1
|
George CT, Kurien BT, Scofield RH. The Potential Utility of Salivary and Tear Proteomics to Discriminate Sjögren's Disease from Non-Sjögren's Sicca. Int J Mol Sci 2023; 24:17497. [PMID: 38139325 PMCID: PMC10744321 DOI: 10.3390/ijms242417497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Sjögren's Disease (SjD) is an autoimmune disorder associated with decreased saliva and/or tear secretions, resulting in patients reporting dryness in the mouth and eyes. Serum autoantibodies directed against the Ro60/SS-A and La/SS-B autoantigens are a distinctive feature of the disease. Analysis of the saliva and tear proteomes represents one promising alternative method of both classifying and monitoring the condition, and research into salivary and tear proteomics in patients with SjD, with and without sicca, has shown its efficacy and practicality in both clinical and research settings. Studies analyzing the saliva proteomics of SjD patients have generally shown an overexpression of proteins involved in T-cell activation, the immune response, β-2 microglobulin, and the recruitment of pro-inflammatory agents. These studies also show a decrease in or downregulation of proteins involved in salivary secretion. Studies analyzing the tear proteomics of patients with SjD have generally indicated an upregulation of proteins involved with TNF-α signaling, B-cell survival, and the recruitment of pro-inflammatory agents. Studies also note the differential expression of tear protein folding as a hallmark of ocular involvement in this condition. These findings help to elucidate the biochemical relationship between the proteomes of saliva/tear fluids and the general pathophysiology of the gland involved with the pathogenesis of this condition, giving further credence to the potential role of salivary and tear proteomics in the future of diagnosis and treatment for patients with SjD.
Collapse
Affiliation(s)
| | - Biji T. Kurien
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA;
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Department of Veterans Affairs Medical Center, Oklahoma City, Oklahoma City, OK 73104, USA
| | - R. Hal Scofield
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA;
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Department of Veterans Affairs Medical Center, Oklahoma City, Oklahoma City, OK 73104, USA
| |
Collapse
|
2
|
Abstract
Ro60 ribonucleoproteins (RNPs), composed of the ring-shaped Ro 60-kDa (Ro60) protein and noncoding RNAs called Y RNAs, are present in all three domains of life. Ro60 was first described as an autoantigen in patients with rheumatic disease, and Ro60 orthologs have been identified in 3% to 5% of bacterial genomes, spanning the majority of phyla. Their functions have been characterized primarily in Deinococcus radiodurans, the first sequenced bacterium with a recognizable ortholog. In D. radiodurans, the Ro60 ortholog enhances the ability of 3'-to-5' exoribonucleases to degrade structured RNA during several forms of environmental stress. Y RNAs are regulators that inhibit or allow the interactions of Ro60 with other proteins and RNAs. Studies of Ro60 RNPs in other bacteria hint at additional functions, since the most conserved Y RNA contains a domain that is a close tRNA mimic and Ro60 RNPs are often encoded adjacent to components of RNA repair systems.
Collapse
Affiliation(s)
- Soyeong Sim
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA; , , ,
| | - Kevin Hughes
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA; , , ,
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06510, USA
| | - Xinguo Chen
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA; , , ,
| | - Sandra L Wolin
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA; , , ,
| |
Collapse
|
3
|
Y RNA: An Overview of Their Role as Potential Biomarkers and Molecular Targets in Human Cancers. Cancers (Basel) 2020; 12:cancers12051238. [PMID: 32423154 PMCID: PMC7281143 DOI: 10.3390/cancers12051238] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/03/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022] Open
Abstract
Y RNA are a class of small non-coding RNA that are largely conserved. Although their discovery was almost 40 years ago, their function is still under investigation. This is evident in cancer biology, where their role was first studied just a dozen years ago. Since then, only a few contributions were published, mostly scattered across different tumor types and, in some cases, also suffering from methodological limitations. Nonetheless, these sparse data may be used to make some estimations and suggest routes to better understand the role of Y RNA in cancer formation and characterization. Here we summarize the current knowledge about Y RNA in multiple types of cancer, also including a paragraph about tumors that might be included in this list in the future, if more evidence becomes available. The picture arising indicates that Y RNA might be useful in tumor characterization, also relying on non-invasive methods, such as the analysis of the content of extracellular vesicles (EV) that are retrieved from blood plasma and other bodily fluids. Due to the established role of Y RNA in DNA replication, it is possible to hypothesize their therapeutic targeting to inhibit cell proliferation in oncological patients.
Collapse
|
4
|
Zhu Y, Fan C, Zhao B. Differential expression of piRNAs in reprogrammed pluripotent stem cells from mouse embryonic fibroblasts. IUBMB Life 2019; 71:1906-1915. [PMID: 31317647 DOI: 10.1002/iub.2128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/01/2019] [Indexed: 12/31/2022]
Abstract
piRNAs are a large class of small noncoding RNA that interact with an animal-specific class of Argonaute proteins, P-element induced wimpy proteins. piRNAs were initially discovered in mouse testes to be a fundamental component of spermatogenesis. Outside of the germline, piRNAs were found to function in embryogenesis, development, regeneration and cancer cells. However, despite a decade of scrutiny, functional understanding of this class of small RNAs remains very limited. To determine whether there are piRNAs present and involved in the cellular reprogramming process, we extracted piwi-interacting RNA (piRNA) signatures from a small RNA deep sequencing data set of mouse embryonic fibroblasts (MEFs), mouse embryonic stem cells (mESCs) and reprogrammed stem cells by three different technologies. We successfully identified three piRNA families specifically expressed in these reprogrammed stem cells. Meanwhile, there were almost no piRNAs observed in MEFs and mESCs. Further analysis indicated that these piRNAs may associate with the reprogramming process but not cellular pluripotency. Target gene prediction suggested that at least one of piRNAs, piR-mmu-64162, may take part in the reprogramming process by regulating cell senescence. Overall, we firstly identified the potential reprogramming associated piRNAs, shedding new light on piRNA functions.
Collapse
Affiliation(s)
- Yanye Zhu
- National Facility for Protein Science in Shanghai, Zhangjiang Laboratory, Shanghai, 201210, China
| | - Chunsun Fan
- Department of Etiology, Qidong People's Hospital/Qidong Liver Cancer Institute, Qidong, Jiangsu, 226200, China
| | - Botao Zhao
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
5
|
Abstract
Y RNAs are noncoding RNAs (ncRNAs) that are present in most animal cells and also in many bacteria. These RNAs were discovered because they are bound by the Ro60 protein, a major target of autoantibodies in patients with some systemic autoimmune rheumatic diseases. Studies of Ro60 and Y RNAs in Deinococcus radiodurans, the first sequenced bacterium with a Ro60 ortholog, revealed that they function with 3'-to-5' exoribonucleases to alter the composition of RNA populations during some forms of environmental stress. In the best-characterized example, Y RNA tethers the Ro60 protein to the exoribonuclease polynucleotide phosphorylase, allowing this exoribonuclease to degrade structured RNAs more effectively. Y RNAs can also function as gates to regulate access of other RNAs to the Ro60 central cavity. Recent studies in the enteric bacterium Salmonella enterica serovar Typhimurium resulted in the discovery that Y RNAs are widely present in bacteria. Remarkably, the most-conserved subclass of bacterial Y RNAs contains a domain that mimics tRNA. In this review, we discuss the structure, conservation, and known functions of bacterial Y RNAs as well as the certainty that more bacterial Y RNAs and additional roles for these ncRNAs remain to be uncovered.
Collapse
|
6
|
Kurien BT, Bachmann MP. On-Membrane Renaturation of Recombinant Ro60 Autoantigen by Calcium Ions. Methods Mol Biol 2016; 1314:255-61. [PMID: 26139273 DOI: 10.1007/978-1-4939-2718-0_26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Calcium plays an important role in many biochemical processes in different cell types. This divalent cation interacts with specific calcium-binding proteins that serve as calcium sensors and regulatory proteins to mediate its function. Previously, we found that calcium was involved in the protein-protein interaction observed between Ro60 multiple antigenic peptides and Ro60 autoantigen. Since calcium bound Ro60 multiple antigenic peptides, we hypothesized that it would renature human recombinant Ro60 on a protein blot. We found that anti-Ro60 antibodies bound significantly higher to the recombinant Ro60 antigen that was incubated with calcium compared to that incubated without calcium on a polyvinylidene fluoride (PVDF) blot. Since the immunological epitopes of Ro60 are mainly conformational, we believe that calcium induced a more native tertiary structure in recombinant Ro60 autoantigen following blotting to a PVDF membrane.
Collapse
Affiliation(s)
- Biji T Kurien
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA,
| | | |
Collapse
|
7
|
Kowalski MP, Krude T. Functional roles of non-coding Y RNAs. Int J Biochem Cell Biol 2015; 66:20-9. [PMID: 26159929 PMCID: PMC4726728 DOI: 10.1016/j.biocel.2015.07.003] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/03/2015] [Accepted: 07/04/2015] [Indexed: 12/20/2022]
Abstract
Non-coding RNAs are involved in a multitude of cellular processes but the biochemical function of many small non-coding RNAs remains unclear. The family of small non-coding Y RNAs is conserved in vertebrates and related RNAs are present in some prokaryotic species. Y RNAs are also homologous to the newly identified family of non-coding stem-bulge RNAs (sbRNAs) in nematodes, for which potential physiological functions are only now emerging. Y RNAs are essential for the initiation of chromosomal DNA replication in vertebrates and, when bound to the Ro60 protein, they are involved in RNA stability and cellular responses to stress in several eukaryotic and prokaryotic species. Additionally, short fragments of Y RNAs have recently been identified as abundant components in the blood and tissues of humans and other mammals, with potential diagnostic value. While the number of functional roles of Y RNAs is growing, it is becoming increasingly clear that the conserved structural domains of Y RNAs are essential for distinct cellular functions. Here, we review the biochemical functions associated with these structural RNA domains, as well as the functional conservation of Y RNAs in different species. The existing biochemical and structural evidence supports a domain model for these small non-coding RNAs that has direct implications for the modular evolution of functional non-coding RNAs.
Collapse
Affiliation(s)
- Madzia P Kowalski
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, United Kingdom
| | - Torsten Krude
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, United Kingdom.
| |
Collapse
|
8
|
Abstract
Since the first application of RNA interference (RNAi) in mammalian cells, the expression of short hairpin RNAs (shRNAs) for targeted gene silencing has become a benchmark technology. Using plasmid and viral vectoring systems, the transcription of shRNA precursors that are effectively processed by the RNAi pathway can lead to potent gene knockdown. The past decade has seen continual advancement and improvement to the various strategies that can be used for shRNA delivery, and the use of shRNAs for clinical applications is well underway. Driving these developments has been the many benefits afforded by shRNA technologies, including the stable integration of expression constructs for long-term expression, infection of difficult-to-target cell lines and tissues using viral vectors, and the temporal control of shRNA transcription by inducible promoters. The use of different effector molecule formats, promoters, and vector types, has meant that experiments can be tailored to target specific cell types and minimize cellular toxicities. Through the application of combinatorial RNAi (co-RNAi), multiple shRNA delivery strategies can improve gene knockdown, permit multiple transcripts to be targeted simultaneously, and curtail the emergence of viral escape mutants. This chapter reviews the history, cellular processing, and various applications of shRNAs in mammalian systems, including options for effector molecule design, vector and promoter types, and methods for multiple shRNA delivery.
Collapse
Affiliation(s)
- Luke S Lambeth
- Murdoch Childrens Research Institute, Royal Childrens Hospital, Melbourne, VIC, Australia.
| | | |
Collapse
|
9
|
Canella D, Bernasconi D, Gilardi F, LeMartelot G, Migliavacca E, Praz V, Cousin P, Delorenzi M, Hernandez N. A multiplicity of factors contributes to selective RNA polymerase III occupancy of a subset of RNA polymerase III genes in mouse liver. Genome Res 2012; 22:666-80. [PMID: 22287103 DOI: 10.1101/gr.130286.111] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The genomic loci occupied by RNA polymerase (RNAP) III have been characterized in human culture cells by genome-wide chromatin immunoprecipitations, followed by deep sequencing (ChIP-seq). These studies have shown that only ∼40% of the annotated 622 human tRNA genes and pseudogenes are occupied by RNAP-III, and that these genes are often in open chromatin regions rich in active RNAP-II transcription units. We have used ChIP-seq to characterize RNAP-III-occupied loci in a differentiated tissue, the mouse liver. Our studies define the mouse liver RNAP-III-occupied loci including a conserved mammalian interspersed repeat (MIR) as a potential regulator of an RNAP-III subunit-encoding gene. They reveal that synteny relationships can be established between a number of human and mouse RNAP-III genes, and that the expression levels of these genes are significantly linked. They establish that variations within the A and B promoter boxes, as well as the strength of the terminator sequence, can strongly affect RNAP-III occupancy of tRNA genes. They reveal correlations with various genomic features that explain the observed variation of 81% of tRNA scores. In mouse liver, loci represented in the NCBI37/mm9 genome assembly that are clearly occupied by RNAP-III comprise 50 Rn5s (5S RNA) genes, 14 known non-tRNA RNAP-III genes, nine Rn4.5s (4.5S RNA) genes, and 29 SINEs. Moreover, out of the 433 annotated tRNA genes, half are occupied by RNAP-III. Transfer RNA gene expression levels reflect both an underlying genomic organization conserved in dividing human culture cells and resting mouse liver cells, and the particular promoter and terminator strengths of individual genes.
Collapse
Affiliation(s)
- Donatella Canella
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Kurien BT, Porter A, Dorri Y, Iqbal S, D'Souza A, Singh A, Asfa S, Cartellieri M, Mathias K, Matsumoto H, Bachmann M, Hensley K, Scofield RH. Degree of modification of Ro60 by the lipid peroxidation by-product 4-hydroxy-2-nonenal may differentially induce Sjögren syndrome or systemic lupus erythematosus in BALB/c mice. Free Radic Biol Med 2011; 50:1222-33. [PMID: 20946951 PMCID: PMC3591494 DOI: 10.1016/j.freeradbiomed.2010.10.687] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 08/04/2010] [Accepted: 10/05/2010] [Indexed: 01/10/2023]
Abstract
Our previous work showed that immunization of rabbits with 4-hydroxy-2-nonenal-modified Ro60 (HNE-Ro60) accelerates autoimmunity. We extended this model into mice, hypothesizing that the severity of autoimmunity would be dependent on the degree of HNE modification of Ro60. Five groups of BALB/c mice (10/group) were used. Group I was immunized with Ro60. Groups II to IV were immunized with Ro60 modified with 0.4 mM (low), 2 mM (medium), and 10 mM (high) HNE, respectively. Group V controls received Freund's adjuvant. A rapid abrogation of tolerance to Ro60/La antigens occurred in mice immunized with HNE-modified Ro60, especially in the low and medium HNE-Ro60 groups. Lymphocytic infiltration and significantly high decrement in salivary flow (37%) compared to controls was observed only in the high HNE-Ro60 group, suggesting induction of a Sjögren syndrome-like condition in this group. Anti-dsDNA occurred only in mice immunized with medium HNE-Ro60. This group did not have a significant decrement in salivary flow, suggesting induction of a systemic lupus erythematosus-like manifestation in this group. Significantly high antibodies to Ro60 were found in saliva of mice in the low and medium HNE-Ro60 and the Ro60 groups, as well as anti-HNE Ro60 in the low and medium HNE-Ro60 groups. Understanding the mechanism of this differential induction may help discriminate between these two autoimmune diseases.
Collapse
Affiliation(s)
- Biji T Kurien
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Chuang CK, Lee KH, Fan CT, Su YS. Porcine Type III RNA Polymerase III Promoters for Short Hairpin RNA Expression. Anim Biotechnol 2009; 20:34-9. [DOI: 10.1080/10495390802603064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Chin-kai Chuang
- a Division of Biotechnology , Animal Technology Institute Taiwan , Chunan , Miaoli , Taiwan
| | - Kun-Hsiung Lee
- a Division of Biotechnology , Animal Technology Institute Taiwan , Chunan , Miaoli , Taiwan
| | - Chiu-Tin Fan
- a Division of Biotechnology , Animal Technology Institute Taiwan , Chunan , Miaoli , Taiwan
| | - Yu-Show Su
- a Division of Biotechnology , Animal Technology Institute Taiwan , Chunan , Miaoli , Taiwan
| |
Collapse
|
12
|
Kurien BT, Bachmann M. Renaturation of recombinant Ro 60 autoantigen by calcium ions on PVDF membrane. Methods Mol Biol 2009; 536:299-306. [PMID: 19378069 DOI: 10.1007/978-1-59745-542-8_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Calcium is pivotally involved in many biochemical processes in different cell types. This divalent cation mediates its function by interacting with specific calcium binding proteins that serve as calcium sensors and regulatory proteins. In our earlier studies we found that calcium was involved in the protein-protein interaction observed between Ro 60 multiple antigenic peptides (MAPs) and Ro 60 autoantigen. Since calcium was found to bind Ro 60 MAPs we hypothesized that it would renature human recombinant Ro 60 on a protein blot. As hypothesized antibodies to Ro 60 bound significantly higher to the recombinant Ro antigen that was incubated with calcium compared with that incubated without calcium on a polyvinyline fluoride (PVDF) blot. Since the immmunological epitopes of Ro 60 are mainly conformational, we believe that calcium induced a more native tertiary structure in recombinant Ro 60 autoantigen -following blotting to a PVDF membrane.
Collapse
Affiliation(s)
- Biji T Kurien
- Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA.
| | | |
Collapse
|
13
|
Abstract
Apoptosis has been proposed to influence the initiation and diversification of autoimmunity to the Ro (SSA)/La (SSB) ribonucleoprotein (RNP) particle and serve as a target for autoantibody-mediated tissue injury. We have developed a new approach to B cell epitope mapping which identifies "apotopes," defined as epitopes expressed on the surface of apoptotic cells. Preliminary studies support a role for apotopes as diagnostic markers in systemic lupus erythematosus (SLE) and primary Sjögren's syndrome. For example, apotopes within the NH(2)-terminal and central regions of La react with the majority of sera from mothers of infants with congenital heart block. Furthermore, a Ro60 apotope is specific for a subset of SLE with isolated anti-Ro60 responses. The mapping of B cell apotopes may prove superior to standard epitope mapping by suggesting novel pathways of autoantibody production and identifying pathogenic species of autoantibodies.
Collapse
Affiliation(s)
- Joanne H Reed
- Department of Immunology, Flinders Medical Centre, Bedford Park, South Australia 5042, Australia.
| | | | | |
Collapse
|
14
|
Gomez-Mejiba SE, Zhai Z, Akram H, Pye QN, Hensley K, Kurien BT, Scofield RH, Ramirez DC. Inhalation of environmental stressors & chronic inflammation: autoimmunity and neurodegeneration. Mutat Res 2008; 674:62-72. [PMID: 18977456 DOI: 10.1016/j.mrgentox.2008.09.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 09/18/2008] [Indexed: 12/21/2022]
Abstract
Human life expectancy and welfare has decreased because of the increase in environmental stressors in the air. An environmental stressor is a natural or human-made component present in our environment that upon reaching an organic system produces a coordinated response. This response usually involves a modification of the metabolism and physiology of the system. Inhaled environmental stressors damage the airways and lung parenchyma, producing irritation, recruitment of inflammatory cells, and oxidative modification of biomolecules. Oxidatively modified biomolecules, their degradation products, and adducts with other biomolecules can reach the systemic circulation, and when found in higher concentrations than normal they are considered to be biomarkers of systemic oxidative stress and inflammation. We classify them as metabolic stressors because they are not inert compounds; indeed, they amplify the inflammatory response by inducing inflammation in the lung and other organs. Thus the lung is not only the target for environmental stressors, but it is also the source of a number of metabolic stressors that can induce and worsen pre-existing chronic inflammation. Metabolic stressors produced in the lung have a number of effects in tissues other than the lung, such as the brain, and they can also abrogate the mechanisms of immunotolerance. In this review, we discuss recent published evidence that suggests that inflammation in the lung is an important connection between air pollution and chronic inflammatory diseases such as autoimmunity and neurodegeneration, and we highlight the critical role of metabolic stressors produced in the lung. The understanding of this relationship between inhaled environmental pollutants and systemic inflammation will help us to: (1) understand the molecular mechanism of environment-associated diseases, and (2) find new biomarkers that will help us prevent the exposure of susceptible individuals and/or design novel therapies.
Collapse
Affiliation(s)
- Sandra E Gomez-Mejiba
- Free Radical Biology and Aging Research Program, MS-21, 825 NE 13th Street, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, United States
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Oxidative damage mediated by reactive oxygen species results in the generation of deleterious by-products. The oxidation process itself and the proteins modified by these molecules are important mediators of cell toxicity and disease pathogenesis. Aldehydic products, mainly the 4-hydroxy-2-alkenals, form adducts with proteins and make them highly immunogenic. Proteins modified in this manner have been shown to induce pathogenic antibodies in a variety of diseases including systemic lupus erythematosus (SLE), alcoholic liver disease, diabetes mellitus (DM) and rheumatoid arthritis (RA). 8-oxodeoxyguanine (oxidatively modified DNA) and oxidized low-density lipoproteins (LDL) occur in SLE, a disease in which premature atherosclerosis is a serious problem. In addition, immunization with 4-hydroxy-2-nonenal (HNE) modified 60 kD Ro autoantigen induces an accelerated epitope spreading in an animal model of SLE. Advanced glycation end product (AGE) pentosidine and AGE modified IgG have been shown to correlate with RA disease activity. Oxidatively modified glutamic acid decarboxylase is important in type 1 DM, while autoantibodies against oxidized LDL are prevalent in Behcet's disease. The fragmentation of scleroderma specific autoantigens occurs as a result of oxidative modification and is thought to be responsible for the production of autoantibodies through the release of cryptic epitopes. The administration of antioxidants is a viable untried alternative for preventing or ameliorating autoimmune disease, particularly on account of the overwhelming evidence for the involvement of oxidative damage in autoimmunity. However, this should be viewed in the light of disappointing results obtained with the use of antioxidants in cardiovascular disease.
Collapse
|
16
|
Reed JH, Jackson MW, Gordon TP. A B cell apotope of Ro 60 in systemic lupus erythematosus. ACTA ACUST UNITED AC 2008; 58:1125-9. [PMID: 18383373 DOI: 10.1002/art.23377] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Previous studies have attempted to segregate anti-60-kd Ro/SSA (anti-Ro 60) responses in systemic lupus erythematosus (SLE) and primary Sjögren's syndrome (SS) but have shown limited disease preference. The aim of the present study was to determine whether the presence of autoantibodies against an Ro 60 apotope (an epitope expressed on apoptotic cells) distinguishes anti-Ro 60 responses in SLE and primary SS. METHODS Multiparameter flow cytometry was used to select early apoptotic cells and measure the simultaneous binding of annexin V, propidium iodide, and anti-Ro 60-positive IgG from SLE patients (n=21) and patients with primary SS (n=19). The specificity of the Ro 60 apotope was determined by inhibition experiments with recombinant and native Ro 60. RESULTS Autoantibodies against the Ro 60 apotope were prevalent in SLE patients (13 of 21, 62%) and were rarely observed in patients with primary SS (1 of 19, 5%) (P=0.0002). Further, within SLE patients, autoantibodies to the Ro 60 apotope strongly distinguished patients with anti-Ro 60 alone (12 of 13, 92%) from those with both anti-Ro 60 and anti-La (1 of 8, 13%) (P=0.0005). When we considered all patients with anti-Ro 60 alone, the presence of autoantibodies to the Ro 60 apotope had both high sensitivity (92.3%) and high specificity (85.7%) for SLE compared with primary SS (P=0.0012). The presence of autoantibodies to the Ro 60 apotope may therefore be of diagnostic value in patients with isolated anti-Ro 60 responses. CONCLUSION The preferential targeting of an Ro 60 apotope exposed on early apoptotic cells in a subset of SLE patients implies disease-specific pathways for the induction of anti-Ro 60 autoimmunity.
Collapse
Affiliation(s)
- Joanne H Reed
- Department of Immunology, Allergy and Arthritis, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | | | | |
Collapse
|
17
|
Abstract
Sjögren's syndrome is a common autoimmune rheumatic disease. The most common symptoms of Sjögren's syndrome are extreme tiredness, along with dry eyes (keratoconjunctivitis sicca) and dry mouth (xerostomia). Saliva plays an essential role in numerous functions of the mouth. Xerostomia can be caused by medications, chronic diseases like Sjögren's syndrome, and medical treatments, such as radiation therapy and bone marrow transplant. Xerostomia can eventually lead to difficulty in swallowing, severe and progressive tooth decay, or oral infections. Despite having excellent oral hygiene, individuals with Sjögren's syndrome have elevated levels of dental caries, along with the loss of many teeth, early in the disease. Sjögren's syndrome alters the protein profile and brings about a change in the composition of saliva. There is an increase in the levels of lactoferrin, beta(2)-microglobulin, sodium, lysozyme C, and cystatin C, and a decrease in salivary amylase and carbonic anhydrase. Up to 90% of individuals with Sjögren's syndrome have antibodies targeting the Ro 60 and La autoantigens. Natural aging, regardless of Sjögren's syndrome, is also another factor that brings about a significant change in the composition of saliva. The most prevailing cause of xerostomia in elderly persons is the use of anticholinergic medications. Currently, there is no cure for Sjögren's syndrome, and treatment is mainly palliative.
Collapse
Affiliation(s)
- S A Mathews
- University of Central Oklahoma, Edmond, OK, USA
| | | | | |
Collapse
|
18
|
Evolution of the vertebrate Y RNA cluster. Theory Biosci 2007; 126:9-14. [PMID: 18087752 DOI: 10.1007/s12064-007-0003-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Accepted: 02/21/2007] [Indexed: 10/23/2022]
Abstract
Relatively little is known about the evolutionary histories of most classes of non-protein coding RNAs. Here we consider Y RNAs, a relatively rarely studied group of related pol-III transcripts. A single cluster of functional genes is preserved throughout tetrapod evolution, which however exhibits clade-specific tandem duplications, gene-losses, and rearrangements.
Collapse
|
19
|
Kurien BT, Asfa S, Li C, Dorri Y, Jonsson R, Scofield RH. Induction of Oral Tolerance in Experimental Sjogren's Syndrome Autoimmunity. Scand J Immunol 2005; 61:418-25. [PMID: 15882433 DOI: 10.1111/j.1365-3083.2005.01593.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Previous studies have showed that immunization with peptides from Ro 60 results in Sjogren's syndrome (SS)-like condition in BALB/c mice. We hypothesized that oral feeding with Ro 60 peptide or Ro 60 would prevent the disease. Four groups (each consisting of 10) of BALB/c mice were used. Group I-III were immunized with Ro 274 peptide. Group IV mice were administered adjuvant only. Group II mice were fed orally with Ro 274 peptide and Group III with Ro 60 for 5 days before immunization. There was a significant reduction in the binding of sera from both Group II and Group III mice to most of the Ro multiple antigenic peptides bound by Group I mice. In Group III mice, salivary flow was maintained above that of the Group I mice (average: 117.5 versus 58.6 microl; t = 2.7; P = 0.02). Salivary infiltrates were drastically decreased in the Ro peptide or Ro 60-fed groups, compared to non-tolerized group. Two of eight mice in Group II and 3/6 mice in Group III had no infiltrates, whereas all eight mice studied in Group I had a significant number of infiltrates. Thus, epitope spreading was prevented, lymphocytic infiltration was blocked and saliva flow was restored by means of oral feeding of either Ro 274 or Ro 60 in this animal model of SS.
Collapse
Affiliation(s)
- B T Kurien
- Arthritis and Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | | | | | | | | | | |
Collapse
|
20
|
Scofield RH, Kurien BT, Ganick S, McClain MT, Pye Q, James JA, Schneider RI, Broyles RH, Bachmann M, Hensley K. Modification of lupus-associated 60-kDa Ro protein with the lipid oxidation product 4-hydroxy-2-nonenal increases antigenicity and facilitates epitope spreading. Free Radic Biol Med 2005; 38:719-28. [PMID: 15721982 DOI: 10.1016/j.freeradbiomed.2004.11.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2004] [Revised: 09/04/2004] [Accepted: 11/01/2004] [Indexed: 12/11/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with autoantibodies as a near universal feature of the disease. The Ro ribonucleoprotein particle, composed of a 60-kDa protein noncovalently associated with human cytoplasmic RNA, is the target of antibodies in 25-40% of lupus patients. Purified human 60-kDa Ro was found to be oxidatively modified. Earlier investigations from our laboratory revealed increased oxidative damage in SLE patients. Therefore we hypothesized that oxidation by-products, such as 4-hydroxy-2-nonenal (HNE), could lead to neoantigens like HNE-modified 60-kDa Ro, which could in turn initiate autoimmunity or drive epitope spreading. To test this hypothesis we immunized rabbits with either HNE-modified 60-kDa Ro or the unmodified Ro. Intramolecular epitope spreading within the Ro molecule and intermolecular epitope spreading to La, double-stranded DNA, nRNP, and Sm occurred preferentially in HNE-Ro-immunized animals. Nonspecific anti-HNE antibody, generated by immunization with HNE-keyhole limpet hemocyanin conjugate, did not significantly bind to these autoantigens. These data may suggest a hitherto unappreciated mechanism by which oxidative stress facilitates epitope spreading in SLE.
Collapse
Affiliation(s)
- R Hal Scofield
- Arthritis and Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Xue D, Shi H, Smith JD, Chen X, Noe DA, Cedervall T, Yang DD, Eynon E, Brash DE, Kashgarian M, Flavell RA, Wolin SL. A lupus-like syndrome develops in mice lacking the Ro 60-kDa protein, a major lupus autoantigen. Proc Natl Acad Sci U S A 2003; 100:7503-8. [PMID: 12788971 PMCID: PMC164616 DOI: 10.1073/pnas.0832411100] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Antibodies against a conserved RNA-binding protein, the Ro 60-kDa autoantigen, occur in 24-60% of all patients with systemic lupus erythematosus. Anti-Ro antibodies are correlated with photosensitivity and cutaneous lesions in these patients and with neonatal lupus, a syndrome in which mothers with anti-Ro antibodies give birth to children with complete congenital heart block and photosensitive skin lesions. In higher eukaryotes, the Ro protein binds small RNAs of unknown function known as Y RNAs. Because the Ro protein also binds misfolded 5S rRNA precursors, it is proposed to function in a quality-control pathway for ribosome biogenesis. Consistent with a role in the recognition or repair of intracellular damage, an orthologue of Ro in the radiation-resistant eubacterium Deinococcus radiodurans contributes to survival of this bacterium after UV irradiation. Here, we show that mice lacking the Ro protein develop an autoimmune syndrome characterized by anti-ribosome antibodies, anti-chromatin antibodies, and glomerulonephritis. Moreover, in one strain background, Ro-/- mice display increased sensitivity to irradiation with UV light. Thus, one function of this major human autoantigen may be to protect against autoantibody development, possibly by sequestering defective ribonucleoproteins from immune surveillance. Furthermore, the finding that mice lacking the Ro protein are photosensitive suggests that loss of Ro function could contribute to the photosensitivity associated with anti-Ro antibodies in humans.
Collapse
Affiliation(s)
- Dahai Xue
- Department of Cell Biology and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Scofield AN, Kurien BT, Gordon TP, Scofield RH. Can B cell epitopes of 60 kDa Ro distinguish systemic lupus erythematosus from Sjögren's syndrome? Lupus 2001; 10:547-53. [PMID: 11530996 DOI: 10.1191/096120301701549679] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Antibodies binding components of the Ro/La (or SSA/SSB) ribonucleoprotein particle are found in the sera of patients with systemic lupus erythematosus (SLE) and Sjögren's syndrome (SS) as well as mothers who give birth to babies with neonatal lupus. Anti-La occurs in a subset of sera that contain anti-Ro, and anti-La is found more commonly in sera of patients with SS than in sera from SLE patients. The fine specificity of autoantibodies binding 60 kDa has been studied extensively. Recent data have suggested that there are disease-specific epitopes which identify patients with either SLE or SS. Alternatively, other data suggest that the B cell epitopes of 60kDa Ro vary according to the presence of anti-La. The present study was undertaken to determine whether binding of putative disease-specific 60 kDa Ro epitopes is associated with the diagnosis of SLE vs SS, or instead associated with the presence of anti-La. Anti-60 kDa Ro positive sera from 24 SLE patients and 44 SS patients were studied for antibodies binding two epitopes of 60 kDa Ro. We find the epitope defined by residues 171-190 is associated with anti-60 kDa Ro without anti-La, regardless of diagnosis. Meanwhile, binding of the epitope defined by residues 215-232 is not commonly found in anti-60 kDa Ro sera, especially in those sera with both anti-60 kDa Ro and anti-La. Thus, the fine specificity of antibody binding to 60 kDa Ro varies according to the presence of anti-La, not to the diagnosis of either SLE or SS.
Collapse
Affiliation(s)
- A N Scofield
- Oklahoma Medical Research Program, University of Oklahoma Health Sciences Center, USA.
| | | | | | | |
Collapse
|
23
|
Kurien BT, Newland J, Paczkowski C, Moore KL, Scofield RH. Association of neutropenia in systemic lupus erythematosus (SLE) with anti-Ro and binding of an immunologically cross-reactive neutrophil membrane antigen. Clin Exp Immunol 2000; 120:209-17. [PMID: 10759785 PMCID: PMC1905619 DOI: 10.1046/j.1365-2249.2000.01195.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SLE is associated with the production of autoantibodies to self-constituents. In particular, certain ribonucleoprotein particles are targeted. Despite the multitude of autoantibodies produced and the remarkable concentrations of these antibodies in the sera of SLE patients, there have been little data that the autoantibodies found in SLE are involved in the pathogenesis of disease or its manifestations. The present work demonstrates that anti-Ro (or SSA) is associated with granulocytopenia, binds the surface of granulocytes and fixes complement to this membrane surface. Binding is a property of anti-Ro Fab fragments and can be inhibited by 60-kD Ro. However, the antigen bound on the surface of granulocytes is a 64 000 mol. wt protein that is a novel autoantigen in SLE. As suggested by inhibition studies, sequence identity between 60-kD Ro and eight tandem repeats in the 64-kD antigen may be responsible for the observed serologic cross-reactivity. These data imply that anti-Ro antibodies that also bind the 64-kD protein mediate neutropenia in patients with SLE.
Collapse
Affiliation(s)
- B T Kurien
- Arthritis/Immunology and Cardiovascular Biology Programs, Oklahoma Medical Research Foundation, and Department of Medicine, University of Oklahoma Health Science Center, Veterans Affairs Medical Center, Oklahoma City, OK, USA
| | | | | | | | | |
Collapse
|
24
|
Abstract
The small RNA database is a compilation of all the small size RNA sequences available to date, including nuclear, nucleolar, cytoplasmic and mitochondria small RNAs from eukaryotic organisms and small RNAs from prokaryotic cells as well as viruses. Currently, approximately 600 small RNA sequences are in our database. It also gives the sources of individual RNAs and their GenBank accession numbers. The small RNA database can be accessed through the WWW (World Wide Web). Our WWW URL address is: http://mbcr.bcm.tmc. edu/smallRNA/smallrna.html . The new small RNA sequences published since our last compilation are listed in this paper (Table 1).
Collapse
Affiliation(s)
- J Gu
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|