1
|
Zhang B, Hu Y, Du H, Han S, Ren L, Cheng H, Wang Y, Gao X, Zheng S, Cui Q, Tian L, Liu T, Sun J, Chai R. Tissue engineering strategies for spiral ganglion neuron protection and regeneration. J Nanobiotechnology 2024; 22:458. [PMID: 39085923 PMCID: PMC11293049 DOI: 10.1186/s12951-024-02742-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024] Open
Abstract
Cochlear implants can directly activate the auditory system's primary sensory neurons, the spiral ganglion neurons (SGNs), via circumvention of defective cochlear hair cells. This bypass restores auditory input to the brainstem. SGN loss etiologies are complex, with limited mammalian regeneration. Protecting and revitalizing SGN is critical. Tissue engineering offers a novel therapeutic strategy, utilizing seed cells, biomolecules, and scaffold materials to create a cellular environment and regulate molecular cues. This review encapsulates the spectrum of both human and animal research, collating the factors contributing to SGN loss, the latest advancements in the utilization of exogenous stem cells for auditory nerve repair and preservation, the taxonomy and mechanism of action of standard biomolecules, and the architectural components of scaffold materials tailored for the inner ear. Furthermore, we delineate the potential and benefits of the biohybrid neural interface, an incipient technology in the realm of implantable devices. Nonetheless, tissue engineering requires refined cell selection and differentiation protocols for consistent SGN quality. In addition, strategies to improve stem cell survival, scaffold biocompatibility, and molecular cue timing are essential for biohybrid neural interface integration.
Collapse
Affiliation(s)
- Bin Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Yangnan Hu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| | - Haoliang Du
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing University, Nanjing, 210008, China
| | - Shanying Han
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Lei Ren
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Hong Cheng
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Yusong Wang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Xin Gao
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Shasha Zheng
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Qingyue Cui
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Lei Tian
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
| | - Tingting Liu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
| | - Jiaqiang Sun
- Department of Otolaryngology-Head and Neck Surgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China.
- Southeast University Shenzhen Research Institute, Shenzhen, 518063, China.
| |
Collapse
|
2
|
Fei G, Dandan S, Haiyan W, Shuai Z, Xiaopin S, Yu H, Yi Y, Rong C, Jin H, Xiaoming S, Lei Y. Exogenous neuritin restores auditory following cochlear spiral ganglion neuron denervation of gerbils. Neurosci Res 2024; 200:8-19. [PMID: 37926219 DOI: 10.1016/j.neures.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
Spiral ganglion neurons (SGNs) transmit sound signals received by hair cells to the auditory center to produce hearing. The quantity and function are important for maintaining normal hearing function. Limited by the regenerative capacity, SGNs are unable to regenerate spontaneously after injury. Various neurotrophic factors play an important role in the regeneration process. Neuritin is a neurite growth factor that plays an important role in neural plasticity and nerve injury repair. In this study, we used bioinformatics analysis to show that neuritin was negatively correlated with cochlear damage. Then, we aimed to establish a cochlear spiral ganglion-specific sensorineural deafness model in gerbils using ouabain and determine the effects of exogenous neuritin protein in protecting damaged cochlear SGNs and repairing damaged auditory nerve function. The provides a new research strategy and scientific basis for the prevention and treatment of sensorineural deafness caused by the loss of SGNs. We were discovered that neuritin is expressed throughout the development of the gerbil cochlea, primarily in the SGNs and Corti regions. The expression of neuritin was negatively correlated with the sensorineural deafness induced by ouabain. In vitro and in vivo revealed that neuritin significantly maintained the number and arrangement of SGNs and nerve fibers in the damaged cochlea and effectively protected the high-frequency listening function of gerbils.
Collapse
Affiliation(s)
- Gui Fei
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, PR China.
| | - Song Dandan
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, PR China; Department of Preventive Medicine, School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China
| | - Wang Haiyan
- Department of Preventive Medicine, School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China
| | - Zhang Shuai
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, PR China
| | - Sun Xiaopin
- Department of Preventive Medicine, School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China
| | - Hong Yu
- Department of Preventive Medicine, School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China
| | - Yang Yi
- Department of Preventive Medicine, School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China
| | - Chen Rong
- Department of Preventive Medicine, School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China
| | - Huang Jin
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, PR China.
| | - Song Xiaoming
- Department of Preventive Medicine, School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China.
| | - Yang Lei
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, PR China.
| |
Collapse
|
3
|
Bankoti K, Generotti C, Hwa T, Wang L, O'Malley BW, Li D. Advances and challenges in adeno-associated viral inner-ear gene therapy for sensorineural hearing loss. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 21:209-236. [PMID: 33850952 PMCID: PMC8010215 DOI: 10.1016/j.omtm.2021.03.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
There is growing attention and effort focused on treating the root cause of sensorineural hearing loss rather than managing associated secondary characteristic features. With recent substantial advances in understanding sensorineural hearing-loss mechanisms, gene delivery has emerged as a promising strategy for the biological treatment of hearing loss associated with genetic dysfunction. There are several successful and promising proof-of-principle examples of transgene deliveries in animal models; however, there remains substantial further progress to be made in these avenues before realizing their clinical application in humans. Herein, we review different aspects of development, ongoing preclinical studies, and challenges to the clinical transition of transgene delivery of the inner ear toward the restoration of lost auditory and vestibular function.
Collapse
Affiliation(s)
- Kamakshi Bankoti
- Department of Otorhinolaryngology, Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Charles Generotti
- Department of Otorhinolaryngology, Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tiffany Hwa
- Department of Otorhinolaryngology, Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lili Wang
- Department of Medicine, Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bert W O'Malley
- Department of Otorhinolaryngology, Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daqing Li
- Department of Otorhinolaryngology, Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Takahashi M, Sanchez JT. Effects of Neurotrophin-3 on Intrinsic Neuronal Properties at a Central Auditory Structure. Neurosci Insights 2020; 15:2633105520980442. [PMID: 33354669 PMCID: PMC7734498 DOI: 10.1177/2633105520980442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/23/2020] [Indexed: 11/15/2022] Open
Abstract
Neurotrophins, a class of growth factor proteins that control neuronal proliferation, morphology, and apoptosis, are found ubiquitously throughout the nervous system. One particular neurotrophin (NT-3) and its cognate tyrosine receptor kinase (TrkC) have recently received attention as a possible therapeutic target for synaptopathic sensorineural hearing loss. Additionally, research shows that NT-3-TrkC signaling plays a role in establishing the sensory organization of frequency topology (ie, tonotopic order) in the cochlea of the peripheral inner ear. However, the neurotrophic effects of NT-3 on central auditory properties are unclear. In this study we examined whether NT-3-TrkC signaling affects the intrinsic electrophysiological properties at a first-order central auditory structure in chicken, known as nucleus magnocellularis (NM). Here, the expression pattern of specific neurotrophins is well known and tightly regulated. By using whole-cell patch-clamp electrophysiology, we show that NT-3 application to brainstem slices does not affect intrinsic properties of high-frequency neuronal regions but had robust effects for low-frequency neurons, altering voltage-dependent potassium functions, action potential repolarization kinetics, and passive membrane properties. We suggest that NT-3 may contribute to the precise establishment and organization of tonotopy in the central auditory pathway by playing a specialized role in regulating the development of intrinsic neuronal properties of low-frequency NM neurons.
Collapse
Affiliation(s)
- Momoko Takahashi
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
| | - Jason Tait Sanchez
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
- The Hugh Knowles Hearing Research Center, Northwestern University, Evanston, IL, USA
| |
Collapse
|
5
|
Ding D, Jiang H, Salvi R. Cochlear spiral ganglion neuron degeneration following cyclodextrin-induced hearing loss. Hear Res 2020; 400:108125. [PMID: 33302057 DOI: 10.1016/j.heares.2020.108125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/10/2020] [Accepted: 11/19/2020] [Indexed: 01/12/2023]
Abstract
Because cyclodextrins are capable of removing cholesterol from cell membranes, there is growing interest in using these compounds to treat diseases linked to aberrant cholesterol metabolism. One compound, 2-hydroxypropyl-beta-cyclodextrin (HPβCD), is currently being evaluated as a treatment for Niemann-Pick Type C1 disease, a rare, fatal neurodegenerative disease caused by the buildup of lipids in endosomes and lysosomes. HPβCD can reduce some debilitating symptoms and extend life span, but the therapeutic doses used to treat the disease cause hearing loss. Initial studies in rodents suggested that HPβCD selectively damaged only cochlear outer hair cells during the first week post-treatment. However, our recent in vivo and in vitro studies suggested that the damage could become progressively worse and more extensive over time. To test this hypothesis, we treated rats subcutaneously with 1, 2, 3 or 4 g/kg of HPβCD and waited for 8-weeks to assess the long-term histological consequences. Our new results indicate that the two highest doses of HPβCD caused extensive damage not only to OHC, but also to inner hair cells, pillar cells and other support cells resulting in the collapse and flattening of the sensory epithelium. The 4 g/kg dose destroyed all the outer hair cells and three-fourths of the inner hair cells over the basal two-thirds of the cochlea and more than 85% of the nerve fibers in the habenula perforata and more than 80% of spiral ganglion neurons in the middle of basal turn of the cochlea. The mechanisms that lead to the delayed degeneration of inner hair cells, pillar cells, nerve fibers and spiral ganglion neurons remain poorly understood, but may be related to the loss of trophic support caused by the degeneration of sensory and/or support cells in the organ of Corti. Despite the massive damage to the cochlear sensory epithelium, the blood vessels in the stria vascularis and the vestibular hair cells in the utricle and saccule remained normal.
Collapse
Affiliation(s)
- Dalian Ding
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, Buffalo, NY 14221, USA
| | - Haiyan Jiang
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, Buffalo, NY 14221, USA
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, Buffalo, NY 14221, USA.
| |
Collapse
|
6
|
Frick C, Fink S, Schmidbauer D, Rousset F, Eickhoff H, Tropitzsch A, Kramer B, Senn P, Glueckert R, Rask-Andersen H, Wiesmüller KH, Löwenheim H, Müller M. Age-Dependency of Neurite Outgrowth in Postnatal Mouse Cochlear Spiral Ganglion Explants. Brain Sci 2020; 10:E580. [PMID: 32839381 PMCID: PMC7564056 DOI: 10.3390/brainsci10090580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The spatial gap between cochlear implants (CIs) and the auditory nerve limits frequency selectivity as large populations of spiral ganglion neurons (SGNs) are electrically stimulated synchronously. To improve CI performance, a possible strategy is to promote neurite outgrowth toward the CI, thereby allowing a discrete stimulation of small SGN subpopulations. Brain-derived neurotrophic factor (BDNF) is effective to stimulate neurite outgrowth from SGNs. METHOD TrkB (tropomyosin receptor kinase B) agonists, BDNF, and five known small-molecule BDNF mimetics were tested for their efficacy in stimulating neurite outgrowth in postnatal SGN explants. To modulate Trk receptor-mediated effects, TrkB and TrkC ligands were scavenged by an excess of recombinant receptor proteins. The pan-Trk inhibitor K252a was used to block Trk receptor actions. RESULTS THF (7,8,3'-trihydroxyflavone) partly reproduced the BDNF effect in postnatal day 7 (P7) mouse cochlear spiral ganglion explants (SGEs), but failed to show effectiveness in P4 SGEs. During the same postnatal period, spontaneous and BDNF-stimulated neurite outgrowth increased. The increased neurite outgrowth in P7 SGEs was not caused by the TrkB/TrkC ligands, BDNF and neurotrophin-3 (NT-3). CONCLUSIONS The age-dependency of induction of neurite outgrowth in SGEs was very likely dependent on presently unidentified factors and/or molecular mechanisms which may also be decisive for the age-dependent efficacy of the small-molecule TrkB receptor agonist THF.
Collapse
Affiliation(s)
- Claudia Frick
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen Medical Center, 72076 Tübingen, Germany; (C.F.); (A.T.); (B.K.); (H.L.); (M.M.)
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Stefan Fink
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen Medical Center, 72076 Tübingen, Germany; (C.F.); (A.T.); (B.K.); (H.L.); (M.M.)
| | - Dominik Schmidbauer
- Inner Ear Laboratory Innsbruck, Medical University Innsbruck, 6020 Innsbruck, Austria; (D.S.); (R.G.)
| | - Francis Rousset
- The Inner Ear & Olfaction Lab, Department of Clinical Neurosciences, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (F.R.); (P.S.)
| | - Holger Eickhoff
- EMC Microcollections GmbH, 72070 Tübingen, Germany; (H.E.); (K.-H.W.)
| | - Anke Tropitzsch
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen Medical Center, 72076 Tübingen, Germany; (C.F.); (A.T.); (B.K.); (H.L.); (M.M.)
| | - Benedikt Kramer
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen Medical Center, 72076 Tübingen, Germany; (C.F.); (A.T.); (B.K.); (H.L.); (M.M.)
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Mannheim, 68167 Mannheim, Germany
| | - Pascal Senn
- The Inner Ear & Olfaction Lab, Department of Clinical Neurosciences, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (F.R.); (P.S.)
| | - Rudolf Glueckert
- Inner Ear Laboratory Innsbruck, Medical University Innsbruck, 6020 Innsbruck, Austria; (D.S.); (R.G.)
- Tirol Kliniken Innsbruck, University Clinic of Otolaryngology, 6020 Innsbruck, Austria
| | - Helge Rask-Andersen
- Department of Surgical Sciences, Otorhinolaryngology and Head and Neck Surgery, University of Uppsala, 751 85 Uppsala, Sweden;
| | | | - Hubert Löwenheim
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen Medical Center, 72076 Tübingen, Germany; (C.F.); (A.T.); (B.K.); (H.L.); (M.M.)
| | - Marcus Müller
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen Medical Center, 72076 Tübingen, Germany; (C.F.); (A.T.); (B.K.); (H.L.); (M.M.)
| |
Collapse
|
7
|
Differentiation of stem cells from human deciduous and permanent teeth into spiral ganglion neuron-like cells. Arch Oral Biol 2018; 88:34-41. [DOI: 10.1016/j.archoralbio.2018.01.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/08/2018] [Accepted: 01/16/2018] [Indexed: 12/11/2022]
|
8
|
Cochlear afferent innervation development. Hear Res 2015; 330:157-69. [DOI: 10.1016/j.heares.2015.07.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 06/02/2015] [Accepted: 07/21/2015] [Indexed: 01/11/2023]
|
9
|
Characterization of the transcriptome of nascent hair cells and identification of direct targets of the Atoh1 transcription factor. J Neurosci 2015; 35:5870-83. [PMID: 25855195 DOI: 10.1523/jneurosci.5083-14.2015] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hair cells are sensory receptors for the auditory and vestibular system in vertebrates. The transcription factor Atoh1 is both necessary and sufficient for the differentiation of hair cells, and is strongly upregulated during hair-cell regeneration in nonmammalian vertebrates. To identify genes involved in hair cell development and function, we performed RNA-seq profiling of purified Atoh1-expressing hair cells from the neonatal mouse cochlea. We identified >600 enriched transcripts in cochlear hair cells, of which 90% have not been previously shown to be expressed in hair cells. We identified 233 of these hair cell genes as candidates to be directly regulated by Atoh1 based on the presence of Atoh1 binding sites in their regulatory regions and by analyzing Atoh1 ChIP-seq datasets from the cerebellum and small intestine. We confirmed 10 of these genes as being direct Atoh1 targets in the cochlea by ChIP-PCR. The identification of candidate Atoh1 target genes is a first step in identifying gene regulatory networks for hair-cell development and may inform future studies on the potential role of Atoh1 in mammalian hair cell regeneration.
Collapse
|
10
|
Wan G, Gómez-Casati ME, Gigliello AR, Liberman MC, Corfas G. Neurotrophin-3 regulates ribbon synapse density in the cochlea and induces synapse regeneration after acoustic trauma. eLife 2014; 3. [PMID: 25329343 PMCID: PMC4227045 DOI: 10.7554/elife.03564] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 10/09/2014] [Indexed: 12/23/2022] Open
Abstract
Neurotrophin-3 (Ntf3) and brain derived neurotrophic factor (Bdnf) are critical for sensory neuron survival and establishment of neuronal projections to sensory epithelia in the embryonic inner ear, but their postnatal functions remain poorly understood. Using cell-specific inducible gene recombination in mice we found that, in the postnatal inner ear, Bbnf and Ntf3 are required for the formation and maintenance of hair cell ribbon synapses in the vestibular and cochlear epithelia, respectively. We also show that supporting cells in these epithelia are the key endogenous source of the neurotrophins. Using a new hair cell CreER(T) line with mosaic expression, we also found that Ntf3's effect on cochlear synaptogenesis is highly localized. Moreover, supporting cell-derived Ntf3, but not Bbnf, promoted recovery of cochlear function and ribbon synapse regeneration after acoustic trauma. These results indicate that glial-derived neurotrophins play critical roles in inner ear synapse density and synaptic regeneration after injury.
Collapse
Affiliation(s)
- Guoqiang Wan
- F M Kirby Neurobiology Center, Boston Children's Hospital, Boston, United States
| | - Maria E Gómez-Casati
- F M Kirby Neurobiology Center, Boston Children's Hospital, Boston, United States
| | - Angelica R Gigliello
- F M Kirby Neurobiology Center, Boston Children's Hospital, Boston, United States
| | - M Charles Liberman
- Department of Otology and Laryngology, Harvard Medical School, Boston, United States
| | - Gabriel Corfas
- F M Kirby Neurobiology Center, Boston Children's Hospital, Boston, United States
| |
Collapse
|
11
|
Pritz CO, Dudás J, Rask-Andersen H, Schrott-Fischer A, Glueckert R. Nanomedicine strategies for drug delivery to the ear. Nanomedicine (Lond) 2014; 8:1155-72. [PMID: 23837855 DOI: 10.2217/nnm.13.104] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The highly compartmentalized anatomy of the ear aggravates drug delivery, which is used to combat hearing-related diseases. Novel nanosized drug vehicles are thought to overcome the limitations of classic approaches. In this article, we summarize the nanotechnology-based efforts involving nano-objects, such as liposomes, polymersomes, lipidic nanocapsules and poly(lactic-co-glycolic acid) nanoparticles, as well as nanocoatings of implants to provide an efficient means for drug transfer in the ear. Modern strategies do not only enhance drug delivery efficiency, in the inner ear these vector systems also aim for specific uptake into hair cells and spiral ganglion neurons. These novel peptide-mediated strategies for specific delivery are reviewed in this article. Finally, the biosafety of these vector systems is still an outstanding issue, since long-term application to the ear has not yet been assessed.
Collapse
Affiliation(s)
- Christian Oliver Pritz
- Department of Otolaryngology, Medical University of Innsbruck, Innsbruck, Anichstraße 35, Austria
| | | | | | | | | |
Collapse
|
12
|
Vandenbosch R, Chocholova E, Robe PA, Wang Y, Lambert C, Moonen G, Lallemend F, Malgrange B, Hadjab S. A role for the canonical nuclear factor-κB pathway in coupling neurotrophin-induced differential survival of developing spiral ganglion neurons. Front Cell Neurosci 2013; 7:242. [PMID: 24348336 PMCID: PMC3842586 DOI: 10.3389/fncel.2013.00242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 11/14/2013] [Indexed: 11/13/2022] Open
Abstract
Neurotrophins are key players of neural development by controlling cell death programs. However, the signaling pathways that mediate their selective responses in different populations of neurons remain unclear. In the mammalian cochlea, sensory neurons differentiate perinatally into type I and II populations both expressing TrkB and TrkC, which bind respectively brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT3). How these two neuronal populations respond differentially to these two neurotrophins remains unknown. Here, we report in rat the segregation of the nuclear factor-κB (NFκB) subunit p65 specifically within the type II population postnatally. Using dissociated cultures of embryonic and postnatal spiral ganglion neurons, we observed a specific requirement of NFκB for BDNF but not NT3-dependent neuronal survival during a particular postnatal time window that corresponds to a period of neuronal cell death and hair cell innervation refinement in the developing cochlea. Consistently, postnatal p65 knockout mice showed a specific decreased number in type II spiral ganglion neurons. Taken together, these results identify NFκB as a type II neuron-specific factor that participates in the selective survival effects of BDNF and NT3 signaling on developing spiral ganglion neurons.
Collapse
Affiliation(s)
- Renaud Vandenbosch
- Groupe Interdisciplinaire de Génoprotéomique Appliquée-Neurosciences, Developmental Neurobiology Unit, University of Liège Liège, Belgium
| | - Eva Chocholova
- Groupe Interdisciplinaire de Génoprotéomique Appliquée-Neurosciences, Developmental Neurobiology Unit, University of Liège Liège, Belgium
| | - Pierre A Robe
- Department of Human Genetics, University of Liège Liège, Belgium ; Groupe Interdisciplinaire de Génoprotéomique Appliquée-Research Center, University of Liège Liège, Belgium
| | - Yiqiao Wang
- Department of Neuroscience, Karolinska Institute Stockholm, Sweden
| | - Cécile Lambert
- Bone and Cartilage Research Unit, Institute of Pathology, Centre Hospitalier Universitaire du Sart-Tilman Liège, Belgium
| | - Gustave Moonen
- Groupe Interdisciplinaire de Génoprotéomique Appliquée-Neurosciences, Developmental Neurobiology Unit, University of Liège Liège, Belgium ; Department of Neurology, Centre Hospitalier Universitaire du Sart Tilman Liège, Belgium
| | - François Lallemend
- Groupe Interdisciplinaire de Génoprotéomique Appliquée-Neurosciences, Developmental Neurobiology Unit, University of Liège Liège, Belgium ; Department of Neuroscience, Karolinska Institute Stockholm, Sweden
| | - Brigitte Malgrange
- Groupe Interdisciplinaire de Génoprotéomique Appliquée-Neurosciences, Developmental Neurobiology Unit, University of Liège Liège, Belgium
| | - Saïda Hadjab
- Groupe Interdisciplinaire de Génoprotéomique Appliquée-Neurosciences, Developmental Neurobiology Unit, University of Liège Liège, Belgium ; Department of Neuroscience, Karolinska Institute Stockholm, Sweden
| |
Collapse
|
13
|
Singer W, Panford-Walsh R, Knipper M. The function of BDNF in the adult auditory system. Neuropharmacology 2013; 76 Pt C:719-28. [PMID: 23688926 DOI: 10.1016/j.neuropharm.2013.05.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 05/03/2013] [Accepted: 05/06/2013] [Indexed: 02/06/2023]
Abstract
The inner ear of vertebrates is specialized to perceive sound, gravity and movements. Each of the specialized sensory organs within the cochlea (sound) and vestibular system (gravity, head movements) transmits information to specific areas of the brain. During development, brain-derived neurotrophic factor (BDNF) orchestrates the survival and outgrowth of afferent fibers connecting the vestibular organ and those regions in the cochlea that map information for low frequency sound to central auditory nuclei and higher-auditory centers. The role of BDNF in the mature inner ear is less understood. This is mainly due to the fact that constitutive BDNF mutant mice are postnatally lethal. Only in the last few years has the improved technology of performing conditional cell specific deletion of BDNF in vivo allowed the study of the function of BDNF in the mature developed organ. This review provides an overview of the current knowledge of the expression pattern and function of BDNF in the peripheral and central auditory system from just prior to the first auditory experience onwards. A special focus will be put on the differential mechanisms in which BDNF drives refinement of auditory circuitries during the onset of sensory experience and in the adult brain. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'.
Collapse
Affiliation(s)
- Wibke Singer
- University of Tübingen, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| | | | | |
Collapse
|
14
|
Kim WY. NeuroD regulates neuronal migration. Mol Cells 2013; 35:444-9. [PMID: 23652629 PMCID: PMC3887861 DOI: 10.1007/s10059-013-0065-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 03/13/2013] [Accepted: 03/18/2013] [Indexed: 01/24/2023] Open
Abstract
NeuroD is required for the survival of many subtypes of developing neurons in the vertebrate central nervous system. Because NeuroD-deficient neurons in the hippocampus, cerebellum, and inner ear die prematurely in the early stage of neurogenesis, the role of NeuroD during the later stages of neurogenesis of these cell subtypes is not well understood. In addition, the mechanism of NeuroDdeficient neuronal death has not been investigated. It was hypothesized that NeuroD-dependent neuronal death occurs through a Bax-dependent apoptotic pathway. Based on this hypothesis, this study attempted to rescue neuronal cell death by deleting the Bax gene in NeuroD null mice to investigate the role of NeuroD in surviving neurons. The NeuroD and Bax double null mice displayed a decrease in the number of apoptotic cells in the hippocampus and the cerebellum and the rescue of vestibulocochlear ganglion (VCG) neurons that failed to migrate and innervate. In addition, at E13.5, the NeuroD(-/-)Bax(-/-) VCG neurons failed to express TrkB and TrkC, which are known to be essential for the survival of those neurons. These data suggest that neuronal death in NeuroD null mice is mediated by Bax-dependent apoptosis and that NeuroD is required for the migration of VCG neurons. Finally, these data show that TrkB and TrkC expression in E13.5 VCG neurons requires NeuroD and that TrkB and TrkC expression may be necessary for the normal migration and innervations of those neurons.
Collapse
Affiliation(s)
- Woo-Young Kim
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Aurora, CO, 80309, USA.
| |
Collapse
|
15
|
Kondo K, Pak K, Chavez E, Mullen L, Euteneuer S, Ryan AF. Changes in responsiveness of rat spiral ganglion neurons to neurotrophins across age: differential regulation of survival and neuritogenesis. Int J Neurosci 2013; 123:465-75. [PMID: 23301942 DOI: 10.3109/00207454.2013.764497] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Developmental changes in responsiveness of rat spiral ganglion neurons (SGNs) to neurotrophin-3 (NT-3) and brain-derived neurotrophic factor (BDNF) were examined using an explant culture system. Spiral ganglion (SG) explants at embryonic Day 18 (E18), postnatal Day 0 (P0), P5, P10 and P20 were cultured with the addition of either NT-3 or BDNF at various concentrations (0.1-100 ng/ml) and analyzed the dose-response characteristics of three parameters: SGN survival, the number of neurites emanating from the explants and the length of neurite extension. In E18 cultures, SGN survival and neurite number were enhanced more strongly by NT-3 than by the BDNF. As the explants became more mature, the effects of NT-3 decreased, whereas those of BDNF increased, peaking at P0. Although the intrinsic capacity of SGNs to produce and extend neurites declined considerably by P20, they still retained the capacity to respond to both NT-3 and BDNF. These temporal patterns in responsiveness of SGNs to neurotrophins correspond well to the expression pattern of the two neurotrophins in cochlear sensory epithelium in vivo and also correlate with the time course of developmental events in SGNs such as cell death and the establishment of mature hair cell innervation patterns.
Collapse
Affiliation(s)
- Kenji Kondo
- Division of Otolaryngology and Neurosciences, Department of Surgery and Veterans Administration Medical Center, University of California, San Diego School of Medicine, La Jolla, CA 92093, USA
| | | | | | | | | | | |
Collapse
|
16
|
Jin Y, Kondo K, Ushio M, Kaga K, Ryan AF, Yamasoba T. Developmental changes in the responsiveness of rat spiral ganglion neurons to neurotrophic factors in dissociated culture: differential responses for survival, neuritogenesis and neuronal morphology. Cell Tissue Res 2012; 351:15-27. [PMID: 23149719 DOI: 10.1007/s00441-012-1526-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 10/24/2012] [Indexed: 12/26/2022]
Abstract
The way that the development of the inner ear innervation is regulated by various neurotrophic factors and/or their combinations at different postnatal developmental stages remains largely unclear. Moreover, survival and neuritogenesis in deafferented adult neurons is important for cochlear implant function. To address these issues, developmental changes in the responsiveness of postnatal rat spiral ganglion neurons (SGNs) to neurotrophin-3 (NT-3), brain-derived neurotrophic factor (BDNF) and leukemia inhibitory factor (LIF) were examined by using a dissociated cell culture system. SGNs at postnatal day (P) 0, P5 and P20 (young adult) were cultured with the addition of NT-3, BDNF, or LIF or of a combination of NT-3 and BDNF (N + B) or of NT-3, BDNF and LIF (ALL factors). SGNs were analyzed for three parameters: survival, longest neurite length (LNL) and neuronal morphology. At P0, SGNs required exposure to N + B or ALL factors for enhanced survival and the ALL factors combination showed a synergistic effect much greater than the sum of the individual factors. At P5, SGNs responded to a wider range of treatment conditions for enhanced survival and combinations showed only an additive improvement over individual factors. The survival percentage of untreated SGNs was highest at P20 but combinations of neurotrophic factors were no more effective than individual factors. LNL of each SGN was enhanced by LIF alone or ALL factors at P0 and P5 but was suppressed by NT-3, BDNF and N + B at P5 in a dose-dependent manner. The LNL at P20 was enhanced by ALL factors and suppressed by N + B. Treatment with ALL factors increased the proportion of SGNs that had two or more primary neurites in all age groups. These findings suggest that NT-3, BDNF, LIF and their combinations predominantly support different ontogenetic events at different developmental stages in the innervation of the inner ear.
Collapse
Affiliation(s)
- Yulian Jin
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Green SH, Bailey E, Wang Q, Davis RL. The Trk A, B, C's of Neurotrophins in the Cochlea. Anat Rec (Hoboken) 2012; 295:1877-95. [DOI: 10.1002/ar.22587] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 07/24/2012] [Indexed: 12/20/2022]
|
18
|
Palmgren B, Jiao Y, Novozhilova E, Stupp SI, Olivius P. Survival, migration and differentiation of mouse tau-GFP embryonic stem cells transplanted into the rat auditory nerve. Exp Neurol 2012; 235:599-609. [DOI: 10.1016/j.expneurol.2012.03.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 02/18/2012] [Accepted: 03/25/2012] [Indexed: 01/13/2023]
|
19
|
Ramekers D, Versnel H, Grolman W, Klis SF. Neurotrophins and their role in the cochlea. Hear Res 2012; 288:19-33. [DOI: 10.1016/j.heares.2012.03.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/10/2012] [Accepted: 03/05/2012] [Indexed: 12/16/2022]
|
20
|
Mullen LM, Pak KK, Chavez E, Kondo K, Brand Y, Ryan AF. Ras/p38 and PI3K/Akt but not Mek/Erk signaling mediate BDNF-induced neurite formation on neonatal cochlear spiral ganglion explants. Brain Res 2012; 1430:25-34. [PMID: 22119396 PMCID: PMC3242932 DOI: 10.1016/j.brainres.2011.10.054] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 10/06/2011] [Accepted: 10/30/2011] [Indexed: 01/08/2023]
Abstract
Neurotrophins participate in regulating the survival, differentiation, and target innervation of many neurons, mediated by high-affinity Trk and low-affinity p75 receptors. In the cochlea, spiral ganglion (SG) neuron survival is strongly dependent upon neurotrophic input, including brain-derived neurotrophic factor (BDNF), which increases the number of neurite outgrowth in neonatal rat SG in vitro. Less is known about signal transduction pathways linking the activation of neurotrophin receptors to SG neuron nuclei. In particular, the p38 and cJUN Kinase (JNK), mitogen-activated protein kinase (MAPK) pathways, which participate in JNK signaling in other neurons, have not been studied. We found that inhibition of Ras, p38, phosphatidyl inositol 3 kinase (PI3K) or Akt signaling reduced or eliminated BDNF mediated increase in number of neurite outgrowth, while inhibition of Mek/Erk had no influence. Inhibition of Rac/cdc42, which lies upstream of JNK, modestly enhanced BDNF induced formation of neurites. Western blotting implicated p38 and Akt signaling, but not Mek/Erk. The results suggest that the Ras/p38 and PI3K/Akt are the primary pathways by which BDNF promotes its effects. Activation of Rac/cdc42/JNK signaling by BDNF may reduce the formation of neurites. This is in contrast to our previous results on NT-3, in which Mek/Erk signaling was the primary mediator of SG neurite outgrowth in vitro. Our data on BDNF agree with prior results from others that have implicated PI3K/Akt involvement in mediating the effects of BDNF on SG neurons in vitro, including neuronal survival and neurite extension. However, the identification of p38 and JNK involvement is entirely novel. The results suggest that neurotrophins can exert opposing effects on SG neurons, the balance of competing signals influencing the generation of neurites. This competition could provide a potential mechanism for the control of neurite number during development.
Collapse
Affiliation(s)
- Lina M. Mullen
- Department of Surgery/Otolaryngology, UCSD School of Medicine, 9500 Gilman Drive MC0666, La Jolla, CA 92093
| | - Kwang K. Pak
- San Diego VA Medical Center, 3350 La Jolla Village Drive, San Diego, CA 92161
| | - Eduardo Chavez
- Department of Surgery/Otolaryngology, UCSD School of Medicine, 9500 Gilman Drive MC0666, La Jolla, CA 92093
| | - Kenji Kondo
- Department of Surgery/Otolaryngology, UCSD School of Medicine, 9500 Gilman Drive MC0666, La Jolla, CA 92093
| | - Yves Brand
- Department of Surgery/Otolaryngology, UCSD School of Medicine, 9500 Gilman Drive MC0666, La Jolla, CA 92093
- Department of Biomedicine and Clinic of Otolaryngology, Head and Neck Surgery, University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Allen F. Ryan
- San Diego VA Medical Center, 3350 La Jolla Village Drive, San Diego, CA 92161
- Department of Surgery/Otolaryngology, UCSD School of Medicine, 9500 Gilman Drive MC0666, La Jolla, CA 92093
- Department of Neurosciences, UCSD School of Medicine, 9500 Gilman Drive MC0666, La Jolla, CA 92093
| |
Collapse
|
21
|
Barclay M, Ryan AF, Housley GD. Type I vs type II spiral ganglion neurons exhibit differential survival and neuritogenesis during cochlear development. Neural Dev 2011; 6:33. [PMID: 21989106 PMCID: PMC3207869 DOI: 10.1186/1749-8104-6-33] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 10/11/2011] [Indexed: 11/10/2022] Open
Abstract
Background The mechanisms that consolidate neural circuitry are a major focus of neuroscience. In the mammalian cochlea, the refinement of spiral ganglion neuron (SGN) innervation to the inner hair cells (by type I SGNs) and the outer hair cells (by type II SGNs) is accompanied by a 25% loss of SGNs. Results We investigated the segregation of neuronal loss in the mouse cochlea using β-tubulin and peripherin antisera to immunolabel all SGNs and selectively type II SGNs, respectively, and discovered that it is the type II SGN population that is predominately lost within the first postnatal week. Developmental neuronal loss has been attributed to the decline in neurotrophin expression by the target hair cells during this period, so we next examined survival of SGN sub-populations using tissue culture of the mid apex-mid turn region of neonatal mouse cochleae. In organotypic culture for 48 hours from postnatal day 1, endogenous trophic support from the organ of Corti proved sufficient to maintain all type II SGNs; however, a large proportion of type I SGNs were lost. Culture of the spiral ganglion as an explant, with removal of the organ of Corti, led to loss of the majority of both SGN sub-types. Brain-derived neurotrophic factor (BDNF) added as a supplement to the media rescued a significant proportion of the SGNs, particularly the type II SGNs, which also showed increased neuritogenesis. The known decline in BDNF production by the rodent sensory epithelium after birth is therefore a likely mediator of type II neuron apoptosis. Conclusion Our study thus indicates that BDNF supply from the organ of Corti supports consolidation of type II innervation in the neonatal mouse cochlea. In contrast, type I SGNs likely rely on additional sources for trophic support.
Collapse
Affiliation(s)
- Meagan Barclay
- Department of Physiology, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | |
Collapse
|
22
|
Functional role of neurotrophin-3 in synapse regeneration by spiral ganglion neurons on inner hair cells after excitotoxic trauma in vitro. J Neurosci 2011; 31:7938-49. [PMID: 21613508 DOI: 10.1523/jneurosci.1434-10.2011] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Spiral ganglion neurons (SGNs) are postsynaptic to hair cells and project to the brainstem. The inner hair cell (IHC) to SGN synapse is susceptible to glutamate excitotoxicity and to acoustic trauma, with potentially adverse consequences to long-term SGN survival. We used a cochlear explant culture from P6 rat pups consisting of a portion of organ of Corti maintained intact with the corresponding portion of spiral ganglion to investigate excitotoxic damage to IHC-SGN synapses in vitro. The normal innervation pattern is preserved in vitro. Brief treatment with NMDA and kainate results in loss of IHC-SGN synapses and degeneration of the distal type 1 SGN peripheral axons, mimicking damage to SGN peripheral axons caused by excitotoxicity or noise in vivo. The number of IHC presynaptic ribbons is not significantly altered. Reinnervation of IHCs occurs and regenerating axons remain restricted to the IHC row. However, the number of postsynaptic densities (PSDs) does not fully recover and not all axons regrow to the IHCs. Addition of either neurotrophin-3 (NT-3) or BDNF increases axon growth and synaptogenesis. Selective blockade of endogenous NT-3 signaling with TrkC-IgG reduced regeneration of axons and PSDs, but TrkB-IgG, which blocks BDNF, has no such effect, indicating that endogenous NT-3 is necessary for SGN axon growth and synaptogenesis. Remarkably, TrkC-IgG reduced axon growth and synaptogenesis even in the presence of BDNF, indicating that endogenous NT-3 has a distinctive role, not mimicked by BDNF, in promoting SGN axon growth in the organ of Corti and synaptogenesis on IHCs.
Collapse
|
23
|
Defourny J, Lallemend F, Malgrange B. Structure and development of cochlear afferent innervation in mammals. Am J Physiol Cell Physiol 2011; 301:C750-61. [PMID: 21753183 DOI: 10.1152/ajpcell.00516.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In mammals, sensorineural deafness results from damage to the auditory receptors of the inner ear, the nerve pathways to the brain or the cortical area that receives sound information. In this review, we first focused on the cellular and molecular events taking part to spiral ganglion axon growth, extension to the organ of Corti, and refinement. In the second half, we considered the functional maturation of synaptic contacts between sensory hair cells and their afferent projections. A better understanding of all these processes could open insights into novel therapeutic strategies aimed to re-establish primary connections from sound transducers to the ascending auditory nerve pathways.
Collapse
|
24
|
Davis RL, Liu Q. Complex primary afferents: What the distribution of electrophysiologically-relevant phenotypes within the spiral ganglion tells us about peripheral neural coding. Hear Res 2011; 276:34-43. [PMID: 21276843 DOI: 10.1016/j.heares.2011.01.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Revised: 01/19/2011] [Accepted: 01/20/2011] [Indexed: 01/17/2023]
Abstract
Spiral ganglion neurons are the first neural element of the auditory system. They receive precise synaptic signals which represent features of sound stimuli encoded by hair cell receptors and they deliver a digital representation of this information to the central nervous system. It is well known that spiral ganglion neurons are selectively responsive to specific sound frequencies, and that numerous structural and physiological specializations in the inner ear increase the quality of this tuning, beyond what could be accomplished by the passive properties of the basilar membrane. Further, consistent with what we know about other sensory systems, it is becoming clear that the parallel divergent innervation pattern of type I spiral ganglion neurons has the potential to encode additional features of sound stimuli. To date, we understand the most about the sub-modalities of frequency and intensity coding in the peripheral auditory system. Work reviewed herein will address the issue of how intrinsic electrophysiological features of the neurons themselves have the potential to contribute to the precision of coding and transmitting information about these two parameters to higher auditory centers for further processing.
Collapse
Affiliation(s)
- Robin L Davis
- Department of Cell Biology & Neuroscience, 604 Allison Road, Nelson Laboratories, Rutgers University, Piscataway, NJ 08854, USA.
| | | |
Collapse
|
25
|
Renton JP, Xu N, Clark JJ, Hansen MR. Interaction of neurotrophin signaling with Bcl-2 localized to the mitochondria and endoplasmic reticulum on spiral ganglion neuron survival and neurite growth. J Neurosci Res 2010; 88:2239-51. [PMID: 20209634 DOI: 10.1002/jnr.22381] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Enhanced spiral ganglion neuron (SGN) survival and regeneration of peripheral axons following deafness will likely enhance the efficacy of cochlear implants. Overexpression of Bcl-2 prevents SGN death but inhibits neurite growth. Here we assessed the consequences of Bcl-2 targeted to either the mitochondria (GFP-Bcl-2-Maob) or the endoplasmic reticulum (ER, GFP-Bcl-2-Cb5) on cultured SGN survival and neurite growth. Transfection of wild-type GFP-Bcl-2, GFP-Bcl-2-Cb5, or GFP-Bcl-2-Maob increased SGN survival, with GFP-Bcl-2-Cb5 providing the most robust response. Paradoxically, expression of GFP-Bcl-2-Maob results in SGN death in the presence of neurotrophin-3 (NT-3) and brain-derived neurotrophic factor (BDNF), neurotrophins that independently promote SGN survival via Trk receptors. This loss of SGNs is associated with cleavage of caspase 3 and appears to be specific for neurotrophin signaling, insofar as coexpression of constitutively active mitogen-activated kinase kinase (MEKDeltaEE) or phosphatidyl inositol-3 kinase (P110), but not other prosurvival stimuli (e.g., membrane depolarization), also results in the loss of SGNs expressing GFP-Bcl-2-Maob. MEKDeltaEE and P110 promote SGN survival, whereas P110 promotes neurite growth to a greater extent than NT-3 or MEKDeltaEE. However, wild-type GFP-Bcl-2, GFP-Bcl-2-Cb5, and GFP-Bcl-2-Maob inhibit neurite growth even in the presence of neurotrophins, MEKDeltaEE, or P110. Historically, Bcl-2 has been thought to act primarily at the mitochondria to prevent neuronal apoptosis. Nevertheless, our data show that Bcl-2 targeted to the ER is more effective at rescuing SGNs in the absence of trophic factors. Additionally, Bcl-2 targeted to the mitochondria results in SGN death in the presence of neurotrophins. (c) 2010 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- John P Renton
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa
| | | | | | | |
Collapse
|
26
|
Sciarretta C, Fritzsch B, Beisel K, Rocha-Sanchez SM, Buniello A, Horn JM, Minichiello L. PLCγ-activated signalling is essential for TrkB mediated sensory neuron structural plasticity. BMC DEVELOPMENTAL BIOLOGY 2010; 10:103. [PMID: 20932311 PMCID: PMC2964534 DOI: 10.1186/1471-213x-10-103] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 10/08/2010] [Indexed: 11/10/2022]
Abstract
Background The vestibular system provides the primary input of our sense of balance and spatial orientation. Dysfunction of the vestibular system can severely affect a person's quality of life. Therefore, understanding the molecular basis of vestibular neuron survival, maintenance, and innervation of the target sensory epithelia is fundamental. Results Here we report that a point mutation at the phospholipase Cγ (PLCγ) docking site in the mouse neurotrophin tyrosine kinase receptor TrkB (Ntrk2) specifically impairs fiber guidance inside the vestibular sensory epithelia, but has limited effects on the survival of vestibular sensory neurons and growth of afferent processes toward the sensory epithelia. We also show that expression of the TRPC3 cation calcium channel, whose activity is known to be required for nerve-growth cone guidance induced by brain-derived neurotrophic factor (BDNF), is altered in these animals. In addition, we find that absence of the PLCγ mediated TrkB signalling interferes with the transformation of bouton type afferent terminals of vestibular dendrites into calyces (the largest synaptic contact of dendrites known in the mammalian nervous system) on type I vestibular hair cells; the latter are normally distributed in these mutants as revealed by an unaltered expression pattern of the potassium channel KCNQ4 in these cells. Conclusions These results demonstrate a crucial involvement of the TrkB/PLCγ-mediated intracellular signalling in structural aspects of sensory neuron plasticity.
Collapse
Affiliation(s)
- Carla Sciarretta
- European Molecular Biology Laboratory, Mouse Biology Unit, Via Ramornie 32, 00015 Monterotondo, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
27
|
Breuskin I, Bodson M, Thelen N, Thiry M, Borgs L, Nguyen L, Stolt C, Wegner M, Lefebvre PP, Malgrange B. Glial but not neuronal development in the cochleo-vestibular ganglion requires Sox10. J Neurochem 2010; 114:1827-39. [PMID: 20626560 DOI: 10.1111/j.1471-4159.2010.06897.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The cochleo-vestibular ganglion contains neural crest-derived glial cells and sensory neurons that are derived from the neurogenic otic placode. Little is known about the molecular mechanisms that regulate the tightly orchestrated development of this structure. Here, we report that Sox10, a high-mobility group DNA-binding domain transcription factor that is required for the proper development of neural crest cell derivatives, is specifically expressed in post-migratory neural crest cells in the cochleo-vestibular ganglion. Using Sox10-deficient mice, we demonstrate that this transcription factor is essential for the survival, but not the generation, of the post-migratory neural crest cells within the inner ear. In the absence of these neural crest-derived cells, we have investigated the survival of the otocyst-derived auditory neurons. Surprisingly, auditory neuron differentiation, sensory target innervation and survival are conserved despite the absence of glial cells. Moreover, brain-derived neurotrophic factor expression is increased in the hair cells of Sox10-deficient mice, a compensatory mechanism that may prevent spiral ganglion neuronal cell death. Taken together, these data suggest that in the absence of neural crest-derived glial cells, an increase trophic support from hair cells promotes the survival of spiral ganglion neurons in Sox10 mutant mice.
Collapse
|
28
|
Feng J, Bendiske J, Morest DK. Postnatal development of NT3 and TrkC in mouse ventral cochlear nucleus. J Neurosci Res 2010; 88:86-94. [PMID: 19610111 DOI: 10.1002/jnr.22179] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In the developing nervous system, neurotrophin 3 (NT3) and brain-derived neurotrophic factor (BDNF) have been shown to interact with each other and with different parts of a neuron or glia and over considerable distances in time and space. The auditory system provides a useful model for analyzing these events, insofar as it is subdivided into well-defined groups of specific neuronal types that are readily related to each other at each stage of development. Previous work in our laboratory suggested that NT3 and its receptor TrkC in the mouse cochlear nucleus (CN) may be involved in directing neuronal migration and initial targeting of inputs from cochlear nerve axons in the embryo. NT3 is hard to detect soon after birth, but TrkC lingers longer. Here we found NT3 and TrkC around P8 and the peak around P30. Prominent in ventral CN, associated with globular bushy cells and stellate cells, they were localized to different subcellular sites. The TrkC immunostain was cytoplasmic, and that of NT3 was axonal and perisomatic. TrkC may be made by CN neurons, whereas NT3 has a cochlear origin. The temporal pattern of their development and the likelihood of activity-dependent release of NT3 from cochlear axons suggest that it may not be critical in early synaptogenesis; it may provide long-term trophic effects, including stabilization of synapses once established. Activity-related regulation could coordinate the supply of NT3 with inner ear activity. This may require interaction with other neurotrophins, such as BDNF.
Collapse
Affiliation(s)
- J Feng
- Southern Connecticut State University, New Haven, CT, USA
| | | | | |
Collapse
|
29
|
Hossain WA, D'Sa C, Morest DK. Interactive roles of fibroblast growth factor 2 and neurotrophin 3 in the sequence of migration, process outgrowth, and axonal differentiation of mouse cochlear ganglion cells. J Neurosci Res 2008; 86:2376-91. [PMID: 18438927 DOI: 10.1002/jnr.21685] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A growth factor may have different actions depending on developmental stage. We investigated this phenomenon in the interactions of fibroblast growth factor 2 (FGF2) and neurotrophins on cochlear ganglion (CG) development. The portions of the otocyst fated to form the CG and cochlear epithelium were cocultured at embryonic day 11 (E11). Cultures were divided into groups fed with defined medium, with or without FGF2 and neurotrophin supplements, alone or in combination, for 7 days. We measured the number of migrating neuroblasts and distances migrated, neurite outgrowth, and axonlike processes. We used immunohistochemistry to locate neurotrophin 3 (NT3) and its high-affinity receptor (TrkC) in the auditory system, along with FGF2 and its R1 receptor, at comparable developmental stages in vitro and in situ from E11 until birth (P1) in the precursors of hair cells, support cells, and CG cells. Potential sites for interaction were localized to the nucleus, perikaryal cytoplasm, and cell surfaces, including processes and growth cones. Time-lapse imaging and quantitative measures support the hypothesis that FGF2 alone or combined with neurotrophins promotes migration and neurite outgrowth. Synergism or antagonism between NT3 and other factors suggest interactions at the receptor level. Formation of axons, endings, and synaptic vesicle protein 2 were increased by interactions of NT3 and FGF2. Similar experiments with a mutant overexpressor for FGF2 suggest that endogenous FGF2 supports migration and neurite outgrowth of CG neuroblasts as well as proliferation, leading to accelerated development. The findings suggest interactive and sequential roles for FGF2 and NT3.
Collapse
Affiliation(s)
- Waheeda A Hossain
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030-3401, USA
| | | | | |
Collapse
|
30
|
Pettingill LN, Minter RL, Shepherd RK. Schwann cells genetically modified to express neurotrophins promote spiral ganglion neuron survival in vitro. Neuroscience 2008; 152:821-8. [PMID: 18304740 DOI: 10.1016/j.neuroscience.2007.11.057] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 11/26/2007] [Accepted: 01/09/2008] [Indexed: 01/16/2023]
Abstract
The intracochlear infusion of neurotrophic factors via a mini-osmotic pump has been shown to prevent deafness-induced spiral ganglion neuron (SGN) degeneration; however, the use of pumps may increase the incidence of infection within the cochlea, making this technique unsuitable for neurotrophin administration in a clinical setting. Cell- and gene-based therapies are potential therapeutic options. This study investigated whether Schwann cells which were genetically modified to over-express the neurotrophins brain-derived neurotrophic factor (BDNF) or neurotrophin 3 (Ntf3, formerly NT-3) could support SGN survival in an in vitro model of deafness. Co-culture of either BDNF over-expressing Schwann cells or Ntf3 over-expressing Schwann cells with SGNs from early postnatal rats significantly enhanced neuronal survival in comparison to both control Schwann cells and conventional recombinant neurotrophin proteins. Transplantation of neurotrophin over-expressing Schwann cells into the cochlea may provide an alternative means of delivering neurotrophic factors to the deaf cochlea for therapeutic purposes.
Collapse
Affiliation(s)
- L N Pettingill
- The Bionic Ear Institute, 384 Albert Street, East Melbourne, Australia 3002.
| | | | | |
Collapse
|
31
|
Maruyama J, Miller JM, Ulfendahl M. Glial cell line-derived neurotrophic factor and antioxidants preserve the electrical responsiveness of the spiral ganglion neurons after experimentally induced deafness. Neurobiol Dis 2007; 29:14-21. [PMID: 17870569 PMCID: PMC2680080 DOI: 10.1016/j.nbd.2007.07.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 07/03/2007] [Accepted: 07/24/2007] [Indexed: 10/23/2022] Open
Abstract
Cochlear implant surgery is currently the therapy of choice for profoundly deaf patients. However, the functionality of cochlear implants depends on the integrity of the auditory spiral ganglion neurons. This study assesses the combined efficacy of two classes of agents found effective in preventing degeneration of the auditory nerve following deafness, neurotrophic factors, and antioxidants. Guinea pigs were deafened and treated for 4 weeks with either local administration of GDNF or a combination of GDNF and systemic injections of the antioxidants ascorbic acid and Trolox. The density of surviving spiral ganglion cells was significantly enhanced and the thresholds for eliciting an electrically evoked brain stem response were significantly reduced in GDNF treated animals compared to deafened-untreated. The addition of antioxidants significantly enhanced the evoked responsiveness over that observed with GDNF alone. The results suggest multiple sites of intervention in the rescue of these cells from deafferentation-induced cell death.
Collapse
Affiliation(s)
- Jun Maruyama
- Center for Hearing and Communication Research and Department of Clinical Neuroscience, Karolinska Institutet
- Department of Otolaryngology, Ehime University School of Medicine, Matsuyama, Japan
| | - Josef M. Miller
- Center for Hearing and Communication Research and Department of Clinical Neuroscience, Karolinska Institutet
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, USA
| | - Mats Ulfendahl
- Center for Hearing and Communication Research and Department of Clinical Neuroscience, Karolinska Institutet
- Department of Otolaryngology, Karolinska University Hospital – Solna, Stockholm, Sweden
- Corresponding author. Address for correspondence: Mats Ulfendahl, PhD, Center for Hearing and Communication Research, Building M1, Karolinska University Hospital, Solna, SE-171 76 Stockholm, Sweden, Phone: +46 8 51776307 Fax: +46 8 301876,
| |
Collapse
|
32
|
Huang LC, Thorne PR, Housley GD, Montgomery JM. Spatiotemporal definition of neurite outgrowth, refinement and retraction in the developing mouse cochlea. Development 2007; 134:2925-33. [PMID: 17626062 DOI: 10.1242/dev.001925] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The adult mammalian cochlea receives dual afferent innervation: the inner sensory hair cells are innervated exclusively by type I spiral ganglion neurons (SGN), whereas the sensory outer hair cells are innervated by type II SGN. We have characterized the spatiotemporal reorganization of the dual afferent innervation pattern as it is established in the developing mouse cochlea. This reorganization occurs during the first postnatal week just before the onset of hearing. Our data reveal three distinct phases in the development of the afferent innervation of the organ of Corti: (1) neurite growth and extension of both classes of afferents to all hair cells (E18-P0); (2) neurite refinement, with formation of the outer spiral bundles innervating outer hair cells (P0-P3); (3) neurite retraction and synaptic pruning to eliminate type I SGN innervation of outer hair cells, while retaining their innervation of inner hair cells (P3-P6). The characterization of this developmental innervation pattern was made possible by the finding that tetramethylrhodamine-conjugated dextran (TMRD) specifically labeled type I SGN. Peripherin and choline-acetyltransferase immunofluorescence confirmed the type II and efferent innervation patterns, respectively, and verified the specificity of the type I SGN neurites labeled by TMRD. These findings define the precise spatiotemporal neurite reorganization of the two afferent nerve fiber populations in the cochlea, which is crucial for auditory neurotransmission. This reorganization also establishes the cochlea as a model system for studying CNS synapse development, plasticity and elimination.
Collapse
Affiliation(s)
- Lin-Chien Huang
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | | | |
Collapse
|
33
|
Pettingill LN, Richardson RT, Wise AK, O'Leary SJ, Shepherd RK. Neurotrophic factors and neural prostheses: potential clinical applications based upon findings in the auditory system. IEEE Trans Biomed Eng 2007; 54:1138-48. [PMID: 17551571 PMCID: PMC1886005 DOI: 10.1109/tbme.2007.895375] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Spiral ganglion neurons (SGNs) are the target cells of the cochlear implant, a neural prosthesis designed to provide important auditory cues to severely or profoundly deaf patients. The ongoing degeneration of SGNs that occurs following a sensorineural hearing loss is, therefore, considered a limiting factor in cochlear implant efficacy. We review neurobiological techniques aimed at preventing SGN degeneration using exogenous delivery of neurotrophic factors. Application of these proteins prevents SGN degeneration and can enhance neurite outgrowth. Furthermore, chronic electrical stimulation of SGNs increases neurotrophic factor-induced survival and is correlated with functional benefits. The application of neurotrophic factors has the potential to enhance the benefits that patients can derive from cochlear implants; moreover, these techniques may be relevant for use with neural prostheses in other neurological conditions.
Collapse
MESH Headings
- Animals
- Cell Survival/drug effects
- Cell Survival/physiology
- Cochlea/drug effects
- Cochlea/physiopathology
- Cochlear Implants/trends
- Combined Modality Therapy
- Disease Models, Animal
- Electric Stimulation Therapy/instrumentation
- Electric Stimulation Therapy/methods
- Electrodes, Implanted
- Evoked Potentials, Auditory, Brain Stem/drug effects
- Evoked Potentials, Auditory, Brain Stem/physiology
- Hearing Loss, Sensorineural/pathology
- Hearing Loss, Sensorineural/physiopathology
- Hearing Loss, Sensorineural/therapy
- Membrane Potentials/physiology
- Nerve Degeneration/drug therapy
- Nerve Degeneration/physiopathology
- Nerve Degeneration/prevention & control
- Nerve Growth Factors/administration & dosage
- Neurons, Afferent/drug effects
- Neurons, Afferent/physiology
- Recovery of Function/drug effects
- Recovery of Function/physiology
- Spiral Ganglion/drug effects
- Spiral Ganglion/physiology
- Treatment Outcome
Collapse
|
34
|
Sekiya T, Kojima K, Matsumoto M, Holley MC, Ito J. Rebuilding lost hearing using cell transplantation. Neurosurgery 2007; 60:417-33; discussion 433. [PMID: 17327786 DOI: 10.1227/01.neu.0000249189.46033.42] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE The peripheral auditory nervous system (cochlea and auditory nerve) has a complex anatomy, and it has traditionally been thought that once the sensorineural structures are damaged, restoration of hearing is impossible. In the past decade, however, the potential to restore lost hearing has been intensively investigated using molecular and cell biological techniques, and we can now part with such a pessimistic view. In this review, we examine an important field in hearing restoration research: cell transplantation. METHODS Most efforts in this field have been directed to the replacement of hair cells by transplantation to the cochlea. Here, we focus on transplantation to the auditory nerve, from the side of the cerebellopontine angle rather than the cochlea. RESULTS Delivery of cells to the cochlea is potentially damaging, and nerve cells transplanted distally to the Schwann-glial transitional zone (cochlear side) may become inhibited when they reach the transitional zone. The auditory nerve is probably the most suitable route for cell transplantation. CONCLUSION The auditory nerve occupies an important position not only in neurosurgery but also in various diseases in other disciplines, and several lines of recent evidence indicate that it is a key target for hearing restoration. It is familiar to most neurosurgeons, and the recent advances in the molecular and cell biology of inner-ear development are of direct importance to neurorestorative medicine. In this article, we review the anatomy, development, and molecular biology of the auditory nerve and cochlea, with emphasis on the advances in cell transplantation.
Collapse
Affiliation(s)
- Tetsuji Sekiya
- Department of Otolaryngology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | | | | | | | | |
Collapse
|
35
|
Abstract
OBJECTIVE To determine if exogenous neurotrophins can prevent spiral ganglion neuron degeneration in the rat cochlea. BACKGROUND The loss of hair cells resulting in sensorineural hearing loss also leads to the secondary degeneration of spiral ganglion neurons. The effectiveness of cochlear implantation in patients with profound sensorineural hearing loss relies in part on the survival of spiral ganglion neurons; therefore, any therapy that can prevent or halt the loss of these neurons would be of potential clinical benefit. Previous research has shown that intracochlear infusion with neurotrophins can provide trophic support to SGNs in deafened guinea pigs. Whether this effect is seen in other species remains to be determined. METHODS After documenting the rate of spiral ganglion neuron degeneration after ototoxic deafening, we investigated the trophic effects of exogenous brain-derived neurotrophic factor (BDNF) on rat spiral ganglion neurons. The left cochleae of profoundly deafened rats were implanted with a drug delivery system connected to a mini-osmotic pump. BDNF or artificial perilymph was infused for 28 days; then the cochleae were prepared for histological study. RESULTS Treatment with BDNF led to a statistically significant increase in spiral ganglion neuron density and a highly significant increase in spiral ganglion neuron soma area compared with artificial perilymph-treated and untreated deafened cochleae. CONCLUSION The study has demonstrated the trophic advantage of exogenous BDNF in the mature rat cochlea and provides confidence that spiral ganglion neuron rescue after sensorineural hearing loss with exogenous BDNF may have clinical application.
Collapse
Affiliation(s)
- Sarah L McGuinness
- Department of Otolaryngology, University of Melbourne, East Melbourne, Victoria, Australia
| | | |
Collapse
|
36
|
Gillespie LN, Shepherd RK. Clinical application of neurotrophic factors: the potential for primary auditory neuron protection. Eur J Neurosci 2005; 22:2123-33. [PMID: 16262651 PMCID: PMC1831824 DOI: 10.1111/j.1460-9568.2005.04430.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Sensorineural hearing loss, as a result of damage to or destruction of the sensory epithelia within the cochlea, is a common cause of deafness. The subsequent degeneration of the neural elements within the inner ear may impinge upon the efficacy of the cochlear implant. Experimental studies have demonstrated that neurotrophic factors can prevent this degeneration in animal models of deafness, and can even provide functional benefits. Neurotrophic factor therapy may therefore provide similar protective effects in humans, resulting in improved speech perception outcomes among cochlear implant patients. There are, however, numerous issues pertaining to delivery techniques and treatment regimes that need to be addressed prior to any clinical application. This review considers these issues in view of the potential therapeutic application of neurotrophic factors within the auditory system.
Collapse
Affiliation(s)
- Lisa N Gillespie
- The Bionic Ear Institute, 384 Albert Street, East Melbourne, Australia 3002.
| | | |
Collapse
|
37
|
Zhang FX, Lai CH, Tse YC, Shum DKY, Chan YS. Expression of Trk receptors in otolith-related neurons in the vestibular nucleus of rats. Brain Res 2005; 1062:92-100. [PMID: 16256078 DOI: 10.1016/j.brainres.2005.09.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Revised: 09/18/2005] [Accepted: 09/25/2005] [Indexed: 01/19/2023]
Abstract
The expression of the three Trk receptors (TrkA, TrkB, and TrkC) in otolith-related neurons within the vestibular nuclei of adult Sprague-Dawley rats was examined immunohistochemically. Conscious animals were subjected to sinusoidal linear acceleration along either the anterior-posterior (AP) or interaural (IA) axis on the horizontal plane. Neuronal activation was defined by Fos expression in cell nuclei. Control animals, viz labyrinthectomized rats subjected to stimulation and normal rats that remained stationary, showed only a few sporadically scattered Fos-labeled neurons. Among experimental rats, the number of Fos-labeled neurons and their distribution pattern in each vestibular subnucleus in animals stimulated along the antero-posterior axis were similar to those along the interaural axis. No apparent topography was observed among neurons activated along these two directions. Only about one-third of the Trk-immunoreactive neurons in the vestibular nucleus expressed Fos. Double-labeled Fos/TrkA, Fos/TrkB and Fos/TrkC neurons constituted 85-98% of the total number of Fos-labeled neurons in vestibular nuclear complex and its subgroups x and y. Our findings suggest that Trk receptors and their cognate neurotrophins in central otolith neurons may contribute to the modulation of gravity-related spatial information during horizontal head movements.
Collapse
Affiliation(s)
- F X Zhang
- Department of Physiology, Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | | | | | | | | |
Collapse
|
38
|
Fritzsch B, Matei VA, Nichols DH, Bermingham N, Jones K, Beisel KW, Wang VY. Atoh1 null mice show directed afferent fiber growth to undifferentiated ear sensory epithelia followed by incomplete fiber retention. Dev Dyn 2005; 233:570-83. [PMID: 15844198 PMCID: PMC1242170 DOI: 10.1002/dvdy.20370] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Inner ear hair cells have been suggested as attractors for growing afferent fibers, possibly through the release of the neurotrophin brain-derived neurotrophic factor (BDNF). Atoh1 null mice never fully differentiate hair cells and supporting cells and, therefore, may show aberrations in the growth and/or retention of their innervation. We investigated the distribution of cells positive for Atoh1- or Bdnf-mediated beta-galactosidase expression in Atoh1 null and Atoh1 heterozygotic mice and correlated the distribution of these cells with their innervation. Embryonic day (E) 18.5 Atoh1 null and heterozygotic littermates show Atoh1- and BDNF-beta-galactosidase-positive cells in comparable distributions in the canal cristae and the cochlea apex. Atoh1-beta-galactosidase-positive but only occasional Bdnf-beta-galactosidase-positive cells are found in the utricle, saccule, and cochlea base of Atoh1 null mutant mice. Absence of Bdnf-beta-galactosidase expression in the utricle and saccule of Atoh1 null mice is first noted at E12.5, a time when Atoh1-beta-galactosidase expression is also first detected in these epithelia. These data suggest that expression of Bdnf is dependent on ATOH1 protein in some but does not require ATOH1 protein in other inner ear cells. Overall, the undifferentiated Atoh1- and Bdnf-beta-galactosidase-positive cells show a distribution reminiscent of that in the six sensory epithelia in control mice, suggesting that ear patterning processes can form discrete patches of Atoh1 and Bdnf expression in the absence of ATOH1 protein. The almost normal growth of afferent and efferent fibers in younger embryos suggests that neither fully differentiated hair cells nor BDNF are necessary for the initial targeted growth of fibers. E18.5 Atoh1 null mice have many afferent fibers to the apex of the cochlea, the anterior and the posterior crista, all areas with numerous Bdnf-beta-galactosidase-positive cells. Few fibers remain to the saccule, utricle, and the base of the cochlea, all areas with few or no Bdnf-beta-galactosidase-positive cells. Thus, retention of fibers is possible with BDNF, even in the absence of differentiated hair cells.
Collapse
Affiliation(s)
- B Fritzsch
- Creighton University, Department of Biomedical Sciences, Omaha, Nebraska 68178, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Affiliation(s)
- Ulla Pirvola
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | | |
Collapse
|
40
|
Fritzsch B, Tessarollo L, Coppola E, Reichardt LF. Neurotrophins in the ear: their roles in sensory neuron survival and fiber guidance. PROGRESS IN BRAIN RESEARCH 2004; 146:265-78. [PMID: 14699969 DOI: 10.1016/s0079-6123(03)46017-2] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We review the history of neurotrophins in the ear and the current understanding of the function of neurotrophins in ear innervation, development and maintenance. Only two neurotrophins, brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), and their receptors, tyrosine kinase B (TrkB) and TrkC, appear to provide trophic support for inner ear sensory neuron afferents. Mice lacking either both receptors or both ligands lose essentially all sensory innervation of targets in the vestibular and auditory systems of the ear. Analyzes of single mutants show less complete and differential effects on innervation of the different sensory organs within the ear. BDNF and TrkB are most important for survival of vestibular sensory neurons whereas NT-3 and TrkC are most important for survival of cochlear sensory neurons. The largely complementary roles of BDNF to TrkB and NT-3 to TrkC signaling do not reflect specific requirements for innervation of different classes of hair cells. Most neurons express both receptors. Instead, the losses observed in single mutants are related to the spatio-temporal expression pattern of the two neurotrophins. In an area where only one neurotrophin is expressed at a particular time in development, the other neurotrophin is not present to compensate for this absence, resulting in death of neurons innervating that region. Decisive evidence for this suggestion is provided by transgenic mice in which the BDNF coding region has been inserted into the NT-3 gene, resulting in expression of BDNF instead of NT-3. The expression of BDNF in the spatio-temporal pattern of NT-3 results in survival of almost all neurons that are normally lost in the NT-3 mutant. Thus, BDNF and NT-3 have a high level of functional equivalence for inner ear sensory neuron survival. Further analysis of the patterns of afferent fiber losses in mutations that do not develop differentiated hair cells shows that the expression of neurotrophins is remarkably strong and can support afferent innervation. Indeed, BDNF may be one of the earliest genes expressed selectively in hair cells and it appears to be regulated somewhat independently of the genes needed for hair cell differentiation.
Collapse
Affiliation(s)
- Bernd Fritzsch
- Creighton University, Department of Biomedical Sciences, Omaha, NE 68178, USA.
| | | | | | | |
Collapse
|
41
|
Abstract
Tyrosine kinase receptors, including Trk A, Trk B and Trk C, participate in many different biological processes that are regulated by neurotrophic factors. Nerve growth factor (NGF)-triggered Trk A signaling is involved in growth, survival and differentiation of neurons in the central nervous system and in neural crest-derived cells. Trk A, Trk B and Trk C expression has been reported in the rat ventral cochlear nucleus. In the present study, we explored the immunocytochemical distribution of Trk A in the rodent inner ear. Rat and mouse cochleae were immunolabeled with a rabbit anti-Trk A polyclonal antibody (Chemicon) that has no reported cross-reactivity with Trk B and Trk C. In embryonic day 16 mice, no Trk A immunolabeling could be detected in the developing neuroepithelium. At postnatal day 6, weak Trk A labeling could be observed in both inner and outer hair cells. At postnatal day 12, enhanced punctate Trk A immunoexpression was present in hair cells. In adult mice and rats, intense Trk A labeling was observed in outer and inner hair cell bodies, in supporting cell bodies throughout the cochlea, and in spiral ganglion neurons. Trk A was not observed in stria vascularis, hair cell stereocilia, nor in the Trk B- and Trk C-rich cerebellum. This distribution pattern of Trk A suggests that its ligand, NGF, exerts significant trophic effects in the rodent inner ear.
Collapse
Affiliation(s)
- C.F Dai
- Oregon Hearing Research Center, NRC04, Department of Otolaryngology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
- Department of Otolaryngology, E&ENT Hospital, Fudan University, Shanghai 200031, PR China
| | - P.S. Steyger
- Oregon Hearing Research Center, NRC04, Department of Otolaryngology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Z.M. Wang
- Department of Otolaryngology, E&ENT Hospital, Fudan University, Shanghai 200031, PR China
| | - Z. Vass
- Department of Otolaryngology, Albert Szent-Gyoryi Medical University, H-6725 Szeged, Hungary
| | - A.L. Nuttall
- Oregon Hearing Research Center, NRC04, Department of Otolaryngology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
42
|
Chan YS, Chen LW, Lai CH, Shum DKY, Yung KKL, Zhang FX. Receptors of glutamate and neurotrophin in vestibular neuronal functions. J Biomed Sci 2003. [DOI: 10.1007/bf02256307] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
43
|
Schimmang T, Tan J, Müller M, Zimmermann U, Rohbock K, Kôpschall I, Limberger A, Minichiello L, Knipper M. Lack of Bdnf and TrkB signalling in the postnatal cochlea leads to a spatial reshaping of innervation along the tonotopic axis and hearing loss. Development 2003; 130:4741-50. [PMID: 12925599 DOI: 10.1242/dev.00676] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Members of the neurotrophin gene family and their high-affinity Trk receptors control innervation of the cochlea during embryonic development. Lack of neurotrophin signalling in the cochlea has been well documented for early postnatal animals, resulting in a loss of cochlear sensory neurones and a region-specific reduction of target innervation along the tonotopic axis. However, how reduced neurotrophin signalling affects the innervation of the mature cochlea is currently unknown. Here, we have analysed the consequences of a lack of the TrkB receptor and its ligand, the neurotrophin brain-derived neurotrophic factor (Bdnf), in the late postnatal or adult cochlea using mouse mutants. During early postnatal development, mutant animals show a lack of afferent innervation of outer hair cells in the apical part of the cochlea, whereas nerve fibres in the basal part are maintained. Strikingly, this phenotype is reversed during subsequent maturation of the cochlea, which results in a normal pattern of outer hair cell innervation in the apex and loss of nerve fibres at the base in adult mutants. Measurements of auditory brain stem responses of these mice revealed a significant hearing loss. The observed innervation patterns correlate with opposing gradients of Bdnf and Nt3 expression in cochlear neurones along the tonotopic axis. Thus, the reshaping of innervation may be controlled by autocrine signalling between neurotrophins and their receptors in cochlear neurones. Our results indicate a substantial potential for re-innervation processes in the mature cochlea, which may also be of relevance for treatment of hearing loss in humans.
Collapse
Affiliation(s)
- Thomas Schimmang
- Center for Molecular Neurobiology Hamburg, University of Hamburg, Falkenreid, Hamburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kalinec GM, Webster P, Lim DJ, Kalinec F. A cochlear cell line as an in vitro system for drug ototoxicity screening. Audiol Neurootol 2003; 8:177-89. [PMID: 12811000 DOI: 10.1159/000071059] [Citation(s) in RCA: 263] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2002] [Accepted: 01/10/2003] [Indexed: 11/19/2022] Open
Abstract
Aminoglycoside antibiotics, loop diuretics, antineoplastic agents and other commonly used pharmacological drugs are ototoxic. Understanding of the cellular and molecular mechanisms underlying drug ototoxicity, however, has been hampered by the limited availability of inner ear tissues and drug side effects on laboratory animals. Immortalized cell lines derived from the auditory sensory organ, sensitive to ototoxic drugs and growing in environments that can be systematically manipulated, would facilitate the research directed at elucidating these mechanisms. Such immortalized cell lines could also be used to discover novel therapeutic agents for preventing drug-induced sensorineural hearing loss. Here, we report a conditionally immortalized organ of Corti-derived epithelial cell line, which shows evidence of activation of apoptosis when exposed to known ototoxic drugs. This cell line may be an excellent in vitro system to investigate the cellular and molecular mechanisms involved in ototoxicity and for screening of the potential ototoxicity or otoprotective properties of new pharmacological drugs.
Collapse
Affiliation(s)
- Gilda M Kalinec
- Section on Cell Structure and Function, Department of Cell and Molecular Biology, House Ear Institute, Los Angeles, California 90057, USA
| | | | | | | |
Collapse
|
45
|
Luikart BW, Nef S, Shipman T, Parada LF. In vivo role of truncated trkb receptors during sensory ganglion neurogenesis. Neuroscience 2003; 117:847-58. [PMID: 12654337 DOI: 10.1016/s0306-4522(02)00719-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The mammalian trkB locus undergoes alternative splicing to produce two different types of brain-derived neurotrophic factor receptors. The first type is the full-length receptor tyrosine kinase (TrkB(Tk+); the second type is a truncated receptor lacking the intracellular tyrosine kinase domain (TrkB(Tk-)). To investigate the function of both types of TrkB receptor in vivo, we have generated knockout mice lacking all isoforms of the TrkB receptor (trkB-/-) and compared sensory neuron survival in these mice to that in the previously described TrkB kinase domain knockout mice (trkB(k)-/-). We observed that the presence of truncated TrkB receptors in trkB(k)-/- mice results in more severe sensory neuron losses. Increased neuron losses associated with the presence of truncated TrkB were most severe in regions where neuron survival is most dependent on brain-derived neurotrophic factor and neurotrophin-3. Our data suggest that truncated TrkB receptors negatively influence neuron survival by interfering with the function of catalytic TrkB receptors.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Carbocyanines
- Catalytic Domain/genetics
- Cell Death/genetics
- Cell Differentiation/genetics
- Cell Survival/genetics
- Cochlea/growth & development
- Cochlea/innervation
- Cochlea/metabolism
- Ganglia, Sensory/cytology
- Ganglia, Sensory/growth & development
- Ganglia, Sensory/metabolism
- Mice
- Mice, Knockout
- Models, Biological
- Nerve Growth Factors/metabolism
- Neurons, Afferent/cytology
- Neurons, Afferent/metabolism
- Protein Isoforms/genetics
- Receptor, trkB/deficiency
- Receptor, trkB/genetics
- Receptor, trkC/genetics
- Receptor, trkC/metabolism
- Signal Transduction/genetics
- Spiral Ganglion/cytology
- Spiral Ganglion/growth & development
- Spiral Ganglion/metabolism
- Survival Rate
- Up-Regulation/genetics
Collapse
Affiliation(s)
- B W Luikart
- Center for Developmental Biology, Kent Waldrep Foundation, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, 75390-9133, Dallas, TX, USA
| | | | | | | |
Collapse
|
46
|
Zou J, Bretlau P, Pyykkö I, Toppila E, Olovius NP, Stephanson N, Beck O, Miller JM. Comparison of the protective efficacy of neurotrophins and antioxidants for vibration-induced trauma. ORL J Otorhinolaryngol Relat Spec 2003; 65:155-61. [PMID: 12925816 DOI: 10.1159/000072253] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2002] [Accepted: 04/25/2003] [Indexed: 11/19/2022]
Abstract
BACKGROUND Patients undergoing temporal bone surgery or subjects working with vibrating tools may develop vibration-induced hearing loss (VHL). The aim of this study was to characterize the effects of pretreatment with N-acetylcysteine (NAC) or the neurotrophic factors, brain-derived neurotrophic factor (BDNF) and ciliary neurotrophic factor (CNTF), on VHL in an animal model. METHODS Trauma to the cochlea was created with a vibrating probe placed on the bone of the external ear canal. BDNF and CNTF(Ax1) were delivered into the cochlea with mini-osmotic pumps. NAC was delivered into the cochlea by round window membrane (RWM) injection, by RWM permeation, or by oral administration. Hearing was evaluated with electrocochleography (ECoG). RESULTS For control animals, vibration resulted in an average immediate threshold shift of 42 +/- 26 dB. NAC provided no protective benefit in animals subjected to VHL, regardless of the delivery method, with average threshold shifts varying from 38 to 56 dB across groups. NAC injection through the round window membrane was toxic, causing a ECoG threshold shift of >25 dB. In BDNF+CNTF(Ax1)-treated animals, immediate hearing loss was similar to that in control animals. There was a trend of threshold recovery by 1 day after vibration; however, the improvement was not statistically significant, nor was there a significant difference in 1-day thresholds across groups. CONCLUSIONS Local infusion of BDNF and CNTF(Ax1) may enhance the rate of recovery from VHL, compared to control animals. In contrast, NAC had no effect on VHL, and when delivered by RWM injection, was actually toxic to the inner ear.
Collapse
Affiliation(s)
- Jing Zou
- Department of Otolaryngology, Tampere University Hospital, Teiskontie 35, FI-33521 Tampere, Finland
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Gillespie LN, Clark GM, Bartlett PF, Marzella PL. BDNF-induced survival of auditory neurons in vivo: Cessation of treatment leads to accelerated loss of survival effects. J Neurosci Res 2003; 71:785-90. [PMID: 12605404 DOI: 10.1002/jnr.10542] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neurotrophic factors are important for the development and maintenance of the auditory system. They have also been shown to act as survival factors for auditory neurons in animal deafness models. Studies have demonstrated recently that these neurotrophic factors not only maintain survival of auditory neurons, but that these surviving neurons retain functionality. It remains to be determined, however, if a single administration of a neurotrophic factor is sufficient to maintain auditory neuron survival after loss of hair cells, or if sustained delivery is required. This study investigated the longevity of the survival effects of BDNF on auditory neurons in deafened guinea pigs. Briefly, the left cochleae of deafened guinea pigs were infused with BDNF for 28 days via a mini-osmotic pump, and neuronal survival was analyzed at various stages after the completion of treatment. BDNF treatment prevented the degeneration of auditory neurons that normally is seen after a loss of hair cells, supporting previous studies. Our results indicate, however, that cessation of BDNF treatment leads to an accelerated decline in auditory neuron survival as compared to that observed in deafened, untreated cochleae. These findings indicate that much work remains to be done to establish a technique for the long-term survival of auditory neurons in the deaf ear.
Collapse
Affiliation(s)
- Lisa N Gillespie
- Department of Otolaryngology, The University of Melbourne, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
| | | | | | | |
Collapse
|
48
|
Xiang M, Maklad A, Pirvola U, Fritzsch B. Brn3c null mutant mice show long-term, incomplete retention of some afferent inner ear innervation. BMC Neurosci 2003; 4:2. [PMID: 12585968 PMCID: PMC149366 DOI: 10.1186/1471-2202-4-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2002] [Accepted: 01/30/2003] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Ears of Brn3c null mutants develop immature hair cells, identifiable only by certain molecular markers, and undergo apoptosis in neonates. This partial development of hair cells could lead to enough neurotrophin expression to sustain sensory neurons through embryonic development. We have therefore investigated in these mutants the patterns of innervation and of expression of known neurotrophins. RESULTS At birth there is a limited expression of BDNF and NT-3 in the mutant sensory epithelia and DiI tracing shows no specific reduction of afferents or efferents that resembles neurotrophin null mutations. At postnatal day 7/8 (P7/8), innervation is severely reduced both qualitatively and quantitatively. 1% of myosin VIIa-positive immature hair cells are present in the mutant cochlea, concentrated in the base. Around 20% of immature hair cells exist in the mutant vestibular sensory epithelia. Despite more severe loss of hair cells (1% compared to 20%), the cochlea retains many more sensory neurons (46% compared to 15%) than vestibular epithelia. Even 6 months old mutant mice have some fibers to all vestibular sensory epithelia and many more to the cochlear apex which lacks MyoVIIa positive hair cells. Topologically organized central cochlea projections exist at least until P8, suggesting that functional hair cells are not required to establish such projections. CONCLUSION The limited expression of neurotrophins in the cochlea of Brn3c null mice suffices to support many sensory neurons, particularly in the cochlea, until birth. The molecular nature of the long term survival of apical spiral neurons remains unclear.
Collapse
MESH Headings
- Age Factors
- Animals
- Animals, Newborn
- Brain-Derived Neurotrophic Factor/metabolism
- Carbocyanines
- Cell Count/methods
- Dyneins/metabolism
- Ear, Inner/growth & development
- Ear, Inner/innervation
- Ear, Inner/pathology
- Embryo, Mammalian
- Gene Expression Regulation, Developmental/genetics
- Hair Cells, Auditory, Inner/metabolism
- Homeodomain Proteins
- Immunohistochemistry/methods
- In Situ Hybridization/methods
- Mice
- Mice, Knockout
- Microscopy, Confocal/methods
- Myosin VIIa
- Myosins/metabolism
- Neurons, Afferent/metabolism
- Neurons, Afferent/physiology
- Neurotrophin 3/metabolism
- RNA, Messenger/metabolism
- Spiral Ganglion/cytology
- Transcription Factor Brn-3C/deficiency
Collapse
Affiliation(s)
- Mengqing Xiang
- Center for Advanced Biotechnology and Medicine and Department of Pediatrics, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | - Adel Maklad
- Creighton University, Dept. of Biomedical Sciences, Omaha, NE 68178, USA
| | - Ulla Pirvola
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Bernd Fritzsch
- Creighton University, Dept. of Biomedical Sciences, Omaha, NE 68178, USA
| |
Collapse
|
49
|
Abstract
Evolution shaped the vertebrate ear into a complicated three-dimensional structure and positioned the sensory epithelia so that they can extract specific aspects of mechanical stimuli to govern vestibular and hearing-related responses of the whole organism. This information is conducted from the ear via specific neuronal connections to distinct areas of the hindbrain for proper processing. During development, the otic placode, a simple sheet of epidermal cells, transforms into a complicated system of ducts and recesses. This placode also generates the mechanoelectrical transducers, the hair cells, and sensory neurons of the vestibular and cochlear (spiral) ganglia of the ear. We argue that ear development can be broken down into dynamic processes that use a number of known and unknown genes to govern the formation of the three-dimensional labyrinth in an interactive fashion. Embedded in this process, but in large part independent of it, is an evolutionary conserved process that induces early the development of the neurosensory component of the ear. We present molecular data suggesting that this later process is, in its basic aspects, related to the mechanosensory cell formation across phyla and is extremely conserved at the molecular level. We suggest that sensory neuron development and maintenance are vertebrate or possibly chordate novelties and present the molecular data to support this notion.
Collapse
Affiliation(s)
- B Fritzsch
- Creighton University, Department of Biomedical Sciences, Omaha, Nebraska 68178, USA
| | | |
Collapse
|
50
|
Sobkowicz HM, August BK, Slapnick SM. Influence of neurotrophins on the synaptogenesis of inner hair cells in the deaf Bronx waltzer (bv) mouse organ of Corti in culture. Int J Dev Neurosci 2002; 20:537-54. [PMID: 12485622 DOI: 10.1016/s0736-5748(02)00084-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
UNLABELLED The Bronx waltzer (bv) deaf mouse is characterized by massive degeneration of the primary auditory receptors, the inner hair cells, which occurs during the time of expected afferent synaptogenesis. The process is associated with degeneration and protracted division of the normally postmitotic afferent spiral ganglion neurons. To investigate the potential role of neurotrophins in the afferent synaptogenesis of inner hair cells, we exposed bv newborn cochleas in organotypic culture to brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and nerve growth factor (NGF), and also to gamma aminobutyric acid (GABA), for up to 8 days. The study was done using light and electron microscopy. Only about 20% of the inner hair cells survived in culture, regardless of the treatment, similar to the number in the intact mutant in our colony. Depending on the exogenous treatment, this population consisted of either innervated ultrastructurally normal cells or denervated dedifferentiated cells wrapped-in lieu of nerve endings-by the supporting inner phalangeal and border cells. In the control and GABA cultures, inner hair cells were mostly denervated. BDNF and NT-3 alone or combined increased synaptogenesis and hair cell survival only during the first 3 days (by about 10%); however, the cells became denervated by 8 postnatal (PN). Only NGF induced stable innervation and differentiation of neurosensory relationships, including supernumerary innervation characteristic of the intact bv. Denervation among the remaining 20% of inner hair cells induced a reactive wrapping by inner phalangeal and border cells which evidently extended inner hair cell survival. Immunocytochemical studies of these reactive supporting cells were done in the intact (8 PN) mutant cochlea. The supporting cells that provide sustenance to the denervated inner hair cells displayed strong BDNF (and possibly NT-3) immunoreactivity. Subsequently, we revealed the presence of all three neurotrophins in the inner hair cell region of the developing (1-8 PN) cochlea of the normal ICR mouse. The inner hair cells expressed all three neurotrophins; BDNF prevailed in the inner phalangeal cells, NT-3 in the pillar cells and inner phalangeal cells, and NGF in the pillar cells. IN CONCLUSION initially, the 80% loss of inner hair cells is apparently caused by their failed afferent synaptogenesis. Exogenous neurotrophins influence synaptogenesis in the bv in culture, but NGF alone is successful in promoting stable neurosensory relationships. The presence of neurotrophins in supporting cells in the normal and degenerating cochlea indicates their role in the sustenance of inner hair cells.
Collapse
MESH Headings
- Aging/drug effects
- Aging/physiology
- Animals
- Animals, Newborn
- Brain-Derived Neurotrophic Factor/pharmacology
- Cell Count
- Cell Differentiation/drug effects
- Cell Line
- Cell Survival
- Deafness/physiopathology
- Hair Cells, Auditory, Inner/abnormalities
- Hair Cells, Auditory, Inner/drug effects
- Hair Cells, Auditory, Inner/physiopathology
- Hair Cells, Auditory, Inner/ultrastructure
- Mice
- Mice, Mutant Strains
- Nerve Degeneration/drug therapy
- Nerve Degeneration/embryology
- Nerve Degeneration/pathology
- Nerve Growth Factor/pharmacology
- Nerve Growth Factors/pharmacology
- Neurotrophin 3/pharmacology
- Organ of Corti/abnormalities
- Organ of Corti/drug effects
- Organ of Corti/ultrastructure
- Reference Values
- Synapses/drug effects
- Synapses/physiology
- Synapses/ultrastructure
- gamma-Aminobutyric Acid/pharmacology
Collapse
Affiliation(s)
- Hanna M Sobkowicz
- Neurology Department, University of Wisconsin, 1300 University Avenue, Room 75 MSC, Madison 53706, USA.
| | | | | |
Collapse
|