1
|
Souza LA, Earley YF. (Pro)renin Receptor and Blood Pressure Regulation: A Focus on the Central Nervous System. Curr Hypertens Rev 2022; 18:101-116. [PMID: 35086455 PMCID: PMC9662243 DOI: 10.2174/1570162x20666220127105655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/02/2021] [Accepted: 12/06/2021] [Indexed: 01/27/2023]
Abstract
The renin-angiotensin system (RAS) is classically described as a hormonal system in which angiotensin II (Ang II) is one of the main active peptides. The action of circulating Ang II on its cognate Ang II type-1 receptor (AT1R) in circumventricular organs has important roles in regulating the autonomic nervous system, blood pressure (BP) and body fluid homeostasis, and has more recently been implicated in cardiovascular metabolism. The presence of a local or tissue RAS in various tissues, including the central nervous system (CNS), is well established. However, because the level of renin, the rate-limiting enzyme in the systemic RAS, is very low in the brain, how endogenous angiotensin peptides are generated in the CNS-the focus of this review-has been the subject of considerable debate. Notable in this context is the identification of the (pro)renin receptor (PRR) as a key component of the brain RAS in the production of Ang II in the CNS. In this review, we highlight cellular and anatomical locations of the PRR in the CNS. We also summarize studies using gain- and loss-of function approaches to elucidate the functional importance of brain PRR-mediated Ang II formation and brain RAS activation, as well as PRR-mediated Ang II-independent signaling pathways, in regulating BP. We further discuss recent developments in PRR involvement in cardiovascular and metabolic diseases and present perspectives for future directions.
Collapse
Affiliation(s)
- Lucas A.C. Souza
- Departments of Pharmacology and Physiology & Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, USA,Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno, Reno, NV, USA
| | - Yumei Feng Earley
- Departments of Pharmacology and Physiology & Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, USA,Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno, Reno, NV, USA
| |
Collapse
|
2
|
Sunanda T, Ray B, Mahalakshmi AM, Bhat A, Rashan L, Rungratanawanich W, Song BJ, Essa MM, Sakharkar MK, Chidambaram SB. Mitochondria-Endoplasmic Reticulum Crosstalk in Parkinson's Disease: The Role of Brain Renin Angiotensin System Components. Biomolecules 2021; 11:1669. [PMID: 34827667 PMCID: PMC8615717 DOI: 10.3390/biom11111669] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 12/12/2022] Open
Abstract
The past few decades have seen an increased emphasis on the involvement of the mitochondrial-associated membrane (MAM) in various neurodegenerative diseases, particularly in Parkinson's disease (PD) and Alzheimer's disease (AD). In PD, alterations in mitochondria, endoplasmic reticulum (ER), and MAM functions affect the secretion and metabolism of proteins, causing an imbalance in calcium homeostasis and oxidative stress. These changes lead to alterations in the translocation of the MAM components, such as IP3R, VDAC, and MFN1 and 2, and consequently disrupt calcium homeostasis and cause misfolded proteins with impaired autophagy, distorted mitochondrial dynamics, and cell death. Various reports indicate the detrimental involvement of the brain renin-angiotensin system (RAS) in oxidative stress, neuroinflammation, and apoptosis in various neurodegenerative diseases. In this review, we attempted to update the reports (using various search engines, such as PubMed, SCOPUS, Elsevier, and Springer Nature) demonstrating the pathogenic interactions between the various proteins present in mitochondria, ER, and MAM with respect to Parkinson's disease. We also made an attempt to speculate the possible involvement of RAS and its components, i.e., AT1 and AT2 receptors, angiotensinogen, in this crosstalk and PD pathology. The review also collates and provides updated information on the role of MAM in calcium signaling, oxidative stress, neuroinflammation, and apoptosis in PD.
Collapse
Affiliation(s)
- Tuladhar Sunanda
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (T.S.); (B.R.); (A.M.M.); (A.B.)
- Centre for Experimental Pharmacology and Toxicology, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Bipul Ray
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (T.S.); (B.R.); (A.M.M.); (A.B.)
- Centre for Experimental Pharmacology and Toxicology, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Arehally M. Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (T.S.); (B.R.); (A.M.M.); (A.B.)
| | - Abid Bhat
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (T.S.); (B.R.); (A.M.M.); (A.B.)
- Centre for Experimental Pharmacology and Toxicology, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Luay Rashan
- Biodiversity Research Centre, Dohfar University, Salalah 2059, Oman;
| | - Wiramon Rungratanawanich
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892, USA; (W.R.); (B.-J.S.)
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892, USA; (W.R.); (B.-J.S.)
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat 123, Oman;
- Ageing and Dementia Research Group, Sultan Qaboos University, Muscat 123, Oman
| | - Meena Kishore Sakharkar
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (T.S.); (B.R.); (A.M.M.); (A.B.)
- Centre for Experimental Pharmacology and Toxicology, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| |
Collapse
|
3
|
de Morais SDB, Shanks J, Zucker IH. Integrative Physiological Aspects of Brain RAS in Hypertension. Curr Hypertens Rep 2018; 20:10. [PMID: 29480460 DOI: 10.1007/s11906-018-0810-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW The renin-angiotensin system (RAS) plays an important role in modulating cardiovascular function and fluid homeostasis. While the systemic actions of the RAS are widely accepted, the role of the RAS in the brain, its regulation of cardiovascular function, and sympathetic outflow remain controversial. In this report, we discuss the current understanding of central RAS on blood pressure (BP) regulation, in light of recent literature and new experimental techniques. RECENT FINDINGS Studies using neuronal or glial-specifc mouse models have allowed for greater understanding into the site-specific expression and role centrally expressed RAS proteins have on BP regulation. While all components of the RAS have been identified in cardiovascular regulatory regions of the brain, their actions may be site specific. In a number of animal models of hypertension, reduction in Ang II-mediated signaling, or upregulation of the central ACE2/Ang 1-7 pathway, has been shown to reduce BP, via a reduction in sympathetic signaling and increase parasympathetic tone, respectively. Emerging evidence also suggests that, in part, the female protective phenotype against hypertension may be due to inceased ACE2 activity within cardiovascular regulatory regions of the brain, potentially mediated by estrogen. Increasing evidence suggests the importance of a central renin-angiotensin pathway, although its localization and the mechanisms involved in its expression and regulation still need to be clarified and more precisely defined. All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).
Collapse
Affiliation(s)
- Sharon D B de Morais
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198-5850, USA
| | - Julia Shanks
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198-5850, USA
| | - Irving H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198-5850, USA.
| |
Collapse
|
4
|
Cinelli E, Bongianni F, Pantaleo T, Mutolo D. The cough reflex is upregulated by lisinopril microinjected into the caudal nucleus tractus solitarii of the rabbit. Respir Physiol Neurobiol 2015; 219:9-17. [PMID: 26234277 DOI: 10.1016/j.resp.2015.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/27/2015] [Accepted: 07/27/2015] [Indexed: 11/16/2022]
Abstract
We have previously shown that cough potentiation induced by intravenous administration of the AT1 receptor antagonist losartan is lower than that induced by the ACE inhibitor lisinopril in anesthetized and awake rabbits. Since losartan and lisinopril cross the blood-brain barrier, their central action on the cough reflex can be hypothesized. Mechanical stimulation of the tracheobronchial tree and citric acid inhalation were used to induce cough reflex responses in pentobarbital sodium-anesthetized, spontaneously breathing rabbits. Bilateral microinjections (30-50 nl) of losartan (5mM), lisinopril (1mM), bradykinin (0.05 mM), HOE-140 (0.2mM, a bradykinin B2 receptor antagonist) and CP-99,994 (1mM, an NK1 receptor antagonist) were performed into the caudal nucleus tractus solitarii, the predominant site of termination of cough-related afferents. Lisinopril, but not losartan increased the cough number. This effect was reverted by HOE-140 or CP-99,994. Cough potentiation was also induced by bradykinin. The results support for the first time a central protussive action of lisinopril mediated by an accumulation of bradykinin and substance P.
Collapse
Affiliation(s)
- Elenia Cinelli
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università degli Studi di Firenze, Viale G.B. Morgagni 63, 50134 Firenze, Italy
| | - Fulvia Bongianni
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università degli Studi di Firenze, Viale G.B. Morgagni 63, 50134 Firenze, Italy
| | - Tito Pantaleo
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università degli Studi di Firenze, Viale G.B. Morgagni 63, 50134 Firenze, Italy
| | - Donatella Mutolo
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università degli Studi di Firenze, Viale G.B. Morgagni 63, 50134 Firenze, Italy.
| |
Collapse
|
5
|
Yuan H, Wang X, Xia Q, Ge P, Wang X, Cao X. Angiotensin converting enzyme (I/D) gene polymorphism contributes to ischemic stroke risk in Caucasian individuals: a meta-analysis based on 22 case-control studies. Int J Neurosci 2015; 126:488-498. [PMID: 26000917 DOI: 10.3109/00207454.2015.1036421] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Stroke is a multifactorial disease in which genetic factors play an important role. Previous studies associated angiotensin converting enzyme (ACE) (insertion/deletion, I/D) gene polymorphism with ischemic stroke risk in Caucasian individuals reported conflicting results. The purpose of this study was to evaluate the association between ACE (I/D) gene polymorphism and ischemic stroke risk by a meta-analysis. METHODS The related studies were searched in MEDLINE, EMBASE and HuGEnet databases. The odds ratios (ORs) and corresponding 95% confidence intervals (CIs) for ischemic stroke risk associated with this polymorphism were estimated using fixed-effect or random-effects model. Twenty-two studies (5528/5081 cases/controls) were eligible in our meta-analysis. RESULTS Overall, statistical associations of the ACE (I/D) polymorphism with ischemic stroke risk were found in dominant model (DD + ID versus II) : OR = 1.21, 95% CI = (1.06,1.38), P = 0.006, recessive model (DD versus ID + II): OR = 1.28, 95% CI = (1.05,1.55), P = 0.01, and homozygote comparison (DD versus II): OR = 1.37, 95% CI = (1.14,1.65), P = 0.001 for Caucasians. When stratifying according to stroke subtypes, there were similarly significant differences for small vessel disease in dominant model (DD + ID versus II) : OR = 1.44, 95% CI = (1.01,2.05), P = 0.04, recessive model (DD versus ID + II): OR = 1.30,95% CI = (1.09,1.55), P = 0.004, and homozygote comparison (DD versus II): OR = 1.44, 95% CI = (1.15,1.80), P = 0.001. CONCLUSION This analysis suggests that the ACE (I/D) polymorphism may be a risk factor for ischemic stroke, genotype DD of ACE could increase the risk of ischemic stroke in Caucasians. Subgroup analyses indicate that stroke subtypes may be a genetic risk factor of ischemic stroke, and there might be a greater genetic liability with small vessel disease.
Collapse
Affiliation(s)
- Hai Yuan
- a 1 Department of Rehabilitation Medicine, the Second People's Hospital of Hefei City , 246th Heping Road, Hefei 230011, Anhui Province, China and
| | - Xiaotong Wang
- b 2 Department of Neurology, the Second Affiliated Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang Province , China
| | - Qing Xia
- a 1 Department of Rehabilitation Medicine, the Second People's Hospital of Hefei City , 246th Heping Road, Hefei 230011, Anhui Province, China and
| | - Pingping Ge
- a 1 Department of Rehabilitation Medicine, the Second People's Hospital of Hefei City , 246th Heping Road, Hefei 230011, Anhui Province, China and
| | - Xiumin Wang
- a 1 Department of Rehabilitation Medicine, the Second People's Hospital of Hefei City , 246th Heping Road, Hefei 230011, Anhui Province, China and
| | - Xiaoguang Cao
- a 1 Department of Rehabilitation Medicine, the Second People's Hospital of Hefei City , 246th Heping Road, Hefei 230011, Anhui Province, China and
| |
Collapse
|
6
|
Coble JP, Grobe JL, Johnson AK, Sigmund CD. Mechanisms of brain renin angiotensin system-induced drinking and blood pressure: importance of the subfornical organ. Am J Physiol Regul Integr Comp Physiol 2014; 308:R238-49. [PMID: 25519738 DOI: 10.1152/ajpregu.00486.2014] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is critical for cells to maintain a homeostatic balance of water and electrolytes because disturbances can disrupt cellular function, which can lead to profound effects on the physiology of an organism. Dehydration can be classified as either intra- or extracellular, and different mechanisms have developed to restore homeostasis in response to each. Whereas the renin-angiotensin system (RAS) is important for restoring homeostasis after dehydration, the pathways mediating the responses to intra- and extracellular dehydration may differ. Thirst responses mediated through the angiotensin type 1 receptor (AT1R) and angiotensin type 2 receptors (AT2R) respond to extracellular dehydration and intracellular dehydration, respectively. Intracellular signaling factors, such as protein kinase C (PKC), reactive oxygen species (ROS), and the mitogen-activated protein (MAP) kinase pathway, mediate the effects of central angiotensin II (ANG II). Experimental evidence also demonstrates the importance of the subfornical organ (SFO) in mediating some of the fluid intake effects of central ANG II. The purpose of this review is to highlight the importance of the SFO in mediating fluid intake responses to dehydration and ANG II.
Collapse
Affiliation(s)
| | - Justin L Grobe
- Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | | | - Curt D Sigmund
- Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
7
|
Marshall AC, Shaltout HA, Pirro NT, Rose JC, Diz DI, Chappell MC. Antenatal betamethasone exposure is associated with lower ANG-(1-7) and increased ACE in the CSF of adult sheep. Am J Physiol Regul Integr Comp Physiol 2013; 305:R679-88. [PMID: 23948771 PMCID: PMC3798802 DOI: 10.1152/ajpregu.00321.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 08/07/2013] [Indexed: 01/03/2023]
Abstract
Antenatal betamethasone (BM) therapy accelerates lung development in preterm infants but may induce early programming events with long-term cardiovascular consequences. To elucidate these events, we developed a model of programming whereby pregnant ewes are administered BM (2 doses of 0.17 mg/kg) or vehicle at the 80th day of gestation and offspring are delivered at term. BM-exposed (BMX) offspring develop elevated blood pressure; decreased baroreflex sensitivity; and alterations in the circulating, renal, and brain renin-angiotensin systems (RAS) by 6 mo of age. We compared components of the choroid plexus fourth ventricle (ChP4) and cerebral spinal fluid (CSF) RAS between control and BMX male offspring at 6 mo of age. In the choroid plexus, high-molecular-weight renin protein and ANG I-intact angiotensinogen were unchanged between BMX and control animals. Angiotensin-converting enzyme 2 (ACE2) activity was threefold higher than either neprilysin (NEP) or angiotensin 1-converting enzyme (ACE) in control and BMX animals. Moreover, all three enzymes were equally enriched by approximately 2.5-fold in ChP4 brush-border membrane preparations. CSF ANG-(1-7) levels were significantly lower in BMX animals (351.8 ± 76.8 vs. 77.5 ± 29.7 fmol/mg; P < 0.05) and ACE activity was significantly higher (6.6 ± 0.5 vs. 8.9 ± 0.5 fmol·min(-1)·ml(-1); P < 0.05), whereas ACE2 and NEP activities were below measurable limits. A thiol-sensitive peptidase contributed to the majority of ANG-(1-7) metabolism in the CSF, with higher activity in BMX animals. We conclude that in utero BM exposure alters CSF but not ChP RAS components, resulting in lower ANG-(1-7) levels in exposed animals.
Collapse
Affiliation(s)
- Allyson C Marshall
- Hypertension and Vascular Research Center, Wake Forest School of Medicine, Winston Salem, North Carolina
| | | | | | | | | | | |
Collapse
|
8
|
Garg M, Angus PW, Burrell LM, Herath C, Gibson PR, Lubel JS. Review article: the pathophysiological roles of the renin-angiotensin system in the gastrointestinal tract. Aliment Pharmacol Ther 2012; 35:414-28. [PMID: 22221317 PMCID: PMC7159631 DOI: 10.1111/j.1365-2036.2011.04971.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 11/29/2011] [Accepted: 12/13/2011] [Indexed: 02/06/2023]
Abstract
BACKGROUND The renin-angiotensin system (RAS) is a homeostatic pathway widely known to regulate cardiovascular and renal physiology; however, little is known about its influence in gastrointestinal tissues. AIM To elicit the anatomical distribution and physiological significance of the components of the RAS in the gastrointestinal tract. METHODS An extensive online literature review including Pubmed and Medline. RESULTS There is evidence for RAS involvement in gastrointestinal physiology and pathophysiology, with all the components required for autonomous regulation identified throughout the gastrointestinal tract. The RAS is implicated in the regulation of glucose, amino acid, fluid and electrolyte absorption and secretion, motility, inflammation, blood flow and possibly malignant disease within the gastrointestinal tract. Animal studies investigating the effects of RAS blockade in a range of conditions including inflammatory bowel disease, functional gut disorders, gastrointestinal malignancy and even intestinal ischaemia have been encouraging to date. Given the ready availability of drugs that modify the RAS and their excellent safety profile, an opportunity exists for investigation of their possible therapeutic role in a variety of human gastrointestinal diseases. CONCLUSIONS The gastrointestinal renin-angiotensin system appears to be intricately involved in a number of physiological processes, and provides a possible target for novel investigative and therapeutic approaches.
Collapse
Affiliation(s)
- M. Garg
- Department of Gastroenterology & HepatologyEastern HealthVic., Australia,Eastern Health Clinical SchoolMonash UniversityVic., Australia
| | - P. W. Angus
- Department of MedicineMelbourne UniversityVic., Australia,Gastroenterology and Liver Transplant UnitAustin HospitalVic., Australia
| | - L. M. Burrell
- Department of MedicineMelbourne UniversityVic., Australia
| | - C. Herath
- Department of MedicineMelbourne UniversityVic., Australia
| | - P. R. Gibson
- Department of Gastroenterology & HepatologyEastern HealthVic., Australia,Eastern Health Clinical SchoolMonash UniversityVic., Australia
| | - J. S. Lubel
- Department of Gastroenterology & HepatologyEastern HealthVic., Australia,Gastroenterology and Liver Transplant UnitAustin HospitalVic., Australia,Eastern Health Clinical SchoolMonash UniversityVic., Australia
| |
Collapse
|
9
|
|
10
|
Shi L, Mao C, Zeng F, Hou J, Zhang H, Xu Z. Central angiotensin I increases fetal AVP neuron activity and pressor responses. Am J Physiol Endocrinol Metab 2010; 298:E1274-82. [PMID: 20371731 PMCID: PMC2886532 DOI: 10.1152/ajpendo.00060.2010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Angiotensin (Ang) II plays a critical role in cardiovascular homeostasis and neuroendocrine regulation. Little is known about whether central angiotensin-converting enzyme (ACE) is functional in the fetal brain. We investigated cardiovascular and neuroendocrinological responses to intracerebroventricular (icv) application of Ang I in the chronically prepared near-term ovine fetus in utero and examined the action sites marked by c-fos expression in the fetal hypothalamus. ACE mRNA was detected in the specific central areas. Intracerebroventricular Ang I significantly increased fetal blood pressure and c-fos expression in the supraoptic nuclei (SON) and the paraventricular nuclei (PVN) in the hypothalamus, accompanied by an increase of fetal plasma arginine vasopressin (AVP). Double labeling demonstrated that AVP neurons in the fetal SON and PVN were expressing c-fos. Captopril, an inhibitor of ACE, significantly suppressed fetal pressor responses and plasma AVP. Double labeling experiments showed colocalization of AT(1) receptor (AT(1)R) and c-fos expression in both SON and PVN following icv Ang I. The results indicate that central endogenous ACE has been functional at least at the last third of gestation and the endogenous brain renin-angiotensin system-mediated pressor responses and AVP release via AT(1)Rs by acting at the sites consistent with the cardiovascular network in the hypothalamus.
Collapse
Affiliation(s)
- Lijun Shi
- Beijing Sport University and First Hospital of Soochow University, Beijing, Suzhou, China
| | | | | | | | | | | |
Collapse
|
11
|
Shi L, Mao C, Xu Z, Zhang L. Angiotensin-converting enzymes and drug discovery in cardiovascular diseases. Drug Discov Today 2010; 15:332-41. [PMID: 20170743 PMCID: PMC3005694 DOI: 10.1016/j.drudis.2010.02.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 12/30/2009] [Accepted: 02/11/2010] [Indexed: 12/24/2022]
Abstract
Angiotensin-converting enzyme (ACE) is a major target in the treatment of cardiovascular diseases (CVDs). In addition to ACE, ACE2 - which is a homolog of ACE and promotes the degradation of angiotensin II (Ang II) to Ang (1-7) - has been recognized recently as a potential therapeutic target in the management of CVDs. This article reviews different metabolic pathways of ACE and ACE2 (Ang I-Ang II-AT1 receptors and Ang I-Ang (1-7)-Mas receptors) in the regulation of cardiovascular function and their potential in new drug development in the therapy of CVDs. In addition, recent progress in the study of angiotensin and ACE in fetal origins of CVD, which might present an interesting field in perinatal medicine and preventive medicine, is briefly summarized.
Collapse
Affiliation(s)
- Lijun Shi
- Department of Human Sport Science, Beijing Sport University, Beijing 100084, China
| | | | | | | |
Collapse
|
12
|
Tascilar N, Dursun A, Ankarali H, Mungan G, Ekem S, Baris S. Angiotensin-converting enzyme insertion/deletion polymorphism has no effect on the risk of atherosclerotic stroke or hypertension. J Neurol Sci 2010; 285:137-41. [PMID: 19596363 DOI: 10.1016/j.jns.2009.06.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 05/24/2009] [Accepted: 06/11/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND AND PURPOSE Stroke is a heterogeneous multifactorial disease. Hence, a large number of candidate genes are involved in stroke pathophysiology, such as blood pressure regulation and atherosclerosis. Although angiotensin-converting enzyme insertion/deletion (ACE I/D) polymorphism is considered to have a role in hypertension, coronary artery disease, and myocardial infarction, its relationship with cerebrovascular disease and hypertension in stroke in different ethnic populations is still inconsistent. METHODS ACE I/D polymorphism, detected by polymerase chain reaction (PCR), was studied in 97 patients with large-vessel and 60 patients with small-vessel atherosclerotic stroke (44 asymptomatic, 16 symptomatic lacunes) and 85 healthy subjects with normal brain imaging. The demographic data, lipid profile and risk factors of patients and controls were obtained retrospectively. RESULTS ACE genotypes were in Hardy-Weinberg equilibrium in both patients and controls. Prevalences of DD, ID and II genotype were 41%, 40%, and 19%, respectively, in the stroke group. Differences in ACE I/D polymorphism distribution were statistically insignificant between the groups. This lack of association between stroke and ACE I/D polymorphism did not change in the presence of traditional risk factors (hypertension, diabetes mellitus, smoking, and dyslipidemia). Although hypertension was significantly more common in the patient groups, ACE I/D polymorphism showed no effect on hypertension risk. This lack of association also did not change according to groups or in the presence of diabetes mellitus, male gender or smoking. CONCLUSION ACE I/D polymorphism did not predict the risk of stroke or hypertension in our population living in the western Black Sea region of Turkey.
Collapse
Affiliation(s)
- N Tascilar
- Department of Neurology, Zonguldak Karaelmas University Medical Faculty, Zonguldak, Turkey.
| | | | | | | | | | | |
Collapse
|
13
|
Mao C, Shi L, Xu F, Zhang L, Xu Z. Development of fetal brain renin-angiotensin system and hypertension programmed in fetal origins. Prog Neurobiol 2009; 87:252-63. [PMID: 19428956 DOI: 10.1016/j.pneurobio.2008.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 10/27/2008] [Accepted: 12/16/2008] [Indexed: 11/30/2022]
Abstract
Since the concept of fetal origins of adult diseases was introduced in 1980s, the development of the renin-angiotensin system (RAS) in normal and abnormal patterns has attracted attention. Recent studies have shown the importance of the fetal RAS in both prenatal and postnatal development. This review focuses on the functional development of the fetal brain RAS, and ontogeny of local brain RAS components in utero. The central RAS plays an important role in the control of fetal cardiovascular responses, body fluid balance, and neuroendocrine regulation. Recent progress has been made in demonstrating that altered fetal RAS development as a consequence of environmental insults may impact on "programming" of hypertension later in life. Given that the central RAS is of equal importance to the peripheral RAS in cardiovascular regulation, studies on the fetal brain RAS development in normal and abnormal patterns could shed light on "programming" mechanisms of adult cardiovascular diseases in fetal origins.
Collapse
Affiliation(s)
- Caiping Mao
- Perinatal Biology Center, Soochow University School of Medicine, Suzhou 215007, China
| | | | | | | | | |
Collapse
|
14
|
Effect of angiotensin-related antihypertensives on brain neurotransmitter levels in rats. Neurosci Lett 2008; 444:186-9. [DOI: 10.1016/j.neulet.2008.08.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 08/06/2008] [Accepted: 08/08/2008] [Indexed: 10/21/2022]
|
15
|
Elased KM, Cunha TS, Marcondes FK, Morris M. Brain angiotensin-converting enzymes: role of angiotensin-converting enzyme 2 in processing angiotensin II in mice. Exp Physiol 2008; 93:665-75. [PMID: 18263657 PMCID: PMC7197900 DOI: 10.1113/expphysiol.2007.040311] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Angiotensin (Ang)‐converting enzyme 2 (ACE2) metabolizes Ang II to the vasodilatory peptide Ang(1–7), while neprilysin (NEP) generates Ang(1–7) from Ang I. Experiments used novel Surface Enhanced Laser Desorption Ionization‐Time of Flight (SELDI‐TOF) mass spectroscopic (MS) assays to study Ang processing. Mass spectroscopy was used to measure proteolytic conversion of Ang peptide substrates to their specific peptide products. We compared ACE/ACE2 activity in plasma, brain and kidney from C57BL/6 and NEP−/− mice. Plasma or tissue extracts were incubated with Ang I or Ang II (1296 or 1045, m/z, respectively), and generated peptides were monitored with MS. Angiotensin‐converting enzyme 2 activity was detected in kidney and brain, but not in plasma. Brain ACE2 activity was highest in hypothalamus. Angiotensin‐converting enzyme 2 activity was inhibited by the specific ACE2 inhibitor, DX600 (10 μm, 99% inhibition), but not by the ACE inhibitor, captopril (10 μm). Both MS and colorimetric assays showed high ACE activity in plasma and kidney with low levels in brain. To extend these findings, ACE measurements were made in ACE overexpressing mice. Angiotensin‐converting enzyme four‐copy mice showed higher ACE activity in kidney and plasma with low levels in hypothalamus. In hypothalamus from NEP−/− mice, generation of Ang(1–7) from Ang I was decreased, suggesting a role for NEP in Ang metabolism. With Ang II as substrate, there was no difference between NEP−/− and wild‐type control mice, indicating that other enzymes may contribute to generation of Ang(1–7). The data suggest a predominant role of hypothalamic ACE2 in the processing of Ang II, in contrast to ACE, which is most active in plasma.
Collapse
Affiliation(s)
- Khalid M Elased
- Wright State University, Boonshoft School of Medicine, 3640 Colonel Glenn Highway, Dayton, OH 45435, USA
| | | | | | | |
Collapse
|
16
|
Abstract
Since the first identification of renin by Tigerstedt and Bergmann in 1898, the renin-angiotensin system (RAS) has been extensively studied. The current view of the system is characterized by an increased complexity, as evidenced by the discovery of new functional components and pathways of the RAS. In recent years, the pathophysiological implications of the system have been the main focus of attention, and inhibitors of the RAS such as angiotensin-converting enzyme (ACE) inhibitors and angiotensin (ANG) II receptor blockers have become important clinical tools in the treatment of cardiovascular and renal diseases such as hypertension, heart failure, and diabetic nephropathy. Nevertheless, the tissue RAS also plays an important role in mediating diverse physiological functions. These focus not only on the classical actions of ANG on the cardiovascular system, namely, the maintenance of cardiovascular homeostasis, but also on other functions. Recently, the research efforts studying these noncardiovascular effects of the RAS have intensified, and a large body of data are now available to support the existence of numerous organ-based RAS exerting diverse physiological effects. ANG II has direct effects at the cellular level and can influence, for example, cell growth and differentiation, but also may play a role as a mediator of apoptosis. These universal paracrine and autocrine actions may be important in many organ systems and can mediate important physiological stimuli. Transgenic overexpression and knock-out strategies of RAS genes in animals have also shown a central functional role of the RAS in prenatal development. Taken together, these findings may become increasingly important in the study of organ physiology but also for a fresh look at the implications of these findings for organ pathophysiology.
Collapse
Affiliation(s)
- Martin Paul
- Institute of Clinical Pharmacology and Toxicology, Campus Benjamin Franklin, Charité-University Medicine Berlin, Berlin, Germany
| | | | | |
Collapse
|
17
|
McKinley MJ, Albiston AL, Allen AM, Mathai ML, May CN, McAllen RM, Oldfield BJ, Mendelsohn FAO, Chai SY. The brain renin-angiotensin system: location and physiological roles. Int J Biochem Cell Biol 2003; 35:901-18. [PMID: 12676175 DOI: 10.1016/s1357-2725(02)00306-0] [Citation(s) in RCA: 375] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Angiotensinogen, the precursor molecule for angiotensins I, II and III, and the enzymes renin, angiotensin-converting enzyme (ACE), and aminopeptidases A and N may all be synthesised within the brain. Angiotensin (Ang) AT(1), AT(2) and AT(4) receptors are also plentiful in the brain. AT(1) receptors are found in several brain regions, such as the hypothalamic paraventricular and supraoptic nuclei, the lamina terminalis, lateral parabrachial nucleus, ventrolateral medulla and nucleus of the solitary tract (NTS), which are known to have roles in the regulation of the cardiovascular system and/or body fluid and electrolyte balance. Immunohistochemical and neuropharmacological studies suggest that angiotensinergic neural pathways utilise Ang II and/or Ang III as a neurotransmitter or neuromodulator in the aforementioned brain regions. Angiotensinogen is synthesised predominantly in astrocytes, but the processes by which Ang II is generated or incorporated in neurons for utilisation as a neurotransmitter is unknown. Centrally administered AT(1) receptor antagonists or angiotensinogen antisense oligonucleotides inhibit sympathetic activity and reduce arterial blood pressure in certain physiological or pathophysiological conditions, as well as disrupting water drinking and sodium appetite, vasopressin secretion, sodium excretion, renin release and thermoregulation. The AT(4) receptor is identical to insulin-regulated aminopeptidase (IRAP) and plays a role in memory mechanisms. In conclusion, angiotensinergic neural pathways and angiotensin peptides are important in neural function and may have important homeostatic roles, particularly related to cardiovascular function, osmoregulation and thermoregulation.
Collapse
Affiliation(s)
- M J McKinley
- Howard Florey Institute of Experimental Physiology and Medicine, University of Melbourne, Melbourne 3010, Vic., Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Hayashi MAF, Murbach AF, Ianzer D, Portaro FCV, Prezoto BC, Fernandes BL, Silveira PF, Silva CA, Pires RS, Britto LRG, Dive V, Camargo ACM. The C-type natriuretic peptide precursor of snake brain contains highly specific inhibitors of the angiotensin-converting enzyme. J Neurochem 2003; 85:969-77. [PMID: 12716428 DOI: 10.1046/j.1471-4159.2003.01743.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The bradykinin-potentiating peptides from Bothrops jararaca venom are the most potent natural inhibitors of the angiotensin-converting enzyme. The biochemical and biological features of these peptides were crucial to demonstrate the pivotal role of the angiotensin-converting enzyme in blood pressure regulation. In the present study, seven bradykinin-potentiating peptides were identified within the C-type natriuretic peptide precursor cloned from snake brain. The bradykinin-potentiating peptides deduced from the B. jararaca brain precursor are strong in vitro inhibitors of the angiotensin-converting enzyme (nanomolar range), and also potentiate the bradykinin effects in ex vivo and in vivo experiments. Two of these peptides are novel bradykinin-potentiating peptides, one of which displays high specificity toward the N-domain active site of the somatic angiotensin-converting enzyme. In situ hybridization studies revealed the presence of the bradykinin-potentiating peptides precursor mRNAs in distinct regions of the B. jararaca brain, such as the ventromedial hypothalamus, the paraventricular nuclei, the paraventricular organ, and the subcommissural organ. The biochemical and pharmacological properties of the brain bradykinin-potentiating peptides, their presence within the neuroendocrine regulator C-type natriuretic peptide precursor, and their expression in regions of the snake brain correlated to neuroendocrine functions, strongly suggest that these peptides belong to a novel class of endogenous vasoactive peptides.
Collapse
Affiliation(s)
- Mirian A F Hayashi
- Center for Applied Toxinology--CAT/CEPID, Instituto Butantan, Avenue.Vital Brazil 15600, São Paulo, SP 05530-900, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Nash JE, Brotchie JM. Characterisation of striatal NMDA receptors involved in the generation of parkinsonian symptoms: intrastriatal microinjection studies in the 6-OHDA-lesioned rat. Mov Disord 2002; 17:455-66. [PMID: 12112191 DOI: 10.1002/mds.10107] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Treatments for Parkinson's disease based on replacement of lost dopamine have several problems. Following loss of dopamine, enhanced N-methyl-D-aspartate (NMDA) receptor-mediated transmission in the striatum is thought to be part of the cascade of events leading to the generation of parkinsonian symptoms. We determined the localisation and pharmacological characteristics of NMDA receptors that play a role in generating parkinsonian symptoms within the striatum. Rats were lesioned unilaterally with 6-hydroxydopamine (6-OHDA), and cannulae implanted bilaterally to allow injection of a range of NMDA receptor antagonists at different striatal sites. When injected rostrally into the dopamine-depleted striatum, the glycine site partial agonist, (+)-HA-966 (44-400 nmol) caused a dose-dependent contraversive rotational response consistent with an antiparkinsonian action. (+)-HA-966 (400 nmol) had no effect when infused into more caudal regions of the dopamine-depleted striatum, or following injection into any striatal region on the dopamine-intact side. To determine the pharmacological profile of NMDA receptors involved in inducing parkinsonism in 6-OHDA-lesioned rats, a range of NMDA receptor antagonists was infused directly into the rostral striatum. Ifenprodil (100 nmol) and 7-chlorokynurenate (37 nmol), but not MK-801 (15 nmol) or D-APV (25 nmol) elicited a dramatic rotational response when injected into the dopamine-depleted striatum. This pharmacological profile is not consistent with an effect mediated via blocking NR2B-containing NMDA receptors. The effect of intrastriatal injection of ifenprodil was increased in animals previously treated with levodopa (L-dopa) methyl ester. This was seen as an increase in on-time and in peak rotational response. We propose that stimulation of NR2B-containing NMDA receptors in the rostral striatum underlies the generation of parkinsonian symptoms. These studies are in line with previous findings suggesting that administration of NR2B-selective NMDA receptor antagonists may be therapeutically beneficial for parkinsonian patients, when given de novo and following L-dopa treatment.
Collapse
Affiliation(s)
- Joanne E Nash
- Manchester Movement Disorder Laboratory, Division of Neuroscience, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | | |
Collapse
|
20
|
Guan JL, Wang QP, Lu S, Shioda S. Reciprocal synaptic relationships between angiotensin II-containing neurons and enkephalinergic neurons in the rat area postrema. Synapse 2001; 41:112-7. [PMID: 11400177 DOI: 10.1002/syn.1065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A preembedding double immunostaining technique was used to study synaptic relationships between angiotensin-II-like immunoreactive and enkephalin-like immunoreactive neurons in the rat area postrema. The angiotensin-II-like immunoreactive neurons were detected by silver-gold intensification of the DAB reaction results while the enkephalin-like immunoreactive neurons were detected by simple ABC-DAB reaction. The synaptic relationships were reciprocal between the two neurons. Most of the synapses found between these two neurons were the presynaptic enkephalin-like immunoreactive axon terminals that made synapses on the angiotensin-II-like immunoreactive perikarya and dendrites. Both the axo-somatic and axo-dendritic synapses were symmetrical. However, although angiotensin-II-like immunoreactive axon terminals also made synapses on enkephalin-like perikarya and dendrites, the axo-somatic synapses were symmetrical, while the axo-dendritic synapses were asymmetrical. The present results confirm the presence of angiotensin-II-like immunoreactive neurons in the area postrema and suggest that these angiotensinergic neurons in the area postrema may play a role in the regulation of blood pressure via coordinated synaptic interactions with enkephalinergic neurons.
Collapse
Affiliation(s)
- J L Guan
- Department of Anatomy, Showa University School of Medicine, Tokyo 142-8555, Japan
| | | | | | | |
Collapse
|
21
|
Ferguson AV, Washburn DL, Latchford KJ. Hormonal and neurotransmitter roles for angiotensin in the regulation of central autonomic function. Exp Biol Med (Maywood) 2001; 226:85-96. [PMID: 11446443 DOI: 10.1177/153537020122600205] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this review we present the case for both hormonal and neurotransmitter actions of angiotensin II (ANG) in the control of neuronal excitability in a simple neural pathway involved in central autonomic regulation. We will present both single-cell and whole-animal data highlighting hormonal roles for ANG in controlling the excitability of subfornical organ (SFO) neurons. More controversially we will also present the case for a neurotransmitter role for ANG in SFO neurons in controlling the excitability of identified neurons in the paraventricular nucleus (PVN) of the hypothalamus. In this review we highlight the similarities between the actions of ANG on these two populations of neurons in an attempt to emphasize that whether we call such actions "hormonal" or "neurotransmitter" is largely semantic. In fact such definitions only refer to the method of delivery of the chemical messenger, in this case ANG, to its cellular site of action, in this case the AT1 receptor. We also described in this review some novel concepts that may underlie synthesis, metabolic processing, and co-transmitter actions of ANG in this pathway. We hope that such suggestions may lead ultimately to the development of broader guiding principles to enhance our understanding of the multiplicity of physiological uses for single chemical messengers.
Collapse
Affiliation(s)
- A V Ferguson
- Department of Physiology, Queen's University, Kingston, Ontario, Canada.
| | | | | |
Collapse
|
22
|
Guan JL, Wang QP, Shioda S. Observation of the ultrastructure and synaptic relationships of angiotensin II-like immunoreactive neurons in the rat area postrema. Synapse 2000; 38:231-7. [PMID: 11020225 DOI: 10.1002/1098-2396(20001201)38:3<231::aid-syn1>3.0.co;2-t] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The ultrastructure and synaptic relationships of the angiotensin II-containing neurons in the area postrema of the rat were studied by immunocytochemistry using the avidin-biotin-complex-DAB method, and also using silver-gold intensification following the DAB reaction. At the light microscopic level, the angiotensin II-like immunoreactive neurons were observed within the area postrema, especially in the upper region. At the electron microscopic level, the angiotensin II-like immunoreactive cell bodies were observed as having a round, unindented nucleus. The nuclei of these neurons were not immunostained. The angiotensin II-like immunoreactive axon terminals often contained a few dense core vesicles in addition to many small clear synaptic vesicles. Numerous axon terminals were found to make synapses on immunonegative dendrites; they were also found to make synapses on angiotensin II-like immunoreactive dendrites. Many angiotensin II-like immunoreactive dendrites received synapses from immunonegative axon terminals. Although angiotensin II-like immunoreactive cell bodies were sometimes postsynaptic to immunoreactive axon terminals, they did not receive synapses from immunonegative axon terminals. These results provide solid morphological evidence of AP endogenous angiotensin II and confirm that in spite of circulating angiotensin II, the local neurons in the AP may also play an important role in angiotensin II-induced cardiovascular regulation.
Collapse
Affiliation(s)
- J L Guan
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan
| | | | | |
Collapse
|
23
|
Notsu Y, Nabika T, Park HY, Masuda J, Kobayashi S. Evaluation of genetic risk factors for silent brain infarction. Stroke 1999; 30:1881-6. [PMID: 10471440 DOI: 10.1161/01.str.30.9.1881] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Silent brain infarction (SBI) is often found with white matter hyperintensity. A recent genetic study on elderly twins indicated that the susceptibility to white matter hyperintensity was largely determined by genetic factors, implying the existence of genetic susceptibility for SBI as well. We therefore studied 3 genetic polymorphisms in SBI, the deletion/insertion polymorphism of angiotensin-converting enzyme (ACE) gene, the apolipoprotein(a) [apo(a)] size polymorphism, and the T677C polymorphism of methylenetetrahydrofolate reductase (MTHFR) gene, by a case-control study. METHODS By MRI, 147 subjects with SBI and 214 without cerebral infarctions (control group) were selected from participants of a health examination of the brain. Seventy-four patients with symptomatic subcortical infarction (SSI) from the same area were also included in the study. In addition to the control group, 2 more reference populations were recruited. Typing of the apo(a) size polymorphism was done by Western blotting with the use of an anti-apo(a) antibody. Genotypes of ACE and MTHFR were determined by polymerase chain reaction amplification of the genomic DNA and subsequent restriction enzyme digestion. RESULTS The ACE polymorphism was not associated with either SBI or SSI. In contrast, the small apo(a) was associated with both SSI and SBI. The MTHFR polymorphism was associated only with SSI. The association of MTHFR and apo(a) was greater in the younger subjects. CONCLUSIONS Among the 3 genetic polymorphisms studied, only the apo(a) size polymorphism is a risk factor for SBI.
Collapse
Affiliation(s)
- Y Notsu
- Central Clinical Laboratory, Shimane Medical University, Izumo, Japan
| | | | | | | | | |
Collapse
|
24
|
Jöhren O, Imboden H, Häuser W, Maye I, Sanvitto GL, Saavedra JM. Localization of angiotensin-converting enzyme, angiotensin II, angiotensin II receptor subtypes, and vasopressin in the mouse hypothalamus. Brain Res 1997; 757:218-27. [PMID: 9200750 DOI: 10.1016/s0006-8993(97)00220-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The hypothalamic angiotensin II (Ang II) system plays an important role in pituitary hormone release. Little is known about this system in the mouse brain. We studied the distribution of angiotensin-converting-enzyme (ACE), Ang II, Ang II receptor subtypes, and vasopressin in the hypothalamus of adult male mice. Autoradiography of binding of the ACE inhibitor [125I]351A revealed low levels of ACE throughout the hypothalamus. Ang II- and vasopressin-immunoreactive neurons and fibers were detected in the paraventricular, accessory magnocellulary, and supraoptic nuclei, in the retrochiasmatic part of the supraoptic nucleus and in the median eminence. Autoradiography of Ang II receptors was performed using [125I]Sar1-Ang II binding. Ang II receptors were present in the paraventricular, suprachiasmatic, arcuate and dorsomedial nuclei, and in the median eminence. In all areas [125I]Sar1-Ang II binding was displaced by the AT1 receptor antagonist losartan, indicating the presence of AT1 receptors. In the paraventricular nucleus [125I]Sar1-Ang II binding was displaced by Ang II (Ki = 7.6 X 10(-9)) and losartan (Ki = 1.4 X 10(-7)) but also by the AT2 receptor ligand PD 123319 (Ki = 5.0 X 10(-7)). In addition, a low amount of AT2 receptor binding was detected in the paraventricular nucleus using [125I]CGP42112 as radioligand, and the binding was displaced by Ang II (Ki = 2.4 X 10(-9)), CGP42112 (Ki = 7.9 x 10(-10)), and PD123319 (Ki = 2.2 x 10(-7)). ACE, Ang II, and AT1 as well as AT2 receptor subtypes are present in the mouse hypothalamus. Our data are the basis for further studies on the mouse brain Ang II system.
Collapse
Affiliation(s)
- O Jöhren
- Laboratory of Clinical Science, National Institute of Mental Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Metabolism of Bradykinin by Peptidases in Health and Disease. THE KININ SYSTEM 1997. [PMCID: PMC7155640 DOI: 10.1016/b978-012249340-9/50009-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
This chapter provides an overview of the metabolism of bradykinin (BK) by peptidases in health and disease. The enzymatic breakdown of kinins affects the duration of their biological actions as the plasma half-life of intravenously injected BK is in the range of seconds. Kinins are cleaved in vitro and in vivo by enzymes that belong to families, such as zinc-metallopeptidases, astacin-like metallopeptidases, and catheptic enzymes. Vane noted the importance of the pulmonary circulation in the metabolism of vasoactive substances, such as BK as well as angiotensin 1 and 5- hydroxytryptamine. It is clear after decades of research that angiotensin 1-converting enzyme (ACE) on the vascular endothelial cell surface is the most important inactivator of blood-borne BK. BK may act primarily in an autocrine and paracrine fashion, establishing the importance of local regulation of its activity by enzymes on cell surfaces. Thus, the assortment of other enzymes that can inactivate BK is important in a variety of physiological and pathological situations. Most physiological systems have redundant pathways of metabolism so that the abolishment of one pathway is compensated for by the presence of others. This is demonstrated by the pharmacological inhibition of ACE in hypertension.
Collapse
|