1
|
Perkins G, Lee JH, Park S, Kang M, Perez-Flores MC, Ju S, Phillips G, Lysakowski A, Gratton MA, Yamoah EN. Altered Outer Hair Cell Mitochondrial and Subsurface Cisternae Connectomics Are Candidate Mechanisms for Hearing Loss in Mice. J Neurosci 2020; 40:8556-8572. [PMID: 33020216 PMCID: PMC7605424 DOI: 10.1523/jneurosci.2901-19.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 11/21/2022] Open
Abstract
Organelle crosstalk is vital for cellular functions. The propinquity of mitochondria, ER, and plasma membrane promote regulation of multiple functions, which include intracellular Ca2+ flux, and cellular biogenesis. Although the purposes of apposing mitochondria and ER have been described, an understanding of altered organelle connectomics related to disease states is emerging. Since inner ear outer hair cell (OHC) degeneration is a common trait of age-related hearing loss, the objective of this study was to investigate whether the structural and functional coupling of mitochondria with subsurface cisternae (SSC) was affected by aging. We applied functional and structural probes to equal numbers of male and female mice with a hearing phenotype akin to human aging. We discovered the polarization of cristae and crista junctions in mitochondria tethered to the SSC in OHCs. Aging was associated with SSC stress and decoupling of mitochondria with the SSC, mitochondrial fission/fusion imbalance, a remarkable reduction in mitochondrial and cytoplasmic Ca2+ levels, reduced K+-induced Ca2+ uptake, and marked plasticity of cristae membranes. A model of structure-based ATP production predicts profound energy stress in older OHCs. This report provides data suggesting that altered membrane organelle connectomics may result in progressive hearing loss.
Collapse
Affiliation(s)
- Guy Perkins
- National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, California 92093
| | | | | | | | | | - Saeyeon Ju
- National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, California 92093
| | - Grady Phillips
- Washington University School of Medicine, St. Louis, Missouri 63110
| | - Anna Lysakowski
- Departments of Anatomy and Cell Biology and Otolaryngology, University of Illinois at Chicago, Chicago, Illinois 60612
| | | | | |
Collapse
|
2
|
Ranum PT, Goodwin AT, Yoshimura H, Kolbe DL, Walls WD, Koh JY, He DZZ, Smith RJH. Insights into the Biology of Hearing and Deafness Revealed by Single-Cell RNA Sequencing. Cell Rep 2020; 26:3160-3171.e3. [PMID: 30865901 PMCID: PMC6424336 DOI: 10.1016/j.celrep.2019.02.053] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/16/2018] [Accepted: 02/13/2019] [Indexed: 01/03/2023] Open
Abstract
Single-cell RNA sequencing is a powerful tool by which to characterize the transcriptional profile of low-abundance cell types, but its application to the inner ear has been hampered by the bony labyrinth, tissue sparsity, and difficulty dissociating the ultra-rare cells of the membranous cochlea. Herein, we present a method to isolate individual inner hair cells (IHCs), outer hair cells (OHCs), and Deiters' cells (DCs) from the murine cochlea at any post-natal time point. We harvested more than 200 murine IHCs, OHCs, and DCs from post-natal days 15 (p15) to 228 (p228) and leveraged both short- and long-read single-cell RNA sequencing to profile transcript abundance and structure. Our results provide insights into the expression profiles of these cells and document an unappreciated complexity in isoform variety in deafness-associated genes. This refined view of transcription in the organ of Corti improves our understanding of the biology of hearing and deafness.
Collapse
Affiliation(s)
- Paul T Ranum
- Interdisciplinary Graduate Program in Molecular & Cellular Biology, University of Iowa Graduate College, University of Iowa, Iowa City, IA 52242, USA; Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Alexander T Goodwin
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Hidekane Yoshimura
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Diana L Kolbe
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - William D Walls
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Jin-Young Koh
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - David Z Z He
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Richard J H Smith
- Interdisciplinary Graduate Program in Molecular & Cellular Biology, University of Iowa Graduate College, University of Iowa, Iowa City, IA 52242, USA; Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Department of Otolaryngology, Head and Neck Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
3
|
Minakata T, Inagaki A, Yamamura A, Yamamura H, Sekiya S, Murakami S. Calcium-Sensing Receptor Is Functionally Expressed in the Cochlear Perilymphatic Compartment and Essential for Hearing. Front Mol Neurosci 2019; 12:175. [PMID: 31379498 PMCID: PMC6648107 DOI: 10.3389/fnmol.2019.00175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/01/2019] [Indexed: 11/26/2022] Open
Abstract
Maintaining Ca2+ homeostasis in lymphatic fluids is necessary for proper hearing. Despite its significance, the mechanisms that maintain the cochlear lymphatic Ca2+ concentrations within a certain range are not fully clarified. We investigated the functional expression of calcium-sensing receptor (CaSR), which plays a pivotal role in sensing extracellular Ca2+ concentrations for feedback regulations. Western blotting for CaSR revealed an approximately 130-kDa protein expression in cochlear tissue extracts and immunohistochemical analysis revealed its expression specifically in type I fibrocytes in the spiral ligament, fibrocytes in the supralimbal and limbal regions, the epithelium of the osseous spiral lamina, and the smooth muscle cells of the spiral modiolar arteries. Ca2+ imaging demonstrated that extracellular Ca2+ increased the levels of intracellular Ca2+ in CaSR-expressing fibrocytes in the spiral ligament, and that this was suppressed by the CaSR inhibitor, NPS2143. Furthermore, hearing thresholds were moderately elevated by intracochlear application of the CaSR inhibitors NPS2143 and Calhex231, across a range of frequencies (8–32 kHz). These results demonstrate the functional expression of CaSR in the cochlear perilymphatic compartment. In addition, the elevated hearing thresholds that are achieved by inhibiting CaSR suggest this is a required mechanism for normal hearing, presumably by sensing perilymphatic Ca2+ to stabilize Ca2+ concentrations within a certain range. These results provide novel insight into the mechanisms regulating Ca2+ homeostasis in the cochlea and provide a new perspective on cochlear physiology.
Collapse
Affiliation(s)
- Toshiya Minakata
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medical Sciences and Medical School, Nagoya City University, Nagoya, Japan
| | - Akira Inagaki
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medical Sciences and Medical School, Nagoya City University, Nagoya, Japan
| | - Aya Yamamura
- Department of Physiology, Aichi Medical University, Nagakute, Japan
| | - Hisao Yamamura
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Shinji Sekiya
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medical Sciences and Medical School, Nagoya City University, Nagoya, Japan
| | - Shingo Murakami
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medical Sciences and Medical School, Nagoya City University, Nagoya, Japan
| |
Collapse
|
4
|
Hsu CJ, Chen YS, Shau WY, Yeh TH, Lee SY, Lin-Shiau SY. Impact of Activities OF NA+,K+-Atpase and CA2+-Atpase in the Cochlear Lateral Wall on Recovery from Noise-Induced Temporary Threshold Shift. Ann Otol Rhinol Laryngol 2016; 111:842-9. [PMID: 12296342 DOI: 10.1177/000348940211100915] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The present study was designed to investigate the relationship between the noise-induced temporary threshold shift (TTS) and the specific activities of sodium potassium adenosine triphosphatase (Na+,K+-ATPase) and calcium adenosine triphosphatase (Ca2+-ATPase) in the cochlear lateral wall. The specific activities of these enzymes were quantified by microcolorimetric assay. Changes in auditory brain stem response (ABR) thresholds were compared with the quantitative alterations of the specific activities of Na+,K+-ATPase and Ca2+-ATPase in the cochlear lateral wall of guinea pigs with a noise-induced TTS. In the majority of those noise-exposed ears with complete recovery of ABR thresholds, the specific activities of both enzymes returned to at least 70% of the mean specific activity of the control group. Although other factors may be involved, reversible inactivation of Na+,K+-ATPase and Ca2+-ATPase in the cochlear lateral wall may be one component of the TTS. Our present findings could drive further studies on the molecular basis of noise-induced hearing loss.
Collapse
Affiliation(s)
- Chuan-Jen Hsu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Republic of China
| | | | | | | | | | | |
Collapse
|
5
|
Morell M, Lenoir M, Shadwick RE, Jauniaux T, Dabin W, Begeman L, Ferreira M, Maestre I, Degollada E, Hernandez-Milian G, Cazevieille C, Fortuño JM, Vogl W, Puel JL, André M. Ultrastructure of the Odontocete organ of Corti: scanning and transmission electron microscopy. J Comp Neurol 2014; 523:431-48. [PMID: 25269663 DOI: 10.1002/cne.23688] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 09/26/2014] [Indexed: 11/11/2022]
Abstract
The morphological study of the Odontocete organ of Corti, together with possible alterations associated with damage from sound exposure, represents a key conservation approach to assess the effects of acoustic pollution on marine ecosystems. By collaborating with stranding networks from several European countries, 150 ears from 13 species of Odontocetes were collected and analyzed by scanning (SEM) and transmission (TEM) electron microscopy. Based on our analyses, we first describe and compare Odontocete cochlear structures and then propose a diagnostic method to identify inner ear alterations in stranded individuals. The two species analyzed by TEM (Phocoena phocoena and Stenella coeruleoalba) showed morphological characteristics in the lower basal turn of high-frequency hearing species. Among other striking features, outer hair cell bodies were extremely small and were strongly attached to Deiters cells. Such morphological characteristics, shared with horseshoe bats, suggest that there has been convergent evolution of sound reception mechanisms among echolocating species. Despite possible autolytic artifacts due to technical and experimental constraints, the SEM analysis allowed us to detect the presence of scarring processes resulting from the disappearance of outer hair cells from the epithelium. In addition, in contrast to the rapid decomposition process of the sensory epithelium after death (especially of the inner hair cells), the tectorial membrane appeared to be more resistant to postmortem autolysis effects. Analysis of the stereocilia imprint pattern at the undersurface of the tectorial membrane may provide a way to detect possible ultrastructural alterations of the hair cell stereocilia by mirroring them on the tectorial membrane.
Collapse
Affiliation(s)
- Maria Morell
- Laboratory of Applied Bio-Acoustics, Technological Center of Vilanova i la Geltrú, Technical University of Catalonia-Barcelona Tech, 08800, Vilanova i la Geltrú, Barcelona, Spain; Zoology Department, The University of British Columbia, V6T 1Z4 Vancouver, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Patuzzi R. Ion flow in cochlear hair cells and the regulation of hearing sensitivity. Hear Res 2011; 280:3-20. [DOI: 10.1016/j.heares.2011.04.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2010] [Revised: 03/28/2011] [Accepted: 04/11/2011] [Indexed: 12/22/2022]
|
7
|
Simmons DD, Tong B, Schrader AD, Hornak AJ. Oncomodulin identifies different hair cell types in the mammalian inner ear. J Comp Neurol 2010; 518:3785-802. [PMID: 20653034 DOI: 10.1002/cne.22424] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The tight regulation of Ca(2+) is essential for inner ear function, and yet the role of Ca(2+) binding proteins (CaBPs) remains elusive. By using immunofluorescence and reverse transcriptase-polymerase chain reaction (RT-PCR), we investigated the expression of oncomodulin (Ocm), a member of the parvalbumin family, relative to other EF-hand CaBPs in cochlear and vestibular organs in the mouse. In the mouse cochlea, Ocm is found only in outer hair cells and is localized preferentially to the basolateral outer hair cell membrane and to the base of the hair bundle. Developmentally, Ocm immunoreactivity begins as early as postnatal day (P) 2 and shows preferential localization to the basolateral membrane and hair bundle after P8. Unlike the cochlea, Ocm expression is substantially reduced in vestibular tissues at older adult ages. In vestibular organs, Ocm is found in type I striolar or central hair cells, and has a more diffuse subcellular localization throughout the hair cell body. Additionally, Ocm immunoreactivity in vestibular hair cells is present as early as E18 and is not obviously affected by mutations that cause a disruption of hair bundle polarity. We also find Ocm expression in striolar hair cells across mammalian species. These data suggest that Ocm may have distinct functional roles in cochlear and vestibular hair cells.
Collapse
Affiliation(s)
- Dwayne D Simmons
- Department of Integrative Biology and Physiology and the Brain Research Institute, University of California Los Angeles, Los Angeles, California 90095, USA.
| | | | | | | |
Collapse
|
8
|
Mitotic activity and specification of fibrocyte subtypes in the developing rat cochlear lateral wall. Neuroscience 2009; 163:1255-63. [DOI: 10.1016/j.neuroscience.2009.07.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 07/28/2009] [Accepted: 07/28/2009] [Indexed: 12/20/2022]
|
9
|
Uemaetomari I, Tabuchi K, Nakamagoe M, Tanaka S, Murashita H, Hara A. L-Type Voltage-Gated Calcium Channel is Involved in the Pathogenesis of Acoustic Injury in the Cochlea. TOHOKU J EXP MED 2009; 218:41-7. [DOI: 10.1620/tjem.218.41] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Isao Uemaetomari
- Department of Otolaryngology, Graduate School of Comprehensive Human Sciences, University of Tsukuba
| | - Keiji Tabuchi
- Department of Otolaryngology, Graduate School of Comprehensive Human Sciences, University of Tsukuba
| | - Mariko Nakamagoe
- Department of Otolaryngology, Graduate School of Comprehensive Human Sciences, University of Tsukuba
| | - Syuho Tanaka
- Department of Otolaryngology, Graduate School of Comprehensive Human Sciences, University of Tsukuba
| | - Hidekazu Murashita
- Department of Otolaryngology, Graduate School of Comprehensive Human Sciences, University of Tsukuba
| | - Akira Hara
- Department of Otolaryngology, Graduate School of Comprehensive Human Sciences, University of Tsukuba
| |
Collapse
|
10
|
Abstract
Normal hearing depends on sound amplification within the mammalian cochlea. The amplification, without which the auditory system is effectively deaf, can be traced to the correct functioning of a group of motile sensory hair cells, the outer hair cells of the cochlea. Acting like motor cells, outer hair cells produce forces that are driven by graded changes in membrane potential. The forces depend on the presence of a motor protein in the lateral membrane of the cells. This protein, known as prestin, is a member of a transporter superfamily SLC26. The functional and structural properties of prestin are described in this review. Whether outer hair cell motility might account for sound amplification at all frequencies is also a critical question and is reviewed here.
Collapse
Affiliation(s)
- Jonathan Ashmore
- Department of Physiology and UCL Ear Institute, University College London, London, United Kingdom.
| |
Collapse
|
11
|
O’Beirne GA, Patuzzi RB. Mathematical model of outer hair cell regulation including ion transport and cell motility. Hear Res 2007; 234:29-51. [DOI: 10.1016/j.heares.2007.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 08/10/2007] [Accepted: 09/14/2007] [Indexed: 11/25/2022]
|
12
|
Wu X, Currall B, Yamashita T, Parker LL, Hallworth R, Zuo J. Prestin-prestin and prestin-GLUT5 interactions in HEK293T cells. Dev Neurobiol 2007; 67:483-97. [PMID: 17443803 DOI: 10.1002/dneu.20357] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The remarkable hearing sensitivity and frequency selectivity in mammals is attributed to cochlear amplifier in the outer hair cells (OHCs). Prestin, a membrane protein in the lateral wall of OHC plasma membrane, is required for OHC electromotility and cochlear amplifier. In addition, GLUT5, a fructose transporter, is reported to be abundant in the plasma membrane of the OHC lateral wall and has been originally proposed as the OHC motor protein. Here we provide evidence of interactions between prestin/prestin and prestin/GLUT5 in transiently transfected HEK293T cells. We used a combination of techniques: (1) membrane colocalization by confocal microscopy, (2) fluorescence resonance energy transfer (FRET) by fluorescence activated cell sorting (FACS), (3) FRET by acceptor photobleaching, (4) FRET by fluorescence lifetime imaging (FRET-FLIM), and (5) coimmunoprecipitation. Our results suggest that homomeric and heteromeric prestin interactions occur in native OHCs to facilitate its electromotile function and that GLUT5 interacts with prestin for its elusive function.
Collapse
Affiliation(s)
- Xudong Wu
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | |
Collapse
|
13
|
Yian C, Moon SK, Jin S, Webster P, Rhim JS, Andalibi A, Lim DJ. Characterization of rat spiral ligament cell line immortalized by adenovirus 12-simian virus 40 hybrid virus. Ann Otol Rhinol Laryngol 2007; 115:930-8. [PMID: 17214269 DOI: 10.1177/000348940611501213] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES Spiral ligament fibrocytes play an important role in inner ear ion homeostasis and are classified into several subtypes according to expression of specific enzymes such as Na+, K+ -ATPase, Ca++ -ATPase, and carbonic anhydrase. Although our understanding of the cell and molecular biology of spiral ligament fibrocytes has increased over time, access to these cells still remains a significant hurdle hindering future studies. In this study, we aimed to establish a rat spiral ligament cell line with minimal disruption of the original characteristics. METHODS The primary spiral ligament fibrocytes were exposed to adenovirus 12-simian virus 40 hybrid virus for immortalization. Karyotypic analysis was performed after stabilization of the infected cells, and the population doubling time was compared to that of the primary cell. The cell line was characterized by immunolabeling and electron microscopy. RESULTS We describe the establishment and characterization of a line of type I spiral ligament fibrocytes immortalized with an adenovirus 12-simian virus 40 hybrid virus. CONCLUSIONS This cell line can be a useful research tool for investigating the role of spiral ligament fibrocytes in homeostasis and inflammation of the inner ear.
Collapse
Affiliation(s)
- Christopher Yian
- Laboratory of Cell Biology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Hackney CM, Mahendrasingam S, Penn A, Fettiplace R. The concentrations of calcium buffering proteins in mammalian cochlear hair cells. J Neurosci 2006; 25:7867-75. [PMID: 16120789 PMCID: PMC6725244 DOI: 10.1523/jneurosci.1196-05.2005] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Calcium buffers are important for shaping and localizing cytoplasmic Ca2+ transients in neurons. We measured the concentrations of the four main calcium-buffering proteins (calbindin-D28k, calretinin, parvalbumin-alpha, and parvalbumin-beta) in rat cochlear hair cells in which Ca2+ signaling is a central element of fast transduction and synaptic transmission. The proteins were quantified by calibrating immunogold tissue counts against gels containing known amounts of each protein, and the method was verified by application to Purkinje cells in which independent estimates exist for some of the protein concentrations. The results showed that, in animals with fully developed hearing, inner hair cells had 110 of the proteinaceous calcium buffer of outer hair cells in which the cell body contained parvalbumin-beta (oncomodulin) and calbindin-D28k at levels equivalent to 5 mm calcium-binding sites. Both proteins were partially excluded from the hair bundles, which may permit fast unbuffered Ca2+ regulation of the mechanotransducer channels. The sum of the calcium buffer concentrations decreased in inner hair cells and increased in outer hair cells as the cells developed their adult properties during cochlear maturation. The results suggest that Ca2+ has distinct roles in the two types of hair cell, reflecting their different functions in auditory transduction. Ca2+ is used in inner hair cells primarily for fast phase-locked synaptic transmission, whereas Ca2+ may be involved in regulating the motor capability underlying cochlear amplification of the outer hair cell. The high concentration of calcium buffer in outer hair cells, similar only to skeletal muscle, may protect against deleterious consequences of Ca2+ loading after acoustic overstimulation.
Collapse
Affiliation(s)
- Carole M Hackney
- MacKay Institute of Communication and Neuroscience, School of Life Sciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | | | | | | |
Collapse
|
15
|
Liang F, Hu W, Schulte BA, Mao C, Qu C, Hazen-Martin DJ, Shen Z. Identification and characterization of an L-type Cav1.2 channel in spiral ligament fibrocytes of gerbil inner ear. ACTA ACUST UNITED AC 2004; 125:40-6. [PMID: 15193421 DOI: 10.1016/j.molbrainres.2004.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2004] [Indexed: 10/26/2022]
Abstract
Intracellular free Ca2+ levels are critical to the activity of BK channels in inner ear type I spiral ligament fibrocytes. However, the mechanisms for regulating intracellular Ca2+ levels in these cells are currently poorly understood. Using patch-clamp technique, we have identified a voltage-dependent L-type Ca2+ channel in type I spiral ligament fibrocytes cultured from gerbil inner ear. With 10 mM Ba2+ as the conductive cation, an inwardly rectifying current was elicited with little inactivation by membrane depolarization. The voltage activation threshold and the half-maximal voltage activation were -40 and -6 mV, respectively. This inward whole-cell current reached its peak at around 10 mV of membrane potential. The amplitude of the peak current varied among cells ranging from 50 to 274 pA with an average of 132.4 +/- 76.2 pA (n = 19); 10(-6) M nifedipine significantly inhibited the inward currents by 90.3 +/- 1.2% (n = 11). RT-PCR analysis revealed that cultured type I spiral ligament fibrocytes express the alpha1C isoform of the L-type Ca2+ channels encoded by the Cav1.2 gene. The expression of this channel in gerbil inner ear was confirmed by RT-PCR analysis using freshly isolated spiral ligament tissues. The Cav1.2 channel may function in conjunction with a previously identified intracellular Ca-ATPase (SERCA) to regulate intracellular free Ca2+ levels in type I spiral ligament fibrocytes, and thus modulate BK channel activity in these cells.
Collapse
Affiliation(s)
- Fenghe Liang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 165 Ashley Avenue, Charleston 29425, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Sziklai I. The significance of the calcium signal in the outer hair cells and its possible role in tinnitus of cochlear origin. Eur Arch Otorhinolaryngol 2004; 261:517-25. [PMID: 15609110 DOI: 10.1007/s00405-004-0745-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2003] [Accepted: 12/11/2003] [Indexed: 10/26/2022]
Abstract
Finely tuned changes in intracellular Ca(2+) concentration modulate a variety of cellular functions in eukaryotic cells. The cytosolic Ca(2+) concentration is also tightly controlled in the outer hair cells (OHCs), the highly specialized receptor and effector cells in the mammalian auditory epithelium, which are responsible for high sensitivity and sharp frequency discrimination in hearing. OHCs possess a complex system of transporters, pumps, exchangers, channels and binding proteins to develop and to halt the regulatory Ca(2+) signal. The crucial role of elevated intracellular Ca(2+) concentration in OHCs is to increase the efficacy of the electromechanical (electromotile) feedback via remodeling of the cortical cytoskeleton. Anomalies in the Ca(2+) signaling pathway may lead to hypersensitivity of the cochlear amplifier and subsequently trigger tinnitus of cochlear origin. This review describes the dynamics of Ca(2+) signaling in the OHCs and a model that may convey a putative mechanism of development of subjective idiopathic cochlear tinnitus.
Collapse
Affiliation(s)
- István Sziklai
- Clinic of Otorhinolaryngology and Head and Neck Surgery, Debrecen University Health Science Center, Nagyerdei krt. 98, 4012 Debrecen, Hungary.
| |
Collapse
|
17
|
Shen Z, Liang F, Hazen-Martin DJ, Schulte BA. BK channels mediate the voltage-dependent outward current in type I spiral ligament fibrocytes. Hear Res 2004; 187:35-43. [PMID: 14698085 DOI: 10.1016/s0378-5955(03)00345-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Recent experimental and clinical studies have provided considerable evidence to support the phenomenon of K(+) recycling in the mammalian cochlea. However, the precise cellular and molecular mechanisms underlying and regulating this process remain only partially understood. Here, we report that cultured type I spiral ligament fibrocytes (SLFs), a major component of the K(+) recycling pathway, have a dominant K(+) membrane conductance that is mediated by BK channels. The averaged half-maximal voltage-dependent membrane potential for the whole-cell currents was 70+/-1.2 mV at 1 nM intracellular free Ca(2+) and shifted to 38+/-0.2 mV at 20 microM intracellular free Ca(2+) (n=4-6). The reversal potential of whole-cell tail currents against different bath K(+) concentrations was 52 mV per decade (n=3-6). The sequence of relative ion permeability of the whole-cell conductance was K(+)>Rb(+)z.Gt;Cs(+)>Na(+) (n=5-17). The whole-cell currents were inhibited by extracellular tetraethylammonium and iberiotoxin (IbTx) with IC(50) values of 0.07 mM and 0.013 microM, respectively (n=3-7). The membrane potentials of type I SLFs measured with conventional zero-current whole-cell configuration were highly K(+)-selective and sensitive to IbTx (n=4-9). In addition, the BK channels in these cells exhibited voltage-dependent and incomplete inactivation properties and the recovery time was estimated to be approximately 6 s with repetitive voltage pulses from -70 to 80 mV (n=3). These data suggest that BK channels in type I SLFs play a major role in regulating the intracellular electrochemical gradient in the lateral wall syncytium responsible for facilitating the K(+) movement from perilymph to the stria vascularis.
Collapse
Affiliation(s)
- Zhijun Shen
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 165 Ashley Avenue, P.O. Box 250908, Charleston, SC 29425, USA.
| | | | | | | |
Collapse
|
18
|
Abstract
The cochlea is a sensory organ that converts physical (sound) stimulation into electrical signals. This process is fundamentally and substantially based upon the ion transport system. Here, I summarize the physiological and molecular biological aspects of transporters, channels and receptors expressed in the cochlea. With reference to these findings, recent advances in genetic research on hereditary deafness are discussed.
Collapse
Affiliation(s)
- Katsuhisa Ikeda
- Department of Otorhinolaryngology, Juntendo University School of Medicine, Tokyo 113-8431, Japan.
| |
Collapse
|
19
|
Abstract
Thapsigargin, a drug that inhibits sarco-endoplasmic reticulum Ca(2+) ATPases (SERCAs), was infused into the perilymph compartment of the guinea pig cochlea in increasing concentrations (0.1-10 microM) while sound evoked cochlear potentials were monitored. Thapsigargin significantly suppressed the compound action potential of the auditory nerve, cochlear microphonics, and increased N(1) latency at low (56 dB SPL) and high intensity (92 dB SPL) levels of sound, suppressed low intensity sound evoked summating potential (SP) and greatly increased the magnitude of the high intensity sound evoked SP. At 10 microM, the drug suppressed the cubic distortion product otoacoustic emissions (2f(1)-f(2)=8 kHz, f(2)=12 kHz) evoked by both high and low intensity primaries (45, 60, 70 dB SPL). Thapsigargin (10 microM; 30 min) increased the endocochlear potential slightly (5 mV). In chronic animals, thapsigargin (10 microM; 60 min) destroyed many outer hair cells and some inner hair cells, especially in the basal turns. These effects are consistent with the hypothesis that the inhibition of the SERCAs affects the function of the cochlear amplifier and outer hair cells to a greater degree than it affects other functions of the cochlea.
Collapse
Affiliation(s)
- Richard P Bobbin
- Kresge Hearing Research Laboratory, Department of Otorhinolaryngology and Biocommunication, Louisiana State University Health Sciences Center, 533 Bolivar Street, 5th Floor, New Orleans, LA 70112-2234, USA.
| | | | | |
Collapse
|
20
|
Mazurek B, Winter E, Fuchs J, Haupt H, Gross J. Susceptibility of the hair cells of the newborn rat cochlea to hypoxia and ischemia. Hear Res 2003; 182:2-8. [PMID: 12948595 DOI: 10.1016/s0378-5955(03)00134-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hypoxia and ischemia are thought to be important pathogenetic factors in bringing about hearing loss. In order to study the effect of these determinants on the loss of inner and outer hair cells (IHCs/OHCs), we used an in vitro hypoxia and ischemia model of the newborn rat cochlea. The specimens of the organ of Corti were exposed either to hypoxia (10-20 mm Hg) or to normoxic glucose deprivation or to both (ischemia) in artificial perilymph for different exposure periods. The number of IHCs and OHCs was counted and the hair cell loss was compared to controls. Normoxic aglycemia did not cause significant hair cell loss as compared to controls. Hypoxia and ischemia led to hair cell loss in a dose-dependent manner, with the loss in the ischemia groups found to be markedly higher than that in the hypoxia groups. Hypoxia resulted in a mean loss of 8% OHC and of 14% IHC after an 8-h exposure. Ischemia increased the loss to 19% OHC and 39% IHC after the same exposure period of 8 h. Our findings suggest that IHCs are more susceptible to hypoxia/ischemia than OHCs.
Collapse
Affiliation(s)
- Birgit Mazurek
- Molecular-Biological Research Laboratory, Department of Otorhinolaryngology, Charité Hospital, Humboldt University, Spandauer Damm 130, Bld. 31, 14050 Berlin, Germany
| | | | | | | | | |
Collapse
|
21
|
Imamura SI, Adams JC. Changes in cytochemistry of sensory and nonsensory cells in gentamicin-treated cochleas. J Assoc Res Otolaryngol 2003; 4:196-218. [PMID: 12943373 PMCID: PMC3202711 DOI: 10.1007/s10162-002-2037-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Effects of a single local dose of gentamicin upon sensory and nonsensory cells throughout the cochlea were assessed by changes in immunostaining patterns for a broad array of functionally important proteins. Cytochemical changes in hair cells, spiral ganglion cells, and cells of the stria vascularis, spiral ligament, and spiral limbus were found beginning 4 days post administration. The extent of changes in immunostaining varied with survival time and with cell type and was not always commensurate with the degree to which individual cell types accumulated gentamicin. Outer hair cells, types I and II fibrocytes of the spiral ligament, and fibrocytes in the spiral limbus showed marked decreases in immunostaining for a number of constituents. In contrast, inner hair cells, type III fibrocytes and root cells of the spiral ligament, cells of the stria vascularis, and interdental cells in the spiral limbus showed less dramatic decreases, and in some cases they showed increases in immunostaining. Results indicate that, in addition to damaging sensory cells, local application of gentamicin results in widespread and disparate disruptions of a variety of cochlear cell types. Only in the case of ganglion cells was it apparent that the changes in nonsensory cells were secondary to loss or damage of hair cells. These results indicate that malfunction of the ear following gentamicin treatment is widespread and far more complex than simple loss of sensory elements. The results have implications for efforts directed toward detecting, preventing, and treating toxic effects of aminoglycosides upon the inner ear.
Collapse
Affiliation(s)
- Shun-ichi Imamura
- Department of Otolaryngology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Joe C. Adams
- Department of Otology and Laryngology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
| |
Collapse
|
22
|
Liang F, Niedzielski A, Schulte BA, Spicer SS, Hazen-Martin DJ, Shen Z. A voltage- and Ca2+-dependent big conductance K channel in cochlear spiral ligament fibrocytes. Pflugers Arch 2003; 445:683-92. [PMID: 12632188 DOI: 10.1007/s00424-002-0976-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2002] [Revised: 09/05/2002] [Accepted: 10/10/2002] [Indexed: 10/22/2022]
Abstract
Evidence is accruing that spiral ligament fibrocytes (SLFs) play an important role in cochlear K(+) homeostasis, but little direct physiological data is available to support this concept. Here we report the presence and characterization of a voltage- and Ca(2+)-dependent big-conductance K (BK) channel in type I SLFs cultured from the gerbil cochlea. A single-channel conductance of 298+/-5.6 pS (n=28) was measured under symmetrical K(+). Membrane potentials for half-maximal open probability (P(o)) were -67, -45 and 85 mV with cytosolic free-Ca(2+) levels of 0.7 mM, 10 microM and 1 microM, respectively (n=8-14). The Hill coefficient for Ca(2+) affinity was 1.9 at a membrane potential of 60 mV (n=6). The BK channel showed very low activity (P(o)=0.0019, n=5) under normal physiological conditions, suggesting a low resting intracellular free [Ca(2+)]. Pharmacological results fit well with the profile of classic BK channels. The estimated half-maximal inhibitory concentration and Hill coefficient for tetraethylammonium were 0.086+/-0.021 mM and 0.99, respectively (n=4-9). In whole cell recordings, the voltage-activated outward K current was inhibited 85.7+/-4.5% (n=6) by 0.1 microM iberiotoxin. A steady-state kinetic model with two open and two closed stages best described the BK gating process (tau(o1) 0.23+/-0.08 ms, tau(o2) 1.40+/-0.32 ms; tau(c1) 0.26+/-0.09 ms, tau(c2) 3.10+/-1.2 ms; n=11). RT-PCR analyses revealed a splice variant of the BK channel alpha subunit in cultured type I SLFs and freshly isolated spiral ligament tissues. The BK channel is likely to play a major role in regulating the membrane potential of type I SLFs, which may in turn influence K(+) recycling dynamics in the mammalian cochlea.
Collapse
Affiliation(s)
- F Liang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Avenue, PO Box 250908, Charleston, SC 29425, USA
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
The inner ear is structurally complex. A molecular description of its architecture is now emerging from the use of contemporary methods of cell and molecular biology, and from studies of ontogenetic development. With the application of clinical and molecular genetics, it has now become possible to identify genes associated with inherited, non-syndromic deafness and balance dysfunction in humans and in mice. This work is providing new insights into how the tissues of the inner ear are built to perform their tasks, and into the pathogenesis of a range of inner ear disorders.
Collapse
Affiliation(s)
- Andrew Forge
- UCL Centre for Auditory Research and Institute of Laryngology & Otology, University College London, UK
| | | |
Collapse
|
24
|
Frolenkov GI, Mammano F, Kachar B. Action of 2,3-butanedione monoxime on capacitance and electromotility of guinea-pig cochlear outer hair cells. J Physiol 2001; 531:667-76. [PMID: 11251049 PMCID: PMC2278492 DOI: 10.1111/j.1469-7793.2001.0667h.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
1. Whole-cell patch-clamp recordings were obtained from isolated cochlear outer hair cells (OHCs) while applying 2,3-butanedione monoxime (BDM) by pressure. BDM (5 mM) shifted the range of voltage sensitivity of membrane capacitance and cell length in the hyperpolarised direction by -49.6 +/- 4.0 mV (n = 12; mean +/- S.E.M.), without appreciable effects on membrane conductance. The shift was completely reversible and dose dependent, with a Hill coefficient of 1.8 /- 0.4 and a half-maximal dose of 3.0 +/- 0.8 mM (values +/- S.D). 2. The shift of the capacitance curve was also reproducible in cells whose natural turgor had been removed. BDM had no detectable effect on the capacitance of Deiters' cells, a non-sensory cell type of the organ of Corti. 3. The effect of BDM on membrane capacitance was faster than that of salicylate. At similar saturating concentrations (20 mM), the time constant of the capacitance changes was 1.8 +/- 0.3 s (n = 3) for salicylate and 0.75 +/- 0.06 s (n = 3) for BDM. The recovery periods were 13 +/- 1 s and 1.7 +/- 0.4 s, respectively (means +/- S.E.M.). 4. The effect of BDM, a known inorganic phosphatase, was compared to the effects of okadaic acid, trifluoperazine and W-7, which are commonly used in studies of protein phosphorylation. Incubation of OHCs with okadaic acid (1 microM, 30-60 min) shifted the voltage sensitivity of the membrane capacitance in the hyperpolarised direction. Incubation with trifluoperazine (30 microM) and W-7 (150 microM) shifted it in the opposite, depolarised direction. BDM induced hyperpolarising shifts even in the presence of W-7. 5. Simultaneous measurement of membrane capacitance and intracellular free Ca2+ concentration ([Ca2+]i) showed that BDM action on OHC voltage-dependent capacitance and electromotility is not mediated by changes of [Ca2+]i. 6. Our results suggest that: (a) the effects of BDM are unrelated to its inorganic phosphatase properties, cell turgor conditions or Ca2+ release from intracellular stores; and (b) BDM may target directly the voltage sensor of the OHC membrane motor protein.
Collapse
Affiliation(s)
- G I Frolenkov
- Section on Structural Cell Biology, Laboratory of Cellular Biology, NIDCD-NIH, Bethesda, MD 20892-4163, USA
| | | | | |
Collapse
|
25
|
Abstract
Localization of calmodulin, a calcium binding protein, was identified in adult gerbil cochleas using paraffin section immunohistochemistry and immunogold electron microscopy with monoclonal antibody against bovine calmodulin. Immunoreactive calmodulin was abundant in inner hair cells (IHCs), outer hair cells (OHCs) and Boettcher cells of the cochleas. Other cell types containing calmodulin were marginal cells and basal cells of the stria vascularis, fibrocytes in the spiral ligament, spiral ganglion neurons and vascular smooth muscle cells. Immunogold labeling for calmodulin was observed in cuticular plate, stereocilia, and within cytoplasm of IHCs and OHCs. In OHCs the labeling was mostly observed in the region underlying lateral wall corresponding to subsurface cisterna. In IHCs the staining was diffuse in the cytoplasm and denser than that in OHCs. Boettcher cells showed dense staining along the microvillous projections facing to the intercellular spaces between Boettcher cells and Claudius cells and between the neighboring Boettcher cells. These distributions of calmodulin in the hair cells consist with the assumption that IHCs act as a true neurotransducer and OHCs as an active bi-directional mechanotransducer. The rich presence of calmodulin in Boettcher cells suggests that the cells may involve in mediating Ca(2+) regulation and play a distinctive active role in ion transport.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal
- Calcium/metabolism
- Calmodulin/immunology
- Calmodulin/metabolism
- Cattle
- Cochlea/metabolism
- Cochlea/ultrastructure
- Gerbillinae
- Hair Cells, Auditory, Inner/metabolism
- Hair Cells, Auditory, Inner/ultrastructure
- Hair Cells, Auditory, Outer/metabolism
- Hair Cells, Auditory, Outer/ultrastructure
- Immunohistochemistry
- Microscopy, Immunoelectron
- Spiral Ganglion/metabolism
- Spiral Ganglion/ultrastructure
- Stria Vascularis/metabolism
- Stria Vascularis/ultrastructure
Collapse
Affiliation(s)
- K Nakazawa
- Department of Pathology, Shinshu University School of Medicine, 3-1-1 Asahi, 390-8621, Matsumoto, Japan.
| |
Collapse
|
26
|
Two distinct Ca(2+)-dependent signaling pathways regulate the motor output of cochlear outer hair cells. J Neurosci 2000. [PMID: 10934241 DOI: 10.1523/jneurosci.20-16-05940.2000] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The outer hair cells (OHCs) of the cochlea have an electromotility mechanism, based on conformational changes of voltage-sensitive "motor" proteins in the lateral plasma membrane. The translocation of electrical charges across the membrane that accompanies electromotility imparts a voltage dependency to the membrane capacitance. We used capacitance measurements to investigate whether electromotility may be influenced by different manipulations known to affect intracellular Ca(2+) or Ca(2+)-dependent protein phosphorylation. Application of acetylcholine (ACh) to the synaptic pole of isolated OHCs evoked a Ca(2+)-activated apamin-sensitive outward K(+) current. It also enhanced electromotility, probably because of a phosphorylation-dependent decrease of the cell's axial stiffness. However, ACh did not change the voltage-dependent capacitance either in conventional whole-cell experiments or under perforated-patch conditions. The effects produced by the Ca(2+) ionophore ionomycin mimicked those produced by ACh. Hyperpolarizing shifts of the voltage dependence of capacitance and electromotility were induced by okadaic acid, a promoter of protein phosphorylation, whereas trifluoperazine and W-7, antagonists of calmodulin, caused opposite depolarizing shifts. Components of the protein phosphorylation cascade-IP(3) receptors and calmodulin-dependent protein kinase type IV-were immunolocalized to the lateral wall of the OHC. Our results suggest that two different Ca(2+)-dependent pathways may control the OHC motor output. The first pathway modulates cytoskeletal stiffness and can be activated by ACh. The second pathway shifts the voltage sensitivity of the OHC electromotile mechanism and may be activated by the release of Ca(2+) from intracellular stores located in the proximity of the lateral plasma membrane.
Collapse
|
27
|
Surin AM, Reimann-Philipp U, Fechter LD. Simultaneous monitoring of slow cell motility and calcium signals of the guinea pig outer hair cells. Hear Res 2000; 146:121-33. [PMID: 10913889 DOI: 10.1016/s0378-5955(00)00105-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
'Slow' motility (shape changes over seconds to minutes) of the mammalian cochlear outer hair cell (OHC) could play a protection role from intense sound pressure and is associated with elevation of the cytosolic free Ca(2+) concentration ([Ca(2+)](i)). In the present work, a new approach was elaborated using fluorescent imaging for continuous monitoring of both [Ca(2+)](i) changes and slow motility of OHCs employing the Ca(2+) fluorescent indicator Fura-2. Whole OHC fluorescence and that of cell segments were analyzed to discriminate between fluorescence changes caused by [Ca(2+)](i) rise and those related to change of the cell shape. The reliability of the method was examined by simultaneous monitoring of [Ca(2+)](i) and OHC length changes induced by change of buffer osmolarity or by increase of KCl concentration. The method revealed that the time course of [Ca(2+)](i) increase and rate of cell shortening often do not coincide. It was also observed that [Ca(2+)](i) increased in 70 mM KCl more slowly than the rate of KCl delivery to OHCs. The comparison of the time courses of [Ca(2+)](i) elevation, induced by increase of K(+)/Na(+) ratio and by substitution of Na(+) with N-methyl-D-glucamine(+), indicated that the relatively slow kinetics of [Ca(2+)](i) increase in the OHC is partially attributed to regulation of Ca(2+) homeostasis by the Na(+)/Ca(2+) exchanger.
Collapse
Affiliation(s)
- A M Surin
- College of Pharmacy, Department of Pharmacology and Toxicology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA.
| | | | | |
Collapse
|
28
|
Sekiya T, Shimamura N, Hatayama T, Suzuki S. Effectiveness of preoperative administration of an N-methyl-D-aspartate antagonist to enhance cochlear neuron resistance to intraoperative traumatic stress: an experimental study. J Neurosurg 2000; 93:90-8. [PMID: 10883910 DOI: 10.3171/jns.2000.93.1.0090] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Cochlear neurons are inevitably exposed to traumatic stress during surgical removal of an acoustic neuroma; that event is an important cause of postoperative cochlear neuronal degeneration, with subsequent loss of spiral ganglion cells (SGCs). The object of this study was to investigate whether preoperative pharmacological treatment can enhance the resistance of cochlear neurons to the traumatic stress of surgery. METHODS Cochlear neuronal degeneration was induced in 17 rats by controlled compression of the cerebellopontine angle portion of the cochlear nerve. Dizocilpine maleate (MK-801; 10 mg/kg), an N-methyl-D-aspartate (NMDA) antagonist, was administered intraperitoneally to six of the 17 rats 30 minutes before compression occurred. Two weeks after compression, each rat was killed, and the numbers of SGCs in histological preparations of temporal bones were counted. CONCLUSIONS Spiral ganglion cells were more numerous in rats administered dizocilpine maleate (p < 0.03) than in rats that did not receive treatment, indicating that receptor-mediated glutamate neurotoxicity may participate in the pathogenesis of trauma-induced cochlear neuron death and that administration of an NMDA antagonist before surgery may protect the nerve from injury leading to hearing loss.
Collapse
Affiliation(s)
- T Sekiya
- Department of Neurosurgery, Hirosaki University School of Medicine, Japan.
| | | | | | | |
Collapse
|
29
|
Koyama M, Spicer SS, Schulte BA. Immunohistochemical localization of Ca2+/Calmodulin-dependent protein kinase IV in outer hair cells. J Histochem Cytochem 1999; 47:7-12. [PMID: 9857208 DOI: 10.1177/002215549904700102] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A smooth membrane system consisting of subsurface cisternae (SSC) underlies the lateral plasmalemma of auditory outer hair cells (OHCs). The SSC contain Ca-ATPase and are regarded as an intracellular Ca2+ reservoir like the sarcoplasmic reticulum of myocytes. Recently, it has been demonstrated that Ca-ATPase activity in sarcoplasmic reticulum is regulated by Ca2+/calmodulin-dependent protein kinases (CaM kinases). Here we investigated the presence of CaM kinases in OHCs and their possible association with the SSC. Inner ears collected from adult gerbils and from neonates at 2-day intervals between 0 and 20 days after birth were immunostained with antibodies specific for different CaM kinases. A polyclonal antiserum against CaM kinase IV yielded a strong immunostaining reaction along the lateral wall of OHCs. The staining appeared after the tenth postnatal day and continued into adulthood. No other site in the inner ear, including cochlear inner hair cells and vestibular hair cells, was reactive. The kinase's apparent association with the SSC strongly supports its involvement in intracellular Ca2+ homeostasis and suggests a role in regulating the OHCs' slow motile responses.
Collapse
Affiliation(s)
- M Koyama
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | |
Collapse
|
30
|
Nomiya S, Nishizaki K, Anniko M, Karita K, Ogawa T, Masuda Y. Appearance and distribution of two Ca2+-binding proteins during development of the cochlea in the musk shrew. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1998; 110:7-19. [PMID: 9733905 DOI: 10.1016/s0165-3806(98)00087-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In the developing cochlea of the musk shrew, Suncus murinus, the localization of two Ca2+-binding protein, calbindin and calmodulin, which are thought to play different roles in the nervous system, was examined during gestational and postpartum periods. Calbindin is thought to play a Ca2+ buffering role, while calmodulin activates other proteins. Cochleae from the musk shrews sacrificed from gestational day (GD) 15 to postnatal day (PP) 9 and as adults, were immunohistochemically analyzed. The localization and order of appearance of calmodulin in sensorineural elements were similar to those of calbindin, except for timing of appearance. Calmodulin-staining was recognized first in the spiral ganglion neurons on GD21, followed by the inner hair cells (IHCs) on GD23 and outer hair cells (OHCs) on GD26, while calbindin immunoreactivity in the spiral ganglion neurons on GD19, the IHCs on GD21 and the OHCs on GD23. In hair cells, during development, immunostaining of calbindin and calmodulin was initially seen in the cytoplasm, followed by the cuticular plate. Cytoplasmic staining then decreased in mature hair cells. Non-sensorineural components also showed positivity for both calbindin and calmodulin. The lateral wall of the cochlear duct was positive for calbindin, while the stria vascularis was positive for calmodulin. Immunoreactivity for calbindin was present earlier than that of calmodulin in sensorineural elements, suggesting that in the developing cochlea, calbindin and calmodulin have different functions and that Ca2+ buffering capacity, which is regulated by Ca2+ buffer proteins, such as calbindin, may be required before trigger proteins, such as calmodulin, function.
Collapse
Affiliation(s)
- S Nomiya
- Department of Otorhinolaryngology, Okayama University Medical School, Shikata-cho 2-5-1, Okayama, 700-8558, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Furuta H, Luo L, Hepler K, Ryan AF. Evidence for differential regulation of calcium by outer versus inner hair cells: plasma membrane Ca-ATPase gene expression. Hear Res 1998; 123:10-26. [PMID: 9745951 DOI: 10.1016/s0378-5955(98)00091-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The expression of mRNA encoding plasma membrane calcium ATPase (PMCA) subunit isoforms (1-4) and splice variants was examined in the adult and developing rat cochlea by PCR and in situ hybridization. High levels of PMCA mRNA expression were observed in the neurons of the spiral ganglion, and in hair cells. Spiral ganglion neurons expressed PMCA 1-3 beginning in embryonic development, reaching high levels shortly after birth, and continuing into adulthood. Inner hair cells expressed PMCA 1 at moderate levels from birth to the time of onset of cochlear function on postnatal day 12, and strongly from then until adulthood. Outer hair cells expressed PMCA 2 at high levels from shortly after birth through adulthood. The data suggest that the calcium clearance requirements of inner and outer hair cells are distinct. PMCA 2 is the isoform with the highest affinity for calmodulin, and has also been associated with high levels of inositol triphosphate. Its presence in outer hair cells suggests that regulation of the enzyme by calmodulin may be particularly important for this hair cell type. It further suggests that inositol phosphate may play a unique role in the outer hair cell.
Collapse
Affiliation(s)
- H Furuta
- Department of Surgery/Otolaryngology, UCSD School of Medicine, La Jolla, CA 92093-0666, USA.
| | | | | | | |
Collapse
|
32
|
Abstract
The distribution of Ca-ATPase in frog crista ampullaris was mapped ultracytochemically by using a one-step lead citrate reaction. Electron-dense precipitates, as an expression of Ca-ATPase activity, were observed on the surface of stereocilia and on the apical membrane surrounding the cuticular plate of hair cells. Sensory cells of the isthmus region showed more reactivity than those of the peripheral regions of the crista. No reaction products were detectable on the basolateral membranes and in cytoplasmatic organelles. Supporting cells of the crista showed a quite variable Ca-ATPase reaction on microvilli and on basolateral membranes. The presence of an evident reactivity on the stereocilia is consistent with the existence of an apical calcium microdomain involved in the mechano-transduction process and supports the current view that calcium ions enter the stereocilia during natural stimulation. On the other hand, the lack of an observable reactivity on the basolateral membrane of hair cells suggests that in semicircular canals other mechanisms of active transport of calcium ions across the plasma membrane, such as Na-Ca exchange, may be involved in homeostasis of the ion.
Collapse
Affiliation(s)
- L Gioglio
- Department of Morphological Sciences, University of Pavia, Italy
| | | | | | | |
Collapse
|
33
|
Spicer SS, Thomopoulos GN, Schulte BA. Cytologic evidence for mechanisms of K+ transport and genesis of Hensen bodies and subsurface cisternae in outer hair cells. Anat Rec (Hoboken) 1998; 251:97-113. [PMID: 9605226 DOI: 10.1002/(sici)1097-0185(199805)251:1<97::aid-ar15>3.0.co;2-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
UNLABELLED A system commonly termed the tubulocisternal endoplasmic reticulum (TCER), but designated here the canalicular reticulum (CR), occurs selectively in ion-transporting epithelia, in which it is interpreted as facilitating the transcellular diffusion of ions. Mechanoelectrical transduction in the cochlear outer hair cells (OHCs) depends on the apical influx and the subsequent basolateral efflux of K+. Cytologic structures that possibly mediate K+ transport in gerbil OHCs were investigated here. METHODS Cochleas were fixed primarily with glutaraldehyde and secondarily with reagents for demonstrating TCER or were fixed with a ferrocyanide-osmium tetroxide solution to preserve intracellular membranes. The distribution of membranous structures retained with these techniques was examined by using electron microscopy. RESULTS Secondary fixation with osmium tetroxide-ferrocyanide permitted ultrastructural demonstration in OHCs of increased numbers of Hensen bodies and newly detected membranous systems, including CR, linear cisternae, small clusters of cytosolic vesicles and complexes of canaliculi, segmented cisternae, and mitochondria. CR filling an apical stratum beside and below the cuticular plate and contacting laterally the uppermost subsurface cisternae (SSC) was situated to sequester and transport the apical K+ influx that attends the acoustically generated receptor potential and the silent current. The close association of CR with numerous, highly developed Golgi bodies exclusively in the apex of the cell suggested genesis of CR from Golgi cisternae. Nonbranching, linear cisternae occupied a lower cell stratum and spread from CR laterally to a more inferior region of the SSC. Small clusters of vesicles in the central cytosol resembled Hensen bodies in their envelopment by branching canaliculi and segmented cisternae in close association with mitochondria. Viewing the vesicles in Hensen bodies and the small clusters as functioning like most other cytoplasmic vesicles in transport of cell membrane permitted the interpretation that these vesicles move nascent membrane from the canalicular-mitochondrial complex to the SSC. Other small clusters of vesicles contacted the innermost layer of the SSC, often at cisterna-depleted foci in which the vesicles appeared to either replenish the SSC or arise in the course of its turnover. Proximity of multivesicular bodies and lysosomes to small vesicle clusters in foci of depleted SSC implicated the lysosomes in digesting vesicles released from the SCC. Populations of unique, large, lysosome-like bodies and of small, dense bodies in the upper cytosol of OHCs appeared to be involved in different catabolic pathways mediating the turnover ofSSC, CR, and other structures. CONCLUSIONS Cochlear OHCs contain previously unrecognized membranous organelles that facilitate ion transport and presumably contribute thereby to mechanoelectrical transduction. Vesicles in small clusters and Hensen bodies arise from complexes of canaliculi, cisternae, and mitochondria and contribute membrane to the genesis of the SSC.
Collapse
Affiliation(s)
- S S Spicer
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston 29425, USA
| | | | | |
Collapse
|
34
|
Ueda N, Oshima T, Ikeda K, Abe K, Aoki M, Takasaka T. Mitochondrial DNA deletion is a predisposing cause for sensorineural hearing loss. Laryngoscope 1998; 108:580-4. [PMID: 9546274 DOI: 10.1097/00005537-199804000-00022] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Composed of a postmitotic stable tissue, the inner ear is a target organ for mitochondrial DNA (mtDNA) mutation. To determine whether mtDNA mutation is a predisposing factor in patients with sensorineural hearing loss (SNHL), the authors assessed the mtDNA4977 deletion from 60 patients with SNHL and 47 normal control subjects. All cases had no past history of ototoxic or noise exposure, middle ear disease, or other known etiological factors for SNHL. DNA specimens extracted from peripheral blood leukocytes were used for detection of mtDNA4977 deletion by polymerase chain reaction. Patients with SNHL had a significantly higher rate of the mtDNA4977 deletion than did controls (75% vs. 30%, P < 0.0001). The detection rate of mtDNA4977 deletion was significantly increased with the deterioration of the hearing threshold. Aging did not influence the detection rate of mtDNA4977 deletion in either the control or SNHL group. The authors have described high detection rates of the mtDNA4977 deletion in patients with idiopathic bilateral SNHL and propose that at least some of the advanced SNHL cases should be categorized as mitochondrial oxidative phosphorylation diseases. This inference would offer novel possibilities for treatment and prevention of SNHL including presbycusis.
Collapse
Affiliation(s)
- N Ueda
- Department of Otorhinolaryngology, Tohoku University School of Medicine, Sendai, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Nario K, Kitano I, Mori N, Matsunaga T. Effect of endoplasmic Ca2+-ATPase inhibitors on cochlear potentials in the guinea-pig. Acta Otolaryngol 1998; 118:198-205. [PMID: 9583787 DOI: 10.1080/00016489850154900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The effect of endoplasmic Ca2+-ATPase inhibitors on cochlear potentials was examined in the guinea-pig. Perilymphatic perfusion with thapsigargin (10[-6] M) produced a significant decrease in the amplitudes of cochlear microphonics, negative summating potential and compound action potential, and a significant prolongation of N1 latency with no change in the endocochlear potential. These changes were all dose dependent. Another endoplasmic Ca2+-ATPase inhibitor, cyclopiazonic acid (10[-5] M), produced the same effects as thapsigargin on cochlear potentials. These results suggest that endoplasmic Ca2+-ATPase inhibitors may have inhibitory functions on cochlear potentials.
Collapse
Affiliation(s)
- K Nario
- Department of Otolaryngology, Nara Medical University, Kashihara City, Japan
| | | | | | | |
Collapse
|
36
|
Abstract
Differing levels of the Ca(2+)-ATPase enzymes that reside on the plasma membrane (PM) and on the endoplasmic reticulum (ER) were identified in individual rat cochlear tissues by the use of a semi-quantitative enzyme-linked immunosorbent assay (ELISA). Unlike other studies, a specific antibody to PM Ca(2+)-ATPase was used to detect significantly greater levels (about 2x) of PM Ca(2+)-ATPase in the stria vascularis (SV) than that in the spiral ligament (SL) and organ of Corti (OC) tissues. Similarly, levels of ER Ca(2+)-ATPase were also significantly higher in the SV than in the SL and OC tissues. The presence of ER Ca(2+)-ATPase in the tissues of the SV has not been demonstrated previously. Given the importance of Ca2+ homeostasis in the inner ear, the statistically significantly higher densities of both PM and ER Ca(2+)-ATPase measured in the SV relative to the SL and OC regions would indicate tissue-specific responses to fluctuations in systemic and local Ca2+ concentrations.
Collapse
Affiliation(s)
- L M Curtis
- Department of Anatomy, J. Hillis Miller Health Science Center, University of Florida, USA
| | | | | |
Collapse
|
37
|
Imamura S, Adams JC. Immunolocalization of peptide 19 and other calcium-binding proteins in the guinea pig cochlea. ANATOMY AND EMBRYOLOGY 1996; 194:407-18. [PMID: 8896705 DOI: 10.1007/bf00198543] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Calcium ions are known to play critical roles in a variety of cochlear functions. The distributions of a number of calcium binding proteins that regulate calcium ion levels within the cochlea have previously been described. In this report we extend and refine previous reports of the distribution of immunostaining for calmodulin, calbindin, and calretinin and show for the first time the distribution for peptide 19. There were longitudinal and radial gradients of immunostaining for peptide 19 within outer hair cells that appeared to match previously described gradients of efferent innervation of these cells. Gradients of immunostaining for calbindin within outer hair cells were in the opposite directions, which suggests that levels of this protein are correlated with afferent innervation density and perhaps the abundance of subsurface cisternae. No gradients were seen in the distributions of cells stained for calmodulin and calretinin, which included sensory cells and supporting cells respectively. All ganglion cells were stained for calmodulin but the other proteins appeared to be present in limited ganglion cell subpopulations. In addition to staining of sensorineural elements, antisera to all compounds but peptide 19 showed immunostaining of cells within the lateral wall and the spiral limbus. The results suggest that the proteins under study are involved in a wide variety of calcium-regulated functions within the cochlea. Knowledge of the unique distribution of each of the compounds should facilitate further studies of their roles in cochlear function.
Collapse
Affiliation(s)
- S Imamura
- Department of Otolaryngology, Yamanashi Medical University, Japan
| | | |
Collapse
|
38
|
Abstract
A method has been developed that allows successful maintenance of secondary cell cultures derived from explants of the cochlear lateral wall of young adult gerbils. The secondary cultures were characterized morphologically with light and transmission electron microscopy and immunocytochemically with protein markers specific to various lateral wall cell types. Structural studies revealed fusiform-shaped cells with a paucity of cytoplasm surrounding the nucleus and slender processes. The cells showed little evidence of intercellular contact even when confluent. The cultures were immunopositive for vimentin, carbonic anhydrase isozyme II, creatine kinase isozyme BB and smooth endoplasmic reticulum Ca-ATPase, but lacked reactivity for cytokeratins and Na,K-ATPase. The results indicate that the cultures are comprised of type I fibrocytes from the spiral ligament. These findings are the first to demonstrate that inner ear spiral ligament cells can be isolated and maintained in secondary culture while retaining many of their in vivo characteristics. Based upon their location and content of ion transport enzymes, type I fibrocytes are thought to be involved in the recycling of potassium from perilymph into the stria vascularis. The establishment of this cell line provides a means to analyze the role of spiral ligament fibrocytes in maintenance of inner ear homeostasis.
Collapse
Affiliation(s)
- M A Gratton
- Department of Otolaryngology and Communicative Sciences, Medical University of South Carolina, Charleston 29425-4557, USA.
| | | | | |
Collapse
|
39
|
Zine A, Schweitzer L. Development of intracellular Ca-ATPase in the gerbil outer hair cell lateral wall. Brain Res 1996; 721:1-10. [PMID: 8793079 DOI: 10.1016/0006-8993(95)01496-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The development of Ca-ATPase immunoreactivity in gerbil outer hair cells (OHCs), assayed by immunofluorescence and postembedding immunocytochemistry, is reported here. In the adult, a linear array of label is seen inside the lateral plasma membrane. The ultrastructural distribution of Ca-ATPase near the OHC lateral plasma membrane was examined using immunogold cytochemistry and showed this calcium pumping enzyme to be present throughout the subsurface cisternal complex (SSC), especially near the innermost layers. During development, Ca-ATPase immunoreactivity appeared in patches near the lateral plasma membrane of some OHCs of the third row by 12 days after birth (DAB). By 15-16 DAB, punctate immunoreactivity was detected in the second and first rows. At 20 DAB, immunostaining near OHC lateral plasma membrane was increased, but was less continuous than OHC staining in the adult cochlea. The appearance of Ca-ATPase in OHCs coincides with the onset of auditory function and isolated OHC motility in the gerbil. The ultrastructural demonstration of abundant sites of calcium pumps in the SSC supports a role for this structure in the intracellular storage of calcium. These findings suggest a possible role of Ca-ATPase and the SSC in the regulation of slow motility of OHCs which has been reported to depend on intracellular calcium concentration.
Collapse
Affiliation(s)
- A Zine
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, KY 40292, USA
| | | |
Collapse
|
40
|
Fridberger A, Ulfendahl M. Acute mechanical overstimulation of isolated outer hair cells causes changes in intracellular calcium levels without shape changes. Acta Otolaryngol 1996; 116:17-24. [PMID: 8820345 DOI: 10.3109/00016489609137707] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Impaired auditory function following acoustic overstimulation, or noise, is mainly reported to be accompanied by cellular changes such as damage to the sensory hair bundles, but changes in the cell bodies of the outer hair cells have also been described. To investigate more closely the immediate cellular responses to overstimulation, isolated guinea pig outer hair cells were subjected to a 200 Hz oscillating water jet producing intense mechanical stimulation. The water jet was aimed at the cell body of the isolated outer hair cell. Cell shape changes were studied using video microscopy, and intracellular calcium concentration changes were monitored by means of the fluorescent calcium indicator Fluo-3. Cells exposed to a high-intensity stimulus showed surprisingly small light-microscopical alterations. The cytoplasmic calcium concentration increased in most cells, although some cells appeared very resistant to the mechanical stress. No correlation could be found be tween the calcium concentration changes and the cell length. The changes in calcium concentration reported here are suggested to be involved in the long-term pathogenesis of noise-induced hair cell damage.
Collapse
Affiliation(s)
- A Fridberger
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
41
|
Usami S, Ottersen OP. Immunocytochemical localization of taurine in the inner ear. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1996; 403:361-8. [PMID: 8915372 DOI: 10.1007/978-1-4899-0182-8_38] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- S Usami
- Department of Otorhinolaryngology, Hirosaki University School of Medicine, Japan
| | | |
Collapse
|
42
|
|
43
|
|
44
|
Wangemann P, Schacht J. Homeostatic Mechanisms in the Cochlea. SPRINGER HANDBOOK OF AUDITORY RESEARCH 1996. [DOI: 10.1007/978-1-4612-0757-3_3] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
45
|
Abstract
We have studied spatial Ca2+ distribution in hair cells filled with the low affinity fluorescent indicator Calcium Green 5N using real-time confocal microscopy and whole-cell recording. During depolarizations lasting several hundred milliseconds, Ca2+ fluorescence increased at a number of hotspots around the base of the cell but changed little near the hair bundle. The hotspots required influx of Ca2+ through voltage-dependent channels, and they expanded during the pulse from an initial diameter of < 1 micron. Strong Ca2+ buffers like BAPTA slowed their growth rate. On repolarization, the fluorescence decayed with two time constants: approximately 0.1 s, which may represent Ca2+ diffusion away from the entry sites, and 10 s, probably reflecting Ca2+ extrusion. Extrusion occurs mainly via a CaATPase that can be blocked by vanadate. We suggest the hotspots are microdomains of Ca2+ attaining a concentration of at least 85 microM near assemblies of synaptic release sites.
Collapse
Affiliation(s)
- T Tucker
- Department of Neurophysiology, University of Wisconsin Medical School, Madison 53706, USA
| | | |
Collapse
|
46
|
Abstract
The distribution of the plasma membrane Ca-ATPase (PMCA) was mapped in the adult and developing gerbil cochlea by immunostaining with a monoclonal antibody against the human erythrocyte PMCA. In the mature cochlea, intense immunoreactivity was present at the surface of stereocilia of both inner (IHC) and outer (OHC) hair cells. The basolateral plasma membrane of IHCs but not OHCs stained strongly whereas that of strial marginal cells and the epithelial cell layer of Reissner's membrane showed only weak reactivity. Nerve terminals underlying IHCs were also selectively stained. At birth, strong to moderate reactivity for PMCA was present in the basolateral plasma membrane of IHCs and OHCs, strial marginal cells, and epithelial cells lining the scala media surface of Reissner's membrane and in the neurolemma of spiral ganglion cells. Immunostaining in the basolateral plasmalemma of OHCs, strial marginal cells, and epithelial cells lining Reissner's membrane remained strong to moderate up to 14 days after birth when it diminished or disappeared entirely, suggesting a developmental role for PMCA activity in these sites. Expression of PMCA at the surface of IHC and OHC stereocilia was first observed at 10 days after birth and staining reached adult levels by 14 days after birth. The abundance of PMCA in the stereociliary plasma membrane of mature hair cells supports the suggested involvement of Ca2+ in regulating transduction and adaptation mechanisms.
Collapse
Affiliation(s)
- J J Crouch
- Department of Pathology, Medical University of South Carolina, Charleston, 29425, USA.
| | | |
Collapse
|
47
|
Ito M, Spicer SS, Schulte BA. Cytological changes related to maturation of the organ of Corti and opening of Corti's tunnel. Hear Res 1995; 88:107-23. [PMID: 8575987 DOI: 10.1016/0378-5955(95)00106-e] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Maturation of the organ of Corti in the gerbil was analyzed between 2 and 16 days after birth (DAB) by electron microscopy and immunostaining for beta-tubulin. At 2 DAB, the organ of Corti consisted of stratified epithelium bearing immature sensory hair cells (HCs) and supporting cells. Maturation of OHCs and Deiters cells progressed in a medial-to-lateral direction and cytoskeletal development in inner pillar cells preceded that in outer pillar cells at the single location studied along the frequency-place map. Pillar cell differentiation progressed through a unique stage characterized by the appearance and stratification of structural features apparently concerned with opening of Corti's tunnel and subsequently showed other structural changes related to maturity toward the adult form. Development of the microtubule cytoskeleton occurred first in the cell's apex and proceeded basally. Ruffling of a middle region of the cell surface by microvilli appeared to promote separation between inner and outer pillar cells and initiate tunnel opening at 4 DAB. Proliferation of distended cisternae of granular reticulum evidenced proteinaceous secretion by these cells between 4 and 8 DAB. Subsequent tunnel expansion at about 14 DAB coincided with appearance in outer pillar cells of tubulocisternal endoplasmic reticulum and associated Golgi complexes that are thought to mediate fluid and ion secretion. Sixteen days postnatally after disappearance of granular and tubulocisternal reticula and Golgi complexes and at the time of clearing of tunnel fluid, lysosomes interpreted as mediating catabolism of endocytosed protein congregated beneath the apical and apicolateral plasmalemmae of inner pillar cells. As with pillar cells, development of the microtubule system in Deiters cells proceeded from the cell's apex to base. Following differentiation of their microtubule system by 8 DAB, Deiters cells showed expansion of Golgi cisternae between 10 and 15 DAB and development of tubulocisternal endoplasmic reticulum at 15 DAB. Hair cells possessed abundant, distinctively large mitochondria from 4 to 10 DAB. The subsurface cisternae matured earlier in medial as opposed to lateral outer hair cells. Vesicles budding from underlying cisternae appeared associated with development of subsurface cisternae and at 16 DAB were still observed in third row but not in more mature first row HCs.
Collapse
Affiliation(s)
- M Ito
- Department of Pathology and Laboratory of Medicine, Medical University of South Carolina, Charleston 29425, USA
| | | | | |
Collapse
|
48
|
Morata TC, Nylén P, Johnson AC, Dunn DE. Auditory and vestibular functions after single or combined exposure to toluene: a review. Arch Toxicol 1995; 69:431-43. [PMID: 8526738 DOI: 10.1007/s002040050196] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Toluene is a widely used organic solvent, heavily employed in many manufacturing industries. Recently, evidence has begun to accumulate on the deleterious effect of toluene exposure has on the auditory and vestibular systems. Although little published information exists regarding these effects, the reported findings indicate a need for further investigation. The results of such investigations may dramatically affect occupational hearing conservation practices and legislation. Both human and animal studies will be summarized in discussing the effects of toluene alone or in combination with noise or other chemicals. Gaps in scientific knowledge are highlighted to assist future research.
Collapse
Affiliation(s)
- T C Morata
- National Institute for Occupational Safety and Health, Division of Biomedical and Behavioral Science, Cincinnati, Ohio 45226-1998, USA
| | | | | | | |
Collapse
|
49
|
Usami S, Matsubara A, Fujita S, Shinkawa H, Hayashi M. NMDA (NMDAR1) and AMPA-type (GluR2/3) receptor subunits are expressed in the inner ear. Neuroreport 1995; 6:1161-4. [PMID: 7662898 DOI: 10.1097/00001756-199505300-00022] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Using receptor subunit-specific antibodies, the cellular localization of NMDA and AMPA type glutamate receptor subunits was studied within the rodent (rat, guinea pig) and non-human primate (monkey) inner ear. In the spiral and vestibular ganglion, almost all cells were immunoreactive for the NMDAR1 subunit and the AMPA type receptor subunit GluR2/3. This indicates that both NMDA and non-NMDA type glutamate receptors may be co-distributed in the primary afferent neuronal components, and are possibly involved in neurotransmission in the primary auditory and vestibular systems. This study also indicated the possible localizations of glutamate receptors in the nonneuronal cells in the inner ear, suggesting that some nonneuronal cells may also have the ability to mediate glutamate signalling.
Collapse
Affiliation(s)
- S Usami
- Department of Otorhinolaryngology, Hirosaki University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
50
|
Abstract
The onset and maturation of hearing was examined in separate groups of sibling and nonsibling neonatal Mongolian gerbils (Meriones unguiculatus). Auditory nerve compound action potentials (CAP) and cochlear microphonics (CM) were measured at the round window, and the endocochlear potential (EP) was recorded at three different locations in pups aged 13 to 30 days after birth (DAB) and in 90 day-old animals. Maturational trends for the three potentials were similar to those previously reported for gerbil neonates. However, CAP thresholds continued to decrease, and CM and CAP input/output functions and EP continued to increase beyond 30 days of age, a time at which many investigators have considered hearing in the gerbil to be mature. The EP developed simultaneously throughout the cochlea and approached 80 mV by 20 DAB. CAP thresholds showed a highly correlated log-linear relationship with EP in groups of nonlittermates and in siblings studied at different ages. In contrast, maximum CAP and CM amplitudes increased with increasing EP, but did not show significant growth until the EP exceeded 70 mV.
Collapse
Affiliation(s)
- J P McGuirt
- Department of Pathology, Medical University of South Carolina, Charleston 29425, USA
| | | | | |
Collapse
|