci to acquire and disseminate mobile genetic elements within integrated livestock systems.
Collapse
Affiliation(s)
- Lourdes Garcia-Migura
- Antimicrobial Resistance Unit, National Food Institute, Danish Technical University, Bülowsvej 27, DK-1790 Copenhagen V, Denmark.
| | | | | |
Collapse
|
36
|
Paoletti C, Foglia G, Princivalli MS, Magi G, Guaglianone E, Donelli G, Pruzzo C, Biavasco F, Facinelli B. Co-transfer of vanA and aggregation substance genes from Enterococcus faecalis isolates in intra- and interspecies matings. J Antimicrob Chemother 2007; 59:1005-9. [PMID: 17350988 DOI: 10.1093/jac/dkm057] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES The study was undertaken to investigate vancomycin-resistant (vanA) Enterococcus faecalis isolates carrying aggregation substance (AS) gene(s) for their ability to co-transfer vanA and AS genes. METHODS Six vanA clumping-positive E. faecalis isolates (five human and one food sample) carrying one or more AS genes (prgB, asa1, asa373) were analysed for co-transfer of vanA and AS genes to E. faecalis JH2-2 and Enterococcus faecium 64/3. RESULTS E. faecalis isolates harboured one or multiple plasmids carrying vanA, one or more AS gene(s) or both. vanA was transferred to JH2-2 (frequencies of 10(-3)-10(-6)) from all donors and to 64/3 (10(- 6)-10(- 8)) only from donors from humans. AS genes were detected in 51/60 (85%) of JH2-2 and in 20/50 (40%) of 64/3 vanA transconjugants (prgB, asa1, asa373 or prgB asa373), of which a total of 53.6% were clumping-positive. The plasmid content of JH2-2 transconjugants from the same donor was either identical to that of the donor or it was completely different, suggesting different mechanisms for co-transfer (location on the same pheromone plasmid, mobilization of vanA plasmids by the pheromone-inducible conjugation system, rearrangement of plasmid content during matings). After induction with pheromones, a marked increase in adhesion to Caco-2 cells was observed in four isolates and in some JH2-2 transconjugants, all clumping-positive. CONCLUSIONS Findings suggest that co-transfer of vanA and AS genes may be a common feature of E. faecalis isolates. Since AS is recognized as a virulence factor, this feature might contribute to the emergence of strains with enhanced ability to cause infection and disease in humans.
Collapse
Affiliation(s)
- Claudia Paoletti
- Institute of Microbiology and Biomedical Sciences, Polytechnic University of Marche, 60100 Ancona, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Biavasco F, Foglia G, Paoletti C, Zandri G, Magi G, Guaglianone E, Sundsfjord A, Pruzzo C, Donelli G, Facinelli B. VanA-type enterococci from humans, animals, and food: species distribution, population structure, Tn1546 typing and location, and virulence determinants. Appl Environ Microbiol 2007; 73:3307-19. [PMID: 17351100 PMCID: PMC1907105 DOI: 10.1128/aem.02239-06] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
VanA-type human (n=69), animal (n=49), and food (n=36) glycopeptide-resistant enterococci (GRE) from different geographic areas were investigated to study their possible reservoirs and transmission routes. Pulsed-field gel electrophoresis (PFGE) revealed two small genetically related clusters, M39 (n=4) and M49 (n=13), representing Enterococcus faecium isolates from animal and human feces and from clinical and fecal human samples. Multilocus sequence typing showed that both belonged to the epidemic lineage of CC17. purK allele analysis of 28 selected isolates revealed that type 1 was prevalent in human strains (8/11) and types 6 and 3 (14/15) were prevalent in poultry (animals and meat). One hundred and five of the 154 VanA GRE isolates, encompassing different species, origins, and PFGE types, were examined for Tn1546 type and location (plasmid or chromosome) and the incidence of virulence determinants. Hybridization of S1- and I-CeuI-digested total DNA revealed a plasmid location in 98% of the isolates. Human intestinal and animal E. faecium isolates bore large (>150 kb) vanA plasmids. Results of PCR-restriction fragment length polymorphism and sequencing showed the presence of prototype Tn1546 in 80% of strains and the G-to-T mutation at position 8234 in three human intestinal and two pork E. faecium isolates. There were no significant associations (P>0.5) between Tn1546 type and GRE source or enterococcal species. Virulence determinants were detected in all reservoirs but were significantly more frequent (P<0.02) among clinical strains. Multiple determinants were found in clinical and meat Enterococcus faecalis isolates. The presence of indistinguishable vanA elements (mostly plasmid borne) and virulence determinants in different species and PFGE-diverse populations in the presence of host-specific purK housekeeping genes suggested that all GRE might be potential reservoirs of resistance determinants and virulence traits transferable to human-adapted clusters.
Collapse
Affiliation(s)
- F Biavasco
- Institute of Microbiology and Biomedical Sciences, Polytechnic University of Marche, Via Ranieri, Monte d'Ago, 60131 Ancona, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Staddon JH, Bryan EM, Manias DA, Chen Y, Dunny GM. Genetic characterization of the conjugative DNA processing system of enterococcal plasmid pCF10. Plasmid 2006; 56:102-11. [PMID: 16774784 PMCID: PMC2655108 DOI: 10.1016/j.plasmid.2006.05.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Revised: 04/21/2006] [Accepted: 05/01/2006] [Indexed: 11/21/2022]
Abstract
Conjugation is a major contributor to lateral gene transfer in bacteria, and pheromone-inducible conjugation systems in Enterococcus faecalis play an important role in the dissemination of antibiotic resistance and virulence in enterococci and related bacteria. We have genetically dissected the determinants of DNA processing of the enterococcal conjugative plasmid pCF10. Insertional inactivation of a predicted relaxase gene pcfG, via insertion of a splicing-deficient group II intron, severely reduced pCF10 transfer. Restoration of intron splicing ability by genetic complementation restored conjugation. The pCF10 origin of transfer (oriT) was localized to a 40-nucleotide sequence within a non-coding region with sequence similarity to origins of transfer of several other plasmids in gram positive bacteria. Deletion of the oriT reduced pCF10 transfer by more than five orders of magnitude without affecting pCF10-dependent mobilization of co-resident oriT-containing plasmids. Although the host range for pCF10 replication is limited to enterococci, we found that the pCF10 conjugation system promotes mobilization of oriT-containing plasmids to multiple bacterial genera. Therefore, this transfer system may have applications for gene delivery to a variety of poorly-transformed bacteria.
Collapse
Affiliation(s)
| | | | | | | | - Gary M. Dunny
- Corresponding author. Fax: +1 612 626 0623. E-mail address: (G.M. Dunny)
| |
Collapse
|
39
|
Tsai JC, Hsueh PR, Chen HJ, Tseng SP, Chen PY, Teng LJ. The erm(T) gene is flanked by IS1216V in inducible erythromycin-resistant Streptococcus gallolyticus subsp. pasteurianus. Antimicrob Agents Chemother 2006; 49:4347-50. [PMID: 16189118 PMCID: PMC1251499 DOI: 10.1128/aac.49.10.4347-4350.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the sequence and the genetic context of the erm(T) gene in six inducible erythromycin-resistant Streptococcus gallolyticus subsp. pasteurianus (formerly S. bovis biotype II.2) isolates. In all isolates, the erm(T) genes were flanked by two IS1216V-like elements with the same polarity and were found to be inserted in the chromosome.
Collapse
Affiliation(s)
- Jui-Chang Tsai
- Division of Neurosurgery, Department of Surgery, National Taiwan University College of Medicine, Taipei
| | | | | | | | | | | |
Collapse
|
40
|
Martin B, Garriga M, Hugas M, Aymerich T. Genetic diversity and safety aspects of enterococci from slightly fermented sausages. J Appl Microbiol 2005; 98:1177-90. [PMID: 15836488 DOI: 10.1111/j.1365-2672.2005.02555.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS To determine the biodiversity of enterococci from slightly fermented sausages (chorizo and fuet) at species and strain level by molecular typing, while considering their safety aspects. METHODS AND RESULTS Species-specific PCR and partial sequencing of 16S rRNA and sodA genes were used to identify enterococcal population. Enterococcus faecium was the most frequently isolated species followed by E. faecalis, E. hirae and E. durans. Randomly amplified polymorphic DNA (RAPD)-PCR revealed species-specific clusters and allowed strain typing. Sixty strains of 106 isolates exhibited different RAPD profiles indicating a high genetic variability. All the E. faecalis strains carried virulence genes (efaAfs, esp, agg and gelE) and all E. faecium isolates carried efaAfm gene. Enterococcus faecalis showed higher antibiotic resistance than the other species. Only one E. faecium strain showed vanA genotype (high-level resistance to glycopeptides) and E. gallinarum and E. casseliflavus/flavescens isolates showed vanC1 and vanC2/C3 genotypes (low-level resistance only to vancomycin) respectively. CONCLUSIONS E. faecalis has been mainly associated with virulence factors and antimicrobial multi-resistance and, although potential risk for human health is low, the presence of this species in slightly fermented sausages should be avoided to obtain high quality products. SIGNIFICANCE AND IMPACT OF THE STUDY The enterococcal population of slightly fermented sausages has been thoroughly characterized. Several relevant safety aspects have been revealed.
Collapse
Affiliation(s)
- B Martin
- IRTA, Meat Technology Centre, Granja Camps i Armet, Girona, Spain
| | | | | | | |
Collapse
|
41
|
Abriouel H, Lucas R, Ben Omar N, Valdivia E, Maqueda M, Martínez-Cañamero M, Gálvez A. Enterocin AS-48RJ: a variant of enterocin AS-48 chromosomally encoded by Enterococcus faecium RJ16 isolated from food. Syst Appl Microbiol 2005; 28:383-97. [PMID: 16094865 DOI: 10.1016/j.syapm.2005.01.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The bacteriocinogenic strain RJ16 isolated from goat cheese has been identified as Enterococcusfaecium by species-specific PCR, DNA-rRNA hybridization and rDNA sequencing. Purified bacteriocin from strain RJ16 is a carboxypeptidase A-resistant peptide with a molecular mass (7125 Da) very close to the cyclic peptide enterocin AS-48. Bacteriocin from strain RJ16 and AS-48 show identical antibacterial spectra, although the former is slightly less active on strains of Listeria monocytogenes and Bacillus cereus. Producer strains show cross-immunity. PCR amplification of total DNA from strain RJ16 with primers for the AS-48 structural gene and sequencing of the amplified fragment revealed an almost identical sequence (99.5%), except for a single mutation that predicts the change of Glu residue at position 20 of AS-48 to Val. Therefore, bacteriocin produced by E. faecium RJ16 should be considered a variant of AS-48, which we call AS-48RJ. PCR amplification revealed that strain RJ16 contains the complete as-48. gene cluster. Hybridization with probes for as-48 gene cluster revealed a chromosomal location of as-48 genes in strain RJ16, being the first example of a chromosomal location of this bacteriocin trait. Strain RJ16 produced enzymes of interest in food processing (esterase, esterase lipase and phytase activities), and did not decarboxylate amino acids precursors for biogenic amines. Strain RJ16 did not exhibit haemolytic or gelatinase activities, and PCR amplification revealed the lack of genes encoding for known virulence determinants (aggregation substance, collagen adhesin, enterococcal surface protein, endocarditis antigens, as well as haemolysin and gelatinase production). Strain RJ16 was resistant to ciprofloxacin (MIC > 2 mgl(-1)) and levofloxacin (MIC > 4 mgl(-1)) and showed intermediate resistance to nitrofurantoin and erythromycin, but was sensitive to ampicillin, penicillin, streptomycin, gentamicin, rifampicin, chloramphenicol, tetracycline, quinupristin/dalfopristin, vancomycin and teicoplanin. Altogether, results from this study suggest that this broad-spectrum bacteriocin-producing strain may have a potential use in food preservation.
Collapse
Affiliation(s)
- Hikmate Abriouel
- Area de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071-Jaén, Spain
| | | | | | | | | | | | | |
Collapse
|
42
|
Andrews RE, Johnson WS, Guard AR, Marvin JD. Survival of enterococci and Tn916-like conjugative transposons in soil. Can J Microbiol 2005; 50:957-66. [PMID: 15644913 DOI: 10.1139/w04-090] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The persistence of Enterococcus faecalis, fecal enterococci from swine waste, and Tn916-like elements was determined following inoculation into autoclaved and native soil microcosms. When cells of E. faecalis CG110 (Tn916) were inoculated into native microcosms, enterococcal viability in the soil decreased approximately 5 orders of magnitude (4.8 x 10(5) CFU/g soil to < 10 CFU/g) after 5 weeks. In autoclaved microcosms, the viability of E. faecalis decreased by only 20% in 5 weeks. In contrast, the content of Tn916, based on PCR of DNA extracts from soil microcosms, decreased by about 20% in both native and autoclaved microcosms. Similar results were obtained when the source of fecal enterococci and Tn916-like elements was swine waste. Because the concentration of Tn916-independent E. faecalis DNA (the D-alanine D-alanine ligase gene), based on PCR, decreased to nearly undetectable levels (at least 3 orders of magnitude) after 5 weeks in the native microcosms, the evidence suggests Tn916 stability in the soil results from en masse transfer of the transposon to the normal soil microflora and not survival of E. faecalis DNA in the soil system. Results from denaturing gradient gel electrophoresis suggest that multiple forms of Tn916 occur in swine waste, but only forms most like Tn916 exhibit stability in the soil.
Collapse
Affiliation(s)
- Robert E Andrews
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA.
| | | | | | | |
Collapse
|
43
|
Coleri A, Cokmus C, Ozcan B, Akcelik M, Tukel C. Determination of antibiotic resistance and resistance plasmids of clinical Enterococcus species. J GEN APPL MICROBIOL 2004; 50:213-9. [PMID: 15754247 DOI: 10.2323/jgam.50.213] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
To determine the antibiotic resistance pattern and resistance plasmids, we studied 23 antibiotic-resistant clinical isolates of Enterococcus spp. which caused infection in Bayindir-Ankara Hospital, Turkey. Biochemical and physiological identification tests were applied by the Vitek system and compared with the results of protein profiles by SDS-PAGE. From 23 isolates, 20 were identified as E. faecalis, 2 as E. faecium and 1 as E. gallinarum. Twenty four antibiotics belong to 10 different groups were used in susceptibility tests. Multiple antibiotic resistance was determined in 10 of 23 Enterococcus spp. Overall resistance to the used antibiotics was 47.3% and low level resistance was 16.6%. Among the isolates tested, 8.7% demonstrated high level gentamicin resistance, 17.4% demonstrated high level streptomycin resistance, and 43.5% demonstrated penicillin resistance. High level vancomycin resistant Enterococcus spp. rate was 34.8%, and 60.9% exhibited low level resistance to vancomycin and teicoplanin. They contain plasmids which varied in numbers between 1 and 11 and the plasmid sizes ranged from 2.08 to 56.15 kb. In curing experiments with acriflavine, two different plasmids were shown in different molecular sizes of 33.49 and 13.6 kb while the first determined glycopeptide and penicillin resistance, the second one determined either glycopeptide or penicillin resistance in two different E. faecalis strains. On the other hand, a 22.58 kb plasmid, determining kanamycin resistance, was detected in an E. faecium strain. After the curing experiments, an elimination of 37.17 and 44.47 kDa protein bands was shown in E. faecium EFA1 and E. faecalis EFA13 in SDS-PAGE, respectively. This survey indicates the increase of antibiotic-resistant enterococci, especially to vancomycin in our hospital isolates.
Collapse
Affiliation(s)
- Arzu Coleri
- Department of Biology, Faculty of Science, Ankara University, 06100, Tandogan, Ankara, Turkey.
| | | | | | | | | |
Collapse
|
44
|
Borgen K, Sørum M, Wasteson Y, Kruse H, Oppegaard H. Genetic linkage between erm(B) and vanA in Enterococcus hirae of poultry origin. Microb Drug Resist 2003; 8:363-8. [PMID: 12523634 DOI: 10.1089/10766290260469633] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Vancomycin-resistant enterococci (VRE) have frequently been isolated from Norwegian poultry production following the prohibition of the glycopeptide growth promoter avoparcin since 1995. In the present study, a close genetic linkage between the vanA and erm(B) determinants in an Enterococcus hirae isolate of poultry origin is demonstrated, a result that indicates a mechanism for co-selection and maintenance of vancomycin resistance in absence of selective pressure from avoparcin. A total of 36 vanA-positive enterococci of poultry origin, also phenotypically resistant to erythromycin and/or tetracycline, were analyzed by PCR for identification of erm and tet resistance determinants. An E. hirae isolate harbored erm(B) and tet(K), and in this isolate vanA and erm(B) were located on a BamHI fragment of an approximately 50-kb plasmid. Approximately 3 kb of this fragment was amplified by PCR with vanA and erm(B) primers. Sequence analysis of the region between erm(B) and vanZ of Tn1546 showed a truncated IS1216V inserted downstream of the erm(B) stop codon, aligned with a conserved copy of the 3'-inverted terminal repeat of Tn1546. Mating experiments with the E. hirae isolate as donor and E. faecalis JH2-2 as recipient did not result in any transconjugants, indicating that the vanA/erm(B)-carrying plasmid was nonconjugative under the given experimental conditions.
Collapse
Affiliation(s)
- Katrine Borgen
- Department of Pharmacology, Microbiology and Food Hygiene, The Norwegian School of Veterinary Science. N-0033 Oslo, Norway
| | | | | | | | | |
Collapse
|
45
|
Duprè I, Zanetti S, Schito AM, Fadda G, Sechi LA. Incidence of virulence determinants in clinical Enterococcus faecium and Enterococcus faecalis isolates collected in Sardinia (Italy). J Med Microbiol 2003; 52:491-498. [PMID: 12748268 DOI: 10.1099/jmm.0.05038-0] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Enterococci are widely distributed in the environment; within the human body, they are normal commensals of the oral cavity, gastrointestinal tract and vagina. In recent years, enterococci have become one of the most frequent causes of acquired nosocomial infections worldwide. The molecular mechanism of virulence of these bacteria is still not completely understood. The aims of this work were to characterize phenotypically 47 isolates of Enterococcus faecalis and Enterococcus faecium collected in Sardinia (Italy) by their abilities to adhere to different epithelial cell lines (Vero and Caco-2 cells) and to associate their phenotypes with the presence of known virulence genes detected within their genomes by PCR. The following genes were amplified: AS (aggregation substance), esp (surface protein gene), ace (accessory colonization factor), efaA (E. faecalis endocarditis antigen) and gelE (gelatinase). The virulence genes were detected in E. faecalis isolates only, with the exception of esp, which was found in both species. The phenotypic and genotypic results were also compared with the susceptibility of isolates to various antibiotics.
Collapse
Affiliation(s)
- I Duprè
- Dipartimento di Scienze Biomediche, Sezione di Microbiologia Sperimentale e Clinica, Viale S. Pietro 43/B, Università degli studi di Sassari, 07100 Sassari, Italy 2Istituto di Microbiologia C. A. Romanzi, Università di Genova, Genoa, Italy 3Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy#dReceived 29 July 2002 Accepted 4 March 2003
| | - S Zanetti
- Dipartimento di Scienze Biomediche, Sezione di Microbiologia Sperimentale e Clinica, Viale S. Pietro 43/B, Università degli studi di Sassari, 07100 Sassari, Italy 2Istituto di Microbiologia C. A. Romanzi, Università di Genova, Genoa, Italy 3Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy#dReceived 29 July 2002 Accepted 4 March 2003
| | - A M Schito
- Dipartimento di Scienze Biomediche, Sezione di Microbiologia Sperimentale e Clinica, Viale S. Pietro 43/B, Università degli studi di Sassari, 07100 Sassari, Italy 2Istituto di Microbiologia C. A. Romanzi, Università di Genova, Genoa, Italy 3Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy#dReceived 29 July 2002 Accepted 4 March 2003
| | - G Fadda
- Dipartimento di Scienze Biomediche, Sezione di Microbiologia Sperimentale e Clinica, Viale S. Pietro 43/B, Università degli studi di Sassari, 07100 Sassari, Italy 2Istituto di Microbiologia C. A. Romanzi, Università di Genova, Genoa, Italy 3Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy#dReceived 29 July 2002 Accepted 4 March 2003
| | - L A Sechi
- Dipartimento di Scienze Biomediche, Sezione di Microbiologia Sperimentale e Clinica, Viale S. Pietro 43/B, Università degli studi di Sassari, 07100 Sassari, Italy 2Istituto di Microbiologia C. A. Romanzi, Università di Genova, Genoa, Italy 3Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy#dReceived 29 July 2002 Accepted 4 March 2003
| |
Collapse
|
46
|
Magi G, Capretti R, Paoletti C, Pietrella M, Ferrante L, Biavasco F, Varaldo PE, Facinelli B. Presence of a vanA-carrying pheromone response plasmid (pBRG1) in a clinical isolate of Enterococcus faecium. Antimicrob Agents Chemother 2003; 47:1571-6. [PMID: 12709324 PMCID: PMC153324 DOI: 10.1128/aac.47.5.1571-1576.2003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sex pheromone plasmids, frequently found in Enterococcus faecalis, have rarely been detected in Enterococcus faecium. pBRG1 is an approximately 50-kb vanA-carrying conjugative plasmid of an E. faecium clinical isolate (LS10) that is transferable to E. faecalis laboratory strains. In cell infection experiments, E. faecium LS10 exhibited remarkably high invasion efficiency and produced cytopathogenic effects in Caco-2 cell monolayers. Growth in the presence of sex pheromones produced by E. faecalis JH2-2 was found to cause self-aggregation of both E. faecium LS10 and E. faecalis JH-RFV(pBRG1) (a transconjugant obtained by transfer of pBRG1 to E. faecalis JH2-2) and to increase the cell adhesion and invasion efficiencies of both E. faecium LS10 and E. faecalis JH-RFV(pBRG1). Sex pheromone cCF10 caused clumping of E. faecalis OG1RF(pBRG1) (a transconjugant obtained by transfer of pBRG1 to E. faecalis OG1RF) at a concentration approximately 100-fold higher than the one required for the control strain E. faecalis OG1RF(pCF10). PCR products of the expected sizes were obtained with primers internal to aggregation substance genes of E. faecalis pheromone response plasmids pAD1, pPD1, and pCF10 and primers internal to ash701 of E. faecium pheromone plasmid pHKK701. These findings suggest that pBRG1 of E. faecium LS10 is a sex pheromone response plasmid.
Collapse
Affiliation(s)
- Gloria Magi
- Department of Microbiology and Biomedical Sciences, University of Ancona, 60131 Ancona, Italy
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Folli C, Ramazzina I, Arcidiaco P, Stoppini M, Berni R. Purification of bacteriocin AS-48 from an Enterococcus faecium strain and analysis of the gene cluster involved in its production. FEMS Microbiol Lett 2003; 221:143-9. [PMID: 12694923 DOI: 10.1016/s0378-1097(03)00176-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The cyclic bacteriocin AS-48 has previously been shown to be produced by Enterococcus faecalis strains. A bacteriocin has been purified from an E. faecium strain (E. faecium 7C5), and it has been found to possess molecular mass, cyclization and amino acid sequence typical of bacteriocin AS-48. In addition to the structural gene as-48A, the sequence analysis of the AS-48 gene cluster present in E. faecium 7C5 has revealed the presence of several putative coding regions presumably involved in bacteriocin production and immunity. The results of DNA hybridization assays have indicated that the AS-48 gene cluster and the gene pd78 are present on the same plasmid, possibly the pPD1 plasmid, in E. faecium 7C5.
Collapse
Affiliation(s)
- Claudia Folli
- Department of Biochemistry and Molecular Biology, University of Parma, 43100 Parma, Italy
| | | | | | | | | |
Collapse
|
48
|
Sundsfjord A, Simonsen GS, Courvalin P. Human infections caused by glycopeptide-resistant Enterococcus spp: are they a zoonosis? Clin Microbiol Infect 2002; 7 Suppl 4:16-33. [PMID: 11688531 DOI: 10.1046/j.1469-0691.2001.00055.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Following the detection of glycopeptide-resistant enterococci (GRE) in 1986 and their subsequent global dissemination during the 1990s, many studies have attempted to identify the reservoirs and lines of resistance transmission as a basis for intervention. The eradication of reservoirs and the prevention of GRE spread is of major importance for two reasons: (i) the emergence of high-level glycopeptide resistance in invasive enterococcal clinical isolates that are already multiresistant, has left clinicians with therapeutic options that are only at the experimental stage; and (ii) the resistance genes may spread to more virulent bacterial species such as Staphylococcus aureus, Streptococcus pneumoniae and Clostridium difficile. VanA-type strains, resistant to high levels of both vancomycin and teicoplanin, are the most commonly encountered enterococci with acquired glycopeptide resistance in humans. A widespread VanA-type GRE reservoir was detected early in farm animals that were exposed to the glycopeptide growth-promoter avoparcin. Numerous studies have provided indirect evidence for the transfer of VanA-type GRE and their resistance determinants from animal reservoirs to humans. The data collected have expanded our understanding of the promiscuous nature of antibiotic resistance, and have provided the groundwork for logical decision-making with the objective of deterring the dissemination of resistant bacteria and of their resistance genes.
Collapse
Affiliation(s)
- A Sundsfjord
- Unité des Agents Antibactériens, Institut Pasteur, Paris, France.
| | | | | |
Collapse
|
49
|
Antiporta MH, Dunny GM. ccfA, the genetic determinant for the cCF10 peptide pheromone in Enterococcus faecalis OG1RF. J Bacteriol 2002; 184:1155-62. [PMID: 11807076 PMCID: PMC134800 DOI: 10.1128/jb.184.4.1155-1162.2002] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nosocomial pathogen Enterococcus faecalis has a unique pheromone-inducible conjugative mating system. Conjugative transfer of the E. faecalis plasmid pCF10 is specifically induced by the cCF10 peptide pheromone (LVTLVFV). Genomic sequence information has recently allowed the identification of putative structural genes coding for the various enterococcal pheromones (D. B. Clewell et al., Mol. Microbiol. 35:246-247, 2000). The cCF10 pheromone sequence LVTLVFV was found within an open reading frame designated ccfA, encoding a putative lipoprotein precursor. Several other pheromone sequences were found in similar locations within other predicted lipoproteins. CcfA shows significant sequence relatedness to the Escherichia coli protein YidC, an inner membrane protein translocase, as well as to a large number of homologs identified in gram-positive and in gram-negative bacteria. Analysis of the deduced CcfA amino acid sequence suggested that mature cCF10 peptide could be formed from the proteolytic degradation of its signal peptide. Expression of the cloned ccfA gene with an inducible expression vector dramatically increased cCF10 production by E. faecalis and also resulted in cCF10 production by Lactococcus lactis, a non-pheromone producer. Site-directed mutagenesis of the ccfA sequence encoding the cCF10 peptide confirmed that ccfA was a functional genetic determinant for cCF10.
Collapse
Affiliation(s)
- Michelle H Antiporta
- Department of Microbiology, University of Minnesota Medical School, Minneapolis, Minnesota 55455-0312, USA
| | | |
Collapse
|
50
|
Dunny GM, Antiporta MH, Hirt H. Peptide pheromone-induced transfer of plasmid pCF10 in Enterococcus faecalis: probing the genetic and molecular basis for specificity of the pheromone response. Peptides 2001; 22:1529-39. [PMID: 11587782 DOI: 10.1016/s0196-9781(01)00489-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The tetracycline resistance plasmid pCF10 represents a class of unique mobile genetic elements of the bacterial genus Enterococcus, whose conjugative transfer functions are inducible by peptide sex pheromones excreted by potential recipient cells. These plasmids play a significant role in the dissemination of virulence and antibiotic resistance genes among the enterococci, which have become major nosocomial pathogens. Pheromone response by plasmid-carrying donor cells involves specific import of the peptide signal molecule, and subsequent interaction of the signal with one or more intracellular regulatory gene products. The pheromones are chromosomally encoded hydrophobic octa- or hepta-peptides, and different families of homologous plasmids encode the ability to respond to each pheromone. Among the four pheromone-responsive plasmids that have been characterized in some detail, there is considerable conservation in the genes encoding pheromone sensing and regulatory functions, and the peptides themselves show considerable similarity. In spite of this, there is extremely high specificity of response to each peptide, with virtually no "cross-induction" of transfer of non-cognate pheromone plasmids by the pheromones. This communication reviews the evidence for this specificity and discusses current molecular and genetic approaches to defining the basis for specificity.
Collapse
Affiliation(s)
- G M Dunny
- Department of Microbiology, University of Minnesota Medical School, 1460 Mayo Bldg, 420 Delaware St. SE, Minneapolis, MN 55455-0312, USA.
| | | | | |
Collapse
|