1
|
Atallah N, Gaudichon C, Boulier A, Baniel A, Azzout-Marniche D, Khodorova N, Chaumontet C, Piedcoq J, Chapelais M, Calvez J. Moderate adiposity levels counteract protein metabolism modifications associated with aging in rats. Eur J Nutr 2022; 61:3189-3200. [PMID: 35435502 DOI: 10.1007/s00394-022-02881-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/22/2022] [Indexed: 12/01/2022]
Abstract
PURPOSE Physiological parameters such as adiposity and age are likely to influence protein digestion and utilization. The aim of this study was to evaluate the combined effects of age and adiposity on casein protein and amino acid true digestibility and its postprandial utilization in rats. METHODS Four groups were included (n = 7/8): 2 months/normal adiposity, 2 months/high adiposity, 11 months/normal adiposity and 11 months/high adiposity. Rats were given a calibrated meal containing 15N-labeled casein (Ingredia, Arras, France) and were euthanized 6 h later. Digestive contents were collected to assess protein and amino acid digestibilities. 15N enrichments were measured in plasma and urine to determine total body deamination. Fractional protein synthesis rate (FSR) was determined in different organs using a flooding dose of 13C valine. RESULTS Nitrogen and amino acid true digestibility of casein was around 95-96% depending on the group and was increased by 1% in high adiposity rats (P = 0.04). Higher adiposity levels counteracted the increase in total body deamination (P = 0.03) that was associated with older age. Significant effects of age (P = 0.006) and adiposity (P = 0.002) were observed in the muscle FSR, with age decreasing it and adiposity increasing it. CONCLUSION This study revealed that a higher level of adiposity resulted in a slight increase in protein and individual amino acid true digestibility values and seemed to compensate for the metabolic postprandial protein alterations observed at older age.
Collapse
Affiliation(s)
- Nathalie Atallah
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005, Paris, France.,Ingredia S.A., 62033, Arras Cedex, France.,UMR Transfrontalière BioEcoAgro N°1158, University Lille, INRAE, University Liège, UPJV, YNCREA, University Artois, University Littoral Côte d'Opale, ICV - Institut Charles Viollette, 59000, Lille, France
| | - Claire Gaudichon
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005, Paris, France
| | | | | | | | - Nadezda Khodorova
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005, Paris, France
| | | | - Julien Piedcoq
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005, Paris, France
| | - Martin Chapelais
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005, Paris, France
| | - Juliane Calvez
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005, Paris, France.
| |
Collapse
|
2
|
Szymaszkiewicz A, Talar M, Włodarczyk J, Świerczyński M, Bartoszek A, Krajewska J, Mokrowiecka A, Małecka-Wojciesko E, Fichna J, Zielińska M. The Involvement of the Endogenous Opioid System in the Gastrointestinal Aging in Mice and Humans. Int J Mol Sci 2022; 23:ijms23073565. [PMID: 35408926 PMCID: PMC8998735 DOI: 10.3390/ijms23073565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 02/01/2023] Open
Abstract
Nearly 20% of elderly patients suffer from constipation, but the age-related changes in the gastrointestinal (GI) tract remain insufficiently elucidated. In this study, the alterations within the endogenous opioid system (EOS) as a potential cause of constipation in the elderly were evaluated. The GI functions were assessed in vitro and in vivo and compared between 6-, 12- and 18-month old mice. Moreover, the effect of opioid receptor (MOP, DOP, KOP) agonists on the mouse GI tract functions and the EOS components expression in mouse tissues and colonic biopsies from patients with functional constipation were determined. In the oldest mice, the GI peristalsis was significantly impaired as compared to the younger groups. The tissue response to MOP and DOP, but not KOP, agonists weakened with age in vitro; for DOP, it was confirmed in vivo. In the mouse upper GI tract, Oprm1, Oprd1, Oprk1 expression decreased with age; in the colon, Oprm1 expression increased. There were no differences in the expression of these genes in the colonic biopsies from patients >50 years old as compared to the younger group. In conclusion, the age-related impairment of the GI peristalsis may result from reduced MOP and DOP response to the activation with opioid agonists or the alterations in the EOS expression.
Collapse
Affiliation(s)
- Agata Szymaszkiewicz
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (A.S.); (M.T.); (J.W.); (M.Ś.); (A.B.); (J.K.); (J.F.)
| | - Marcin Talar
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (A.S.); (M.T.); (J.W.); (M.Ś.); (A.B.); (J.K.); (J.F.)
| | - Jakub Włodarczyk
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (A.S.); (M.T.); (J.W.); (M.Ś.); (A.B.); (J.K.); (J.F.)
| | - Mikołaj Świerczyński
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (A.S.); (M.T.); (J.W.); (M.Ś.); (A.B.); (J.K.); (J.F.)
| | - Adrian Bartoszek
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (A.S.); (M.T.); (J.W.); (M.Ś.); (A.B.); (J.K.); (J.F.)
| | - Julia Krajewska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (A.S.); (M.T.); (J.W.); (M.Ś.); (A.B.); (J.K.); (J.F.)
| | - Anna Mokrowiecka
- Department of Digestive Tract Diseases, Medical University of Lodz, 90-153 Lodz, Poland; (A.M.); (E.M.-W.)
| | - Ewa Małecka-Wojciesko
- Department of Digestive Tract Diseases, Medical University of Lodz, 90-153 Lodz, Poland; (A.M.); (E.M.-W.)
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (A.S.); (M.T.); (J.W.); (M.Ś.); (A.B.); (J.K.); (J.F.)
| | - Marta Zielińska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (A.S.); (M.T.); (J.W.); (M.Ś.); (A.B.); (J.K.); (J.F.)
- Correspondence: ; Tel.: +42-272-57-07
| |
Collapse
|
3
|
Rastelli D, Robinson A, Lagomarsino VN, Matthews LT, Hassan R, Perez K, Dan W, Yim PD, Mixer M, Prochera A, Shepherd A, Sun L, Hall K, Ballou S, Lembo A, Nee J, Rao M. Diminished androgen levels are linked to irritable bowel syndrome and cause bowel dysfunction in mice. J Clin Invest 2021; 132:150789. [PMID: 34847080 PMCID: PMC8759776 DOI: 10.1172/jci150789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 11/24/2021] [Indexed: 11/17/2022] Open
Abstract
Functional gastrointestinal disorders (FGIDs) have prominent sex differences in incidence, symptoms, and treatment response that are not well understood. Androgens are steroid hormones present at much higher levels in males than females and could be involved in these differences. In adults with irritable bowel syndrome (IBS), a FGID that affects 5-10% of the population worldwide, we found that free testosterone levels were lower than those in healthy controls and inversely correlated with symptom severity. To determine how this diminished androgen signaling could contribute to bowel dysfunction, we depleted gonadal androgens in adult mice and found that this caused a profound deficit in gastrointestinal transit. Restoring a single androgen hormone was sufficient to rescue this deficit, suggesting that circulating androgens are essential for normal bowel motility in vivo. To determine the site of action, we probed androgen receptor expression in the intestine and discovered, unexpectedly, that a large subset of enteric neurons became androgen-responsive upon puberty. Androgen signaling to these neurons was required for normal colonic motility in adult mice. Taken together, these observations establish a role for gonadal androgens in the neural regulation of bowel function and link altered androgen levels with a common digestive disorder.
Collapse
Affiliation(s)
- Daniella Rastelli
- Department of Pediatrics, Boston Children's Hospital, Boston, United States of America
| | - Ariel Robinson
- Department of Pediatrics, Boston Children's Hospital, Boston, United States of America
| | | | - Lynley T Matthews
- Department of Pediatrics, Columbia University Medical Center, New York, United States of America
| | - Rafla Hassan
- Department of Pediatrics, Beth Israel Deaconess Medical Center, Boston, United States of America
| | - Kristina Perez
- Department of Pediatrics, Boston Children's Hospital, Boston, United States of America
| | - William Dan
- Department of Anesthesiology, Columbia University Medical Center, New York, United States of America
| | - Peter D Yim
- Department of Anesthesiology, Columbia University Medical Center, New York, United States of America
| | - Madison Mixer
- Department of Pediatrics, Boston Children's Hospital, Boston, United States of America
| | - Aleksandra Prochera
- Department of Pediatrics, Boston Children's Hospital, Boston, United States of America
| | - Amy Shepherd
- Department of Pediatrics, Boston Children's Hospital, Boston, United States of America
| | - Liang Sun
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, United States of America
| | - Kathryn Hall
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, United States of America
| | - Sarah Ballou
- Department of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, United States of America
| | - Anthony Lembo
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, United States of America
| | - Judy Nee
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, United States of America
| | - Meenakshi Rao
- Department of Pediatrics, Boston Children's Hospital, Boston, United States of America
| |
Collapse
|
4
|
Pinto L, Soares G, Próspero A, Stoppa E, Biasotti G, Paixão F, Santos A, Oliveira R, Miranda J. An easy and low-cost biomagnetic methodology to study regional gastrointestinal transit in rats. ACTA ACUST UNITED AC 2021; 66:405-412. [PMID: 33544465 DOI: 10.1515/bmt-2020-0202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/19/2021] [Indexed: 12/12/2022]
Abstract
The identification of gastrointestinal (GI) motility disorders requires the evaluation of regional GI transit, and the development of alternative methodologies in animals has a significant impact on translational approaches. Therefore, the purpose of this study was to validate an easy and low-cost methodology (alternate current biosusceptometry - ACB) for the assessment of regional GI transit in rats through images. Rats were fed a test meal containing magnetic tracer and phenol red, and GI segments (stomach, proximal, medial and distal small intestine, and cecum) were collected to assess tracer's retention at distinct times after ingestion (0, 60, 120, 240, and 360 min). Images were obtained by scanning the segments, and phenol red concentration was determined by the sample's absorbance. The temporal retention profile, geometric center, gastric emptying, and cecum arrival were evaluated. The correlation coefficient between methods was 0.802, and the temporal retention of each segment was successfully assessed. GI parameters yielded comparable results between methods, and ACB images presented advantages as the possibility to visualize intrasegmental tracer distribution and the automated scan of the segments. The imaging approach provided a reliable assessment of several parameters simultaneously and may serve as an accurate and sensitive approach for regional GI research in rats.
Collapse
Affiliation(s)
- Leonardo Pinto
- Department of Biophysics and Pharmacology, São Paulo State University, Biosciences Institute of Botucatu, Botucatu, Brazil
| | - Guilherme Soares
- Department of Biophysics and Pharmacology, São Paulo State University, Biosciences Institute of Botucatu, Botucatu, Brazil
| | - André Próspero
- Department of Biophysics and Pharmacology, São Paulo State University, Biosciences Institute of Botucatu, Botucatu, Brazil
| | - Erick Stoppa
- Department of Biophysics and Pharmacology, São Paulo State University, Biosciences Institute of Botucatu, Botucatu, Brazil
| | - Gabriel Biasotti
- Department of Biophysics and Pharmacology, São Paulo State University, Biosciences Institute of Botucatu, Botucatu, Brazil
| | - Fabiano Paixão
- Science and Technology Institute, Federal University of São Paulo, São José dos Campos, Brazil
| | - Armênio Santos
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | - Ricardo Oliveira
- Ribeirão Preto Medical School, São Paulo University, Ribeirão Preto, Brazil
| | - José Miranda
- Department of Biophysics and Pharmacology, São Paulo State University, Biosciences Institute of Botucatu, Botucatu, Brazil
| |
Collapse
|
5
|
Langdale CL, Degoski D, Milliken PH, Grill WM. Voiding behavior in awake unrestrained untethered spontaneously hypertensive and Wistar control rats. Am J Physiol Renal Physiol 2021; 321:F195-F206. [PMID: 34151591 DOI: 10.1152/ajprenal.00564.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The spontaneously hypertensive rat (SHR), a genetic model of high blood pressure, has also been studied as a potential model of overactive bladder. In vivo studies have confirmed the presence of surrogate markers of overactive bladder, including detrusor overactivity, increased urinary frequency, decreased bladder capacity and voided volume (VV), and afferent hypersensitivity to bladder irritation. However, these observations were during awake cystometry using implanted bladder catheters tethered to an infusion pump and artificially filled. We conducted experiments in awake unrestrained untethered age-matched female SHRs and Wistar rats to quantify naïve consumption and voiding behavior and the effect of capsaicin desensitization on consumption and voiding behavior. Food and water consumption, body weight, voiding frequency, and VV were recorded. Rats were placed in metabolism cages for 24 h, up to twice a week, from 17 to 37 wk of age. Compared with Wistar rats, SHRs exhibited decrease in VV and did not exhibit diurnal variation in VV between light and dark periods, suggesting that SHRs may have bladder hypersensitivity. Furthermore, SHRs may also have smaller bladder capacities, as they consumed less water, voided less volume (regardless of light cycle), and had equal urinary frequencies compared with age-matched Wistar rats. We detected no change in SHR voiding behavior following capsaicin desensitization, which was in contrast to a prior awake in vivo cystometry study describing increased VV and micturition interval in SHRs and suggests that C-fiber activity may not contribute to bladder hypersensitivity in SHRs.NEW & NOTEWORTHY We characterized the long-term (20 wk) voiding, defecation, and consumption behavior of age-matched spontaneously hypertensive and Wistar rats without the influence of anesthesia or catheters. Spontaneously hypertensive rats exhibited bladder hypersensitiviy that persisted for the 20-wk duration and was unaffected by capsacin desensitization.
Collapse
Affiliation(s)
| | - Danielle Degoski
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | | | - Warren M Grill
- Department of Biomedical Engineering, Duke University, Durham, North Carolina.,Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina.,Department of Neurobiology, Duke University, Durham, North Carolina.,Department of Neurosurgery, Duke University, Durham, North Carolina
| |
Collapse
|
6
|
Shen X, Zhang L, Jiang L, Xiong W, Tang Y, Lin L, Yu T. Alteration of sphingosine-1-phosphate with aging induces contractile dysfunction of colonic smooth muscle cells via Ca 2+ -activated K + channel (BK Ca ) upregulation. Neurogastroenterol Motil 2021; 33:e14052. [PMID: 33452855 DOI: 10.1111/nmo.14052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/13/2020] [Accepted: 11/13/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND Age-associated changes alter calcium-activated potassium channel (BKCa ) expression of colon. Sphingolipids (SLs) are important cell membrane structural components; altered composition of SLs may affect BKCa expression. This study investigated the mechanism by which sphingosine-1-phosphate (S1P) contributes to age-associated contractile dysfunction. METHODS Fifty male Sprague Dawley rats of different ages were randomly assigned to five age-groups, namely 3, 6, 12, 18, and 24 months. BKCa expression, S1P levels, and phosphorylated myosin light chain (p-MLC) levels were tested in colonic tissues. In the absence and presence of S1P treatment, BKCa expression, p-MLC levels, and intracellular calcium mobilization were tested in vitro. BKCa small interfering RNA (siRNA) was used to investigate whether p-MLC expression and calcium mobilization were affected by BKCa in colonic smooth muscle cells (SMCs). The expressions of phosphorylated protein kinase B, c-Jun N-terminal kinases (JNKs), extracellular-regulated protein kinases, nuclear factor kappa-B (NF-κB), and protein kinase Cζ (PKCζ ) were examined to investigate the correlation between S1P and BKCa . KEY RESULTS Sphingosine-1-phosphate levels and sphingosine-1-phosphate receptor 2 (S1PR2) and BKCa expressions were upregulated and p-MLC expression was downregulated in the colonic tissues, age dependently. In the cultured SMCs, S1P treatment increased BKCa expression and reduced calcium concentration and p-MLC was observed. BKCa siRNA increased calcium concentration, and p-MLC levels significantly compared with control. We also showed that S1P upregulated BKCa through PKCζ , JNK, and NF-κB pathways. CONCLUSIONS AND INFERENCES In conclusion, S1P and S1PR2 participate in age-associated contractile dysfunction via BKCa upregulation through PKCζ , JNK, and NF-κB pathways.
Collapse
Affiliation(s)
- Xiaoxue Shen
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ling Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ling Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenjie Xiong
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yurong Tang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lin Lin
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ting Yu
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
West CL, Amin JY, Farhin S, Stanisz AM, Mao YK, Kunze WA. Colonic Motility and Jejunal Vagal Afferent Firing Rates Are Decreased in Aged Adult Male Mice and Can Be Restored by an Aminosterol. Front Neurosci 2019; 13:955. [PMID: 31551703 PMCID: PMC6746984 DOI: 10.3389/fnins.2019.00955] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/23/2019] [Indexed: 12/19/2022] Open
Abstract
There is a general decline in gastrointestinal function in old age including decreased intestinal motility, sensory signaling, and afferent sensitivity. There is also increased prevalence of significant constipation in aged populations. We hypothesized this may be linked to reduced colonic motility and alterations in vagal-gut-brain sensory signaling. Using in vitro preparations from young (3 months) and old (18–24 months) male CD1 mice we report functional age-related differences in colonic motility and jejunal mesenteric afferent firing. Furthermore, we tested the effect of the aminosterol squalamine on colonic motility and jejunal vagal firing rate. Old mice had significantly reduced velocity of colonic migrating motor complexes (MMC) by 27% compared to young mice (p = 0.0161). Intraluminal squalamine increased colonic MMC velocity by 31% in old mice (p = 0.0150), which also had significantly reduced mesenteric afferent single-unit firing rates from the jejunum by 51% (p < 0.0001). The jejunal vagal afferent firing rate was reduced in aged mice by 62% (p = 0.0004). While the time to peak response to squalamine was longer in old mice compared to young mice (18.82 ± 1.37 min vs. 12.95 ± 0.99 min; p = 0.0182), it significantly increased vagal afferent firing rate by 36 and 56% in young and old mice, respectively (p = 0.0006, p = 0.0013). Our results show for the first time that the jejunal vagal afferent firing rate is reduced in aged-mice. They also suggest that there is translational potential for the therapeutic use of squalamine in the treatment of age-related constipation and dysmotility.
Collapse
Affiliation(s)
- Christine L West
- St. Joseph's Healthcare, The Brain-Body Institute, McMaster University, Hamilton, ON, Canada.,Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Jessica Y Amin
- St. Joseph's Healthcare, The Brain-Body Institute, McMaster University, Hamilton, ON, Canada
| | - Sohana Farhin
- St. Joseph's Healthcare, The Brain-Body Institute, McMaster University, Hamilton, ON, Canada
| | - Andrew M Stanisz
- St. Joseph's Healthcare, The Brain-Body Institute, McMaster University, Hamilton, ON, Canada
| | - Yu-Kang Mao
- St. Joseph's Healthcare, The Brain-Body Institute, McMaster University, Hamilton, ON, Canada
| | - Wolfgang A Kunze
- St. Joseph's Healthcare, The Brain-Body Institute, McMaster University, Hamilton, ON, Canada.,Department of Biology, McMaster University, Hamilton, ON, Canada.,Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
8
|
Mari RDB, Stabille SR, de Faria HG, Pereira JNB, Guimarães JP, Marinsek GP, de Souza RR. Balanced Caloric Restriction Minimizes Changes Caused by Aging on the Colonic Myenteric Plexus. J Diet Suppl 2018; 15:285-299. [PMID: 28759281 DOI: 10.1080/19390211.2017.1341446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Aging can promote significant morphofunctional changes in the gastrointestinal tract (GIT). Regulation of GIT motility is mainly controlled by the myenteric neurons of the enteric nervous system. Actions that aim at decreasing the aging effects in the GIT include those related to diet, with caloric restriction (CR). The CR is achieved by controlling the amount of food or by manipulating the components of the diet. Therefore, the objective of this study was to evaluate different levels of CR on the plasticity of nicotinamide adenine dinucleotide phosphate- (NADPH-) reactive myenteric neurons in the colon of Wistar rats during the aging process using ultrastructural (transmission electron microscopy) and morphoquantitative analysis. Wistar male rats (Rattus norvegicus) were distributed into 4 groups (n = 10/group): C, 6-month-old animals; SR, 18-month-old animals fed a normal diet; CRI, 18-month-old animals fed a 12% CR diet; CRII, 18-month-old animals fed a 31% CR diet. At 6 months of age, animals were transferred to the laboratory animal facility, where they remained until 18 months of age. Animals of the CRI and CRII groups were submitted to CR for 6 months. In the ultrastructural analysis, a disorganization of the periganglionar matrix with the aging was observed, and this characteristic was not observed in the animals that received hypocaloric diet. It was observed that the restriction of 12.5% and 31% of calories in the diet minimized the increase in density and cell profile of the reactive NADPH neurons, increased with age. This type of diet may be adapted against gastrointestinal disturbances that commonly affect aging individuals.
Collapse
Affiliation(s)
- Renata de Britto Mari
- a São Paulo State University (Unesp) , Institute of Biosciences , São Vicente , São Paulo , Brazil
| | - Sandra Regina Stabille
- b Department of Morphological Sciences , Maringá State University , Maringá , Paraná , Brazil
| | | | | | - Juliana Plácido Guimarães
- e Laboratory of Marine and Coastal Organisms , Santa Cecilia University , Santos , São Paulo , Brazil
| | | | - Romeu Rodrigues de Souza
- f Department of Physical Education , São Judas Tadeu University , São Paulo , São Paulo , Brazil
| |
Collapse
|
9
|
Dalziel JE, Young W, McKenzie CM, Haggarty NW, Roy NC. Gastric Emptying and Gastrointestinal Transit Compared among Native and Hydrolyzed Whey and Casein Milk Proteins in an Aged Rat Model. Nutrients 2017; 9:nu9121351. [PMID: 29236034 PMCID: PMC5748801 DOI: 10.3390/nu9121351] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/06/2017] [Accepted: 12/07/2017] [Indexed: 12/13/2022] Open
Abstract
Little is known about how milk proteins affect gastrointestinal (GI) transit, particularly for the elderly, in whom digestion has been observed to be slowed. We tested the hypothesis that GI transit is faster for whey than for casein and that this effect is accentuated with hydrolysates, similar to soy. Adult male rats (18 months old) were fed native whey or casein, hydrolyzed whey (WPH) or casein (CPH), hydrolyzed blend (HB; 60% whey:40% casein), or hydrolyzed soy for 14 days then treated with loperamide, prucalopride, or vehicle-control for 7 days. X-ray imaging tracked bead-transit for: gastric emptying (GE; 4 h), small intestine (SI) transit (9 h), and large intestine (LI) transit (12 h). GE for whey was 33 ± 12% faster than that for either casein or CPH. SI transit was decreased by 37 ± 9% for casein and 24 ± 6% for whey compared with hydrolyzed soy, and persisted for casein at 12 h. Although CPH and WPH did not alter transit compared with their respective intact counterparts, fecal output was increased by WPH. Slowed transit by casein was reversed by prucalopride (9-h), but not loperamide. However, rapid GE and slower SI transit for the HB compared with intact forms were inhibited by loperamide. The expected slower GI transit for casein relative to soy provided a comparative benchmark, and opioid receptor involvement was corroborated. Our findings provide new evidence that whey slowed SI transit compared with soy, independent of GE. Increased GI transit from stomach to colon for the HB compared with casein suggests that including hydrolyzed milk proteins in foods may benefit those with slowed intestinal transit.
Collapse
Affiliation(s)
- Julie E Dalziel
- Food Nutrition & Health Team, Food & Bio-Based Products Group, AgResearch, Grasslands Research Centre, Palmerston North 4442, New Zealand.
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand.
| | - Wayne Young
- Food Nutrition & Health Team, Food & Bio-Based Products Group, AgResearch, Grasslands Research Centre, Palmerston North 4442, New Zealand.
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand.
- High Value Nutrition, National Science Challenge, Liggins Institute, The University of Auckland, Auckland 1142, New Zealand.
| | - Catherine M McKenzie
- Bioinformatics and Statistics, AgResearch, Grasslands Research Centre, Palmerston North 4442, New Zealand.
| | - Neill W Haggarty
- Fonterra Co-Operative Group, Palmerston North 4442, New Zealand.
| | - Nicole C Roy
- Food Nutrition & Health Team, Food & Bio-Based Products Group, AgResearch, Grasslands Research Centre, Palmerston North 4442, New Zealand.
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand.
- High Value Nutrition, National Science Challenge, Liggins Institute, The University of Auckland, Auckland 1142, New Zealand.
| |
Collapse
|
10
|
Larsen A, Holm R, Müllertz A. Solution or suspension – Does it matter for lipid based systems? In vivo studies of chase dosing lipid vehicles with aqueous suspensions of a poorly soluble drug. Eur J Pharm Biopharm 2017; 117:308-314. [DOI: 10.1016/j.ejpb.2017.04.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/17/2017] [Accepted: 04/21/2017] [Indexed: 10/19/2022]
|
11
|
Patel BA, Fidalgo S, Wang C, Parmar L, Mandona K, Panossian A, Flint MS, Ranson RN, Saffrey MJ, Yeoman MS. The TNF-α antagonist etanercept reverses age-related decreases in colonic SERT expression and faecal output in mice. Sci Rep 2017; 7:42754. [PMID: 28198447 DOI: 10.1038/srep42754] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/12/2017] [Indexed: 12/11/2022] Open
Abstract
Treatment for chronic constipation in older people is challenging and the condition has a major impact on quality of life. A lack of understanding about the causes of this condition has hampered the development of effective treatments. 5-HT is an important pro-kinetic agent in the colon. We examined whether alterations in colonic 5-HT signalling underlie age-related changes in faecal output in mice and whether these changes were due to an increase in TNF-α. Components of the 5-HT signalling system (5-HT, 5-HIAA, SERT) and TNF-α expression were examined in the distal colon of 3, 12, 18 and 24-month old mice and faecal output and water content monitored under control conditions and following the administration of etanercept (TNF-α inhibitor; 1 mg Kg-1). Faecal output and water content were reduced in aged animals. Age increased mucosal 5-HT availability and TNF-α expression and decreased mucosal SERT expression and 5-HIAA. Etanercept treatment of old mice reversed these changes, suggesting that age-related changes in TNFα expression are an important regulator of mucosal 5-HT signalling and pellet output and water content in old mice. These data point to "anti-TNFα" drugs as potential treatments for age-related chronic constipation.
Collapse
Affiliation(s)
- Bhavik Anil Patel
- School of Pharmacy and Biomolecular Science, University of Brighton, Brighton, BN2 4GJ, UK
| | - Sara Fidalgo
- School of Pharmacy and Biomolecular Science, University of Brighton, Brighton, BN2 4GJ, UK
| | - Chunfang Wang
- Department of Life, Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Leena Parmar
- School of Pharmacy and Biomolecular Science, University of Brighton, Brighton, BN2 4GJ, UK
| | - Kasonde Mandona
- School of Pharmacy and Biomolecular Science, University of Brighton, Brighton, BN2 4GJ, UK
| | - Annabelle Panossian
- School of Pharmacy and Biomolecular Science, University of Brighton, Brighton, BN2 4GJ, UK
| | - Melanie S Flint
- School of Pharmacy and Biomolecular Science, University of Brighton, Brighton, BN2 4GJ, UK
| | - Richard N Ranson
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - M Jill Saffrey
- Department of Life, Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Mark S Yeoman
- School of Pharmacy and Biomolecular Science, University of Brighton, Brighton, BN2 4GJ, UK
| |
Collapse
|
12
|
Queiroz RW, Silva VL, Rocha DR, Costa DS, Turco SHN, Silva MTB, Santos AA, Oliveira MBL, Pereira ASR, Palheta-Junior RC. Changes in cardiovascular performance, biochemistry, gastric motility and muscle temperature induced by acute exercise on a treadmill in healthy military dogs. J Anim Physiol Anim Nutr (Berl) 2016; 102:122-130. [PMID: 28032379 DOI: 10.1111/jpn.12667] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 11/25/2016] [Indexed: 01/03/2023]
Abstract
Changes in physiological parameters that are induced by acute exercise on a treadmill in healthy military dogs have not been thoroughly investigated, especially with regard to age. This study investigated the effects of acute exercise on a treadmill on cardiovascular function, biochemical parameters and gastric antral motility in military dogs. Thermography was used to assess variations in superficial hindlimb muscle temperature. Nine healthy dogs were distributed into three groups according to their age (Group I: 25 ± 7 months; Group II: 51 ± 12 months; Group III: 95 ± 10 months) and sequentially subjected to running exercise on a treadmill for 12 min (3.2 km/h at 0° incline for 4 min, 6.4 km/h at 0° incline for 4 min and 6.4 km/h at 10° incline for 4 min). Heart rate, systolic and diastolic arterial pressure (DAP), gastric motility, haematocrit and biochemical analyses were performed at rest and after each session of treadmill exercise. Infrared thermographic images of muscles in the pelvic member were taken. Exercise decreased DAP in Group I, increased systolic arterial pressure in Groups II and III and increased mean arterial pressure in Group III (all p < 0.05). After the exercise protocol, plasma creatine kinase and aspartate aminotransferase levels increased only in Group I (p < 0.05). Exercise increased heart rate and decreased the gastric motility of a solid meal at 180 min in all groups (all p < 0.05). Exercise also elevated temperature in the femoral biceps muscles in Group I compared with the older dogs. The results indicate that acute exercise decreased gastric motility in dogs, regardless of age, and caused more pronounced cardiovascular changes in older dogs than in younger dogs. Acute exercise also altered biochemical parameters and superficial hindlimb muscle temperature in younger military dogs.
Collapse
Affiliation(s)
- R W Queiroz
- Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, Brazil.,Hospital Veterinário, Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, Brazil
| | - V L Silva
- Colegiado de Medicina Veterinária, Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, Brazil
| | - D R Rocha
- Colegiado de Zootecnia, Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, Brazil
| | - D S Costa
- Colegiado de Engenharia Agrícola e Ambiental, Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, Brazil
| | - S H N Turco
- Colegiado de Engenharia Agrícola e Ambiental, Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, Brazil
| | - M T B Silva
- Departamento de Educação Física, Universidade Federal do Piauí, Teresina, Piauí, Brazil
| | - A A Santos
- Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - M B L Oliveira
- Hospital Veterinário, Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, Brazil
| | - A S R Pereira
- Canil da Polícia Militar, Petrolina, Pernambuco, Brazil
| | - R C Palheta-Junior
- Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, Brazil.,Colegiado de Medicina Veterinária, Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, Brazil
| |
Collapse
|
13
|
Role of gastrointestinal motility inhibition and antioxidant properties of myrtle berries (Myrtus communis L.) juice in diarrhea treatment. Biomed Pharmacother 2016; 84:1937-1944. [PMID: 27856110 DOI: 10.1016/j.biopha.2016.11.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/25/2016] [Accepted: 11/01/2016] [Indexed: 02/04/2023] Open
Abstract
INTRODUCTION The myrtle (Myrtus communis) belongs to the Myrtaceae family; it is one of the central plants as part of the list of medicinal plants in the Tunisian Pharmacopoeia. Myrtle berry was used for its astringent, tonic, and antiseptic properties, to treat diarrhea, hemorrhoids, and gastrointestinal injury. METHODS Adult male wistar rats were used to evaluate the normal gastro-intestinal transit and gastric emptying as well as castor oil-induced diarrhea, enteropooling tests, and small intestine oxidative stress. The effect of myrtle berries juice (MBJ) (5 and 10ml/kg, bw. p.o.) was after compared to the loperamide and clonidine effects. RESULTS MBJ significantly and dose-dependently inhibited the intestinal motility and gastric emptying. We also found that MBJ administration induced a significant dose-dependent protection against diarrhea and intestinal fluid accumulation. Castor oil-induced intestinal hypersecretion was accompanied by an oxidative stress status in the intestine, which was attenuated by MBJ administration. CONCLUSION We suggest that MBJ had a potent protective effects against castor oil-induced diarrhea in part due, to its antioxidant and antisecretory properties.
Collapse
|
14
|
Merchant HA, Liu F, Orlu Gul M, Basit AW. Age-mediated changes in the gastrointestinal tract. Int J Pharm 2016; 512:382-395. [DOI: 10.1016/j.ijpharm.2016.04.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 03/22/2016] [Accepted: 04/12/2016] [Indexed: 12/21/2022]
|
15
|
Dalziel JE, Young W, Bercik P, Spencer NJ, Ryan LJ, Dunstan KE, Lloyd-West CM, Gopal PK, Haggarty NW, Roy NC. Tracking gastrointestinal transit of solids in aged rats as pharmacological models of chronic dysmotility. Neurogastroenterol Motil 2016; 28:1241-51. [PMID: 27028044 DOI: 10.1111/nmo.12824] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 02/24/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Dysmotility in the gastrointestinal (GI) tract often leads to impaired transit of luminal contents leading to symptoms of diarrhea or constipation. The aim of this research was to develop a technique using high resolution X-ray imaging to study pharmacologically induced aged rat models of chronic GI dysmotility that mimic accelerated transit (diarrhea) or constipation. The 5-hydroxytryptamine type 4 (5-HT4 ) receptor agonist prucalopride was used to accelerate transit, and the opioid agonist loperamide was used to delay transit. METHODS Male rats (18 months) were given 0, 1, 2, or 4 mg/kg/day prucalopride or loperamide (in dimethyl sulfoxide, DMSO) for 7 days by continuous 7-day dosing. To determine the GI region-specific effect, transit of six metallic beads was tracked over 12 h using high resolution X-ray imaging. An established rating scale was used to classify GI bead location in vivo and the distance beads had propagated from the caecum was confirmed postmortem. KEY RESULTS Loperamide (1 mg/kg) slowed stomach emptying and GI transit at 9 and 12 h. Prucalopride (4 mg/kg) did not significantly alter GI transit scores, but at a dose of 4 mg/kg beads had moved significantly more distal than the caecum in 12 h compared to controls. CONCLUSIONS & INFERENCES We report a novel high-resolution, non-invasive, X-ray imaging technique that provides new insights into GI transit rates in live rats. The results demonstrate that loperamide slowed overall transit in aged rats, while prucalopride increased stomach emptying and accelerates colonic transit.
Collapse
Affiliation(s)
- J E Dalziel
- Food Nutrition & Health Team, Food & Bio-based Products Group, AgResearch, Palmerston North, New Zealand
| | - W Young
- Food Nutrition & Health Team, Food & Bio-based Products Group, AgResearch, Palmerston North, New Zealand
| | - P Bercik
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - N J Spencer
- School of Medicine, Flinders University, Adelaide, SA, Australia
| | - L J Ryan
- Food Nutrition & Health Team, Food & Bio-based Products Group, AgResearch, Palmerston North, New Zealand
| | - K E Dunstan
- Food Nutrition & Health Team, Food & Bio-based Products Group, AgResearch, Palmerston North, New Zealand
| | - C M Lloyd-West
- Bioinformatics Mathematics and Statistics, AgResearch, Palmerston North, New Zealand
| | - P K Gopal
- Fonterra Co-operative Group, Palmerston North, New Zealand
| | - N W Haggarty
- Fonterra Co-operative Group, Palmerston North, New Zealand
| | - N C Roy
- Food Nutrition & Health Team, Food & Bio-based Products Group, AgResearch, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand.,Gravida: National Centre for Growth and Development, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
16
|
Margalef M, Iglesias-Carres L, Pons Z, Bravo FI, Muguerza B, Arola-Arnal A. Age related differences in the plasma kinetics of flavanols in rats. J Nutr Biochem 2015; 29:90-6. [PMID: 26895669 DOI: 10.1016/j.jnutbio.2015.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/15/2015] [Accepted: 11/09/2015] [Indexed: 12/18/2022]
Abstract
Dietary flavanols produce beneficial health effects; once absorbed, they are recognized as xenobiotics and undergo Phase-II enzymatic detoxification. However, flavanols with a degree of polymerization greater than 2 reach the colon, where they are subjected to microbial metabolism and can be further absorbed and undergo Phase-II reactions. In this sense, flavanols' health-promoting properties are mainly attributed to their metabolic products. Several age-related physiological changes have been evidenced, and it is known that flavanols' bioavailability is affected by internal factors. Therefore, this study aimed to elucidate whether animals of different ages, specifically young and adult rats, exhibit differences in their flavanol metabolism and plasma bioavailability. To accomplish this, an acute dose of a grape seed polyphenol extract was administered to male rats; after 2, 4, 7, 24 and 48 h, flavanols and their Phase-II and microbial metabolites were quantified by HPLC-ESI-MS/MS in plasma. The results indicated important age-related quantitative differences in plasma flavanol metabolites. Interestingly, adult rats presented a remarkable reduction in flavanol absorption and Phase-II flavanol metabolism. Consequently, microbial-derived flavanol metabolism is triggered by higher flavanol affluence in the colonic tract. Furthermore, young rats presented a faster metabolic profile than adult rats. Hence, our results indicate that the physiological bioactivities of flavanols may depend on age.
Collapse
Affiliation(s)
- Maria Margalef
- Nutrigenomic Research Group, Biochemistry and Biotechnology Department, Rovira i Virgili University, Spain
| | - Lisard Iglesias-Carres
- Nutrigenomic Research Group, Biochemistry and Biotechnology Department, Rovira i Virgili University, Spain
| | - Zara Pons
- Nutrigenomic Research Group, Biochemistry and Biotechnology Department, Rovira i Virgili University, Spain
| | - Francisca Isabel Bravo
- Nutrigenomic Research Group, Biochemistry and Biotechnology Department, Rovira i Virgili University, Spain
| | - Begoña Muguerza
- Nutrigenomic Research Group, Biochemistry and Biotechnology Department, Rovira i Virgili University, Spain; Technological Center of Nutrition and Health (CTNS), TECNIO, CEICS, Reus, Spain.
| | - Anna Arola-Arnal
- Nutrigenomic Research Group, Biochemistry and Biotechnology Department, Rovira i Virgili University, Spain
| |
Collapse
|
17
|
Bove GM. A non-invasive method to evaluate gastrointestinal transit behavior in rat. J Pharmacol Toxicol Methods 2015; 74:1-6. [PMID: 25913851 DOI: 10.1016/j.vascn.2015.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/09/2015] [Accepted: 04/15/2015] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Many factors alter gastrointestinal transit. Animal models are useful for preclinical studies of gastrointestinal transit, but terminal methods do not allow later study, and stressful assessment methods will likely alter the transit of the animal. To overcome these factors, we developed a new method to assay rat total gastrointestinal transit. METHODS Standard plastic cages with their bottoms cut off were placed on wire mesh floors. Custom apparatuses were built to contain fecal pellets as they fell through the floors. Webcams connected to a computer running a security program were placed to image the pellets at regular intervals. Custom food was obtained with and without blue pigment. After habituating to the cages and the non-pigmented food, the pigmented food was administered. The duration to the appearance of the first pigmented pellet was determined by reviewing the photographs. This duration represents the complete gastrointestinal behavior, including feeding. We compared 24-hour fecal pellet counts using images to counts by visual inspection, and also made hourly counts. After establishing baseline transit times and hourly fecal pellet discharge, rats were given buprenorphine, known to alter gastrointestinal transit. Transit times and hourly discharge were obtained again and compared to the baselines. RESULTS The methods were successful in determining transit times. Baseline measures were consistent between three groups of 8 rats. Visual and image-based counts were highly correlated. Transit times and hourly pellet discharge were reduced by buprenorphine. DISCUSSION The described method offers a relatively simple, inexpensive, and non-invasive means to measure rat gastrointestinal behavior. The method has potential for any study where altered total gastrointestinal transit is an experimental concern.
Collapse
Affiliation(s)
- Geoffrey M Bove
- University of New England College of Osteopathic Medicine, Stella Maris 102, 11 Hills Beach Rd., Biddeford, ME 04005, United States.
| |
Collapse
|
18
|
Ranson RN, Saffrey MJ. Neurogenic mechanisms in bladder and bowel ageing. Biogerontology 2015; 16:265-84. [PMID: 25666896 PMCID: PMC4361768 DOI: 10.1007/s10522-015-9554-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 01/28/2015] [Indexed: 01/18/2023]
Abstract
The prevalence of both urinary and faecal incontinence, and also chronic constipation, increases with ageing and these conditions have a major impact on the quality of life of the elderly. Management of bladder and bowel dysfunction in the elderly is currently far from ideal and also carries a significant financial burden. Understanding how these changes occur is thus a major priority in biogerontology. The functions of the bladder and terminal bowel are regulated by complex neuronal networks. In particular neurons of the spinal cord and peripheral ganglia play a key role in regulating micturition and defaecation reflexes as well as promoting continence. In this review we discuss the evidence for ageing-induced neuronal dysfunction that might predispose to neurogenic forms of incontinence in the elderly.
Collapse
Affiliation(s)
- Richard N Ranson
- Department of Applied Sciences (Biomedical Sciences), Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK,
| | | |
Collapse
|
19
|
Hetz S, Acikgoez A, Moll C, Jahnke HG, Robitzki AA, Metzger R, Metzger M. Age-related gene expression analysis in enteric ganglia of human colon after laser microdissection. Front Aging Neurosci 2014; 6:276. [PMID: 25360110 PMCID: PMC4197768 DOI: 10.3389/fnagi.2014.00276] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 09/24/2014] [Indexed: 01/16/2023] Open
Abstract
The enteric nervous system (ENS) poses the intrinsic innervation of the gastrointestinal tract and plays a critical role for all stages of postnatal life. There is increasing scientific and clinical interest in acquired or age-related gastrointestinal dysfunctions that can be manifested in diseases such as gut constipation or fecal incontinence. In this study, we sought to analyze age-dependent changes in the gene expression profile of the human ENS, particularly in the myenteric plexus. Therefore, we used the laser microdissection technique which has been proven as a feasible tool to analyze distinct cell populations within heterogeneously composed tissues. Full biopsy gut samples were prepared from children (4-12 months), middle aged (48-58 years) and aged donors (70-95 years). Cryosections were histologically stained with H&E, the ganglia of the myenteric plexus identified and RNA isolated using laser microdissection technique. Quantitative PCR was performed for selected neural genes, neurotransmitters and receptors. Data were confirmed on protein level using NADPH-diaphorase staining and immunohistochemistry. As result, we demonstrate age-associated alterations in site-specific gene expression pattern of the ENS. Thus, in the adult and aged distal parts of the colon a marked decrease in relative gene expression of neural key genes like NGFR, RET, NOS1 and a concurrent increase of CHAT were observed. Further, we detected notable regional differences of RET, CHAT, TH, and S100B comparing gene expression in aged proximal and distal colon. Interestingly, markers indicating cellular senescence or oxidative stress (SNCA, CASP3, CAT, SOD2, and TERT) were largely unchanged within the ENS. For the first time, our study also describes the age-dependent expression pattern of all major sodium channels within the ENS. Our results are in line with previous studies showing spatio-temporal differences within the mammalian ENS.
Collapse
Affiliation(s)
- Susan Hetz
- CELLT Research Group, Translational Centre for Regenerative Medicine, University of Leipzig Leipzig, Germany
| | - Ali Acikgoez
- Department of General and Visceral Surgery, St. George's Hospital Leipzig, Germany
| | - Corinna Moll
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg Wuerzburg, Germany
| | - Heinz-Georg Jahnke
- Division of Molecular biological-biochemical Processing Technology, Center for Biotechnology and Biomedicine (BBZ), University of Leipzig Leipzig, Germany
| | - Andrea A Robitzki
- Division of Molecular biological-biochemical Processing Technology, Center for Biotechnology and Biomedicine (BBZ), University of Leipzig Leipzig, Germany
| | - Roman Metzger
- Department of Pediatric Surgery, University of Leipzig Leipzig, Germany
| | - Marco Metzger
- CELLT Research Group, Translational Centre for Regenerative Medicine, University of Leipzig Leipzig, Germany ; Department of Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg Wuerzburg, Germany
| |
Collapse
|
20
|
Sałaga M, Polepally PR, Sobczak M, Grzywacz D, Kamysz W, Sibaev A, Storr M, Do Rego JC, Zjawiony JK, Fichna J. Novel orally available salvinorin A analog PR-38 inhibits gastrointestinal motility and reduces abdominal pain in mouse models mimicking irritable bowel syndrome. J Pharmacol Exp Ther 2014; 350:69-78. [PMID: 24891526 DOI: 10.1124/jpet.114.214239] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The opioid and cannabinoid systems play a crucial role in multiple physiological processes in the central nervous system and in the periphery. Selective opioid as well as cannabinoid (CB) receptor agonists exert a potent inhibitory action on gastrointestinal (GI) motility and pain. In this study, we examined (in vitro and in vivo) whether PR-38 (2-O-cinnamoylsalvinorin B), a novel analog of salvinorin A, can interact with both systems and demonstrate therapeutic effects. We used mouse models of hypermotility, diarrhea, and abdominal pain. We also assessed the influence of PR-38 on the central nervous system by measurement of motoric parameters and exploratory behaviors in mice. Subsequently, we investigated the pharmacokinetics of PR-38 in mouse blood samples after intraperitoneal and oral administration. PR-38 significantly inhibited mouse colonic motility in vitro and in vivo. Administration of PR-38 significantly prolonged the whole GI transit time, and this effect was mediated by µ- and κ-opioid receptors and the CB1 receptor. PR-38 reversed hypermotility and reduced pain in mouse models mimicking functional GI disorders. These data expand our understanding of the interactions between opioid and cannabinoid systems and their functions in the GI tract. We also provide a novel framework for the development of future potential treatments of functional GI disorders.
Collapse
Affiliation(s)
- M Sałaga
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland (M.Sa., M.So., J.F.); Department of Pharmacognosy and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (P.R.P., J.K.Z.); Research and Development Laboratory, Lipopharm.pl, Zblewo, Poland (D.G.); Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, Poland (W.K.); Department of Medicine, Division of Gastroenterology, Ludwig Maximilians University of Munich, Munich, Germany (A.S., M.St.); and Platform of Behavioural Analysis, Institute for Research and Innovation in Biomedicine, Faculty of Medicine and Pharmacy, University of Rouen, Rouen Cedex, France (J.C.D.R.)
| | - P R Polepally
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland (M.Sa., M.So., J.F.); Department of Pharmacognosy and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (P.R.P., J.K.Z.); Research and Development Laboratory, Lipopharm.pl, Zblewo, Poland (D.G.); Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, Poland (W.K.); Department of Medicine, Division of Gastroenterology, Ludwig Maximilians University of Munich, Munich, Germany (A.S., M.St.); and Platform of Behavioural Analysis, Institute for Research and Innovation in Biomedicine, Faculty of Medicine and Pharmacy, University of Rouen, Rouen Cedex, France (J.C.D.R.)
| | - M Sobczak
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland (M.Sa., M.So., J.F.); Department of Pharmacognosy and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (P.R.P., J.K.Z.); Research and Development Laboratory, Lipopharm.pl, Zblewo, Poland (D.G.); Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, Poland (W.K.); Department of Medicine, Division of Gastroenterology, Ludwig Maximilians University of Munich, Munich, Germany (A.S., M.St.); and Platform of Behavioural Analysis, Institute for Research and Innovation in Biomedicine, Faculty of Medicine and Pharmacy, University of Rouen, Rouen Cedex, France (J.C.D.R.)
| | - D Grzywacz
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland (M.Sa., M.So., J.F.); Department of Pharmacognosy and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (P.R.P., J.K.Z.); Research and Development Laboratory, Lipopharm.pl, Zblewo, Poland (D.G.); Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, Poland (W.K.); Department of Medicine, Division of Gastroenterology, Ludwig Maximilians University of Munich, Munich, Germany (A.S., M.St.); and Platform of Behavioural Analysis, Institute for Research and Innovation in Biomedicine, Faculty of Medicine and Pharmacy, University of Rouen, Rouen Cedex, France (J.C.D.R.)
| | - W Kamysz
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland (M.Sa., M.So., J.F.); Department of Pharmacognosy and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (P.R.P., J.K.Z.); Research and Development Laboratory, Lipopharm.pl, Zblewo, Poland (D.G.); Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, Poland (W.K.); Department of Medicine, Division of Gastroenterology, Ludwig Maximilians University of Munich, Munich, Germany (A.S., M.St.); and Platform of Behavioural Analysis, Institute for Research and Innovation in Biomedicine, Faculty of Medicine and Pharmacy, University of Rouen, Rouen Cedex, France (J.C.D.R.)
| | - A Sibaev
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland (M.Sa., M.So., J.F.); Department of Pharmacognosy and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (P.R.P., J.K.Z.); Research and Development Laboratory, Lipopharm.pl, Zblewo, Poland (D.G.); Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, Poland (W.K.); Department of Medicine, Division of Gastroenterology, Ludwig Maximilians University of Munich, Munich, Germany (A.S., M.St.); and Platform of Behavioural Analysis, Institute for Research and Innovation in Biomedicine, Faculty of Medicine and Pharmacy, University of Rouen, Rouen Cedex, France (J.C.D.R.)
| | - M Storr
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland (M.Sa., M.So., J.F.); Department of Pharmacognosy and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (P.R.P., J.K.Z.); Research and Development Laboratory, Lipopharm.pl, Zblewo, Poland (D.G.); Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, Poland (W.K.); Department of Medicine, Division of Gastroenterology, Ludwig Maximilians University of Munich, Munich, Germany (A.S., M.St.); and Platform of Behavioural Analysis, Institute for Research and Innovation in Biomedicine, Faculty of Medicine and Pharmacy, University of Rouen, Rouen Cedex, France (J.C.D.R.)
| | - J C Do Rego
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland (M.Sa., M.So., J.F.); Department of Pharmacognosy and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (P.R.P., J.K.Z.); Research and Development Laboratory, Lipopharm.pl, Zblewo, Poland (D.G.); Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, Poland (W.K.); Department of Medicine, Division of Gastroenterology, Ludwig Maximilians University of Munich, Munich, Germany (A.S., M.St.); and Platform of Behavioural Analysis, Institute for Research and Innovation in Biomedicine, Faculty of Medicine and Pharmacy, University of Rouen, Rouen Cedex, France (J.C.D.R.)
| | - J K Zjawiony
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland (M.Sa., M.So., J.F.); Department of Pharmacognosy and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (P.R.P., J.K.Z.); Research and Development Laboratory, Lipopharm.pl, Zblewo, Poland (D.G.); Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, Poland (W.K.); Department of Medicine, Division of Gastroenterology, Ludwig Maximilians University of Munich, Munich, Germany (A.S., M.St.); and Platform of Behavioural Analysis, Institute for Research and Innovation in Biomedicine, Faculty of Medicine and Pharmacy, University of Rouen, Rouen Cedex, France (J.C.D.R.)
| | - J Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland (M.Sa., M.So., J.F.); Department of Pharmacognosy and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (P.R.P., J.K.Z.); Research and Development Laboratory, Lipopharm.pl, Zblewo, Poland (D.G.); Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, Poland (W.K.); Department of Medicine, Division of Gastroenterology, Ludwig Maximilians University of Munich, Munich, Germany (A.S., M.St.); and Platform of Behavioural Analysis, Institute for Research and Innovation in Biomedicine, Faculty of Medicine and Pharmacy, University of Rouen, Rouen Cedex, France (J.C.D.R.)
| |
Collapse
|
21
|
Saffrey MJ. Aging of the mammalian gastrointestinal tract: a complex organ system. AGE (DORDRECHT, NETHERLANDS) 2014; 36:9603. [PMID: 24352567 PMCID: PMC4082571 DOI: 10.1007/s11357-013-9603-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 11/25/2013] [Indexed: 05/23/2023]
Abstract
Gastrointestinal disorders are a major cause of morbidity in the elderly population. The gastrointestinal tract is the most complex organ system; its diverse cells perform a range of functions essential to life, not only secretion, digestion, absorption and excretion, but also, very importantly, defence. The gastrointestinal tract acts not only as a barrier to harmful materials and pathogens but also contains the vast number of beneficial bacterial populations that make up the microbiota. Communication between the cells of the gastrointestinal tract and the central nervous and endocrine systems modifies behaviour; the organisms of the microbiota also contribute to this brain-gut-enteric microbiota axis. Age-related physiological changes in the gut are not only common, but also variable, and likely to be influenced by external factors as well as intrinsic aging of the cells involved. The cellular and molecular changes exhibited by the aging gut cells also vary. Aging intestinal smooth muscle cells exhibit a number of changes in the signalling pathways that regulate contraction. There is some evidence for age-associated degeneration of neurons and glia of the enteric nervous system, although enteric neuronal losses are likely not to be nearly as extensive as previously believed. Aging enteric neurons have been shown to exhibit a senescence-associated phenotype. Epithelial stem cells exhibit increased mitochondrial mutation in aging that affects their progeny in the mucosal epithelium. Changes to the microbiota and intestinal immune system during aging are likely to contribute to wider aging of the organism and are increasingly important areas of analysis. How changes of the different cell types of the gut during aging affect the numerous cellular interactions that are essential for normal gut functions will be important areas for future aging research.
Collapse
Affiliation(s)
- M Jill Saffrey
- Department of Life Health and Chemical Sciences, Biomedical Research Network, The Open University, Milton Keynes, MK7 6AA, UK,
| |
Collapse
|
22
|
Influence of ageing on the gastrointestinal environment of the rat and its implications for drug delivery. Eur J Pharm Sci 2014; 62:76-85. [PMID: 24834990 DOI: 10.1016/j.ejps.2014.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/07/2014] [Accepted: 05/05/2014] [Indexed: 12/13/2022]
Abstract
Age-mediated changes in gut physiology are considerations central to the elucidation of drug performance from oral formulations. Using rats of different age groups we measured the pH, buffer capacity, fluid volume, osmolality, and surface tension of gastrointestinal (GI) fluids, and therein explored the impact of these variables on prednisolone and mesalazine solubility in luminal fluids. We also studied the distribution of gut associated lymphoid tissue (GALT) and mucus layer thickness across the GI tract in rats of different age groups. At a mucosal level, there was an increase in GALT from young to adult rat. Gastrointestinal pH and buffer capacity remained mostly unchanged with age, except some pH differences in stomach and distal small intestine and a higher buffer capacity in the large intestinal fluids of young rats. Osmolality and surface tension also remained unaffected with the exception of a lower osmolality in elderly stomach and a lower surface tension in the small intestine of young rats. The difference in luminal environment on ageing influenced the solubility of studied drugs, for instance prednisolone solubility was shown to be higher in adult rats (mid small intestine and caecum) and solubility of mesalazine was significantly higher in the elderly distal small intestine.
Collapse
|
23
|
Patel BA, Patel N, Fidalgo S, Wang C, Ranson RN, Saffrey MJ, Yeoman MS. Impaired colonic motility and reduction in tachykinin signalling in the aged mouse. Exp Gerontol 2014; 53:24-30. [PMID: 24560671 DOI: 10.1016/j.exger.2014.02.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 02/05/2014] [Accepted: 02/10/2014] [Indexed: 02/07/2023]
Abstract
Ageing is associated with an increased incidence of constipation in humans. The contribution that the ageing process makes to this condition is unclear. The aim of this study was to determine the effects of age on faecal output and colonic motility in male C57BL/6J mice and to determine the role that altered tachykinin signalling plays in this process. Total faecal output recorded over a 24h period decreased with age due to a reduction in the number of pellets produced and their water content. These changes occurred in the absence of any significant change in food and water intake. There was an increase in the amount of faecal matter stored in the isolated colon with age which caused a proportional increase in colonic length. Analysis of colonic motility using an artificial pellet demonstrated that pellets moved in a stepwise fashion through the colon. There was an age-related increase in pellet transit time due to decreases in the step distance, velocity, and frequency of stepwise movements. These changes were reversed using the neurokinin 2 (NK2) receptor agonist neurokinin A. Addition of the NK2receptor antagonist GR159897 significantly increased transit time in the young animals by decreasing step distance, velocity and frequency, but was without effect in the aged colon. In summary, the ageing C57BL/6J mouse shows an impaired motility phenotype. These effects appear, at least in part, to be due to an attenuation of tachykinin signalling via NK2 receptors.
Collapse
Affiliation(s)
- Bhavik Anil Patel
- School of Pharmacy and Biomolecular Sciences, Huxley Building, University of Brighton, Lewes Road, Brighton BN2 4GJ, UK
| | - Nikkita Patel
- School of Pharmacy and Biomolecular Sciences, Huxley Building, University of Brighton, Lewes Road, Brighton BN2 4GJ, UK
| | - Sara Fidalgo
- School of Pharmacy and Biomolecular Sciences, Huxley Building, University of Brighton, Lewes Road, Brighton BN2 4GJ, UK
| | - Chunfang Wang
- Department of Life, Health and Chemical Sciences, Biomedical Research Network, Open University, Walton Hall, Milton Keynes MK7 6AA, UK
| | - Richard N Ranson
- Faculty of Health and Life Sciences, Northumbria University, Ellison Building, Newcastle upon Tyne NE1 8ST, UK
| | - M Jill Saffrey
- Department of Life, Health and Chemical Sciences, Biomedical Research Network, Open University, Walton Hall, Milton Keynes MK7 6AA, UK
| | - Mark S Yeoman
- School of Pharmacy and Biomolecular Sciences, Huxley Building, University of Brighton, Lewes Road, Brighton BN2 4GJ, UK.
| |
Collapse
|
24
|
Fu XY, Li Z, Zhang N, Yu HT, Wang SR, Liu JR. Effects of gastrointestinal motility on obesity. Nutr Metab (Lond) 2014; 11:3. [PMID: 24398016 PMCID: PMC3891996 DOI: 10.1186/1743-7075-11-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 12/31/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Changes of gastrointestinal motility, which are important related to the food digestion and absorption in the gastrointestinal tract, may be one of the factors in obesity-formation. AIMS The changes of gastrointestinal motility were explored in the rats from diet-induced obesity (DIO), diet-induced obese resistant (DR) or control (CON) by diet intervention. METHODS After fed with a high fat diet (HFD), 100 male Sprague-Dawley rats were divided into DIO, DR and CON groups. The rats from DIO and DR groups were fed with HFD, and CON with a basic diet (BD) for 6 weeks. Body weight, energy intake, gastric emptying, intestinal transit, motility of isolated small intestine segments and colon's function were measured in this study. Expression of interstitial cells of Cajal (ICCs) and enteric nervous system (ENS) - choline acetyltransferase (ChAT), vasoactive intestinal peptides (VIP), substance P (SP) and NADPH-d histochemistry of nitric oxide synthase (NOS) were determined by immunohistochemistry. RESULTS Body weight and intake energy in the DIO group were higher than those in the DR group (p < 0.05). Gastric emptying of DIO group rats (78.33 ± 4.95%) was significantly faster than that of DR group (51.79 ± 10.72%) (p < 0.01). The peak value of motility in rat's duodenum from the DR group was significantly higher than that in the DIO group (p < 0.05). In addition, the expression of interstitial cells of Cajal (ICC), choline acetyltransferase (ChAT), substance P (SP), vasoactive intestinal peptides (VIP) and neuronal nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) in the intestine of rats were significantly increased in the DIO group when compared to the DR group (p < 0.05). CONCLUSION A faster gastric emptying, a weaker contraction of duodenum movement, and a stronger contraction and relaxation of ileum movement were found in the rats from the DIO group. It indicated that there has effect of gastrointestinal motility on obesity induced by HFD.
Collapse
Affiliation(s)
- Xiao-Yi Fu
- School of Public Health, JiLin Medical College, 5 JiLin street, JiLin, JiLin Province 132013, The People’s Republic of China
| | - Ze Li
- School of Public Health, Harbin Medical University, 157 BaoJian Road, Harbin, HeiLongJiang Province 150081, The People’s Republic of China
| | - Na Zhang
- School of Public Health, Harbin Medical University, 157 BaoJian Road, Harbin, HeiLongJiang Province 150081, The People’s Republic of China
| | - Hai-Tao Yu
- School of Public Health, JiLin Medical College, 5 JiLin street, JiLin, JiLin Province 132013, The People’s Republic of China
| | - Shu-Ran Wang
- School of Public Health, JiLin Medical College, 5 JiLin street, JiLin, JiLin Province 132013, The People’s Republic of China
| | - Jia-Ren Liu
- Boston Children’s Hospital and Harvard Medical School, 300 LongWood Ave, Boston 02115, USA
| |
Collapse
|
25
|
Serotonin: from top to bottom. Biogerontology 2012; 14:21-45. [PMID: 23100172 DOI: 10.1007/s10522-012-9406-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 10/08/2012] [Indexed: 01/13/2023]
Abstract
Serotonin is a monoamine neurotransmitter, which is phylogenetically conserved in a wide range of species from nematodes to humans. In mammals, age-related changes in serotonin systems are known risk factors of age-related diseases, such as diabetes, faecal incontinence and cardiovascular diseases. A decline in serotonin function with aging would be consistent with observations of age-related changes in behaviours, such as sleep, sexual behaviour and mood all of which are linked to serotonergic function. Despite this little is known about serotonin in relation to aging. This review aims to give a comprehensive analysis of the distribution, function and interactions of serotonin in the brain; gastrointestinal tract; skeletal; vascular and immune systems. It also aims to demonstrate how the function of serotonin is linked to aging and disease pathology in these systems. The regulation of serotonin via microRNAs is also discussed, as are possible applications of serotonergic drugs in aging research and age-related diseases. Furthermore, this review demonstrates that serotonin is potentially involved in whole organism aging through its links with multiple organs, the immune system and microRNA regulation. Methods to investigate these links are discussed.
Collapse
|
26
|
Cassady BA, Considine RV, Mattes RD. Beverage consumption, appetite, and energy intake: what did you expect? Am J Clin Nutr 2012; 95:587-93. [PMID: 22258267 PMCID: PMC3278240 DOI: 10.3945/ajcn.111.025437] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Beverage consumption is implicated in the overweight/obesity epidemic through the weaker energy compensation response it elicits compared with solid food forms. However, plausible mechanisms are not documented. OBJECTIVE This study assessed the cognitive and sensory contributions of differential postingestive responses to energy- and macronutrient-matched liquid (in beverage form) and solid food forms and identifies physiologic processes that may account for them. DESIGN Fifty-two healthy adults [mean ± SD age: 24.7 ± 5.5 y; BMI (in kg/m(2)): 26.3 ± 6.3] completed this randomized, 4-arm crossover study. Participants consumed oral liquid and solid preloads that they perceived, through cognitive manipulation, to be liquid or solid in their stomach (ie, oral liquid/perceived gastric liquid, oral liquid/perceived gastric solid, oral solid/perceived gastric liquid, or oral solid/perceived gastric solid). However, all preloads were designed to present a liquid gastric challenge. Appetite, gastric-emptying and orocecal transit times, and selected endocrine responses were monitored for the following 4 h; total energy intake was also recorded. RESULTS Oral-liquid and perceived gastric-liquid preloads elicited greater postprandial hunger and lower fullness sensations, more rapid gastric-emptying and orocecal transit times, attenuated insulin and glucagon-like peptide 1 release, and lower ghrelin suppression than did responses after oral-solid and perceived gastric-solid treatments (all P < 0.05). Faster gastric-emptying times were significantly associated with greater energy intake after consumption of perceived gastric-liquid preloads (P < 0.05). Energy intake was greater on days when perceived gastric-liquid preloads were consumed than when perceived gastric solids were consumed (2311 ± 95 compared with 1897 ± 72 kcal, P = 0.007). CONCLUSIONS These data document sensory and cognitive effects of food form on ingestive behavior and identify physical and endocrine variables that may account for the low satiety value of beverages. They are consistent with findings that clear, energy-yielding beverages pose a particular risk for positive energy balance. This study was registered at clinicaltrials.gov as NCT01070199.
Collapse
Affiliation(s)
- Bridget A Cassady
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907-2059, USA
| | | | | |
Collapse
|
27
|
Influence of aging on experimental gastrointestinal motility in extraction of rat molar teeth. PEDIATRIC DENTAL JOURNAL 2012. [DOI: 10.1016/s0917-2394(12)70246-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Asuzu DT, Hayashi Y, Izbeki F, Popko LN, Young DL, Bardsley MR, Lorincz A, Kuro-o M, Linden DR, Farrugia G, Ordog T. Generalized neuromuscular hypoplasia, reduced smooth muscle myosin and altered gut motility in the klotho model of premature aging. Neurogastroenterol Motil 2011; 23:e309-23. [PMID: 21605285 PMCID: PMC3149585 DOI: 10.1111/j.1365-2982.2011.01730.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Gastrointestinal symptoms, particularly constipation, increase with aging, but their underlying mechanisms are poorly understood due to lack of experimental models. Previously we established the progeric klotho mouse as a model of aging-associated anorexia and gastric dysmotility. We also detected reduced fecal output in these animals; therefore, the aim of this study was to investigate in vivo function and cellular make-up of the small intestinal and colonic neuromuscular apparatus. METHODS Klotho expression was studied by RT-PCR and immunohistochemistry. Motility was assessed by dye transit and bead expulsion. Smooth muscle and neuron-specific gene expression was studied by Western immunoblotting. Interstitial cells of Cajal (ICC) and precursors were analyzed by flow cytometry, confocal microscopy, and three-dimensional reconstruction. HuC/D(+) myenteric neurons were enumerated by fluorescent microscopy. KEY RESULTS Klotho protein was detected in neurons, smooth muscle cells, and some ICC classes. Small intestinal transit was slower but whole-gut transit of klotho mice was accelerated due to faster colonic transit and shorter intestinal lengths, apparent only after weaning. Fecal water content remained normal despite reduced output. Smooth muscle myosin expression was reduced. ICC, ICC precursors, as well as nitrergic and cholinergic neurons maintained their normal proportions in the shorter intestines. CONCLUSIONS & INFERENCES Progeric klotho mice express less contractile proteins and develop generalized intestinal neuromuscular hypoplasia mainly arising from stunted postweaning growth. As reduced fecal output in these mice occurs in the presence of accelerated colonic and whole-gut transit, it likely reflects reduced food intake rather than intestinal dysmotility.
Collapse
Affiliation(s)
- David T. Asuzu
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA,Gastroenterology Research Unit, Mayo Clinic, Rochester, MN 55905, USA
| | - Yujiro Hayashi
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA,Gastroenterology Research Unit, Mayo Clinic, Rochester, MN 55905, USA
| | - Ferenc Izbeki
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA,Gastroenterology Research Unit, Mayo Clinic, Rochester, MN 55905, USA
| | - Laura N. Popko
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA,Gastroenterology Research Unit, Mayo Clinic, Rochester, MN 55905, USA
| | - David L. Young
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA,Gastroenterology Research Unit, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael R. Bardsley
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA,Gastroenterology Research Unit, Mayo Clinic, Rochester, MN 55905, USA
| | - Andrea Lorincz
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA,Gastroenterology Research Unit, Mayo Clinic, Rochester, MN 55905, USA
| | - Makoto Kuro-o
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David R. Linden
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Gianrico Farrugia
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Tamas Ordog
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA,Gastroenterology Research Unit, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
29
|
Fichna J, Schicho R, Andrews CN, Bashashati M, Klompus M, McKay DM, Sharkey KA, Zjawiony JK, Janecka A, Storr MA. Salvinorin A inhibits colonic transit and neurogenic ion transport in mice by activating kappa-opioid and cannabinoid receptors. Neurogastroenterol Motil 2009; 21:1326-e128. [PMID: 19650775 DOI: 10.1111/j.1365-2982.2009.01369.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The major active ingredient of the plant Salvia divinorum, salvinorin A (SA) has been used to treat gastrointestinal (GI) symptoms. As the action of SA on the regulation of colonic function is unknown, our aim was to examine the effects of SA on mouse colonic motility and secretion in vitro and in vivo. The effects of SA on GI motility were studied using isolated preparations of colon, which were compared with preparations from stomach and ileum. Colonic epithelial ion transport was evaluated using Ussing chambers. Additionally, we studied GI motility in vivo by measuring colonic propulsion, gastric emptying, and upper GI transit. Salvinorin A inhibited contractions of the mouse colon, stomach, and ileum in vitro, prolonged colonic propulsion and slowed upper GI transit in vivo. Salvinorin A had no effect on gastric emptying in vivo. Salvinorin A reduced veratridine-, but not forskolin-induced epithelial ion transport. The effects of SA on colonic motility in vitro were mediated by kappa-opioid receptors (KORs) and cannabinoid (CB) receptors, as they were inhibited by the antagonists nor-binaltorphimine (KOR), AM 251 (CB(1) receptor) and AM 630 (CB(2) receptor). However, in the colon in vivo, the effects were largely mediated by KORs. The effects of SA on veratridine-mediated epithelial ion transport were inhibited by nor-binaltorphimine and AM 630. Salvinorin A slows colonic motility in vitro and in vivo and influences neurogenic ion transport. Due to its specific regional action, SA or its derivatives may be useful drugs in the treatment of lower GI disorders associated with increased GI transit and diarrhoea.
Collapse
Affiliation(s)
- J Fichna
- Division of Gastroenterology, Department of Medicine, Snyder Institute of Infection, Immunity and Inflammation (III), Alberta, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Martinez Gagliardo K, Clebis NK, Stabille SR, De Britto Mari R, De Sousa JMA, De Souza RR. Exercise reduces inhibitory neuroactivity and protects myenteric neurons from age-related neurodegeneration. Auton Neurosci 2008; 141:31-37. [PMID: 18554992 DOI: 10.1016/j.autneu.2008.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 04/13/2008] [Accepted: 04/22/2008] [Indexed: 12/16/2022]
Abstract
The practice of regular exercise is indicated to prevent some motility disturbances in the gastrointestinal tract, such as constipation, during aging. The motility alterations are intimately linked with its innervations. The goal of this study is to determine whether a program of exercise (running on the treadmill), during 6 months, has effects in the myenteric neurons (NADH- and NADPH-diaphorase stained neurons) in the colon of rats during aging. Male Wistar rats 6 months (adult) and 12 months (middle-aged) old were divided into 3 different groups: AS (adult sedentary), MS (middle-aged sedentary) and MT (middle-aged submitted to physical activity). The aging did not cause a decline significant (p>0.05) of the number of NADH-diaphorase stained neurons in sedentary rats (AS vs. MS group). In contrast, a decline of 31% was observed to NADPH-diaphorase stained neurons. Thus, animals that underwent physical activity (AS vs. MT group) rescued neurons from degeneration caused by aging (total number, density and profile of neurons did not change with age--NADH-diaphorase method). On the other hand, physical activity augmented the decline of NADPH-diaphorase positive neurons (total number, density and profile of neurons decreased). Collectively, the results show that exercise inhibits age-related decline of myenteric neurons however, exercise augments the decline of neurons with inhibitory activity (nitric oxide) in the colon of the rats.
Collapse
Affiliation(s)
- Karina Martinez Gagliardo
- Department of Surgery of the Faculty of Veterinary Medicine and Zootechnics, University of São Paulo, Cidade Universitária, São Paulo, Brazil. karinamg.usp.br
| | | | | | | | | | | |
Collapse
|
31
|
Antidiarrhoeal activity of the standardised extract of Cinnamomum tamala in experimental rats. J Nat Med 2008; 62:396-402. [PMID: 18493839 DOI: 10.1007/s11418-008-0258-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Accepted: 04/17/2008] [Indexed: 10/22/2022]
Abstract
The present study was designed to investigate the antidiarrhoeal potential of 50% ethanolic extract of Cinnamomum tamala on experimentally induced castor oil diarrhoea, gastric emptying of phenol red meal, gastrointestinal transit of charcoal meal and in vitro mast cell degranulation activity. C. tamala extract (25, 50 and 100 mg/kg, orally) produced a dose-dependent reduction in the total amount of faecal matter in castor oil-induced diarrhoea. The mean distance travelled by charcoal meal at 50 and 100 mg/kg of extract showed a significant reduction in the secretion of gastrointestinal fluid accumulation by 32.5-65.0%. The Na(+) and K(+) concentrations on castor oil-induced fluid accumulation showed a greater inhibitory effect on Na(+) levels than on K(+) concentrations. C. tamala significantly reduced the lipid peroxidation (P < 0.001) and increased the catalase (P < 0.01) activity in comparison to the castor oil-induced groups. C. tamala leaf extract did not show any significant effect at a higher dose (15 mg/ml) on mast cell degranulation. However, the extract in the dose of 5 and 10 mg/ml conferred significant mast cell protective action (P < 0.001). The percentage of eugenol in extract is 3.8% w/w, and total tannin is 247.5 mg/g. The result indicates the Indian spice C. tamala is useful for diarrhoea.
Collapse
|
32
|
Kumar R, Elikkottil J, Singla S, Alavi A. Normal Variants and Effects of Aging on the Gastrointestinal Tract. PET Clin 2008; 3:123-34. [DOI: 10.1016/j.cpet.2008.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Phillips RJ, Pairitz JC, Powley TL. Age-related neuronal loss in the submucosal plexus of the colon of Fischer 344 rats. Neurobiol Aging 2007; 28:1124-37. [DOI: 10.1016/j.neurobiolaging.2006.05.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 03/07/2006] [Accepted: 05/10/2006] [Indexed: 11/28/2022]
|
34
|
Meier JM, Alavi A, Iruvuri S, Alzeair S, Parker R, Houseni M, Hernandez-Pampaloni M, Mong A, Torigian DA. Assessment of Age-Related Changes in Abdominal Organ Structure and Function With Computed Tomography and Positron Emission Tomography. Semin Nucl Med 2007; 37:154-72. [PMID: 17418149 DOI: 10.1053/j.semnuclmed.2007.02.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
With the size of the aged population in the United States expected to grow considerably during the next several decades, the number of imaging studies performed on such aged individuals will similarly increase. Thus, it is important to understand normal age-related changes in the structural and functional imaging appearance of the abdominal organs. We therefore present preliminary data and a review of the literature relevant to structural and functional changes in the abdominal organs of children and older adults. In a retrospective study of both adult and pediatric populations, we used computed tomography (CT), positron emission tomography (PET), and PET/CT imaging to investigate age-associated changes in size, attenuation, and metabolic function of the abdominal organs. Organs of interest include the liver, spleen, pancreas, kidneys, adrenal glands, stomach, small bowel, colon, and rectum. Although volumes of adult liver, spleen, pancreas, and kidneys do not change significantly with age, adult left and right adrenal gland volumes do significantly increase with age (r = 0.2823, P = 0.0334, and r = 0.3676, P = 0.0049, respectively). Also, the attenuation of adult liver (r = -0.2122, P = 0.0412), spleen (r = -0.4508, P < 0.0001), pancreas (r = -0.5124, P = 0.0007), and left and right adrenal gland (r = -0.5835, P < 0.0001 and r = -0.6135, P < 0.0001, respectively) decrease significantly with increasing age. Every organ studied in the pediatric population demonstrates a positive association between organ volume and age. Significant age-related changes in organ function are noted in the adult liver and small bowel, with the liver demonstrating a positive association between metabolic activity and age (r = 0.4434, P = 0.0029) and the small bowel showing an inverse association between mean small bowel standardize uptake value and age (r = -0.2435, P = 0.0174). Also, the maximum overall small bowel and colon metabolic activity in children increases with age (r = 0.6478, P = 0.0008). None of the other organs studied (ie, spleen, pancreas, adrenal glands, stomach, colon, rectum) demonstrate significant changes in metabolism with advancing age. The metabolic volumetric product (calculated as the product of organ volume and mean organ SUV) of the liver and spleen does not change significantly with age. In conclusion, various abdominal organs demonstrate differential changes in volume, attenuation, and/or metabolism with increasing age in pediatric and adult populations.
Collapse
Affiliation(s)
- Jeffrey M Meier
- Department of Radiology, Division of Nuclear Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4283, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Brogna A, Loreno M, Catalano F, Bucceri AM, Malaguarnera M, Muratore LA, Travali S. Radioisotopic assessment of gastric emptying of solids in elderly subjects. Aging Clin Exp Res 2006; 18:493-6. [PMID: 17255638 DOI: 10.1007/bf03324849] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIMS Few studies in literature have investigated the gastric emptying of solids in elderly subjects. We assessed the differences between young and elderly subjects in the gastric emptying rate of solids by a radioisotopic method. METHODS Two groups of 15 elderly male subjects (mean age 68.20 years and 77.26 years, respectively) and a group of young male subjects (mean age 30.23 years) underwent a radioisotopic study of gastric emptying after eating a radiolabeled solid meal. Half-time of gastric emptying (T1/2) and emptying index (EI), i.e. rate of gastric emptying at 120 min, were measured with two opposing detectors connected to a computerized rate-meter. Results are expressed as means +/- SD. RESULTS Significantly different values were obtained in the two groups both at T1/2 (183+/-88 and 195+/-75, respectively) and EI (0.40+/-0.3 and 0.36+/-0.4), compared with young subjects (T1/2=53+/-23; EI=1.10+/-0.3) (p<0.0001). CONCLUSIONS Gastric emptying of solids is significantly delayed in elderly men; this variable must be taken into account when studies on gastric emptying rates are performed.
Collapse
Affiliation(s)
- Alfio Brogna
- Department of Internal Medicine and Internal Specialities, University of Catania, Catania, Italy.
| | | | | | | | | | | | | |
Collapse
|
36
|
Phillips RJ, Rhodes BS, Powley TL. Effects of age on sympathetic innervation of the myenteric plexus and gastrointestinal smooth muscle of Fischer 344 rats. ACTA ACUST UNITED AC 2006; 211:673-83. [PMID: 17024301 DOI: 10.1007/s00429-006-0123-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2006] [Indexed: 01/26/2023]
Abstract
Loss of myenteric neurons with age is well documented, however little is known about age-related changes of the sympathetic innervation of the myenteric plexus and gastrointestinal smooth muscle. The goal of the present study, therefore, was to evaluate the influence of age on the sympathetic innervation of the myenteric plexus throughout the gastrointestinal tract. Ad libitum fed virgin male Fischer 344 rats at 3, 15-16, 24, and 27-28 months of age were sampled. Whole mounts of the stomach, small intestine, and large intestine were processed with an antibody to tyrosine hydroxylase (TH). Additionally, some specimens labeled for TH were stained for NADPH-diaphorase to selectively label the nitrergic subpopulation of neurons in the myenteric plexus. Age-related changes in the TH-positive axons occurred as early as 15-16 months and became more pronounced by 27-28 months. Changes included markedly swollen axons and terminals and a decrease in the intensity of TH staining in some of the surviving processes. Similarly, swollen NADPH-diaphorase-positive axons were found in the myenteric ganglia and secondary plexus between ganglia in the whole mounts of rats 15-28 months of age, but swollen nitrergic axons and dystrophic TH-positive axons were never present in the same ganglion or connective. Therefore, in the aged rat, deterioration of the sympathetic innervation of the myenteric plexus could be one possible mechanism for the age-related decline in gastrointestinal motor function evidenced in the elderly.
Collapse
Affiliation(s)
- Robert J Phillips
- Department of Psychological Sciences, Purdue University, 703 Third Street, West Lafayette, IN 47907-2081, USA.
| | | | | |
Collapse
|
37
|
Hall KE, Proctor DD, Fisher L, Rose S. American gastroenterological association future trends committee report: effects of aging of the population on gastroenterology practice, education, and research. Gastroenterology 2005; 129:1305-38. [PMID: 16230084 DOI: 10.1053/j.gastro.2005.06.013] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Karen E Hall
- Veterans Affairs Healthcare System, Geriatric Research, Education and Clinical Center, Ann Arbor, Michigan, USA
| | | | | | | |
Collapse
|
38
|
Abalo R, Rivera AJ, Vera G, Suardíaz M, Martín MI. Evaluation of the effect of age on cannabinoid receptor functionality and expression in guinea-pig ileum longitudinal muscle–myenteric plexus preparations. Neurosci Lett 2005; 383:176-81. [PMID: 15936532 DOI: 10.1016/j.neulet.2005.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 04/01/2005] [Accepted: 04/03/2005] [Indexed: 11/17/2022]
Abstract
Cannabinoid drugs exert a wide range of biological effects and are currently under study for their multiple potential therapeutic uses. Cannabinoids reduce gastrointestinal (GI) motility and this is mediated by the CB1 cannabinoid receptor (CB1R) present in the myenteric neurones. GI motility can also be affected by a variety of pathophysiological situations, including ageing. The purpose of this work was to study the influence of age on the functionality and expression of CB1R in the myenteric plexus. Ileal longitudinal muscle-myenteric plexus (LMMP) preparations from young, adult and old guinea-pigs were used in two sets of experiments: in vitro assessment of the inhibitory cannabinoid effect upon electrically stimulated contractions and immunohistochemical quantification of myenteric neurones expressing CB1R. LMMP preparations responded to the synthetic cannabinoid WIN 55,212-2, and the endogenous cannabinoid ligand anandamide in an age-independent manner. The total number of CB1R-immunoreactive (IR) myenteric neurones, which included at least part of the motor neurones to the longitudinal smooth muscle, decreased in proportion to the general neuronal population; however, the proportion of CB1R-IR neurones was preserved in old animals. These data may justify the preservation of the effectiveness of the cannabinoids in the isolated guinea-pig ileum. This age-related independency of CB1R expression and effect on GI motility could be of interest if cannabinoids are to be used therapeutically.
Collapse
Affiliation(s)
- Raquel Abalo
- Departamento de Ciencias de la Salud III, Health Sciences III, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain.
| | | | | | | | | |
Collapse
|
39
|
Abstract
The intrinsic neurones of the enteric nervous system (ENS) play a fundamental role in the regulation of gastrointestinal functions. Although much remains to be learnt about the changes that take place in intestinal nerves during ageing, evidence suggests that selective neurodegeneration may occur in the ageing ENS. Age-associated changes in intestinal innervation may contribute to the gastrointestinal disorders that increase in incidence in the elderly, such as dysphagia, gastrointestinal reflux and constipation. A number of other factors, such as immobility, co-morbidity, and side effects of therapeutic medication for other disorders however, are also likely to contribute to the aetiology of these conditions. An important finding in rodents is that the neuronal losses that take place in the ENS during ageing may be prevented by calorie restriction; an indication that diet may influence gastrointestinal ageing. Thus, it is of importance to understand not only how the ENS changes during 'normal' ageing, but also how external factors contribute to these changes. Here, current knowledge of how intestinal innervation is affected during normal ageing and how these changes may impact upon gastrointestinal physiology are reviewed.
Collapse
Affiliation(s)
- M Jill Saffrey
- Department of Biological Sciences, Open University, Walton Hall, Milton Keynes MK7 6AA, UK.
| |
Collapse
|
40
|
Phillips RJ, Kieffer EJ, Powley TL. Loss of glia and neurons in the myenteric plexus of the aged Fischer 344 rat. ACTA ACUST UNITED AC 2005; 209:19-30. [PMID: 15480773 DOI: 10.1007/s00429-004-0426-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Over the normal lifespan, a subpopulation of myenteric neurons in the small and large intestines dies. This loss is one possible mechanism for the disruptions of gastrointestinal function seen in the elderly. Little, however, is known about how the glia constituting the supportive cells of the myenteric plexus may change with aging and the losses of the enteric neurons. The goal of the present study, therefore, was to determine what, if any, changes occur in the glia associated with myenteric neurons in the aged gut. Two experimental groups, consisting of adult (5-6 months of age, n = 8) or aged (26 months of age, n = 8) virgin male Fischer 344 rats, fed ad libitum, were examined. The duodenum, jejunum, ileum, colon, and rectum from each rat were prepared as whole mounts, and indirect immunofluorescence was used to visualize the myenteric glia and neurons (antibodies to S-100 and the HuC/D protein, respectively). Separate counts of glia and neurons from the same specimens were determined, and these counts were expressed both as per ganglionic area and as per ganglion to correct for "dilution" effects resulting from age-associated changes in tissue area. Significant reductions in both the numbers of glia as well as neurons occurred in every region of the small and large intestine sampled from aged rats, except for the rectum, where a nonsignificant decrease was observed. Glial loss was proportional to neuronal death, suggesting an interdependency between the two cell types. Thus, an understanding of the nature of the neuron-glia interaction in the enteric nervous system may provide insight into the deterioration of function seen in the aged gut.
Collapse
Affiliation(s)
- Robert J Phillips
- Purdue University, Department of Psychological Sciences, 703 Third Street, West Lafayette, IN 47907-2081, USA.
| | | | | |
Collapse
|
41
|
Phillips RJ, Kieffer EJ, Powley TL. Aging of the myenteric plexus: neuronal loss is specific to cholinergic neurons. Auton Neurosci 2003; 106:69-83. [PMID: 12878075 DOI: 10.1016/s1566-0702(03)00072-9] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Neuron loss occurs in the myenteric plexus of the aged rat. The myenteric plexus is composed of two mutually exclusive neuronal subpopulations expressing, respectively, nitrergic and cholinergic phenotypes. The goal of the present study, therefore, was to determine if neuron loss is specific to one phenotype, or occurs in both. Ad libitum fed virgin male Fischer 344 rats of 3 and 24 months of age were used in each of two neuronal staining protocols (n=10/age/neuron stain). The stomach, duodenum, jejunum, ileum, colon, and rectum were prepared as whole mounts and processed with either NADPHd or Cuprolinic Blue to stain, respectively, the nitrergic subpopulation or the entire population of myenteric neurons. Neuron numbers and sizes were determined for each preparation. Neuron counts from 24-month-old rats were corrected for changes in tissue area resulting from growth. There was no age-related loss of NADPHd-positive neurons for any of the regions sampled, whereas significant losses of Cuprolinic Blue-labeled neurons occurred in the small and large intestines of 24-month-old rats. At the two ages, the average neuron sizes were similar in the stomach and small intestine for both stains, but neurons in the large intestine were significantly larger at 24 months. In addition, numerous swollen NADPHd-positive axons were found in the large intestine at 24 months. These findings support the hypothesis that age-related cell loss in the small and large intestines occurs exclusively in the cholinergic subpopulation. It appears, however, from the somatic hypertrophy and the presence of swollen axons that the nitrergic neurons are not completely spared from the effects of age.
Collapse
Affiliation(s)
- Robert J Phillips
- Department of Psychological Sciences, Purdue University, 703 Third Street, West Lafayette, IN 47907-2004, USA.
| | | | | |
Collapse
|
42
|
Abstract
The anorexia of aging is a syndrome characterized by unexplained losses in food intake and body weight that occur near the end of life. Proposed etiologies cover a wide range of biological and psychological conditions. The observation of this phenomenon in older laboratory animals suggests that physiological changes play a significant causal role. Research on the neurochemical control of energy balance has received much attention in recent years, and age-related alterations in the neuropeptidergic effectors of food intake have been implicated in the anorexia of aging. This review provides an update on putative mechanisms underlying this dysregulation of feeding during advanced age.
Collapse
Affiliation(s)
- Barbara A Horwitz
- Section of Neurobiology, Physiology, and Behavior, Division of Biological Sciences, University of California, Davis, California 95616, USA.
| | | | | |
Collapse
|
43
|
Hall KE. Aging and neural control of the GI tract. II. Neural control of the aging gut: can an old dog learn new tricks? Am J Physiol Gastrointest Liver Physiol 2002; 283:G827-32. [PMID: 12223341 DOI: 10.1152/ajpgi.00162.2002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
There has been a dramatic increase in funding available for aging research, primarily due to the fact that answers to questions on aging are likely to have a major impact on the well-being and healthy aging of the world's population for decades to come. The incidence of certain gastrointestinal problems, such as dysphagia and constipation, increases dramatically with age. Changes in gastrointestinal neuromuscular function with aging have been demonstrated in both human and animal models of aging. This article focuses on recent advances in our knowledge of the effects of aging on gastrointestinal function, treatment options, and future opportunities for research.
Collapse
Affiliation(s)
- Karen E Hall
- Geriatric Research, Education, and Clinical Center, Ann Arbor Veterans Affairs Healthcare System and Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
44
|
Wade PR. Aging and neural control of the GI tract. I. Age-related changes in the enteric nervous system. Am J Physiol Gastrointest Liver Physiol 2002; 283:G489-95. [PMID: 12181159 DOI: 10.1152/ajpgi.00091.2002] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
As we enter the 21st century, the segment of the population that is the most rapidly expanding is that comprised of individuals 85 yr of age and older. Dysfunctions of the gastrointestinal (GI) system, including dysphagia, constipation, diarrhea, and irritable bowel syndrome are more common complaints of the elderly, yet our knowledge of the aging GI tract is incomplete. Compared with the rapid advances in the neurobiology of aging in the central nervous system, the understanding of age-related changes in the enteric nervous system (ENS) is poor. In this brief review, I recap experiments that reveal neurodegenerative changes and their functional correlates in the ENS of mice, rats, and guinea pigs. Clinical literature seems indicative of similar structural and functional age-related changes in the human ENS. Current studies that address the mechanisms underlying age-related changes in the ENS are introduced. The future directions for this field include physiological and pharmacological studies, especially at cellular and molecular levels. Research in the aging ENS is poised to make major advances, and this new knowledge will be useful for clinicians seeking to better understand and treat GI dysfunction in the elderly.
Collapse
Affiliation(s)
- Paul R Wade
- Department of Zoology and Physiology, and Wyoming WWAMI* Medical Education Program, University of Wyoming, Laramie, Wyoming 82071, USA.
| |
Collapse
|
45
|
El-Salhy M. Gastrointestinal transit in an animal model of human diabetes type 2: relationship to gut neuroendocrine peptide contents. Ups J Med Sci 2002; 107:101-10. [PMID: 12602782 DOI: 10.3109/2000-1967-133] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Gastrointestinal transit (GIT) was determined in obese diabetic mice (ob/ob, Umeå/Bom). Blood glucose level, and insulin concentration in the serum and pancreas extracts as well as neuroendocrine peptide contents were measured in several segments of the gut. GIT was significantly slower in the obese diabetic mice, but was not correlated with the blood glucose level, serum insulin, or pancreatic insulin content. GIT was correlated with duodenal secretin content and colonic vasoactive intestinal peptide (VIP) content, but not with the content of other neuroendocrine peptides in different segments investigated. The antral gastrin content in obese diabetic mice was significantly higher than in controls. The concentration of secretin in obese diabetic mice was higher than in controls. Whereas the contents of peptide YY (PYY) and somatostatin were higher in obese diabetic mice, the contents of substance P and VIP were lower. The increased content of duodenal secretin and decreased content of colonic VIP may be among the factors that cause slow GIT in obese diabetic mice. The changes in the colonic contents of PYY, VIP and somatostatin may cause low intestinal secretion and, together with slow GIT, give rise to constipation, which is a common symptom in diabetes.
Collapse
Affiliation(s)
- Magdy El-Salhy
- Section for Gastroenterology and Hepatology, Department of Medicine, Institution of Public Health and Clinical Medicine, University Hospital, Umeå, Sweden.
| |
Collapse
|
46
|
El-Salhy M, Spångéus A. Gastric emptying in animal models of human diabetes: correlation to blood glucose level and gut neuroendocrine peptide content. Ups J Med Sci 2002; 107:89-99. [PMID: 12602781 DOI: 10.3109/2000-1967-132] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gastric emptying was measured in non-obese diabetic (NOD) and in obese diabetic mice. The feces were collected and the water content was determined. The neuroendocrine peptides known to regulate gastrointestinal motility, namely secretin, gastric inhibitory peptide (GIP), motilin, somatostatin, peptide YY (PYY), substance P, vasoactive intestinal polypeptide (VIP) and galanin, were measured in tissue extracts of different segments of the gut by radioimmunoassay. Whereas the gastric emptying of NOD mice was significantly slower than that of controls, that of the obese diabetic mice was unaltered. The gastric emptying of NOD mice, but not that of obese diabetic mice, correlated with the blood glucose level. The feces weight and water content in NOD mice was significantly higher than controls. The feces water content in obese diabetic mice was significantly lower than that of controls. The concentrations of antral somatostatin, VIP and galanin, and duodenal secretin as well as jejunal motilin in NOD mice were higher than those of controls. Duodenal GIP and colonic PYY concentration in NOD mice was lower than controls. Duodenal GIP and VIP, and colonic somatostatin and VIP levels were lower in obese diabetic mice than controls. Secretin and motilin levels correlated with gastric emptying in NOD mice. The high duodenal concentration of secretin might reflect high synthesis and release of this hormone, and may therefore be among the factors that caused slow gastric emptying in the NOD mice. The increase in concentration of motilin observed in NOD mice may be caused by impaired release of this hormone as a result of hyperglycemia. Whereas the high concentrations of antral VIP and galanin and the low level of colonic PYY in diabetic NOD mice may contribute to the development of diarrhea in NOD mice, the decreased levels of duodenal and colonic VIP and colonic somatostatin in obese diabetic mice may account for the constipation encountered in these animals.
Collapse
Affiliation(s)
- Magdy El-Salhy
- Section for Gastroenterology and Hepatology, Department of Medicine, Institution of Public Health and Clinical Medicine, University Hospital, Umeå, Sweden.
| | | |
Collapse
|
47
|
El-Salhy M. Gastrointestinal transit in nonobese diabetic mouse: an animal model of human diabetes type 1. J Diabetes Complications 2001; 15:277-84. [PMID: 11561557 DOI: 10.1016/s1056-8727(01)00158-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Gastrointestinal transit (GI) in the nonobese diabetic (NOD) mouse, an animal model of human diabetes type 1, was examined in animals with short- (duration 1-5 days) and long-term (duration 28-35 days) diabetes. Blood glucose level, serum insulin concentration, and gut neuroendocrine peptide content were also measured. GI was significantly rapid in NOD mice with long-term diabetes (LTD), but was not correlated with blood glucose level, serum insulin concentration, or pancreatic insulin content. GI was correlated with duodenal secretin content, but not with the content of other neuroendocrine peptides in the different segments investigated. Whereas antral vasoactive intestinal peptide (VIP) content in NOD mice with LTD was significantly higher, colonic VIP was lower in NOD mice with short-term diabetes (STD). In the duodenum, whereas the concentration of secretin in NOD mice with both STD and LTD was lower, the gastrin content was higher. Duodenal somatostatin content in NOD mice with LTD was lower. In colon, the content of galanin in NOD mice with LTD was higher than in controls. The decreased content of secretin may be among the factors that cause rapid GI in NOD mice with LTD. Changes in the antral content of VIP, duodenal somatostatin, and colonic galanin in NOD mice with LTD may cause low intestinal secretion and, together with rapid GI, give rise to diarrhoea, which is a common symptom in diabetes.
Collapse
Affiliation(s)
- M El-Salhy
- Department of Medicine, Institution of Public Health and Clinical Medicine, University Hospital, Umeå, Sweden.
| |
Collapse
|
48
|
Phillips RJ, Powley TL. As the gut ages: timetables for aging of innervation vary by organ in the Fischer 344 rat. J Comp Neurol 2001; 434:358-77. [PMID: 11331534 DOI: 10.1002/cne.1182] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
To explore the effects of aging on the vagal innervation of the gastrointestinal (GI) tract, male Fischer 344 rats at 3 and 24 months of age were injected in the left nodose ganglion with 3 microl of either 4% wheat germ agglutinin-horseradish peroxidase (to label sensory endings) or 1% cholera toxin subunit B-horseradish peroxidase (to label motor endings). The stomach and duodenum were prepared as wholemounts and processed with tetramethyl benzidine. In addition, to study age-related changes in the myenteric plexus, the stomachs, small intestines, and large intestines from 3-, 12-, 21-, 24- and 27-month-old rats were prepared as wholemounts and processed with Cuprolinic Blue (to stain the neurons). Vagal afferent endings, motor terminal profiles, and myenteric neurons were counted and mapped with a sampling grid. In the stomach, both the vagal and myenteric innervation were stable between the ages of 3 and 24 months; however, a decrease in the number of myenteric neurons in the forestomach was noted at 27 months. In the small and large intestines, myenteric cell loss occurred by 12 months of age, progressed with age, and appeared to be governed by several general principles: (1) the rate of cell loss was organ-specific, with a gradient of increasing severity from proximal to distal in the gut; (2) within organs of the GI tract, the rate of cell loss differed between regions; and (3) for given regions, cell losses progressed linearly with increasing age. The findings suggest that a positive relationship exists between the density of vagal extrinsic innervation and myenteric neuron survival; however, whether this results from the vagal innervation and/or other factor(s) protecting or rescuing myenteric neurons from age-related attrition remains to be determined.
Collapse
Affiliation(s)
- R J Phillips
- Purdue University, Department of Psychological Sciences, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
49
|
Peachey SE, Dawson JM, Harper EJ. Gastrointestinal transit times in young and old cats. Comp Biochem Physiol A Mol Integr Physiol 2000; 126:85-90. [PMID: 10908855 DOI: 10.1016/s1095-6433(00)00189-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ageing results in a decrease in apparent nutrient digestibility in the gastrointestinal (GI) tract. The aim of this study was to investigate whether the rate of gastric emptying or total GI transit times differed between young (3.0+/-0.9 years) and senior (11.6+/-1. 4 years) cats. Gastric emptying rates were measured using [1-(13)C]octanoic acid and total transit times with chromium oxide. No significant differences (P>0.05) were observed in either the rate of gastric emptying or total transit time between young and senior cats although senior cats exhibited a larger variability in total transit time compared to the younger cats (35.71+/-14.06 and 26. 46+/-5.80 h, respectively). The results of this study indicate that the observed reduction in nutrient digestibility in ageing cats is not due to alterations in the rate of passage of digesta through the GI tract.
Collapse
Affiliation(s)
- S E Peachey
- School of Biological Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK.
| | | | | |
Collapse
|
50
|
Brogna A, Ferrara R, Bucceri AM, Lanteri E, Catalano F. Influence of aging on gastrointestinal transit time. An ultrasonographic and radiologic study. Invest Radiol 1999; 34:357-9. [PMID: 10226848 DOI: 10.1097/00004424-199905000-00005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
RATIONALE AND OBJECTIVES To assess and compare gastrointestinal (GI) rates in young and aged men under homogeneous conditions of weight and dietetic habits. METHODS Gastric emptying time was evaluated by ultrasound. GI transit time was studied radiologically using radiopaque markers. RESULTS Final gastric emptying time in elderly subjects was 335 +/- 31 minutes (mean +/- SD) versus 245 +/- 25 minutes in young subjects (P < 0.001). Total GI transit time showed no significant difference between the two groups. Intestinal transit time includes both small bowel and colonic transit; small bowel and colonic transit was not separated in this study. CONCLUSIONS Delayed gastric emptying of solid foods could result from progressive autonomic nerve dysfunction occurring with aging. The stomach does not seem to be the segment of the digestive tract that is primarily responsible for the alteration of total GI time.
Collapse
|