1
|
Libbey JE, Fujinami RS. Viral mouse models used to study multiple sclerosis: past and present. Arch Virol 2021; 166:1015-1033. [PMID: 33582855 PMCID: PMC7882042 DOI: 10.1007/s00705-021-04968-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/06/2020] [Indexed: 12/19/2022]
Abstract
Multiple sclerosis (MS) is a common inflammatory demyelinating disease of the central nervous system. Although the etiology of MS is unknown, genetics and environmental factors, such as infections, play a role. Viral infections of mice have been used as model systems to study this demyelinating disease of humans. Three viruses that have long been studied in this capacity are Theiler’s murine encephalomyelitis virus, mouse hepatitis virus, and Semliki Forest virus. This review describes the viruses themselves, the infection process, the disease caused by infection and its accompanying pathology, and the model systems and their usefulness in studying MS.
Collapse
Affiliation(s)
- J E Libbey
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT, 84112, USA
| | - R S Fujinami
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
2
|
Murta V, Villarreal A, Ramos AJ. Severe Acute Respiratory Syndrome Coronavirus 2 Impact on the Central Nervous System: Are Astrocytes and Microglia Main Players or Merely Bystanders? ASN Neuro 2020; 12:1759091420954960. [PMID: 32878468 PMCID: PMC7476346 DOI: 10.1177/1759091420954960] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
With confirmed coronavirus disease 2019 (COVID-19) cases surpassing the 18 million mark around the globe, there is an imperative need to gain comprehensive understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although the main clinical manifestations of COVID-19 are associated with respiratory or intestinal symptoms, reports of neurological signs and symptoms are increasing. The etiology of these neurological manifestations remains obscure, and probably involves several direct pathways, not excluding the direct entry of the virus to the central nervous system (CNS) through the olfactory epithelium, circumventricular organs, or disrupted blood–brain barrier. Furthermore, neuroinflammation might occur in response to the strong systemic cytokine storm described for COVID-19, or due to dysregulation of the CNS rennin-angiotensin system. Descriptions of neurological manifestations in patients in the previous coronavirus (CoV) outbreaks have been numerous for the SARS-CoV and lesser for Middle East respiratory syndrome coronavirus (MERS-CoV). Strong evidence from patients and experimental models suggests that some human variants of CoV have the ability to reach the CNS and that neurons, astrocytes, and/or microglia can be target cells for CoV. A growing body of evidence shows that astrocytes and microglia have a major role in neuroinflammation, responding to local CNS inflammation and/or to disbalanced peripheral inflammation. This is another potential mechanism for SARS-CoV-2 damage to the CNS. In this comprehensive review, we will summarize the known neurological manifestations of SARS-CoV-2, SARS-CoV and MERS-CoV; explore the potential role for astrocytes and microglia in the infection and neuroinflammation; and compare them with the previously described human and animal CoV that showed neurotropism to propose possible underlying mechanisms.
Collapse
Affiliation(s)
- Veronica Murta
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis," Facultad de Medicina, UBA-CONICET, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Alejandro Villarreal
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis," Facultad de Medicina, UBA-CONICET, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Alberto J Ramos
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis," Facultad de Medicina, UBA-CONICET, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| |
Collapse
|
3
|
Miljković D, Timotijević G, Stojković MM. Astrocytes in the tempest of multiple sclerosis. FEBS Lett 2011; 585:3781-8. [DOI: 10.1016/j.febslet.2011.03.047] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Revised: 03/21/2011] [Accepted: 03/23/2011] [Indexed: 12/11/2022]
|
4
|
The spike glycoprotein of murine coronavirus MHV-JHM mediates receptor-independent infection and spread in the central nervous systems of Ceacam1a-/- Mice. J Virol 2007; 82:755-63. [PMID: 18003729 DOI: 10.1128/jvi.01851-07] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The MHV-JHM strain of the murine coronavirus mouse hepatitis virus is much more neurovirulent than the MHV-A59 strain, although both strains use murine CEACAM1a (mCEACAM1a) as the receptor to infect murine cells. We previously showed that Ceacam1a(-/-) mice are completely resistant to MHV-A59 infection (E. Hemmila et al., J. Virol. 78:10156-10165, 2004). In vitro, MHV-JHM, but not MHV-A59, can spread from infected murine cells to cells that lack mCEACAM1a, a phenomenon called receptor-independent spread. To determine whether MHV-JHM could infect and spread in the brain independent of mCEACAM1a, we inoculated Ceacam1a(-/-) mice. Although Ceacam1a(-/-) mice were completely resistant to i.c. inoculation with 10(6) PFU of recombinant wild-type MHV-A59 (RA59) virus, these mice were killed by recombinant MHV-JHM (RJHM) and a chimeric virus containing the spike of MHV-JHM in the MHV-A59 genome (SJHM/RA59). Immunohistochemistry showed that RJHM and SJHM/RA59 infected all neural cell types and induced severe microgliosis in both Ceacam1a(-/-) and wild-type mice. For RJHM, the 50% lethal dose (LD(50)) is <10(1.3) in wild-type mice and 10(3.1) in Ceacam1a(-/-) mice. For SJHM/RA59, the LD(50) is <10(1.3) in wild-type mice and 10(3.6) in Ceacam1a(-/-) mice. This study shows that infection and spread of MHV-JHM in the brain are dependent upon the viral spike glycoprotein. RJHM can initiate infection in the brains of Ceacam1a(-/-) mice, but expression of mCEACAM1a increases susceptibility to infection. The spread of infection in the brain is mCEACAM1a independent. Thus, the ability of the MHV-JHM spike to mediate mCEACAM1a-independent spread in the brain is likely an important factor in the severe neurovirulence of MHV-JHM in wild-type mice.
Collapse
|
5
|
Hamo L, Stohlman SA, Otto‐Duessel M, Bergmann CC. Distinct regulation of MHC molecule expression on astrocytes and microglia during viral encephalomyelitis. Glia 2007; 55:1169-77. [PMID: 17600339 PMCID: PMC7165879 DOI: 10.1002/glia.20538] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The potential interplay of glial cells with T cells during viral induced inflammation was assessed by comparing major histocompatibility complex molecule upregulation and retention on astrocytes and microglia. Transgenic mice expressing green fluorescent protein under control of the astrocyte‐specific glial fibrillary acidic protein promoter were infected with a neurotropic coronavirus to facilitate phenotypic characterization of astrocytes and microglia using flow cytometry. Astrocytes in the adult central nervous system up‐regulated class I surface expression, albeit delayed compared with microglia. Class II was barely detectable on astrocytes, in contrast to potent up‐regulation on microglia. Maximal MHC expression in both glial cell types correlated with IFN‐γ levels and lymphocyte accumulation. Despite a decline of IFN‐γ concomitant to virus clearance, MHC molecule expression on glia was sustained. These data demonstrate distinct regulation of both class I and class II expression by microglia and astrocytes in vivo following viral induced inflammation. Furthermore, prolonged MHC expression subsequent to viral clearance implies a potential for ongoing presentation. © 2007 Wiley‐Liss, Inc.
Collapse
Affiliation(s)
- Ludwig Hamo
- Department of Neuroscience, University of Southern California Keck School of Medicine, Los Angeles, California
| | - Stephen A. Stohlman
- Department of Neuroscience, University of Southern California Keck School of Medicine, Los Angeles, California
- Department of Neurology, University of Southern California Keck School of Medicine, Los Angeles, California
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, California
- Present address:
Department of Neurosciences, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH 44195
| | - Maya Otto‐Duessel
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, California
- Present address:
Department of Radiology, Saban Research Institute of Childrens Hospital Los Angeles, Los Angeles, CA 90027
| | - Cornelia C. Bergmann
- Department of Neurology, University of Southern California Keck School of Medicine, Los Angeles, California
| |
Collapse
|
6
|
Banerjee P, Rochford R, Antel J, Canute G, Wrzesinski S, Sieburg M, Feuer G. Proinflammatory cytokine gene induction by human T-cell leukemia virus type 1 (HTLV-1) and HTLV-2 Tax in primary human glial cells. J Virol 2007; 81:1690-700. [PMID: 17121800 PMCID: PMC1797548 DOI: 10.1128/jvi.01513-06] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Accepted: 11/14/2006] [Indexed: 01/04/2023] Open
Abstract
Infection with human T-cell leukemia virus type 1 (HTLV-1) can result in the development of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), a chronic inflammatory disease of the central nervous system (CNS). HTLV-2 is highly related to HTLV-1 at the genetic level and shares a high degree of sequence homology, but infection with HTLV-2 is relatively nonpathogenic compared to HTLV-1. Although the pathogenesis of HAM/TSP remains to be fully elucidated, previous evidence suggests that elevated levels of the proinflammatory cytokines in the CNS are associated with neuropathogenesis. We demonstrate that HTLV-1 infection in astrogliomas results in a robust induction of interleukin-1beta (IL-1beta), IL-1alpha, tumor necrosis factor alpha (TNF-alpha), TNF-beta, and IL-6 expression. HTLV encodes for a viral transcriptional transactivator protein named Tax that also induces the transcription of cellular genes. To investigate and compare the effects of Tax1 and Tax2 expression on the dysregulation of proinflammatory cytokines, lentivirus vectors were used to transduce primary human astrocytomas and oligodendrogliomas. The expression of Tax1 in primary human astrocytomas and oligodendrogliomas resulted in significantly higher levels of proinflammatory cytokine gene expression compared to Tax2. Notably, Tax1 expression uniquely sensitized primary human astrocytomas to apoptosis. A Tax2/Tax1 chimera encoding the C-terminal 53 amino acids of the Tax1 fused to the Tax2 gene (Tax(221)) demonstrated a phenotype that resembled Tax1, with respect to proinflammatory cytokine gene expression and sensitization to apoptosis. The patterns of differential cytokine induction and sensitization to apoptosis displayed by Tax1 and Tax2 may reflect differences relating to the heightened neuropathogenicity associated with HTLV-1 infection and the development of HAM/TSP.
Collapse
Affiliation(s)
- Prabal Banerjee
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Cai Y, Liu Y, Zhang X. Induction of transcription factor Egr-1 gene expression in astrocytoma cells by Murine coronavirus infection. Virology 2006; 355:152-63. [PMID: 16908043 PMCID: PMC1851928 DOI: 10.1016/j.virol.2006.07.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Revised: 05/19/2006] [Accepted: 07/10/2006] [Indexed: 11/22/2022]
Abstract
Mouse hepatitis virus (MHV) causes encephalitis and demyelination in the central nervous system (CNS) of susceptible rodents. Astrocytes are one of the major targets for MHV infection in the CNS, and respond to MHV infection by expressing diverse molecules that may contribute to CNS pathogenesis. Here we characterized the activation of an immediate-early transcription factor Egr-1 by MHV infection in an astrocytoma cell line. We found that the expression of Egr-1 was dramatically increased following virus infection. Using various inhibitors of mitogen-activated protein kinases, we identified that the extracellular signal-regulated kinases 1/2 were involved in the activation of Egr-1 transcription by MHV infection. Experiments with ultraviolet light-inactivated virus revealed that the induction of Egr-1 did not require virus replication and was likely mediated during cell entry. We further found that over-expression of Egr-1 suppressed the expression of BNip3, a pro-apoptotic member of the Bcl-2 family. This finding may provide an explanation for our previously observed down-regulation of BNip3 by MHV infection in astrocytoma cells (Cai, Liu, Yu, and Zhang, Virology 316:104-115, 2003). Furthermore, knockdown of Egr-1 by an siRNA inhibited MHV propagation, suggesting the biological relevance of Egr-1 induction to virus replication. In addition, the persistence/demylinating-positive strains (JHM and A59) induced Egr-1 expression, whereas the persistence/demylinating-negative strain (MHV-2) did not. These results indicate a correlation between the ability of MHVs to induce Egr-1 expression and their ability to cause demyelination in the CNS, which may suggest a potential role for the induction of Egr-1 in viral pathogenesis.
Collapse
Affiliation(s)
| | | | - Xuming Zhang
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Slot 511, Little Rock, AR 72205, USA
| |
Collapse
|
8
|
Zhou H, Perlman S. Mouse hepatitis virus does not induce Beta interferon synthesis and does not inhibit its induction by double-stranded RNA. J Virol 2006; 81:568-74. [PMID: 17079305 PMCID: PMC1797428 DOI: 10.1128/jvi.01512-06] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mouse hepatitis virus (MHV) does not induce interferon (IFN) production in fibroblasts or bone marrow-derived dendritic cells. In this report, we show that the essential IFN-beta transcription factors NF-kappaB and IFN regulatory factor 3 are not activated for nuclear translocation and gene induction during infection. However, MHV was unable to inhibit the activation of these factors and subsequent IFN-beta production induced by poly(I:C). Further, MHV infection did not inhibit IFN-beta production mediated by known host pattern recognition receptors (PRRs) (RIG-I, Mda-5, and TLR3). These results are consistent with the notion that double-stranded RNA, produced during MHV infection, is not accessible to cellular PRRs.
Collapse
Affiliation(s)
- Haixia Zhou
- Department of Microbiology, University of Iowa, Bowen Science Building 3-730, Iowa City, IA 52242, USA
| | | |
Collapse
|
9
|
Mizutani T, Fukushi S, Saijo M, Kurane I, Morikawa S. JNK and PI3k/Akt signaling pathways are required for establishing persistent SARS-CoV infection in Vero E6 cells. Biochim Biophys Acta Mol Basis Dis 2005; 1741:4-10. [PMID: 15916886 PMCID: PMC7125767 DOI: 10.1016/j.bbadis.2005.04.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Revised: 04/19/2005] [Accepted: 04/20/2005] [Indexed: 12/11/2022]
Abstract
Persistence was established after most of the SARS-CoV-infected Vero E6 cells died. RNA of the defective interfering virus was not observed in the persistently infected cells by Northern blot analysis. SARS-CoV diluted to 2 PFU failed to establish persistence, suggesting that some particular viruses in the seed virus did not induce persistent infection. Interestingly, a viral receptor, angiotensin converting enzyme (ACE)-2, was down-regulated in persistently infected cells. G418-selected clones established from parent Vero E6 cells, which were transfected with a plasmid containing the neomycin resistance gene, were infected with SARS-CoV, resulting in a potential cell population capable of persistence in Vero E6 cells. Our previous studies demonstrated that signaling pathways of extracellular signal-related kinase (ERK1/2), c-Jun N-terminal protein kinase (JNK), p38 mitogen-activated protein kinase (MAPK), and phosphatidylinositol 3'-kinase (PI3K)/Akt were activated in SARS-CoV-infected Vero E6 cells. Previous studies also showed that the activation of p38 MAPK by viral infection-induced apoptosis, and a weak activation of Akt was not sufficient to protect from apoptosis. In the present study, we showed that the inhibitors of JNK and PI3K/Akt inhibited the establishment of persistence, but those of MAPK/ERK kinase (MEK; as an inhibitor for ERK1/2) and p38 MAPK did not. These results indicated that two signaling pathways of JNK and PI3K/Akt were important for the establishment of persistence in Vero E6 cells.
Collapse
Affiliation(s)
- Tetsuya Mizutani
- Special Pathogens Laboratory, Department of Virology 1, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan.
| | | | | | | | | |
Collapse
|
10
|
Nakagaki K, Nakagaki K, Taguchi F. Receptor-independent spread of a highly neurotropic murine coronavirus JHMV strain from initially infected microglial cells in mixed neural cultures. J Virol 2005; 79:6102-10. [PMID: 15857995 PMCID: PMC1091713 DOI: 10.1128/jvi.79.10.6102-6110.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Although neurovirulent mouse hepatitis virus (MHV) strain JHMV multiplies in a variety of brain cells, expression of its receptor carcinoembryonic antigen cell adhesion molecule 1 (CEACAM 1) (MHVR) is restricted only in microglia. The present study was undertaken to clarify the mechanism of an extensive JHMV infection in the brain by using neural cells isolated from mouse brain. In contrast to wild-type (wt) JHMV, a soluble-receptor-resistant mutant (srr7) infects and spreads solely in an MHVR-dependent fashion (F. Taguchi and S. Matsuyama, J. Virol. 76:950-958, 2002). In mixed neural cell cultures, srr7 infected a limited number of cells and infection did not spread, although wt JHMV induced syncytia in most of the cells. srr7-infected cells were positive for GS-lectin, a microglia marker. Fluorescence-activated cell sorter analysis showed that about 80% of the brain cells stained with anti-MHVR antibody (CC1) were also positive for GS-lectin. Pretreatment of those cells with CC1 prevented virus attachment to the cell surface and also blocked virus infection. These results show that microglia express functional MHVR that mediates JHMV infection. As expected, in microglial cell-enriched cultures, both srr7and wt JHMV produced syncytia in a majority of cells. Treatment with CC1 of mixed neural cell cultures and microglia cultures previously infected with wt virus failed to block the spread of infection, indicating that wt infection spreads in an MHVR-independent fashion. Thus, the present study indicates that microglial cells are the major population of the initial target for MHV infection and that the wt spreads from initially infected microglia to a variety of cells in an MHVR-independent fashion.
Collapse
Affiliation(s)
- Keiko Nakagaki
- Lab. of Respiratory Viral Diseases and SARS, Department of Virology III, National Institute of Infectious Diseases, Murayama Branch, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011 Japan.
| | | | | |
Collapse
|
11
|
Rempel JD, Quina LA, Blakely-Gonzales PK, Buchmeier MJ, Gruol DL. Viral induction of central nervous system innate immune responses. J Virol 2005; 79:4369-81. [PMID: 15767437 PMCID: PMC1061546 DOI: 10.1128/jvi.79.7.4369-4381.2005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The ability of the central nervous system (CNS) to generate innate immune responses was investigated in an in vitro model of CNS infection. Cultures containing CNS cells were infected with mouse hepatitis virus-JHM, which causes fatal encephalitis in mice. Immunostaining indicated that viral infection had a limited effect on culture characteristics, overall cell survival, or cell morphology at the early postinfection times studied. Results from Affymetrix gene array analysis, assessed on RNA isolated from virally and sham-infected cultures, were compared with parallel protein assays for cytokine, chemokine, and cell surface markers. Of the 126 transcripts found to be differentially expressed between viral and sham infections, the majority were related to immunological responses. Virally induced increases in interleukin-6 and tumor necrosis factor alpha mRNA and protein expression correlated with the genomic induction of acute-phase proteins. Genomic and protein analysis indicated that viral infection resulted in prominent expression of neutrophil and macrophage chemotactic proteins. In addition, mRNA expression of nonclassical class I molecules H2-T10, -T17, -M2, and -Q10, were enhanced three- to fivefold in virus-infected cells compared to sham-infected cells. Thus, upon infection, resident brain cells induced a breadth of innate immune responses that could be vital in directing the outcome of the infection and, in vivo, would provide signals which would summon the peripheral immune system to respond to the infection. Further understanding of how these innate responses participate in immune protection or immunopathology in the CNS will be critical in efforts to intervene in severe encephalitis.
Collapse
Affiliation(s)
- J D Rempel
- Department of Neuropharmacology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
12
|
Liu Y, Zhang X. Expression of cellular oncogene Bcl-xL prevents coronavirus-induced cell death and converts acute infection to persistent infection in progenitor rat oligodendrocytes. J Virol 2005; 79:47-56. [PMID: 15596800 PMCID: PMC538726 DOI: 10.1128/jvi.79.1.47-56.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Murine coronavirus mouse hepatitis virus (MHV) causes persistent infection of the central nervous system (CNS) in rodents, which has been associated with demyelination. However, the precise mechanism of MHV persistence in the CNS remains elusive. Here we show that the progenitor oligodendrocytes (central glial 4 [CG-4] cells) derived from newborn rat brain were permissive to MHV infection, which resulted in cell death, although viral replication was restricted. Interestingly, treatment with fetal bovine serum or exogenous expression of cellular oncogene Bcl-xL prevented CG-4 cells from MHV-induced cell death. Significantly, overexpression of Bcl-xL alone was sufficient to convert acute to persistent, nonproductive infection in CG-4 cells. This finding indicates that intracellular factors rather than viral components play a critical role in establishing viral persistence in CNS cells. Although viral genomic RNAs continuously persisted in Bcl-xL-expressing CG-4 cells over 10 passages, infectious virus could no longer be isolated beyond 2 passages of the cell. Such a phenomenon resembles the persistent MHV infection in animal CNS. Thus, the establishment of a persistent, nonproductive infection in CG-4 cells may provide a useful in vitro model for studying viral persistence in animal CNS. The data also suggest that direct virus-host cell interaction is one of the underlying mechanisms that regulate viral persistence in CNS cells.
Collapse
Affiliation(s)
- Yin Liu
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199, USA
| | | |
Collapse
|
13
|
Abstract
Involvement of viruses in human neurodegenerative diseases and the underlying pathologic mechanisms remain generally unclear. Human respiratory coronaviruses (HCoV) can infect neural cells, persist in human brain, and activate myelin-reactive T cells. As a means of understanding the human infection, we characterized in vivo the neurotropic and neuroinvasive properties of HCoV-OC43 through the development of an experimental animal model. Virus inoculation of 21-day postnatal C57BL/6 and BALB/c mice led to a generalized infection of the whole CNS, demonstrating HCoV-OC43 neuroinvasiveness and neurovirulence. This acute infection targeted neurons, which underwent vacuolation and degeneration while infected regions presented strong microglial reactivity and inflammatory reactions. Damage to the CNS was not immunologically mediated and microglial reactivity was instead a consequence of direct virus-mediated neuronal injury. Although this acute encephalitis appears generally similar to that induced by murine coronaviruses, an important difference rests in the prominent spongiform-like degeneration that could trigger neuropathology in surviving animals.
Collapse
Affiliation(s)
- Hélène Jacomy
- Laboratory of Neuroimmunovirology, INRS-Institut Armand Frappier, 531 Boulevard des Prairies, Laval, Québec, Canada H7V 1B7
| | | |
Collapse
|
14
|
Cai Y, Liu Y, Yu D, Zhang X. Down-regulation of transcription of the proapoptotic gene BNip3 in cultured astrocytes by murine coronavirus infection. Virology 2003; 316:104-15. [PMID: 14599795 PMCID: PMC7125541 DOI: 10.1016/j.virol.2003.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2003] [Revised: 06/18/2003] [Accepted: 07/28/2003] [Indexed: 11/30/2022]
Abstract
Murine coronavirus mouse hepatitis virus (MHV) causes encephalitis and demyelination in the central nervous system of susceptible rodents. Astrocytes are the major target for MHV persistence. However, the mechanisms by which astrocytes survive MHV infection and permit viral persistence are not known. Here we performed DNA microarray analysis on differential gene expression in astrocyte DBT cells by MHV infection and found that the mRNA of the proapoptotic gene BNip3 was significantly decreased following MHV infection. This finding was further confirmed by quantitative reverse transcription-polymerase chain reaction, Western blot analysis, and BNip3-promoter-luciferase reporter system. Interestingly, infection with live and ultraviolet light-inactivated viruses equally repressed BNip3 expression, indicating that the down-regulation of BNip3 expression does not require virus replication and is mediated during cell entry. Furthermore, treatment of cells with chloroquine, which blocks the acidification of endosomes, significantly inhibited the repression of the BNip3 promoter activity induced by the acidic pH-dependent MHV mutant OBLV60, which enters cells via endocytosis, indicating that the down-regulation of BNip3 expression is mediated by fusion between viral envelope and cell membranes during entry. Deletion analysis showed that the sequence between nucleotides 262 and 550 of the 588-base-pair BNip3 promoter is necessary and sufficient for driving the BNip3 expression and that it contains signals that are responsible for MHV-induced down-regulation of BNip3 expression in DBT cells. These results may provide insights into the mechanisms by which MHV evades host antiviral defense and promotes cell survival, thereby allowing its persistence in the host astrocytes.
Collapse
Affiliation(s)
- Yingyun Cai
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Slot 511, Little Rock, AR 72205, USA
| | - Yin Liu
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Slot 511, Little Rock, AR 72205, USA
| | - Dongdong Yu
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Slot 511, Little Rock, AR 72205, USA
| | - Xuming Zhang
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Slot 511, Little Rock, AR 72205, USA
| |
Collapse
|
15
|
Abstract
A number of viruses can initiate central nervous system (CNS) diseases that include demyelination as a major feature of neuropathology. In humans, the most prominent demyelinating diseases are progressive multifocal leukoencephalopathy, caused by JC papovirus destruction of oligodendrocytes, and subacute sclerosing panencephalitis, an invariably fatal childhood disease caused by persistent measles virus. The most common neurological disease of young adults in the developed world, multiple sclerosis, is also characterized by lesions of inflammatory demyelination; however, the etiology of this disease remains an enigma. A viral etiology is possible, because most demyelinating diseases of known etiology in both man and animals are viral. Understanding of the pathogenesis of virus-induced demyelination derives for the most part from the study of animal models. Studies with neurotropic strains of mouse hepatitis virus, Theiler's virus, and Semliki Forest virus have been at the forefront of this research. These models demonstrate how viruses enter the brain, spread, persist, and interact with immune responses. Common features are an ability to infect and persist in glial cells, generation of predominantly CD8(+) responses, which control and clear the early phase of virus replication but which fail to eradicate the infection, and lesions of inflammatory demyelination. In most cases demyelination is to a limited extent the result of direct virus destruction of oligodendrocytes, but for the most part is the consequence of immune and inflammatory responses. These models illustrate the roles of age and genetic susceptibility and establish the concept that persistent CNS infection can lead to the generation of CNS autoimmune responses.
Collapse
Affiliation(s)
- John K Fazakerley
- Centre for Infectious Diseases, University of Edinburgh, Summerhall, Edinburgh, United Kingdom.
| | | |
Collapse
|
16
|
Fatemi SH, Emamian ES, Sidwell RW, Kist DA, Stary JM, Earle JA, Thuras P. Human influenza viral infection in utero alters glial fibrillary acidic protein immunoreactivity in the developing brains of neonatal mice. Mol Psychiatry 2003; 7:633-40. [PMID: 12140787 DOI: 10.1038/sj.mp.4001046] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2000] [Revised: 08/15/2001] [Accepted: 09/24/2001] [Indexed: 11/08/2022]
Abstract
Epidemiological reports describe a strong association between prenatal human influenza viral infection and later development of schizophrenia. Postmodern human brain studies, however, indicate a lack of gliosis in schizophrenic brains presumably secondary to absence of glial cells during the second trimester viral infection in utero. We hypothesized that human influenza infection in day 9 pregnant mice would alter the expression of glial fibrillary acidic protein (GFAP, an important marker of gliosis, neuron migration, and reactive injury) in developing brains of postnatal days 0, 14 and 35 mice. Determination of cellular GFAP immunoreactivity (IR) expressed as cell density in cortex and hippocampus of control and experimental brains showed increases in GFAP-positive density in exposed cortical (P = 0.03 day 14 vs control) and hippocampal cells (P = 0.035 day 14, P = 0.034 day 35). Similarly, ependymal cell layer GFAP-IR cell counts showed increases with increasing brain age from day 0, to days 14 and 35 in infected groups (P = 0.037, day 14) vs controls. The GFAP-positive cells in prenatally exposed brains showed 'hypertrophy' and more stellate morphology. These results implicate a significant role of prenatal human influenza viral infection on subsequent gliosis, which persists throughout brain development in mice from birth to adolescence.
Collapse
Affiliation(s)
- S H Fatemi
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, Minneapolis, MN, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Most murine hepatitis virus (MHV) strains, as their name suggests, infect the liver. However, several murine strains are tropic for the central nervous system (CNS) and cause encephalitis with subsequent CNS demyelination. The CNS demyelination shares pathological similarities with human CNS demyelinating diseases such as multiple sclerosis (MS). These viruses are, therefore, used to study the role of the immune system in viral clearance from the CNS, in CNS demyelination, and in remyelination. Nevertheless, it is still unclear exactly how MHV induces demyelination and to what extent the immune system plays a role in this pathology. Here we review this field in the context of the immune response to MHV in the liver and the CNS focusing on studies that have been published in the past 5 years.
Collapse
Affiliation(s)
- A. E. Matthews
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania USA
| | - S. R. Weiss
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania USA
| | - Y. Paterson
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania USA
- University of Pennsylvania, 323 Johnson Pavilion, 3610 Hamilton Walk, 19104-6076 Philadelphia, PA USA
| |
Collapse
|
18
|
Affiliation(s)
- P J Talbot
- Centre de recherche en santé humaine, INRS-Institut Armand-Frappier 531, boulevard des Prairies, Laval, Québec, Canada, H7V 1B7.
| | | | | |
Collapse
|
19
|
Abstract
Cytotoxic CD8 T lymphocytes (CTLs) are critical for the clearance of noncytopathic viruses from infected cells. This chapter discusses one mechanism used by viruses to persist—namely, the selection of a variant virus in which changes in the sequence of a CTL epitope abrogate recognition. The unique features of cytotoxic CD8 T cell function in the central nervous system (CNS) are discussed. The role of CTL escape mutants in the viral evasion of the immune system and subsequent disease progression in non-CNS infections are summarized. The immune response in the CNS is similar to the response in extraneural tissue, but several aspects of the activation of the immune response, cellular trafficking, and antigen presentation are unique to the CNS. Although the CNS has classically been considered a site of immune privilege, surveillance of the normal CNS by circulating, activated lymphocytes occurs, with a limited number of lymphocytes being present in the normal CNS at any given time. In mice infected with mouse hepatitis virus and in some humans persistently infected with human immunodeficiency virus type1, hepatitis B virus or hepatitis C virus, CTL escape mutants play an important role in virus amplification and disease progression.
Collapse
Affiliation(s)
- S Perlman
- Departments of Pediatrics and Microbiology, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
20
|
Bergmann CC, Altman JD, Hinton D, Stohlman SA. Inverted Immunodominance and Impaired Cytolytic Function of CD8+ T Cells During Viral Persistence in the Central Nervous System. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.6.3379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Mice infected with the neurotropic JHM strain of mouse hepatitis virus (JHMV) clear infectious virus; nevertheless, virus persists in the CNS as noninfectious RNA, resulting in ongoing primary demyelination. Phenotypic and functional analysis of CNS infiltrating cells during acute infection revealed a potent regional CD8+ T cell response comprising up to 50% virus-specific T cells. The high prevalence of virus-specific T cells correlated with ex vivo cytolytic activity and efficient reduction in viral titers. Progressive viral clearance coincided with the loss of cytolytic activity, but retention of IFN-γ secretion and increased expression of the early activation marker CD69, indicating differential regulation of effector function. Although the total number of infiltrating T cells declined following clearance of infectious virus, CD8+ T cells, both specific for the dominant viral epitopes and of unknown specificity, were retained within the CNS, suggesting an ongoing T cell response during persistent CNS infection involving a virus-independent component. Reversed immunodominance within the virus-specific CD8+ T cell population further indicated epitope-specific regulation, supporting ongoing T cell activation. Even in the absence of infectious virus, the CNS thus provides an environment that maintains both unspecific and Ag-specific CD8+ T cells with restricted effector function. Chronic T cell stimulation may thus play a role in preventing viral recrudescence, while increasing the risk of pathological conditions, such as demyelination.
Collapse
Affiliation(s)
| | - John D. Altman
- §Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - David Hinton
- *Neurology,
- ‡Pathology, University of Southern California School of Medicine, Los Angeles, CA 90033; and
| | | |
Collapse
|
21
|
Xue S, Sun N, Van Rooijen N, Perlman S. Depletion of blood-borne macrophages does not reduce demyelination in mice infected with a neurotropic coronavirus. J Virol 1999; 73:6327-34. [PMID: 10400724 PMCID: PMC112711 DOI: 10.1128/jvi.73.8.6327-6334.1999] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mice infected with the neurotropic coronavirus mouse hepatitis virus strain JHM (MHV-JHM) develop a chronic demyelinating disease with symptoms of hindlimb paralysis. Histological examination of the brains and spinal cords of these animals reveals the presence of large numbers of activated macrophages/microglia. In two other experimental models of demyelination, experimental allergic encephalomyelitis and Theiler's murine encephalomyelitis virus-induced demyelination, depletion of hematogenous macrophages abrogates the demyelinating process. In both of these diseases, early events in the demyelinating process are inhibited by macrophage depletion. From these studies, it was not possible to determine whether infiltrating macrophages were required for late steps in the process, such as myelin removal. In this study, we show that when macrophages are depleted with either unmodified or mannosylated liposomes encapsulating dichloromethylene diphosphate, the amount of demyelination detected in MHV-infected mice is not affected. At a time when these cells were completely depleted from the liver, approximately equivalent numbers of macrophages were present in the spinal cords of control and drug-treated animals. These results suggest that blood-borne macrophages are not required for MHV-induced demyelination and also suggest that other cells, such as perivascular macrophages or microglia, perform the function of these cells in the presence of drug.
Collapse
Affiliation(s)
- S Xue
- Departments of Microbiology, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
22
|
Lin MT, Hinton DR, Marten NW, Bergmann CC, Stohlman SA. Antibody Prevents Virus Reactivation Within the Central Nervous System. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.12.7358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
The neurotropic JHM strain of mouse hepatitis virus (JHMV) produces an acute CNS infection characterized by encephalomyelitis and demyelination. The immune response cannot completely eliminate virus, resulting in persistence associated with chronic ongoing CNS demyelination. The contribution of humoral immunity to viral clearance and persistent infection was investigated in mice homozygous for disruption of the Ig μ gene (IgM−/−). Acute disease developed with equal kinetics and severity in IgM−/− and syngeneic C57BL/6 (wt) mice. However, clinical disease progressed in IgM−/− mice, while wt mice recovered. Viral clearance during acute infection was similar in both groups, supporting a primary role of cell-mediated immunity in viral clearance. In contrast to wt mice, in which infectious virus was reduced to below detection following acute infection, increasing infectious virus was recovered from the CNS of the IgM−/− mice following initial clearance. No evidence was obtained for selection of variant viruses nor was there an apparent loss of cell-mediated immunity in the absence of Ab. Passive transfer of anti-JHMV Ab following initial clearance prevented reactivation of infectious virus within the CNS of IgM−/− mice. These data demonstrate the clearance of infectious virus during acute disease by cell-mediated immunity. However, immunologic control is not maintained in the absence of anti-viral Ab, resulting in recrudescence of infectious virus. These data suggest that humoral immunity plays no role in controlling virus during acute infection, but plays an important role in establishing and maintaining CNS viral persistence.
Collapse
Affiliation(s)
| | | | - Norman W. Marten
- ‡Molecular Microbiology and Immunology, University of Southern California School of Medicine, Los Angeles, CA 90033
| | - Cornelia C. Bergmann
- †Neurology, and
- ‡Molecular Microbiology and Immunology, University of Southern California School of Medicine, Los Angeles, CA 90033
| | - Stephen A. Stohlman
- †Neurology, and
- ‡Molecular Microbiology and Immunology, University of Southern California School of Medicine, Los Angeles, CA 90033
| |
Collapse
|
23
|
Arbour N, Ekandé S, Côté G, Lachance C, Chagnon F, Tardieu M, Cashman NR, Talbot PJ. Persistent infection of human oligodendrocytic and neuroglial cell lines by human coronavirus 229E. J Virol 1999; 73:3326-37. [PMID: 10074187 PMCID: PMC104097 DOI: 10.1128/jvi.73.4.3326-3337.1999] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human coronaviruses (HuCV) cause common colds. Previous reports suggest that these infectious agents may be neurotropic in humans, as they are for some mammals. With the long-term aim of providing experimental evidence for the neurotropism of HuCV and the establishment of persistent infections in the nervous system, we have evaluated the susceptibility of various human neural cell lines to acute and persistent infection by HuCV-229E. Viral antigen, infectious virus progeny and viral RNA were monitored during both acute and persistent infections. The astrocytoma cell lines U-87 MG, U-373 MG, and GL-15, as well as neuroblastoma SK-N-SH, neuroglioma H4, and oligodendrocytic MO3.13 cell lines, were all susceptible to an acute infection by HuCV-229E. The CHME-5 immortalized fetal microglial cell line was not susceptible to infection by this virus. The MO3.13 and H4 cell lines also sustained a persistent viral infection, as monitored by detection of viral antigen and infectious virus progeny. Sequencing of the S1 gene from viral RNA after approximately 130 days of infection showed two point mutations, suggesting amino acid changes during persistent infection of MO3.13 cells but none for H4 cells. Thus, persistent in vitro infection did not generate important changes in the S1 portion of the viral spike protein, which was shown for murine coronaviruses to bear hypervariable domains and to interact with cellular receptor. These results are consistent with the potential persistence of HuCV-229E in cells of the human nervous system, such as oligodendrocytes and possibly neurons, and the virus's apparent genomic stability.
Collapse
Affiliation(s)
- N Arbour
- Laboratory of Neuroimmunovirology, Human Health Research Center, Armand-Frappier Institute, INRS, University of Quebec, Laval, Québec, Canada H7V 1B7
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Arbour N, Côté G, Lachance C, Tardieu M, Cashman NR, Talbot PJ. Acute and persistent infection of human neural cell lines by human coronavirus OC43. J Virol 1999; 73:3338-50. [PMID: 10074188 PMCID: PMC104098 DOI: 10.1128/jvi.73.4.3338-3350.1999] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human coronaviruses (HuCV) are recognized respiratory pathogens. Data accumulated by different laboratories suggest their neurotropic potential. For example, primary cultures of human astrocytes and microglia were shown to be susceptible to an infection by the OC43 strain of HuCV (A. Bonavia, N. Arbour, V. W. Yong, and P. J. Talbot, J. Virol. 71:800-806, 1997). We speculate that the neurotropism of HuCV will lead to persistence within the central nervous system, as was observed for murine coronaviruses. As a first step in the verification of our hypothesis, we have characterized the susceptibility of various human neural cell lines to infection by HuCV-OC43. Viral antigen, infectious virus progeny, and viral RNA were monitored during both acute and persistent infections. The astrocytoma cell lines U-87 MG, U-373 MG, and GL-15, as well as neuroblastoma SK-N-SH, neuroglioma H4, oligodendrocytic MO3.13, and the CHME-5 immortalized fetal microglial cell lines, were all susceptible to an acute infection by HuCV-OC43. Viral antigen and RNA and release of infectious virions were observed during persistent HuCV-OC43 infections ( approximately 130 days of culture) of U-87 MG, U-373 MG, MO3.13, and H4 cell lines. Nucleotide sequences of RNA encoding the putatively hypervariable viral S1 gene fragment obtained after 130 days of culture were compared to that of initial virus input. Point mutations leading to amino acid changes were observed in all persistently infected cell lines. Moreover, an in-frame deletion was also observed in persistently infected H4 cells. Some point mutations were observed in some molecular clones but not all, suggesting evolution of the viral population and the emergence of viral quasispecies during persistent infection of H4, U-87 MG, and MO3.13 cell lines. These results are consistent with the potential persistence of HuCV-OC43 in cells of the human nervous system, accompanied by the production of infectious virions and molecular variation of viral genomic RNA.
Collapse
Affiliation(s)
- N Arbour
- Laboratory of Neuroimmunovirology, Human Health Research Center, Armand-Frappier Institute, INRS, University of Quebec, Laval, Québec, Canada H7V 1B7
| | | | | | | | | | | |
Collapse
|
25
|
Marten NW, Stohlman SA, Smith-Begolka W, Miller SD, Dimacali E, Yao Q, Stohl S, Goverman J, Bergmann CC. Selection of CD8+ T Cells with Highly Focused Specificity During Viral Persistence in the Central Nervous System. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.7.3905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
The relationships between T cell populations during primary viral infection and persistence are poorly understood. Mice infected with the neurotropic JHMV strain of mouse hepatitis virus mount potent regional CTL responses that effectively reduce infectious virus; nevertheless, viral RNA persists in the central nervous system (CNS). To evaluate whether persistence influences Ag-specific CD8+ T cells, functional TCR diversity was studied in spleen and CNS-derived CTL populations based on differential recognition of variant peptides for the dominant nucleocapsid epitope. Increased specificity of peripheral CTL from persistently infected mice for the index epitope compared with immunized mice suggested T cell selection during persistence. This was confirmed with CD8+ T cell clones derived from the CNS of either acutely (CTLac) or persistently (CTLper) infected mice. Whereas CTLac clones recognized a broad diversity of amino acid substitutions, CTLper clones exhibited exquisite specificity for the wild-type sequence. Highly focused specificity was CD8 independent but correlated with longer complementarity-determining regions 3 characteristic of CTLper clonotypes despite limited TCR α/β-chain heterogeneity. Direct ex vivo analysis of CNS-derived mononuclear cells by IFN-γ enzyme-linked immunospot assay confirmed the selection of T cells with narrow Ag specificity during persistence at the population level. These data suggest that broadly reactive CTL during primary infection are capable of controlling potentially emerging mutations. By contrast, the predominance of CD8+ T cells with dramatically focused specificity during persistence at the site of infection and in the periphery supports selective pressure driven by persisting Ag.
Collapse
Affiliation(s)
| | - Stephen A. Stohlman
- *Neurology and
- †Molecular Microbiology and Immunology, University of Southern California School of Medicine, Los Angeles, CA 90033
| | - Wendy Smith-Begolka
- ‡Immunobiology Center, Northwestern University Medical School, Chicago, IL 60601; and
| | - Stephen D. Miller
- ‡Immunobiology Center, Northwestern University Medical School, Chicago, IL 60601; and
| | | | | | | | - Joan Goverman
- §Department of Molecular Biotechnology and Immunology, University of Washington, Seattle, WA 981195
| | - Cornelia C. Bergmann
- *Neurology and
- †Molecular Microbiology and Immunology, University of Southern California School of Medicine, Los Angeles, CA 90033
| |
Collapse
|
26
|
Parra B, Hinton DR, Marten NW, Bergmann CC, Lin MT, Yang CS, Stohlman SA. IFN-γ Is Required for Viral Clearance from Central Nervous System Oligodendroglia. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.3.1641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Infection of the central nervous system (CNS) by the JHM strain of mouse hepatitis virus (JHMV) is a rodent model of the human demyelinating disease multiple sclerosis. The inability of effective host immune responses to eliminate virus from the CNS results in a chronic infection associated with ongoing recurrent demyelination. JHMV infects a variety of CNS cell types during the acute phase of infection including ependymal cells, astrocytes, microglia, oligodendroglia, and rarely in neurons. Replication within the majority of CNS cell types is controlled by perforin-dependent virus-specific CTL. However, inhibition of viral replication in oligodendroglia occurs via a perforin-independent mechanism(s). The potential role for IFN-γ as mediator controlling JHMV replication in oligodendroglia was examined in mice deficient in IFN-γ secretion (IFN-γ0/0 mice). IFN-γ0/0 mice exhibited increased clinical symptoms and mortality associated with persistent virus, demonstrating an inability to control replication. Neither antiviral Ab nor CTL responses were diminished in the absence of IFN-γ, although increased IgG1 was detected in IFN-γ0/0 mice. Increased virus Ag in the absence of IFN-γ localized almost exclusively to oligodendroglia and was associated with increased CD8+ T cells localized within white matter. These data suggest that although perforin-dependent CTL control virus replication within astrocytes and microglia, which constitute the majority of infected CNS cells, IFN-γ is critical for control of viral replication in oligodendroglia. Therefore, different mechanisms are used by the host defenses to control virus replication within the CNS, dependent upon the phenotype of the targets of virus replication.
Collapse
Affiliation(s)
| | - David R. Hinton
- †Neurology, and
- ‡Pathology, University of Southern California School of Medicine, Los Angeles, CA 90033
| | | | | | - Mark T. Lin
- ‡Pathology, University of Southern California School of Medicine, Los Angeles, CA 90033
| | | | | |
Collapse
|
27
|
Lin MT, Hinton DR, Parra B, Stohlman SA, van der Veen RC. The role of IL-10 in mouse hepatitis virus-induced demyelinating encephalomyelitis. Virology 1998; 245:270-80. [PMID: 9636366 DOI: 10.1006/viro.1998.9170] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interleukin 10 (IL-10) is an important anti-inflammatory cytokine. To examine its role in virus-induced encephalomyelitis, IL-10-deficient (IL-10 -/-) mice were infected with a neurotropic strain of mouse hepatitis virus (JHMV). JHMV-infected IL-10 -/- mice, compared to IL-4 -/- and syngeneic C57BL/6 mice, exhibited increased morbidity and mortality. Virus was cleared from the CNS of all groups of mice with equal kinetics by day 9 postinfection and the lack of either IL-4 or IL-10 did not alter the distribution of viral antigen, suggesting a lack of correlation between viral replication and the increased clinical disease in IL-10 -/- mice. In moribund IL-10 -/- mice, a moderate increase in mononuclear cell infiltration was correlated with increased expression of tumor necrosis factor-alpha, interferon-gamma, and inducible nitric oxide synthase mRNAs. In the small percentage of IL-10 -/- mice that survived, no differences in either demyelination or inflammation were observed. Together, these results suggest that IL-10 is not required for viral clearance, and although it appears to be one of the mechanisms responsible for inhibiting the extent of inflammation in the CNS during acute JHMV infection, it has little role in the eventual resolution of CNS inflammatory responses.
Collapse
Affiliation(s)
- M T Lin
- Department of Pathology, School of Medicine, University of Southern California, Los Angeles 90033, USA
| | | | | | | | | |
Collapse
|
28
|
Pathogenesis of Coronavirus-Induced Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998. [DOI: 10.1007/978-1-4615-5331-1_65] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
29
|
Grzybicki DM, Kwack KB, Perlman S, Murphy SP. Nitric oxide synthase type II expression by different cell types in MHV-JHM encephalitis suggests distinct roles for nitric oxide in acute versus persistent virus infection. J Neuroimmunol 1997; 73:15-27. [PMID: 9058755 PMCID: PMC7119606 DOI: 10.1016/s0165-5728(96)00159-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/1996] [Revised: 08/14/1996] [Accepted: 08/15/1996] [Indexed: 02/03/2023]
Abstract
Intranasal inoculation with mouse hepatitis virus strain JHM (MHV-JHM) results in acute meningoencephalitis. We found NOS II mRNA expression in brains of acutely infected animals on days 5 through 7 after infection. In situ hybridization and immunohistochemistry demonstrated NOS II message and protein in infiltrating macrophages. Persistent infection with MHV-JHM results in chronic demyelinating encephalomyelitis. NOS II mRNA was detected in persistently infected spinal cords. In situ hybridization and immunohistochemistry showed expression of NOS II in astrocytes in and around demyelinated lesions. These results suggest the role of NO release in acute versus persistent infection with this virus, and its contribution to the resulting pathology, may be different.
Collapse
Affiliation(s)
- D M Grzybicki
- Department of Pathology, University of Iowa College of Medicine, Iowa City 52242, USA
| | | | | | | |
Collapse
|
30
|
Abstract
A variety of neurological diseases in humans, including multiple sclerosis (MS), have been postulated to have a viral etiology. The use of animal models provides insights into potential mechanism(s) involved in the disease process. The murine coronavirus-induced demyelinating disease in rodents is one such model for demyelinating disease in humans.
Collapse
|
31
|
Stohlman SA, Bergmann CC, van der Veen RC, Hinton DR. Mouse hepatitis virus-specific cytotoxic T lymphocytes protect from lethal infection without eliminating virus from the central nervous system. J Virol 1995; 69:684-94. [PMID: 7815531 PMCID: PMC188629 DOI: 10.1128/jvi.69.2.684-694.1995] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Acute infection of the central nervous system by the neurotropic JHM strain of mouse hepatitis virus (JHMV) induces nucleocapsid protein specific cytotoxic T lymphocytes (CTL) not found in the periphery (S. Stohlman, S. Kyuwa, J. Polo, D. Brady, M. Lai, and C. Bergmann, J. Virol. 67:7050-7059, 1993). Peripheral induction of CTL specific for the nucleocapsid protein of JHMV by vaccination with recombinant vaccinia viruses was unable to provide significant protection to a subsequent lethal virus challenge. By contrast, the transfer of nucleoprotein-specific CTL protected mice from a subsequent lethal challenge by reducing virus replication within the central nervous system, demonstrating the importance of the CTL response to this epitope in JHMV infection. Transfer of these CTL directly into the central nervous system was at least 10-fold more effective than peripheral transfer. Histological analysis indicated that the CTL reduced virus replication in ependymal cells, astrocytes, and microglia. Although the CTL were relatively ineffective at reducing virus replication in oligodendroglia, survivors showed minimal evidence of virus persistence within the central nervous system and no evidence of chronic ongoing demyelination.
Collapse
Affiliation(s)
- S A Stohlman
- Department of Neurology, USC School of Medicine, Los Angeles 90033
| | | | | | | |
Collapse
|
32
|
Sun N, Perlman S. Spread of a neurotropic coronavirus to spinal cord white matter via neurons and astrocytes. J Virol 1995; 69:633-41. [PMID: 7815526 PMCID: PMC188623 DOI: 10.1128/jvi.69.2.633-641.1995] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Mouse hepatitis virus strain JHM (MHV-JHM) causes a chronic encephalomyelitis in susceptible mice, with histological evidence of demyelination in the spinal cord. After intranasal inoculation, virus spreads retrogradely to several brain structures along neuroanatomic projections to the main olfactory bulb. In the absence of experimental intervention, mice become moribund before the spinal cord is infected. In this study, infusions of anti-MHV neutralizing monoclonal antibodies were administered to protect mice from the MHV-JHM-induced acute encephalitis and to allow survival until virus spread to the spinal cord. Under these conditions, virus was observed to enter specific layers (primarily laminae V to VII) in the gray matter of the upper spinal cord, consistent with transneuronal spread. While the brain structures which are the sources for virus spread to the spinal cord cannot be determined with certainty, the ventral reticular nucleus is likely to be important since it is consistently and extensively labeled in all mice and receives projections from subsequently infected areas of the spinal cord. After initial entry into the gray matter, virus rapidly spread to the white matter of the spinal cord. During the early stages of this process, extensive infection of astrocytes was noted, suggesting that cell-to-cell spread via these glial cells is an important part of this process. Reports from other laboratories using cultured cells strongly suggested that astrocytes serve as important regulators of oligodendrocyte function and, by extrapolation, have a major role in vivo in the processes of both demyelination and remyelination. Thus, our results not only outline the probable pathway used by MHV-JHM to infect the white matter of the spinal cord but also, with the assumption that infection of astrocytes leads to subsequent dysfunction, raise the possibility that infection of these cells contributes to the demyelinating process.
Collapse
Affiliation(s)
- N Sun
- Department of Pediatrics, University of Iowa, Iowa City 52242
| | | |
Collapse
|
33
|
Correale J, Li S, Weiner LP, Gilmore W. Effect of persistent mouse hepatitis virus infection on MHC class I expression in murine astrocytes. J Neurosci Res 1995; 40:10-21. [PMID: 7714917 PMCID: PMC7167169 DOI: 10.1002/jnr.490400103] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Neurotropic strains of mouse hepatitis virus (MHV) have been used extensively for the study of viral pathogenesis in the central nervous system (CNS), serving as models for human neurological diseases such as multiple sclerosis (MS). MHV strains A59 and JHMV both cause acute and chronic encephalomyelitis and demyelination in susceptible strains of mice and rats. In acute disease, CNS damage is most likely the result of lytic infection in neurons and oligodendrocytes, and death can be prevented by the adoptive transfer of Class I-restricted CD8+ T cells. However, in later stages of the disease induced by some MHV strains, virus tends to be restricted to astrocytes in a nonlytic infection, and the immune response appears to contribute to CNS damage. These data lead us to suggest that the astrocyte may play a central role in the neuropathogenesis of MHV infection. Consistent with this possibility, A59 has been reported to induce the expression of Class I molecules of the major histocompatibility complex (MHC) in glial cells following infection in vivo and in vitro. In this communication, we have examined the influence of persistent infection by both A59 and JHMV on MHC Class I expression in primary murine astrocytes. Persistence was characterized by the presence of intracellular viral antigen and mRNA in the absence of detectable infectious virus particles. Under these conditions, JHMV, but not A59, inhibited constitutive expression of the H-2 Kb molecule, with the magnitude of inhibition increasing with postinfection time. A59 was not able to induce Class I during persistence, presumably due to the lack of infectious virus particles. Class I expression was restored by the addition of gamma-interferon (IFN-gamma) to astrocytes persistently infected with either A59 or JHMV. Thus, Class I inhibition is not a permanent consequence of JHMV persistence, and persistence does not interfere with normal signalling pathways for Class I induction.
Collapse
Affiliation(s)
- J Correale
- Department of Neurology, USC School of Medicine, Los Angeles 90033
| | | | | | | |
Collapse
|
34
|
Gilmore W, Correale J, Weiner LP. Coronavirus induction of class I major histocompatibility complex expression in murine astrocytes is virus strain specific. J Exp Med 1994; 180:1013-23. [PMID: 8064222 PMCID: PMC2191627 DOI: 10.1084/jem.180.3.1013] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Neurotropic strains of mouse hepatitis viruses (MHV) such as MHV-A59 (A59) and MHV-4 (JHMV) cause acute and chronic encephalomyelitis and demyelination in susceptible strains of mice and rats. They are widely used as models of human demyelinating diseases such as multiple sclerosis (MS), in which immune mechanisms are thought to participate in the development of lesions in the central nervous system (CNS). The effects of MHV infection on target cell functions in the CNS are not well understood, but A59 has been shown to induce the expression of MHC class I molecules in glial cells after in vivo and in vitro infection. Changes in class I expression in infected cells may contribute to the immunopathogenesis of MHV infection in the CNS. In this communication, a large panel of MHV strains was tested for their ability to stimulate class I expression in primary astrocytes in vitro. The data show that the more hepatotropic strains, such as MHV-A59, MHV-1, MHV-2, MHV-3, MHV-D, MHV-K, and MHV-NuU, were potent inducers of class I expression in astrocytes during acute infection, measured by radioimmunoassay. The Kb molecule was preferentially expressed over Db. By contrast, JHMV and several viral strains derived from it did not stimulate the expression of class I molecules. Assays of virus infectivity indicated that the class I-inducing activity did not correlate with the ability of the individual viral strain to replicate in astrocytes. However, exposure of the viruses or the supernatants from infected astrocytes to ultraviolet light abolished the class I-inducing activity, indicating that infectious virus is required for class I expression. These data also suggest that class I expression was induced directly by virus infection, and not by the secretion of a soluble substance into the medium by infected astrocytes. Finally, analyses of A59/JHMV recombinant viral strains suggest that class I-inducing activity resides in one of the A59 structural genes.
Collapse
Affiliation(s)
- W Gilmore
- Department of Neurology, University of Southern California School of Medicine, Los Angeles 90033
| | | | | |
Collapse
|
35
|
Fleming JO, Houtman JJ, Alaca H, Hinze HC, McKenzie D, Aiken J, Bleasdale T, Baker S. Persistence of viral RNA in the central nervous system of mice inoculated with MHV-4. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1994; 342:327-32. [PMID: 7516107 DOI: 10.1007/978-1-4615-2996-5_50] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In order to study the role that viral persistence may play in chronic central nervous system (CNS) disease induced by murine coronaviruses, we have used the reverse transcriptase-polymerase chain reaction (RT-PCR) to study viral RNA in the brains of mice after intracerebral inoculation of JHM virus (JHMV or MHV-4). Quantitative RT-PCR showed that JHMV RNA decreased from approximately 2 ng/ug total brain RNA at day 6 post-inoculation (PI) to 0.1 pg/ug total brain RNA at 360 days PI. Double-stranded viral RNA could be detected up to day 20 PI. By the selective use of upstream or downstream primers during the RT step, it was possible to measure negative sense and positive sense JHMV RNA respectively, and we found that there was a marked rise in the ratio of positive to negative sense JHMV RNA after day 13 PI. Analysis of amplified products by dideoxy DNA sequencing showed that the characteristic mutation of our input virus (at position 3340 of gene 3) is maintained to at least day 42 PI. Taken together, these results favor a model of JHMV persistence in vivo in which viral RNA is present as double stranded forms initially and predominantly as single stranded, positive sense forms at late timepoints. Further analysis of this model in quantitative terms may contribute to our understanding of the biological significance of coronavirus persistence in the CNS.
Collapse
|
36
|
Bergmann C, McMillan M, Stohlman S. Characterization of the Ld-restricted cytotoxic T-lymphocyte epitope in the mouse hepatitis virus nucleocapsid protein. J Virol 1993; 67:7041-9. [PMID: 7693965 PMCID: PMC238165 DOI: 10.1128/jvi.67.12.7041-7049.1993] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The mouse hepatitis virus (MHV) JHM strain (JHMV) produces primary demyelination in the central nervous system associated with acute encephalomyelitis. Humoral and cellular immune responses both participate in controlling the development of chronic MHV-induced demyelination. A subset of the CD8+ cytotoxic T lymphocytes (CTL) induced by immunization of BALB/c (H-2d) mice with JHMV is specific for the viral nucleocapsid protein. This CTL population recognizes an epitope located within the carboxy-terminal 149 amino acids in association with the Ld class I molecule (S. A. Stohlman, S. Kyuwa, M. Cohen, C. Bergmann, J. P. Polo, J. Yeh, R. Anthony, and J. G. Keck, Virology 189:217-224, 1992). Using a panel of vaccinia virus recombinants expressing truncated forms of the nucleocapsid protein and a series of overlapping synthetic peptides, we mapped the response to 15 amino acids. This sequence, encompassing the MHV epitope, contains the Ld-specific binding motif. The predicted 9-mer peptide (residues 318 to 326: APTAGAFFF) was sufficient and highly active in sensitizing target cells for CTL recognition when either added exogenously or synthesized intracellularly. Cross-reactivity of JHMV nucleocapsid protein-specific CTL with six other MHV strains indicated that natural sequence variations within the 9-mer epitope are tolerated in positions 4 and 5, whereas all other amino acids are conserved. These data define a novel 9-mer Ld-restricted CTL epitope which represents the first MHV CTL epitope. Characterization of this epitope provides a molecular basis to study the role of nucleocapsid protein-specific CTL in the clearance of JHMV from the central nervous system.
Collapse
Affiliation(s)
- C Bergmann
- Department of Neurology, University of Southern California School of Medicine, Los Angeles
| | | | | |
Collapse
|
37
|
Barnett EM, Cassell MD, Perlman S. Two neurotropic viruses, herpes simplex virus type 1 and mouse hepatitis virus, spread along different neural pathways from the main olfactory bulb. Neuroscience 1993; 57:1007-25. [PMID: 8309541 PMCID: PMC7131965 DOI: 10.1016/0306-4522(93)90045-h] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/1993] [Indexed: 01/29/2023]
Abstract
Several neurotropic viruses enter the brain after peripheral inoculation and spread transneuronally along pathways known to be connected to the initial site of entry. In this study, the pathways utilized by two such viruses, herpes simplex virus type 1 and mouse hepatitis virus strain JHM, were compared using in situ hybridization following inoculation into either the nasal cavity or the main olfactory bulb of the mouse. The results indicate that both viruses spread to infect a unique and only partially overlapping set of connections of the main olfactory bulb. Both quantitative and qualitative differences were observed in the patterns of infection of known primary and secondary main olfactory bulb connections. Using immunohistochemistry for tyrosine hydroxylase combined with in situ hybridization, it was shown that only herpes simplex virus infected noradrenergic neurons in the locus coeruleus. In contrast, both viruses infected dopaminergic neurons in the ventral tegmental area, although mouse hepatitis virus produced a more widespread infection in the A10 group, as well as infecting A8 and A9. The results suggest that differential virus uptake in specific neurotransmitter systems contributes to the pattern of viral spread, although other factors, such as differences in access to particular synapses on infected cells and differences in the distribution of the cellular receptor for the two viruses, are also likely to be important. The data show that neural tracing with different viruses may define unique neural pathways from a site of inoculation. The data also demonstrate that two viruses can enter the brain via the olfactory system and localize to different structures, suggesting that neurological diseases involving disparate regions of the brain could be caused by different viruses, even if entry occurred at a common site.
Collapse
Key Words
- hsv-1, herpes simplex virus, type 1
- lc, locus coeruleus
- mhv-jhm, mouse hepatitis virus, strain jhm
- mob, main olfactory bulb
- pfu, plaque forming unit
- p.i., post-inoculation
- th, tyrosine hydroxylase
- th+, tyrosine hydroxylase immunoreactive
- th−, tyrosine hydroxylase immunonegative
- vta, ventral tegmental area
- wga-hrp, wheatgerm agglutinin-horseradish peroxidase
Collapse
Affiliation(s)
- E M Barnett
- Neuroscience Program, University of Iowa College of Medicine, Iowa City 52242
| | | | | |
Collapse
|
38
|
Stohlman SA, Kyuwa S, Cohen M, Bergmann C, Polo JM, Yeh J, Anthony R, Keck JG. Mouse hepatitis virus nucleocapsid protein-specific cytotoxic T lymphocytes are Ld restricted and specific for the carboxy terminus. Virology 1992; 189:217-24. [PMID: 1376538 PMCID: PMC7131058 DOI: 10.1016/0042-6822(92)90697-n] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/1992] [Accepted: 03/25/1992] [Indexed: 12/26/2022]
Abstract
Infection of mice with the JHM strain of mouse hepatitis virus (MHV) results in an acute encephalomyelitis associated with primary demyelination of the central nervous system. Efforts at understanding the components of the immune response in the development of chronic MHV-induced demyelination have implicated the antibody response and both the CD4+ and CD8+ T cell responses. In this report, we demonstrate that Balb/c (H-2d) mice immunized with the JHM (JHMV) strain of MHV develop a CD8+ cytotoxic T lymphocyte (CTL) response. One population of these virus-specific CTL recognize the nucleocapsid (N) protein. Recombinant vaccinia viruses expressing either the entire N protein or carboxy-terminal deletions were used to determine the number and location of the epitope(s) recognized. The CTLs were found to recognize a peptide contained within the carboxy-terminal 149 amino acids of the N protein. Analysis of infected cell lines expressing transfected major histocompatibility genes demonstrated that the anti-N protein CTLs were restricted exclusively to the Ld molecule. These data provide the first definition of a MHV-specific CTL response directed to a viral protein and suggest that the anti-N protein CTL response is one potential mechanism used by the host to clear JHMV from the central nervous system.
Collapse
Affiliation(s)
- S A Stohlman
- Department of Microbiology, University of Southern California School of Medicine, Los Angeles 90033
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Kyuwa S, Yamaguchi K, Toyoda Y, Fujiwara K, Hilgers J. Acute and late disease induced by murine coronavirus, strain JHM, in a series of recombinant inbred strains between BALB/cHeA and STS/A mice. Microb Pathog 1992; 12:95-104. [PMID: 1316530 PMCID: PMC7135109 DOI: 10.1016/0882-4010(92)90112-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/1991] [Accepted: 09/30/1991] [Indexed: 12/26/2022]
Abstract
To examine the genetic control of acute and late disease induced by a murine coronavirus, strain JHM (JHMV), BALB/cHeA, STS/A, F1 hybrids and 13 recombinant inbred (RI) strains between BALB/cHeA and STS/A mouse strains were inoculated intracerebrally with 100 pfu of JHMV. All the BALB/cHeA mice died within 2 weeks from acute encephalitis. In contrast, STS/A mice were shown to be partially resistant, with a mortality rate of 30%, longer survival times and lower rates of viral production. The mortality rates, survival times and viral titers of F1 hybrids and the RI strains varied, suggesting involvement of multiple genes. STS/A, F1 hybrid and RI mice surviving the acute infection occasionally developed severe paraparesis about 1 month post-infection. In these mice, vacuolar degeneration, astrocytosis, the absence of perivascular cuffing and minimal demyelination were found in the central nervous system. No infectious virus could be recovered from these mice. Although the paralysis of delayed onset was limited to STS/A, F1 hybrid and eight of the 13 RI strains, the incidence varied significantly among the RI strains. These results may suggest that JHMV-induced late disease is also under multifactorial control. The pathogenesis of JHMV infection is discussed.
Collapse
Affiliation(s)
- S Kyuwa
- Department of Animal Pathology, University of Tokyo, Japan
| | | | | | | | | |
Collapse
|
40
|
Zimprich F, Winter J, Wege H, Lassmann H. Coronavirus induced primary demyelination: indications for the involvement of a humoral immune response. Neuropathol Appl Neurobiol 1991; 17:469-84. [PMID: 1666174 PMCID: PMC7194304 DOI: 10.1111/j.1365-2990.1991.tb00750.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/1991] [Accepted: 05/31/1991] [Indexed: 12/28/2022]
Abstract
Coronavirus MHV-JHM infection of rodents can result in demyelinating encephalomyelitis. We analysed histological changes induced by coronavirus MHV-JHM infection in Lewis rats. Besides an acute disease (AE), chronic panencephalitis (CPE) and subacute demyelinating encephalomyelitis (SDE) were induced. These disease types were differentiated by the incubation period, the localization of lesions, the type of tissue damage and distribution of virus antigen. In AE and CPE, virus antigen was detected in neurons, astrocytes and oligodendrocytes, whereas in SDE neurons lacked virus antigen. Viral nucleocapsid protein (N) was present in the cytoplasm and the spike protein (S) was displayed on the surface of infected neural cells. However, expression of S protein relative to N protein was severely impaired in SDE lesions. Quantitative analysis of infiltrating inflammatory cells revealed that the number of macrophages and T cells were similar in lesions of AE, CPE and SDE. In contrast to that, SDE lesions contained a significantly higher number of IgG + B cells and plasma cells. In addition active demyelinating SDE lesions displayed an enhanced IgG content and deposits of complement C9. These results indicate that virus induced primary demyelination could be a consequence of antibody mediated cytotoxicity. Furthermore, a reduction in the number of cells producing spike protein in the chronic forms of the disease indicates down-regulation of this protein, possibly mediated by anti-S antibodies.
Collapse
Affiliation(s)
- F Zimprich
- Research Unit for Experiment Neuropathology, Austrian Academy of Sciences, Vienna
| | | | | | | |
Collapse
|
41
|
Jacobsen G, Perlman S. Localization of virus and antibody response in mice infected persistently with MHV-JHM. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1990; 276:573-8. [PMID: 1966451 DOI: 10.1007/978-1-4684-5823-7_79] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Suckling mice infected intranasally with MHV-JHM and nursed by immunized dams develop a late onset demyelinating encephalomyelitis. Analysis by in situ hybridization revealed that MHV-JHM entered the central nervous system (CNS) via the olfactory and trigeminal nerves and spread over the next two weeks to the spinal cord, prior to amplification at this site. Serial measurements of neutralizing antibody titers showed that the late onset disease developed in some mice at levels of antibody which protected mice from the fatal, acute encephalitis, supporting the notion that cell-mediated and not humoral immunity is important in protecting mice from MHV-JHM persistence.
Collapse
Affiliation(s)
- G Jacobsen
- University of Iowa School of Medicine, Department of Pediatrics and Microbiology, University of Iowa Hospitals and Clinics, Iowa City 52242
| | | |
Collapse
|
42
|
Kyuwa S, Stohlman S. Background paper. Advances in the study of MHV infection of mice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1990; 276:555-6. [PMID: 1966448 DOI: 10.1007/978-1-4684-5823-7_76] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- S Kyuwa
- Department of Neurology, University of Southern California School of Medicine, Los Angeles 90033
| | | |
Collapse
|