1
|
Koyama H, Takahashi Y, Matori S, Kuniyoshi H, Kurose K. A newly identified enzyme from Japanese common squid Todarodes pacificus has the ability to biosynthesize d-aspartate. Arch Biochem Biophys 2023; 750:109809. [PMID: 37925062 DOI: 10.1016/j.abb.2023.109809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023]
Abstract
Amino acids exist in two chiral forms, namely L and D. Although l-amino acids are predominant in vivo, certain limited circumstances have reported the usage of d-amino acids. d-aspartate (Asp), among them, plays crucial physiological roles in living organisms and is biosynthesized from L-Asp by the enzyme named aspartate racemase (AspRase). D-Asp is known to accumulate in large amounts in the nervous system of cephalopods. To understand the function of D-Asp in nervous system in more detail, it is necessary to elucidate its metabolic pathway; however, AspRase gene has not been identified in cephalopods as in the case of mammals. In this study, we successfully identified a novel gene encoding AspRase from the optic ganglion of Japanese common squid Todarodes pacificus. Our discovery of the squid AspRase challenges the prevailing assumption that AspRases across different animals share similar structures. Surprisingly, the squid AspRase is a unique enzyme that differs significantly from known AspRases, being structurally and phylogenetically related to aspartate aminotransferase (AST) and possessing both AspRase and AST activities. The optimum pH and temperature for AspRase activity using L-Asp as a substrate are approximately 7.0 and 20 °C, respectively. Moreover, we have found that AspRase activity is enhanced in the presence of 2-oxoacids. These findings have far-reaching implications for the understanding of enzymology and suggest that yet-to-be-identified mammalian AspRases may also be phylogenetically related to AST, rather than conventional AspRases. Furthermore, our results provide valuable insights into the evolution of the D-Asp biosynthetic pathway.
Collapse
Affiliation(s)
- Hiroki Koyama
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, 108-8477, Japan.
| | - Yui Takahashi
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, 108-8477, Japan
| | - San Matori
- Program of Food and AgriLife Science, Graduate School of Integrated Sciences for Life, Hiroshima University Higashi-hiroshima, 739-8528, Japan
| | - Hisato Kuniyoshi
- Program of Food and AgriLife Science, Graduate School of Integrated Sciences for Life, Hiroshima University Higashi-hiroshima, 739-8528, Japan
| | - Kouichi Kurose
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, 108-8477, Japan
| |
Collapse
|
2
|
Simultaneous Measurement of Amino Acid Enantiomers in Aged Mouse Brain Samples by LC/MS/MS Combined with Derivatization Using N
α-(5-Fluoro-2,4-dinitrophenyl)-l-leucinamide (l-FDLA). Metabolites 2021; 11:metabo11010057. [PMID: 33467775 PMCID: PMC7829926 DOI: 10.3390/metabo11010057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
d-amino acids have distinct roles from their l-enantiomer. In particular, some d-amino acids function as agonists or antagonists of neuronal receptors and are involved in higher brain functions. Thus, it is important to precisely measure the levels of these amino acid enantiomers in cells and tissues. Various quantification methods have been developed for measurements of chiral amino acids. However, each method has advantages and disadvantages. Additionally, measuring the amino acid enantiomers in crude biological samples requires a higher selectivity. In this study, we developed a quantification method for amino acid enantiomers using derivatization with Nα-(5-Fluoro-2,4-dinitrophenyl)-l-leucinamide (l-FDLA) followed by liquid chromatography–tandem mass spectrometry (LC/MS/MS) with a conventional reversed-phase column. We simultaneously identified 10 chiral amino acids. Furthermore, we applied this method to investigate murine tissue samples and examined the effect of aging on the amino acid levels in aged brain regions. We found that aging decreased the levels of both d-serine and d-aspartate in the hippocampus. In addition, d-Phenylalanine in the thalamus significantly increased with age. In conclusion, our method is suitable for the quantification of the d-amino acids in crude biological samples and may contribute to elucidating the biological roles of chiral amino acids.
Collapse
|
3
|
Lee CJ, Qiu TA, Sweedler JV. d-Alanine: Distribution, origin, physiological relevance, and implications in disease. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140482. [DOI: 10.1016/j.bbapap.2020.140482] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/19/2020] [Accepted: 06/29/2020] [Indexed: 01/01/2023]
|
4
|
Juneta-Nor AS, Noordin NM, Azra MN, Ma HY, Husin NM, Ikhwanuddin M. Amino acid compounds released by the giant freshwater prawn Macrobrachium rosenbergii during ecdysis: a factor attracting cannibalistic behaviour? J Zhejiang Univ Sci B 2020; 21:823-834. [PMID: 33043647 DOI: 10.1631/jzus.b2000126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ecdysis is a common phenomenon that happens throughout the life phase of the giant freshwater prawn Macrobrachium rosenbergii. It is vital to better understand the correlation between cannibalism and biochemical compound that exists during the moulting process. The objective of the present study was to determine the amino acid profile released by M. rosenbergii during the ecdysis process that promotes cannibalism. To accomplish this, changes in amino acid levels (total amino acid (TAA) and free amino acid (FAA)) of tissue muscle, exoskeleton, and sample water of culture medium from the moulting (E-stage) and non-moulting (C-stage) prawns were analysed using high-performance liquid chromatography (HPLC). Comparison study revealed that among the TAA compounds, proline and sarcosine of tissues from moulting prawn were found at the highest levels. The level of FAA from water that contains moulting prawns (E-stage) was dominated by tryptophan and proline. Significant values obtained in the present study suggested that these amino acid compounds act as a chemical cue to promote cannibalism in M. rosenbergii during ecdysis. The knowledge of compositions and compounds that were released during the moulting process should be helpful for better understanding of the mechanism and chemical cues that play roles on triggering cannibalism, and also for future dietary manipulation to improve feeding efficiencies and feeding management, which indirectly impacts productivity and profitability.
Collapse
Affiliation(s)
- Abu Seman Juneta-Nor
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
| | - Noordiyana Mat Noordin
- Faculty of Fisheries and Food Sciences, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
| | - Mohamad Nor Azra
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
| | - Hong-Yu Ma
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Guangdong 515063, China
| | - Norainy Mohd Husin
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
| | - Mhd Ikhwanuddin
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia.,STU-UMT Joint Shellfish Research Laboratory, Shantou University, Guangdong 515063, China
| |
Collapse
|
5
|
Violi JP, Bishop DP, Padula MP, Steele JR, Rodgers KJ. Considerations for amino acid analysis by liquid chromatography-tandem mass spectrometry: A tutorial review. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Shibata K, Sugaya N, Kuboki Y, Matsuda H, Abe K, Takahashi S, Kera Y. Aspartate racemase and d-aspartate in starfish; possible involvement in testicular maturation. Biosci Biotechnol Biochem 2020; 84:95-102. [DOI: 10.1080/09168451.2019.1660614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
ABSTRACT
d-Aspartate, aspartate racemase activity, and d-aspartate oxidase activity were detected in tissues from several types of starfish. Aspartate racemase activity in male testes of Patiria pectinifera was significantly elevated in the summer months of the breeding season compared with spring months. We also compared aspartate racemase activity with the gonad index and found that activity in individuals with a gonad index ≥6% was four-fold higher than that of individuals with a gonad index <6%. The ratio of the D-form of aspartate to total aspartate was approximately 25% in testes with a gonad index <6% and this increased to approximately 40% in testes with a gonad index ≥6%. However, such changes were not observed in female ovaries. Administration of d-aspartate into male starfish caused testicular growth. These results indicate the possible involvement of aspartate racemase and d-aspartate in testicular maturation in echinoderm starfish.
Collapse
Affiliation(s)
- Kimihiko Shibata
- Department of Applied Chemistry and Biochemistry, National Institute of Technology (KOSEN), Fukushima College, Iwaki, Fukushima, Japan
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Noriko Sugaya
- Department of Applied Chemistry and Biochemistry, National Institute of Technology (KOSEN), Fukushima College, Iwaki, Fukushima, Japan
| | - Yuko Kuboki
- Department of Applied Chemistry and Biochemistry, National Institute of Technology (KOSEN), Fukushima College, Iwaki, Fukushima, Japan
| | - Hiroko Matsuda
- Department of Applied Chemistry and Biochemistry, National Institute of Technology (KOSEN), Fukushima College, Iwaki, Fukushima, Japan
| | - Katsumasa Abe
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Shouji Takahashi
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Yoshio Kera
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| |
Collapse
|
7
|
Kanamoto T, Sakaue H, Kitaoka Y, Asaoka R, Tobiume K, Kiuchi Y. D-Alanine Is Reduced by Ocular Hypertension in the Rat Retina. Curr Eye Res 2019; 45:490-495. [DOI: 10.1080/02713683.2019.1666995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Takashi Kanamoto
- Department of Ophthalmology, Hiroshima Prefectural Hospital, Hiroshima, Japan
| | - Hiroaki Sakaue
- Department of Biochemistry, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yasushi Kitaoka
- Department of Ophthalmology, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Ryo Asaoka
- Department of Ophthalmology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Kei Tobiume
- Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yoshiaki Kiuchi
- Department of Ophthalmology and Visual Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
8
|
Moldovan RC, Bodoki E, Servais AC, Crommen J, Oprean R, Fillet M. Selectivity evaluation of phenyl based stationary phases for the analysis of amino acid diastereomers by liquid chromatography coupled with mass spectrometry. J Chromatogr A 2019; 1590:80-87. [DOI: 10.1016/j.chroma.2018.12.068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 12/26/2018] [Accepted: 12/31/2018] [Indexed: 11/30/2022]
|
9
|
KOGA R, YOSHIDA H, NOHTA H, HAMASE K. Multi-Dimensional HPLC Analysis of Metabolic Related Chiral Amino Acids -Method Development and Biological/Clinical Applications-. CHROMATOGRAPHY 2019. [DOI: 10.15583/jpchrom.2019.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Reiko KOGA
- Faculty of Pharmaceutical Sciences, Fukuoka University
| | | | - Hitoshi NOHTA
- Faculty of Pharmaceutical Sciences, Fukuoka University
| | - Kenji HAMASE
- Graduate School of Pharmaceutical Sciences, Kyushu University
| |
Collapse
|
10
|
FURUSHO A, KOGA R, AKITA T, MIYOSHI Y, MITA M, HAMASE K. Development of a Highly-Sensitive Two-Dimensional HPLC System with Narrowbore Reversed-Phase and Microbore Enantioselective Columns and Application to the Chiral Amino Acid Analysis of the Mammalian Brain. CHROMATOGRAPHY 2018. [DOI: 10.15583/jpchrom.2018.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Aogu FURUSHO
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Reiko KOGA
- Graduate School of Pharmaceutical Sciences, Kyushu University
- Faculty of Pharmaceutical Sciences, Fukuoka University
| | - Takeyuki AKITA
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | | | | | - Kenji HAMASE
- Graduate School of Pharmaceutical Sciences, Kyushu University
| |
Collapse
|
11
|
Sugahara H, Meinert C, Nahon L, Jones NC, Hoffmann SV, Hamase K, Takano Y, Meierhenrich UJ. d-Amino acids in molecular evolution in space - Absolute asymmetric photolysis and synthesis of amino acids by circularly polarized light. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:743-758. [PMID: 29357311 DOI: 10.1016/j.bbapap.2018.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/22/2017] [Accepted: 01/05/2018] [Indexed: 02/02/2023]
Abstract
Living organisms on the Earth almost exclusively use l-amino acids for the molecular architecture of proteins. The biological occurrence of d-amino acids is rare, although their functions in various organisms are being gradually understood. A possible explanation for the origin of biomolecular homochirality is the delivery of enantioenriched molecules via extraterrestrial bodies, such as asteroids and comets on early Earth. For the asymmetric formation of amino acids and their precursor molecules in interstellar environments, the interaction with circularly polarized photons is considered to have played a potential role in causing chiral asymmetry. In this review, we summarize recent progress in the investigation of chirality transfer from chiral photons to amino acids involving the two major processes of asymmetric photolysis and asymmetric synthesis. We will discuss analytical data on cometary and meteoritic amino acids and their potential impact delivery to the early Earth. The ongoing and future ambitious space missions, Hayabusa2, OSIRIS-REx, ExoMars 2020, and MMX, are scheduled to provide new insights into the chirality of extraterrestrial organic molecules and their potential relation to the terrestrial homochirality. This article is part of a Special Issue entitled: d-Amino acids: biology in the mirror, edited by Dr. Loredano Pollegioni, Dr. Jean-Pierre Mothet and Dr. Molla Gianluca.
Collapse
Affiliation(s)
- Haruna Sugahara
- Institut de Chimie de Nice, Université Côte d'Azur, CNRS, UMR 7272, 06108 Nice, France
| | - Cornelia Meinert
- Institut de Chimie de Nice, Université Côte d'Azur, CNRS, UMR 7272, 06108 Nice, France
| | - Laurent Nahon
- L'Orme des Merisiers, Synchrotron SOLEIL, BP 48 Saint Aubin, 91192 Gif-sur-Yvette, France
| | - Nykola C Jones
- ISA, Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| | - Søren V Hoffmann
- ISA, Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| | - Kenji Hamase
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinori Takano
- Department of Biogeochemistry, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, Kanagawa 237-0061, Japan
| | - Uwe J Meierhenrich
- Institut de Chimie de Nice, Université Côte d'Azur, CNRS, UMR 7272, 06108 Nice, France.
| |
Collapse
|
12
|
Yokoyama T, Tokuda M, Amano M, Mikami K. Simultaneous determination of primary and secondary d- and l-amino acids by reversed-phase high-performance liquid chromatography using pre-column derivatization with two-step labelling method. Biosci Biotechnol Biochem 2017. [DOI: 10.1080/09168451.2017.1340090] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Abstract
This work describes a method for the simultaneous determination of primary d- and l-amino acids and secondary amino acids such as d- and l-proline. In order to remove interferences in the simultaneous determination of primary and secondary amines, the primary amines were derivatized with o-phthalaldehyde/N-acetyl-l-cysteine (OPA/NAC) and subsequently with 1-(9-fluorenyl)ethyl chloroformate (FLEC) for secondary amines, in a pre-column separation derivatization technique. These fluorescent diastereomers of the amino acids were obtained within 3 min at room temperature and determined simultaneously by changing wavelengths during analysis in a single eluting run in the high-performance liquid chromatography column. This method, referred to as the “two-step labelling method,” is effective for the simultaneous determination of d- and l-amino acids.
Collapse
Affiliation(s)
- Takehiko Yokoyama
- School of Marine Biosciences, Kitasato University, Sagamihara, Japan
| | - Masaharu Tokuda
- National Research Institute of Aquaculture, Fisheries Research and Education Agency, Minami-ise, Japan
| | - Masafumi Amano
- School of Marine Biosciences, Kitasato University, Sagamihara, Japan
| | - Koji Mikami
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| |
Collapse
|
13
|
Moldovan RC, Bodoki E, Servais AC, Crommen J, Oprean R, Fillet M. (+) or (-)-1-(9-fluorenyl)ethyl chloroformate as chiral derivatizing agent: A review. J Chromatogr A 2017; 1513:1-17. [PMID: 28756893 DOI: 10.1016/j.chroma.2017.07.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 07/10/2017] [Accepted: 07/12/2017] [Indexed: 11/25/2022]
Abstract
Over the last 30years, (±)-1-(9-fluorenyl)ethyl chloroformate ((±)-FLEC) was used as a chiral derivatizing agent in various analytical applications involving a wide range of endogenous, pharmaceutical and environmentally relevant molecules. This comprehensive review aims to present all the significant aspects related to the state of the art in FLEC labeling and subsequent chiral separation of the resulting diastereomers using LC, SFC and CE techniques.
Collapse
Affiliation(s)
- Radu-Cristian Moldovan
- Laboratory for the Analysis of Medicines, Department of Pharmacy, Faculty of Medicine, CIRM, University of Liege,Avenue Hippocrate 15, B36-+3-T4, 4000 Liege, Belgium; Department of Analytical Chemistry and Instrumental Analysis, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy Cluj-Napoca,4 Louis Pasteur street, 400349 Cluj-Napoca, Romania
| | - Ede Bodoki
- Department of Analytical Chemistry and Instrumental Analysis, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy Cluj-Napoca,4 Louis Pasteur street, 400349 Cluj-Napoca, Romania
| | - Anne-Catherine Servais
- Laboratory for the Analysis of Medicines, Department of Pharmacy, Faculty of Medicine, CIRM, University of Liege,Avenue Hippocrate 15, B36-+3-T4, 4000 Liege, Belgium
| | - Jacques Crommen
- Laboratory for the Analysis of Medicines, Department of Pharmacy, Faculty of Medicine, CIRM, University of Liege,Avenue Hippocrate 15, B36-+3-T4, 4000 Liege, Belgium
| | - Radu Oprean
- Department of Analytical Chemistry and Instrumental Analysis, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy Cluj-Napoca,4 Louis Pasteur street, 400349 Cluj-Napoca, Romania
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines, Department of Pharmacy, Faculty of Medicine, CIRM, University of Liege,Avenue Hippocrate 15, B36-+3-T4, 4000 Liege, Belgium.
| |
Collapse
|
14
|
Enantioselective capillary electrophoresis-mass spectrometry of amino acids in cerebrospinal fluid using a chiral derivatizing agent and volatile surfactant. Anal Chim Acta 2016; 940:150-8. [PMID: 27662770 DOI: 10.1016/j.aca.2016.08.040] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 12/12/2022]
Abstract
The sensitivity of coupled enantioselective capillary electrophoresis-mass spectrometry (CE-MS) of amino acids (AAs) is often hampered by the chiral selectors in the background electrolyte (BGE). A new method is presented in which the use of a chiral selector is circumvented by employing (+)-1-(9-fluorenyl)ethyl chloroformate (FLEC) as chiral AA derivatizing agent and ammonium perfluorooctanoate (APFO) as a volatile pseudostationary phase for separation of the formed diastereomers. Efficient AA derivatization with FLEC was completed within 10 min. Infusion experiments showed that the APFO concentration hardly affects the MS response of FLEC-AAs and presents significantly less ion suppression than equal concentrations of ammonium acetate. The effect of the pH and APFO concentration of the BGE and the capillary temperature were studied in order to achieve optimized enantioseparation. Optimization of CE-MS parameters, such as sheath-liquid composition and flow rate, ESI and MS settings was performed in order to prevent analyte fragmentation and achieve sensitive detection. Selective detection and quantification of 14 chiral proteinogenic AAs was achieved with chiral resolution between 1.2 and 8.6, and limits of detection ranging from 130 to 630 nM injected concentration. Aspartic acid and glutamic acid were detected, but not enantioseparated. The optimized method was applied to the analysis of chiral AAs in cerebrospinal fluid (CSF). Good linearity (R(2) > 0.99) and acceptable peak area and electrophoretic mobility repeatability (RSDs below 21% and 2.4%, respectively) were achieved for the chiral proteinogenic AAs, with sensitivity and chiral resolution mostly similar to obtained for standard solutions. Next to l-AAs, endogenous levels of d-serine and d-glutamine could be measured in CSF revealing enantiomeric ratios of 4.8%-8.0% and 0.34%-0.74%, respectively, and indicating the method's potential for the analysis of low concentrations of d-AAs in presence of abundant l-AAs.
Collapse
|
15
|
A micellar electrokinetic chromatography-mass spectrometry approach using in-capillary diastereomeric derivatization for fully automatized chiral analysis of amino acids. J Chromatogr A 2016; 1467:400-408. [PMID: 27554025 DOI: 10.1016/j.chroma.2016.08.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 08/12/2016] [Accepted: 08/15/2016] [Indexed: 11/20/2022]
Abstract
In the context of bioanalytical method development, process automatization is nowadays a necessity in order to save time, improve method reliability and reduce costs. For the first time, a fully automatized micellar electrokinetic chromatography-mass spectrometry (MEKC-MS) method with in-capillary derivatization was developed for the chiral analysis of d- and l-amino acids using (-)-1-(9-fluorenyl) ethyl chloroformate (FLEC) as labeling reagent. The derivatization procedure was optimized using an experimental design approach leading to the following conditions: sample and FLEC plugs in a 2:1 ratio (15s, 30mbar: 7.5s, 30mbar) followed by 15min of mixing using a voltage of 0.1kV. The formed diastereomers were then separated using a background electrolyte (BGE) consisting of 150mM ammonium perfluorooctanoate (APFO) (pH=9.5) and detected by mass spectrometry (MS). Complete chiral resolution was obtained for 8 amino acids, while partial separation was achieved for 6 other amino acid pairs. The method showed good reproducibility and linearity in the low micromolar concentration range. The applicability of the method to biological samples was tested by analyzing artificial cerebrospinal fluid (aCSF) samples.
Collapse
|
16
|
HPLC analysis of naturally occurring free d-amino acids in mammals. J Pharm Biomed Anal 2012; 69:42-9. [DOI: 10.1016/j.jpba.2012.01.041] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 01/29/2012] [Accepted: 01/31/2012] [Indexed: 11/22/2022]
|
17
|
D-Aspartate acts as a signaling molecule in nervous and neuroendocrine systems. Amino Acids 2012; 43:1873-86. [PMID: 22872108 DOI: 10.1007/s00726-012-1364-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/06/2012] [Indexed: 10/28/2022]
Abstract
D-Aspartate (D-Asp) is an endogenous amino acid in the central nervous and reproductive systems of vertebrates and invertebrates. High concentrations of D-Asp are found in distinct anatomical locations, suggesting that it has specific physiological roles in animals. Many of the characteristics of D-Asp have been documented, including its tissue and cellular distribution, formation and degradation, as well as the responses elicited by D-Asp application. D-Asp performs important roles related to nervous system development and hormone regulation; in addition, it appears to act as a cell-to-cell signaling molecule. Recent studies have shown that D-Asp fulfills many, if not all, of the definitions of a classical neurotransmitter-that the molecule's biosynthesis, degradation, uptake, and release take place within the presynaptic neuron, and that it triggers a response in the postsynaptic neuron after its release. Accumulating evidence suggests that these criteria are met by a heterogeneous distribution of enzymes for D-Asp's biosynthesis and degradation, an appropriate uptake mechanism, localization within synaptic vesicles, and a postsynaptic response via an ionotropic receptor. Although D-Asp receptors remain to be characterized, the postsynaptic response of D-Asp has been studied and several L-glutamate receptors are known to respond to D-Asp. In this review, we discuss the current status of research on D-Asp in neuronal and neuroendocrine systems, and highlight results that support D-Asp's role as a signaling molecule.
Collapse
|
18
|
Shinji J, Okutsu T, Jayasankar V, Jasmani S, Wilder MN. Metabolism of amino acids during hyposmotic adaptation in the whiteleg shrimp, Litopenaeus vannamei. Amino Acids 2012; 43:1945-54. [DOI: 10.1007/s00726-012-1266-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 03/05/2012] [Indexed: 11/24/2022]
|
19
|
Adsorption of chiral aromatic amino acids onto carboxymethyl-β-cyclodextrin bonded Fe3O4/SiO2 core–shell nanoparticles. J Colloid Interface Sci 2011; 354:483-92. [DOI: 10.1016/j.jcis.2010.11.060] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 11/18/2010] [Accepted: 11/19/2010] [Indexed: 11/23/2022]
|
20
|
Wang S, Fan L, Cui S. CE-LIF chiral separation of aspartic acid and glutamic acid enantiomers using human serum albumin and sodium cholate as dual selectors. J Sep Sci 2009; 32:3184-90. [DOI: 10.1002/jssc.200900341] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Capillary electrophoresis and column chromatography in biomedical chiral amino acid analysis. Anal Bioanal Chem 2009; 394:695-706. [DOI: 10.1007/s00216-009-2792-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 03/31/2009] [Accepted: 04/02/2009] [Indexed: 10/20/2022]
|
22
|
D'Aniello A. d-Aspartic acid: An endogenous amino acid with an important neuroendocrine role. ACTA ACUST UNITED AC 2007; 53:215-34. [PMID: 17118457 DOI: 10.1016/j.brainresrev.2006.08.005] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Revised: 07/14/2006] [Accepted: 08/04/2006] [Indexed: 12/01/2022]
Abstract
D-Aspartic acid (d-Asp), an endogenous amino acid present in vertebrates and invertebrates, plays an important role in the neuroendocrine system, as well as in the development of the nervous system. During the embryonic stage of birds and the early postnatal life of mammals, a transient high concentration of d-Asp takes place in the brain and in the retina. d-Asp also acts as a neurotransmitter/neuromodulator. Indeed, this amino acid has been detected in synaptosomes and in synaptic vesicles, where it is released after chemical (K(+) ion, ionomycin) or electric stimuli. Furthermore, d-Asp increases cAMP in neuronal cells and is transported from the synaptic clefts to presynaptic nerve cells through a specific transporter. In the endocrine system, instead, d-Asp is involved in the regulation of hormone synthesis and release. For example, in the rat hypothalamus, it enhances gonadotropin-releasing hormone (GnRH) release and induces oxytocin and vasopressin mRNA synthesis. In the pituitary gland, it stimulates the secretion of the following hormones: prolactin (PRL), luteinizing hormone (LH), and growth hormone (GH) In the testes, it is present in Leydig cells and is involved in testosterone and progesterone release. Thus, a hypothalamus-pituitary-gonads pathway, in which d-Asp is involved, has been formulated. In conclusion, the present work is a summary of previous and current research done on the role of d-Asp in the nervous and endocrine systems of invertebrates and vertebrates, including mammals.
Collapse
Affiliation(s)
- Antimo D'Aniello
- Laboratory of Neurobiology, Stazione Zoologica A Dohrn, Villa Comunale 1, 80121 Napoli, Italy.
| |
Collapse
|
23
|
Ohgusu T, Hamase K, Tanaka H, Shoyama Y, Zaitsu K. High-throughput determination of free d-aspartic acid in mammals by enzyme immunoassay using specific monoclonal antibody. Anal Biochem 2006; 357:15-20. [PMID: 16920063 DOI: 10.1016/j.ab.2006.06.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2006] [Revised: 06/29/2006] [Accepted: 06/30/2006] [Indexed: 10/24/2022]
Abstract
A method for rapid determination of free D-aspartic acid (D-Asp) in mammals has been established using a highly specific mouse monoclonal antibody against D-Asp for the first time. An anti-D-Asp monoclonal antibody was obtained by the immunization of bovine-serum-albumin-conjugated D-Asp to BALB/c mice. The obtained antibody has a high specificity toward D-Asp but shows a slight cross-reactivity to all other D- and L- amino acids including L-Asp. The calibration range of the competitive enzyme linked immunosorbent assay (ELISA) is 0.016-16 micromol/mL D-Asp in rat serum samples. The precisions of this method were evaluated by inter-plate and intraplate assays, and the relative standard deviation values were 4.8% and 4.5%, respectively. The values of D-Asp determined by the present ELISA have a good correlation to those determined by high-performance liquid chromatography with the correlation coefficient of 0.963. Using this ELISA, the time course of D-Asp in the rat serum after intravenous administration was successfully demonstrated. The present method provides a simple and high-throughput determination of D-Asp in mammals, and is a useful tool for clarifying the physiological roles and diagnostic values of this D-amino acid.
Collapse
Affiliation(s)
- Tomohiro Ohgusu
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan
| | | | | | | | | |
Collapse
|
24
|
Abe H, Hirai S, Okada S. Metabolic responses and arginine kinase expression under hypoxic stress of the kuruma prawn Marsupenaeus japonicus. Comp Biochem Physiol A Mol Integr Physiol 2006; 146:40-6. [PMID: 17084099 DOI: 10.1016/j.cbpa.2006.08.027] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 08/10/2006] [Accepted: 08/18/2006] [Indexed: 11/25/2022]
Abstract
In response to hypoxia at PO(2) 1.3-1.7 mg/L for 6 h, the kuruma prawn Marsupenaeus (Penaeus) japonicus showed a dramatic decrease in phosphoarginine storage in muscle, with normal levels restored during 4-h post-hypoxic recovery. Large stores of muscle glycogen only decreased between 4 and 6 h during hypoxia, but greatly diminished during recovery. Muscle ATP levels and energy charge decreased only slightly under hypoxia. Lactate levels increased slightly during hypoxia and promptly returned to control levels during recovery. These data indicate that phosphoarginine works in muscle as an ATP buffer during hypoxia and glycogen is utilized as an energy source during recovery. Under hypoxia, up- and down-regulated proteins were identified after 2D electrophoresis and partial sequences were obtained after protease digestion. Fructose bisphosphate aldolase was down-regulated during hypoxia, suggesting the suppression of glycolysis under hypoxia. Several partial sequences from three protein spots up-regulated under hypoxia were all assigned to arginine kinase, suggesting the existence of several isoforms of arginine kinase in the muscle of M. japonicus. This arginine kinase up-regulation under hypoxia may indicate a provision for oxygen re-supply after anaerobiosis. This is consistent with the prompt replenishment of phosphoarginine stores during recovery from hypoxia.
Collapse
Affiliation(s)
- Hiroki Abe
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan.
| | | | | |
Collapse
|
25
|
Melisi D, Secondo A, Montoro P, Piacente S, Rimoli MG, Minale M, de Caprariis P, Annunziato L. Galactosyl Derivatives of l-Arginine and d-Arginine: Synthesis, Stability, Cell Permeation, and Nitric Oxide Production in Pituitary GH3 Cells. J Med Chem 2006; 49:4826-33. [PMID: 16884294 DOI: 10.1021/jm060005s] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nitric oxide (NO) is critical for the normal physiological regulation of the nervous system and other tissues. L-Arginine, but not D-arginine, is the natural substrate for nitric oxide synthase (NOS), for it is enzymatically converted to NO and L-citrulline. However, recent evidence suggests that D-arginine can also produce NO and NO-derivatives via a different pathway. The aim of the present paper was to raise NO levels in the cells by increasing the cell permeation of its precursors. To this aim, two galactosyl prodrugs, L-arginine-D-galactos-6'-yl ester (L-ArgGal) and D-arginine-D-galactos-6'-yl ester (D-ArgGal) were synthesized. Remarkably, using the HPLC-ESI/MS technique, we found that L-ArgGal and D-ArgGal prodrugs both increased the concentration levels of L- and D-arginine and their derivatives in pituitary GH3 cells. Furthermore, we found that D-ArgGal (1) penetrated cell membranes more rapidly than its precursor D-arginine, (2) released arginine more slowly and in greater amounts than L-ArgGal, and (3) produced much higher levels of DAF-2 monitored NO and nitrite than did L-ArgGal under the same experimental conditions. In conclusion, these results indicate that an increase in the cell permeation of L- and D-arginine by L-ArgGal and D-ArgGal can lead to an increase in NO levels.
Collapse
Affiliation(s)
- Daniela Melisi
- Division of Pharmacology, Department of Neuroscience, School of Medicine, Federico II University of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Hamase K, Konno R, Morikawa A, Zaitsu K. Sensitive determination of D-amino acids in mammals and the effect of D-amino-acid oxidase activity on their amounts. Biol Pharm Bull 2005; 28:1578-84. [PMID: 16141519 DOI: 10.1248/bpb.28.1578] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The determination of small amounts of D-amino acids in mammalian tissues is still a challenging theme in the separation sciences. In this review, various gas-chromatographic and high-performance liquid chromatographic methods are discussed including highly selective and sensitive column-switching procedures. Based on these methods, the distributions of D-aspartic acid, D-serine, D-alanine, D-leucine and D-proline have been clarified in the mouse brain. As the regulation mechanisms of D-amino acid amounts in mammals, we focused on the D-amino-acid oxidase, which catalyzes the degradation of D-amino acids. Using the mutant mouse strain lacking D-amino-acid oxidase activity, the effects of the enzymatic activity on the amounts and distributions of various D-amino acids have been investigated.
Collapse
Affiliation(s)
- Kenji Hamase
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | |
Collapse
|
27
|
HPLC of Amino Acids as Chloroformate Derivatives. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s0301-4770(05)80009-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
28
|
Abe H, Yoshikawa N, Sarower MG, Okada S. Physiological Function and Metabolism of Free D-Alanine in Aquatic Animals. Biol Pharm Bull 2005; 28:1571-7. [PMID: 16141518 DOI: 10.1248/bpb.28.1571] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aquatic crustaceans and some bivalve mollusks contain a large amount of free D-alanine (up to 100 mumol/g wet wt.) in their tissues. Under high salinity stress, crustaceans and bivalve mollusks largely accumulate D- and L-alanine irrespective of species examined, together with L-glutamine, L-proline, and glycine of which increases are species dependent. These data indicate that D-alanine is one of the major compatible osmolytes responsible for the intracellular isosmotic regulation in the tissues of crustaceans and bivalves. Alanine racemase has been proven to catalyze the interconversion of D- and L-alanine in these invertebrates. The enzyme has been isolated to homogeneity from the muscle of black tiger prawn Penaeus monodon and its cDNA has been cloned from the muscle and hepatopancreas of kuruma prawn Penaeus japonicus for the first time in eukaryotes other than yeast. Several fish species fed on crustaceans and mollusks contain D-amino acid and D-aspartate oxidases that catalyze the decomposition of D-amino acids. A cDNA of D-amino acid oxidase has been cloned from the hepatopancreas of omnivorous common carp Cyprinus carpio. During oral administration of free D-alanine to carp, the activity and mRNA of D-amino acid oxidase increased rapidly in hepatopancreas and the increases were highest in intestine followed by hepatopancreas and kidney. These data suggest that D-amino acid oxidase is inducible in carp and an important enzyme responsible for the efficient utilization of carbon skeleton of D-alanine in their feeds.
Collapse
Affiliation(s)
- Hiroki Abe
- Department of Aquatic Bioscience, The University of Tokyo, Tokyo, Japan.
| | | | | | | |
Collapse
|
29
|
Pätzold R, Schieber A, Brückner H. Gas chromatographic quantification of freeD-amino acids in higher vertebrates. Biomed Chromatogr 2005; 19:466-73. [PMID: 16037932 DOI: 10.1002/bmc.515] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
D-amino acids were determined in brain, body fluids (urine, blood coagulate, serum, plasma) and faeces of animals belonging to nine out of 11 taxonomic orders of vertebrates (Artiodactyla, Aves, Carnivora, Lagomorpha, Marsupalia, Osteichthyes, Primates, Rodentia, Tubilidentata). Free amino acids were isolated by means of cation exchangers and converted into volatile N(O)-perfluoroacylamino acid propyl esters. Derivatives of amino acids were separated into D- and L-enantiomers using Chirasil-L-Val capillary columns and detected by selected ion monitoring mass spectrometry. Quantification of amino acids was achieved by comparison of analytes with amino acid standards using L-norleucine as internal standard. Large relative amounts of D-serine were determined in brains of mammals but not of birds. In body fluids the D-enantiomers of most proteinogenic L-amino acids were detected, largest absolute and relative amounts were found in urine. Therein quantities of D-Ala and D-Ser exceeded 50% relative to the L-enantiomers in many instances. Feeding animals with diet fortified with DL-Met resulted in excretion of almost racemic Met in urine. D-Amino acids were also abundant in faeces of rodents. The data confirm that d-amino acids are common in body fluids and certain tissues of vertebrates.
Collapse
Affiliation(s)
- Ralf Pätzold
- Department of Food Sciences, Institute of Nutritional Science, Interdisciplinary Research Center, Justus-Liebig-University of Giessen, 35390 Giessen, Germany
| | | | | |
Collapse
|
30
|
Sarower MG, Okada S, Abe H. Molecular characterization of D-amino acid oxidase from common carp Cyprinus carpio and its induction with exogenous free D-alanine. Arch Biochem Biophys 2004; 420:121-9. [PMID: 14622982 DOI: 10.1016/j.abb.2003.09.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A full-length cDNA encoding D-amino acid oxidase (DAO, EC 1.4.3.3) was cloned and sequenced from the hepatopancreas of carp fed a diet supplemented with D-alanine. This clone contained an open reading frame encoding 347 amino acid residues. The deduced amino acid sequence exhibited about 60 and 19-29% identity to mammalian and microbial DAOs, respectively. The expression of full-length carp DAO cDNA in Escherichia coli resulted in a significant level of protein with DAO activity. In carp fed the diet with D-alanine for 14 days, DAO mRNA was strongly expressed in intestine followed by hepatopancreas and kidney, but not in muscle. During D-alanine administration, DAO gene was expressed quickly in hepatopancreas with the increase of DAO activity. The inducible nature of carp DAO indicates that it plays an important physiological role in metabolizing exogenous D-alanine that is abundant in their prey invertebrates, crustaceans, and mollusks.
Collapse
Affiliation(s)
- Mohammed Golam Sarower
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | | | | |
Collapse
|
31
|
Fukushima T, Usui N, Santa T, Imai K. Recent progress in derivatization methods for LC and CE analysis. J Pharm Biomed Anal 2003; 30:1655-87. [PMID: 12485710 DOI: 10.1016/s0731-7085(02)00511-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The derivatization procedure with a suitable fluorescence or chemiluminescence reagent is performed for the purpose of increasing the detection sensitivity and selectivity, in high-performance liquid chromatography (HPLC) and/or capillary electrophoresis (CE). In this article, recent derivatization methods and their applications to biosamples are described. In HPLC, femto mol order of mass detection limits are obtained by derivatization. Regarding the fluorescence reagents, the use of water-soluble reagents has been effective to avoid an undesired adsorption in the process of determination of peptides. In CE, the advantages of having extremely low mass detection limits (ranging from atto to yocto mol level) and requiring only a very short analysis time (less than a few minutes) are made possible by using laser-induced fluorescence or near infra-red detections.
Collapse
Affiliation(s)
- Takeshi Fukushima
- Laboratory of Bio-Analytical Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
32
|
She Z, Sun Z, Wu L, Wu K, Sun S, Huang Z. Rapid method for the determination of amino acids in serum by capillary electrophoresis. J Chromatogr A 2002; 979:227-32. [PMID: 12498252 DOI: 10.1016/s0021-9673(02)01251-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A rapid method for the determination of amino acids in serum is presented. The derivatization of amino acids with 2,4-dinitrofluorobenzene was performed in 0.5 M sodium borate (pH 9.5). The complete separation of derivatives of 16 amino acids and an internal standard (D-norleucine) was achieved within 8 min by capillary zone electrophoresis. The running buffer consisted of 30 mM sodium tetraborate (pH 9.8)-isopropanol-30% Brij 35 (825:150:25, v/v). The capillary used had an internal diameter of 75 microm and an effective length of 300 mm. A voltage of 28 kV was applied. Temperature was maintained at 15 degrees C. Detection was 360 nm. The assay was linear from 10 to 700 microM. The minimal detection limit was 2.5-7.9 microM. The recovery of amino acids added to serum samples was 86.3-107.4%. Within-run precision was 2.8-10.3%, and between-run precision was 3.5-11.6%. The concentrations of amino acids in serum of 32 patients with chronic renal failure were measured. Among them, the levels of serine, isoleucine and valine were significantly lower than those of healthy volunteers (P<0.01), but the concentrations of cystine, tryptophan and phenylane were significantly higher than those of healthy volunteers (P<0.01). The result showed that the method could be used for determining amino acids in clinical practice and scientific research.
Collapse
Affiliation(s)
- Zuojun She
- Department of Clinical Chemistry, Anhui Provincial Center for Clinical Laboratory, 17 Lujiang Road, Hefei 230001, Anhui Province, China.
| | | | | | | | | | | |
Collapse
|
33
|
Hamase K, Morikawa A, Zaitsu K. D-Amino acids in mammals and their diagnostic value. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 781:73-91. [PMID: 12450654 DOI: 10.1016/s1570-0232(02)00690-6] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Substantial amounts of D-amino acids are present in mammalian tissues; their function, origin and relationship between pathophysiological processes have been of great interest over the last two decades. In the present article, analytical methods including chromatographic, electrophoretic and enzymatic methods to determine D-amino acids in mammalian tissues are reviewed, and the distribution of these D-amino acids in mammals is discussed. An overview of the function, origin and relationship between the amino acids and pathophysiological processes is also given.
Collapse
Affiliation(s)
- Kenji Hamase
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | |
Collapse
|
34
|
Yoshikawa N, Dhomae N, Takio K, Abe H. Purification, properties, and partial amino acid sequences of alanine racemase from the muscle of the black tiger prawn Penaeus monodon. Comp Biochem Physiol B Biochem Mol Biol 2002; 133:445-53. [PMID: 12431412 DOI: 10.1016/s1096-4959(02)00187-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Alanine racemase [EC 5.1.1.1], which catalyzes the interconversion between D- and L-alanine, was purified to homogeneity from the muscle of black tiger prawn Penaeus monodon. The isolated enzyme had a molecular mass of 44 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and 90 kDa on gel filtration, indicating a dimeric nature of the enzyme. The enzyme was highly specific to D- and L-alanine and did not catalyze the racemization of other amino acids. K(m) values toward both D- and L-alanine were almost equal and considerably high compared with those of bacterial enzymes. The purified enzyme retained its activity in the absence of pyridoxal 5'-phosphate as a cofactor but carbonyl reagents inhibited the activity, suggesting the tightly binding of the cofactor to the enzyme protein. Several partial amino acid sequences of peptide fragments of the purified enzyme showed positive homologies from 52 to 76% with bacterial counterparts and a catalytic tyrosine residue of the bacterial enzyme was also retained in the prawn one, indicating alanine racemase gene is well conserved from bacteria to invertebrates.
Collapse
Affiliation(s)
- Naoko Yoshikawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
35
|
Zoutendam PH, Canty JF, Martin MJ, Dirr MK. Development of a chiral assay for a novel, nonfluorinated quinolone, PGE-9509924, in dog plasma using high performance liquid chromatography with electrospray tandem mass spectrometry or fluorescence detection. J Pharm Biomed Anal 2002; 30:1-11. [PMID: 12151060 DOI: 10.1016/s0731-7085(01)00717-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PGE-9509924 is a nonfluorinated quinolone and is active against a variety of susceptible and drug resistant bacteria in vitro and in animal infection models. A method for determining both enantiomers of PGE-9509924 in dog plasma has been developed. The enantiomers are derivatized with a chiral derivatizing agent, (-)-1-(9-fluorenyl)ethyl chloroformate (FLEC) and the resulting diastereomers are separated by reverse phase chromatography. Plasma samples are prepared via solid phase extraction (SPE) in a 96-well format prior to being derivatized. Samples are then analyzed by electrospray-LC/MS/MS with multiple reaction monitoring or by HPLC with fluorescence detection. Results of a side-by-side validation of the method with LC/MS/MS and HPLC/Fl detection are presented. Over the range selected for validation (0.025-10 micro g/ml), both methods give similar results with identical limits of quantitation. Due to the selectivity of LC/MS/MS and the use of a stable-isotopically labeled internal standard, significantly shorter chromatographic runtimes are achieved with LC/MS/MS, making it the method of choice for sample analysis.
Collapse
Affiliation(s)
- P H Zoutendam
- Health Care Research Center, Procter and Gamble Pharmaceuticals Inc, 8700 Mason-Montgomery Road, Mason, OH 45040, USA.
| | | | | | | |
Collapse
|
36
|
Fujimori T, Abe H. Physiological roles of free D- and L-alanine in the crayfish Procambarus clarkii with special reference to osmotic and anoxic stress responses. Comp Biochem Physiol A Mol Integr Physiol 2002; 131:893-900. [PMID: 11897200 DOI: 10.1016/s1095-6433(02)00006-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Under hyper-salinity stress from freshwater to 17 and 25 ppt seawater, red swamp crayfish Procambarus clarkii largely accumulated D- and L-alanine together with glycine, L-glutamine, and L-proline in both muscle and hepatopancreas. The increases of D- and L-alanine in muscle were the highest in all amino acids and reached 6.8- and 5.4-fold, respectively, from freshwater to 25 ppt seawater. These results indicate that both D- and L-alanine are the most potent osmolytes for intracellular isosmotic regulation in crayfish as well as other crustaceans thus far examined. Under anoxia stress below 0.1 mg/l dissolved oxygen for 12 h and subsequent recovery in normoxia for 12 h in freshwater, 17 and 25 ppt seawater, muscle ATP decreased dramatically in all salinity levels and almost depleted in seawater. Along with the decrease of muscle glycogen level, the significant increase of L-lactate was found in muscle, hepatopancreas, and hemolymph for each salinity level, suggesting the transport of L-lactate from muscle into hepatopancreas via hemolymph. Under anoxia, D- and L-alanine also largely increased in both muscle and hepatopancreas for each salinity level. The increase was much higher in seawater than in freshwater. Thus, both D- and L-alanine are possible to be anaerobic end products during prolonged anaerobiosis of this species.
Collapse
Affiliation(s)
- Tamaki Fujimori
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, 113-8657, Tokyo, Japan
| | | |
Collapse
|
37
|
Derivatization Reactions for Analytes with Various Functional Groups. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s0301-4770(02)80020-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
38
|
Chemical Composition of Fish Sauces Produced in Southeast and East Asian Countries. J Food Compost Anal 2001. [DOI: 10.1006/jfca.2000.0963] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
|
40
|
D'Aniello G, Tolino A, D'Aniello A, Errico F, Fisher GH, Di Fiore MM. The role of D-aspartic acid and N-methyl-D-aspartic acid in the regulation of prolactin release. Endocrinology 2000; 141:3862-70. [PMID: 11014243 DOI: 10.1210/endo.141.10.7706] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this study, using an enzymatic HPLC method in combination with D-aspartate oxidase, we show that N-methyl-D-aspartate (NMDA) is present at nanomolar levels in rat nervous system and endocrine glands as a natural compound, and it is biosynthesized in vivo and in vitro. D-aspartate (D-Asp) is its natural precursor and also occurs as an endogenous compound. Among the endocrine glands, the highest quantities of D-Asp (78 +/- 12 nmol/g) and NMDA (8.4 +/- 1.2 nmol/g) occur in the adenohypophysis, whereas the hypothalamus represents the area of the nervous system where these amino acids are most abundant (55 +/- 9 and 5.6 +/- 1.1 nmol/g for D-Asp and NMDA, respectively). When D-Asp is administered to rats by ip injection, there is a significant uptake of D-Asp into the adenohypophysis and a significant increase in the concentration of NMDA in the adenohypophysis, hypothalamus and hippocampus, suggesting that D-Asp is an endogenous precursor for NMDA biosynthesis. Experiments conducted on tissue homogenates confirm that D-Asp is the precursor of the NMDA and that the enzyme catalyzing this reaction is a methyltransferase. S-adenosyl-L-methionine (SAM) is the methyl group donor. In vivo experiments consisting of ip injections of sodium D-aspartate show that this amino acid induced a significant serum PRL elevation and this effect is dose and time dependent. In vitro experiments conducted on isolated adenohypophysis or adenohypophysis coincubated with the hypothalamus, showed that the release of PRL is caused by a direct action of D-Asp on the pituitary gland and also mediated by the indirect action of NMDA on the hypothalamus. Then, the latter induces the release of a putative factor that in turn stimulates the adenohypophysis reinforcing the PRL release. In conclusion, our data suggest that D-Asp and NMDA are present endogenously in the rat and are involved in the modulation of PRL release.
Collapse
Affiliation(s)
- G D'Aniello
- Laboratory of Neurobiology, Zoological Station of Naples, Italy
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
Chiral separation of amino acids and peptides by capillary electrophoresis (CE) is reviewed regarding the separation principles of different approaches, advantages and limitations, chiral recognition mechanisms and applications. The direct approach details various chiral selectors with an emphasis on cyclodextrins and their derivatives, antibiotics and chiral surfactants as the chiral selectors. The indirect approach deals with various chiral reagents applied for diastereomer formation and types of separation media such as micelles and polymeric pseudo-stationary phases. Many derivatization reagents used for high sensitivity detection of amino acids and peptides are also discussed and their characteristics are summarized in tables. A large number of relevant examples is presented illustrating the current status of enantiomeric and diastereomeric separation of amino acids and peptides. Strategies to enhance the selectivity and optimize separation parameters by the application of experimental designs are described. The reversal of enantiomeric elution order and the effects of organic modifiers on the selectivity are illustrated in both direct and indirect methods. Some applications of chiral amino acid and peptide analysis, in particular, regarding the determination of trace enantiomeric impurities, are given. This review selects more than 200 articles published between 1988 and 1999.
Collapse
Affiliation(s)
- H Wan
- Department of Chemistry, Karlstad University, Sweden
| | | |
Collapse
|
42
|
D'Aniello A, Di Fiore MM, Fisher GH, Milone A, Seleni A, D'Aniello S, Perna AF, Ingrosso D. Occurrence of D-aspartic acid and N-methyl-D-aspartic acid in rat neuroendocrine tissues and their role in the modulation of luteinizing hormone and growth hormone release. FASEB J 2000; 14:699-714. [PMID: 10744627 DOI: 10.1096/fasebj.14.5.699] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Using two specific and sensitive fluorometric/HPLC methods and a GC-MS method, alone and in combination with D-aspartate oxidase, we have demonstrated for the first time that N-methyl-D-aspartate (NMDA), in addition to D-aspartate (D-Asp), is endogenously present as a natural molecule in rat nervous system and endocrine glands. Both of these amino acids are mostly concentrated at nmol/g levels in the adenohypophysis, hypothalamus, brain, and testis. The adenohypophysis maximally showed the ability to accumulate D-Asp when the latter is exogenously administered. In vivo experiments, consisting of the i.p. injection of D-Asp, showed that D-Asp induced both growth hormone and luteinizing hormone (LH) release. However, in vitro experiments showed that D-Asp was able to induce LH release from adenohypophysis only when this gland was co-incubated with the hypothalamus. This is because D-Asp also induces the release of GnRH from the hypothalamus, which in turn is directly responsible for the D-Asp-induced LH secretion from the pituitary gland. Compared to D-Asp, NMDA elicits its hormone release action at concentrations approximately 100-fold lower than D-Asp. D-AP5, a specific NMDA receptor antagonist, inhibited D-Asp and NMDA hormonal activity, demonstrating that these actions are mediated by NMDA receptors. NMDA is biosynthesized from D-Asp by an S-adenosylmethionine-dependent enzyme, which we tentatively denominated as NMDA synthase.
Collapse
Affiliation(s)
- A D'Aniello
- Department of Biochemistry and Molecular Biology and Neurobiology, Zoological Station 'A. Dohrn', 80121, Napoli, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Casal S, Oliveira MB, Ferreira MA. Gas chromatographic quantification of amino acid enantiomers in food matrices by their N(O,S)-ethoxycarbonyl heptafluorobutyl ester derivatives. J Chromatogr A 2000; 866:221-30. [PMID: 10670812 DOI: 10.1016/s0021-9673(99)01105-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several amino acid enantiomer derivatives were prepared with different chloroformates and analysed by gas chromatography (GC) on a Chirasil-L-Val GC column, at a temperature below 200 degrees C. Among them the N(O,S)-ethoxycarbonyl heptafluorobutyl esters presented the best compromise between short retention times, high yield responses and good resolution for almost all the tested amino acids. These derivatives proved to be suited for quantification of amino acids in aqueous media, with L-p-chlorophenylalanine as internal standard. The developed procedure was applied to several food samples for determination of their free amino acid profiles.
Collapse
Affiliation(s)
- S Casal
- CEQUP/Serviço de Bromatologia, Faculdade de Farmácia da Universidade do Porto, Portugal
| | | | | |
Collapse
|
44
|
Role of free d- and l-alanine in the Japanese mitten crab Eriocheir japonicus to intracellular osmoregulation during downstream spawning migration. Comp Biochem Physiol A Mol Integr Physiol 1999. [DOI: 10.1016/s1095-6433(99)00037-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Fisher G, Lorenzo N, Abe H, Fujita E, Frey WH, Emory C, Di Fiore MM, D' Aniello A. Free D- and L-amino acids in ventricular cerebrospinal fluid from Alzheimer and normal subjects. Amino Acids 1999; 15:263-9. [PMID: 9871505 DOI: 10.1007/bf01318865] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Free D-Ser, D-Asp and total D-amino acids were significantly higher (p < 0.05) in Alzheimer (AD) ventricular CSF than in normal CSF. There was no significant difference in the total L-amino acids between AD and normal CSF, but L-Gln and L-His were significantly higher (p < 0.05) in AD-CSF. The higher concentrations of these D- and L-amino acids in AD ventricular CSF could reflect the degenerative process that occurs in Alzheimer's brain since ventricular CSF is the repository of amino acids from the brain.
Collapse
Affiliation(s)
- G Fisher
- Department of Chemistry, Barry University, Miami Shores, Florida, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Effects of starvation and d- or l-alanine administration on the free d- and l-alanine levels in the muscle and hepatopancreas of the crayfish, Procambarus clarkii. Comp Biochem Physiol A Mol Integr Physiol 1998. [DOI: 10.1016/s1095-6433(98)10086-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
47
|
Liu YM, Schneider M, Sticha CM, Toyooka T, Sweedler JV. Separation of amino acid and peptide stereoisomers by nonionic micelle-mediated capillary electrophoresis after chiral derivatization. J Chromatogr A 1998; 800:345-54. [PMID: 9561768 DOI: 10.1016/s0021-9673(97)01137-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Enantiomers of amino acids and peptides were derivatized with a fluorescent chiral reagent, 4-(3-isothiocyanatopyrrolidinl-yl)-7-nitro-2,1,3-benzoxadiazole [R-(-)- or S-(+)-NBD-PyNCS] and the resulting diastereomeric derivatives separated by capillary electrophoresis (CE). The CE running buffer consisted of 25 mM acetate buffer (pH 4) and 10 mM of the nonionic surfactant Triton X-100. The excitation maximum of NBD-PyNCS at 480 nm matches the major Ar-ion emission line at 488 nm allowing sensitive laser-induced fluorescence detection with limits of detection around 50 nM. D-Proline and D-aspartate spiked (at 10(-4) M and 10(-5) M concentrations, respectively) into complex biological matrices (rabbit serum and homogenate of Aplysia californica buccal ganglion) are detected without matrix interferences. This method has also been applied to the determination of D- and L-amino acid residues in peptides after acid hydrolysis. Results from the chiral analysis of the naturally-occurring peptide, gramicidin D, are shown.
Collapse
Affiliation(s)
- Y M Liu
- Department of Chemistry, University of Illinois at Urbana-Champaign 61801, USA
| | | | | | | | | |
Collapse
|
48
|
Improved procedure for n-hexyl chloroformate-mediated derivatization of highly hydrophilic substances directly in water: hydroxyaminic compounds. J Chromatogr A 1998. [DOI: 10.1016/s0021-9673(97)00911-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
49
|
Abstract
It has long been assumed that L-forms of amino acids exclusively constitute free amino acid pools in mammals. However, a variety of studies in the last decade has demonstrated that free D-aspartate and D-serine occur in mammals and may have important physiological function in mammals. Free D-serine is confined predominantly to the forebrain structure, and the distribution and development of D-serine correspond well with those of the N-methyl-D-aspartate (NMDA)-type excitatory amino acid receptor. As D-serine acts as a potent and selective agonist for the strychnine-insensitive glycine site of the NMDA receptor, it is proposed that D-serine is a potential candidate for an NMDA receptor-related glycine site agonist in mammalian brain. In contrast, widespread and transient emergence of a high concentration of free D-aspartate is observed in the brain and periphery. Since the periods of maximal emergence of D-aspartate in the brain and periphery occur during critical periods of morphological and functional maturation of the organs, D-aspartate could participate in the regulation of these regulation of these developmental processes of the organs. This review deals with the recent advances in the studies of presence of free D-aspartate and D-serine and their metabolic systems in mammals. Since D-aspartate and D-serine have been shown to potentiate NMDA receptor-mediated transmission through the glutamate binding site and the strychnine-insensitive glycine binding site, respectively, and have been utilized extensively as potent and selective tools to study the excitatory amino acid system in the brain, we shall discuss also the NMDA receptor and uptake system of D-amino acids.
Collapse
Affiliation(s)
- A Hashimoto
- Department of Pharmacology, Takai University School of Medicine, Kanagawa, Japan.
| | | |
Collapse
|
50
|
Occurrence of Alanine Racemase in Crustaceans and the Changes of the Properties During Seawater Acclimation of Crayfish. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s0300-9629(96)00120-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|