1
|
Clarici A, Bulfon M, Radin Y, Panksepp J. Neuromodulation of safety and surprise in the early stages of infant development: affective homeostatic regulation in bodily and mental functions. Front Psychol 2024; 15:1395247. [PMID: 38903479 PMCID: PMC11187996 DOI: 10.3389/fpsyg.2024.1395247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024] Open
Abstract
Developing a sense of internal safety and security depends mainly on others: numerous neuromodulators play a significant role in the homeostatic process, regulating the importance of proximity to a caregiver and experiencing feelings that enable us to regulate our interdependence with our conspecifics since birth. This array of neurofunctional structures have been called the SEPARATION DISTRESS system (now more commonly known as the PANIC/ GRIEF system). This emotional system is mainly involved in the production of depressive symptoms. The disruption of this essential emotional balance leads to the onset of feelings of panic followed by depression. We will focus on the neuropeptides that play a crucial role in social approach behavior in mammals, which enhance prosocial behavior and facilitate the consolidation of social bonds. We propose that most prosocial behaviors are regulated through the specific neuromodulators acting on salient intersubjective stimuli, reflecting an increased sense of inner confidence (safety) in social relationships. This review considers the neurofunctional link between the feelings that may ultimately be at the base of a sense of inner safety and the central neuromodulatory systems. This link may shed light on the clinical implications for the development of early mother-infant bonding and the depressive clinical consequences when this bond is disrupted, such as in post-partum depression, depressive feelings connected to, addiction, neurofunctional disorders, and psychological trauma.
Collapse
Affiliation(s)
- Andrea Clarici
- Department of Medical, Surgical and Health Sciences, Cattinara Hospital, University of Trieste, Trieste, Italy
| | - Matteo Bulfon
- Department of Pediatrics, Institute for Maternal and Child Health, IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Yvonne Radin
- Department of Pediatrics, Institute for Maternal and Child Health, IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Jaak Panksepp
- College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| |
Collapse
|
2
|
Giri T, Jiang J, Xu Z, McCarthy R, Halabi CM, Tycksen E, Cahill AG, England SK, Palanisamy A. Labor induction with oxytocin in pregnant rats is not associated with oxidative stress in the fetal brain. Sci Rep 2022; 12:3143. [PMID: 35210555 PMCID: PMC8873427 DOI: 10.1038/s41598-022-07236-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/15/2022] [Indexed: 11/16/2022] Open
Abstract
Despite the widespread use of oxytocin for induction of labor, mechanistic insights into fetal/neonatal wellbeing are lacking because of the absence of an animal model that recapitulates modern obstetric practice. Here, we create and validate a hi-fidelity pregnant rat model that mirrors labor induction with oxytocin in laboring women. The model consists of an implantable preprogrammed microprocessor-controlled infusion pump that delivers a gradually escalating dose of intravenous oxytocin to induce birth at term gestation. We validated the model with molecular biological experiments on the uterine myometrium and telemetry-supported assessment of changes in intrauterine pressure. Finally, we applied this model to test the hypothesis that labor induction with oxytocin would be associated with oxidative stress in the newborn brain. Analysis of biomarkers of oxidative stress and changes in the expression of associated genes were no different between oxytocin-exposed and saline-treated pups, suggesting that oxytocin-induced labor was not associated with oxidative stress in the developing brain. Collectively, we provide a viable and realistic animal model for labor induction and augmentation with oxytocin that would enable new lines of investigation related to the impact of perinatal oxytocin exposure on the mother-infant dyad.
Collapse
Affiliation(s)
- Tusar Giri
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jia Jiang
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Zhiqiang Xu
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ronald McCarthy
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Carmen M Halabi
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Eric Tycksen
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Alison G Cahill
- Department of Women's Health, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Sarah K England
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Arvind Palanisamy
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
3
|
Horta M, Kaylor K, Feifel D, Ebner NC. Chronic oxytocin administration as a tool for investigation and treatment: A cross-disciplinary systematic review. Neurosci Biobehav Rev 2019; 108:1-23. [PMID: 31647964 DOI: 10.1016/j.neubiorev.2019.10.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 09/10/2019] [Accepted: 10/18/2019] [Indexed: 12/18/2022]
Abstract
Oxytocin (OT) subserves various physiological, behavioral, and cognitive processes. This paired with the ability to administer OT with minimal and inconsistent side effects has spurred research to explore its therapeutic potential. Findings from single-dose studies indicate that OT administration may be beneficial, at least under certain circumstances. The state of the field, however, is less clear regarding effects from chronic OT administration, which more closely resembles long-term treatment. To address this gap, this review synthesizes existing findings on the use of chronic OT administration in animal and human work. In addition to detailing the effects of chronic OT administration across different functional domains, this review highlights factors that have contributed to mixed findings. Based on this review, a basic framework of interrelated regulatory functions sensitive to chronic OT administration is offered. The paper also identifies future research directions across different contexts, populations, and outcomes, specifically calling for more systematic and standardized research on chronic OT administration in humans to supplement and expand what is currently known from preclinical work.
Collapse
Affiliation(s)
- Marilyn Horta
- Department of Psychology, University of Florida, Gainesville, FL, USA.
| | - Kathryn Kaylor
- Department of Psychology, University of Florida, Gainesville, FL, USA
| | - David Feifel
- Department of Psychiatry, University of California, San Diego, CA, USA
| | - Natalie C Ebner
- Department of Psychology, University of Florida, Gainesville, FL, USA; Institute on Aging, Department of Aging & Geriatric Research, University of Florida, Gainesville, FL, USA
| |
Collapse
|
4
|
Leffa DD, Daumann F, Damiani AP, Afonso AC, Santos MA, Pedro TH, Souza RP, Andrade VM. DNA damage after chronic oxytocin administration in rats: a safety yellow light? Metab Brain Dis 2017; 32:51-55. [PMID: 27488109 DOI: 10.1007/s11011-016-9885-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 07/28/2016] [Indexed: 10/21/2022]
Abstract
Adjuvant therapy is a common therapeutic strategy used for schizophrenia management. Oxytocin has shown promising results as antipsychotic adjuvant in patients with schizophrenia. Although short-term clinical studies have indicated tolerability and no major side-effect manifestation, long-term studies remain needed. In this study, we investigated whether oxytocin chronic administration in rats may lead to brain DNA damage by comet assay. Our results suggest that 21 and 56-day treatment with once daily intraperitoneal oxytocin (0.1, 1.0 and 10.0 mg/kg) may cause substantial DNA damage in hippocampus. We have not found differences on body weight gain. Our findings also point that further clinical and preclinical studies evaluating oxytocin safety after chronic exposure are necessary.
Collapse
Affiliation(s)
- Daniela D Leffa
- Laboratório de Biologia Celular e Molecular, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Avenida Universitaria, 1105 Bloco S, Criciuma, SC, 88806-100, Brazil.
| | - Francine Daumann
- Laboratório de Biologia Celular e Molecular, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Avenida Universitaria, 1105 Bloco S, Criciuma, SC, 88806-100, Brazil
| | - Adriani P Damiani
- Laboratório de Biologia Celular e Molecular, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Avenida Universitaria, 1105 Bloco S, Criciuma, SC, 88806-100, Brazil
| | - Arlindo C Afonso
- Grupo de Pesquisa em Bioestatística e Epidemiologia Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maria A Santos
- Grupo de Pesquisa em Bioestatística e Epidemiologia Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Thayara H Pedro
- Grupo de Pesquisa em Bioestatística e Epidemiologia Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Renan P Souza
- Grupo de Pesquisa em Bioestatística e Epidemiologia Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vanessa M Andrade
- Laboratório de Biologia Celular e Molecular, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Avenida Universitaria, 1105 Bloco S, Criciuma, SC, 88806-100, Brazil
| |
Collapse
|
5
|
Vaidyanathan R, Hammock EA. Oxytocin receptor dynamics in the brain across development and species. Dev Neurobiol 2016; 77:143-157. [DOI: 10.1002/dneu.22403] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/19/2016] [Accepted: 05/27/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Radhika Vaidyanathan
- Department of Psychology; Florida State University; Tallahassee FL
- Program in Neuroscience, Florida State University; Tallahassee FL
| | - Elizabeth A.D. Hammock
- Department of Psychology; Florida State University; Tallahassee FL
- Program in Neuroscience, Florida State University; Tallahassee FL
| |
Collapse
|
6
|
Hammock EAD. Developmental perspectives on oxytocin and vasopressin. Neuropsychopharmacology 2015; 40:24-42. [PMID: 24863032 PMCID: PMC4262889 DOI: 10.1038/npp.2014.120] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 05/21/2014] [Accepted: 05/22/2014] [Indexed: 11/08/2022]
Abstract
The related neuropeptides oxytocin and vasopressin are involved in species-typical behavior, including social recognition behavior, maternal behavior, social bonding, communication, and aggression. A wealth of evidence from animal models demonstrates significant modulation of adult social behavior by both of these neuropeptides and their receptors. Over the last decade, there has been a flood of studies in humans also implicating a role for these neuropeptides in human social behavior. Despite popular assumptions that oxytocin is a molecule of social bonding in the infant brain, less mechanistic research emphasis has been placed on the potential role of these neuropeptides in the developmental emergence of the neural substrates of behavior. This review summarizes what is known and assumed about the developmental influence of these neuropeptides and outlines the important unanswered questions and testable hypotheses. There is tremendous translational need to understand the functions of these neuropeptides in mammalian experience-dependent development of the social brain. The activity of oxytocin and vasopressin during development should inform our understanding of individual, sex, and species differences in social behavior later in life.
Collapse
Affiliation(s)
- Elizabeth A D Hammock
- Vanderbilt Kennedy Center and Department of Pediatrics, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
7
|
Vargas-Martínez F, Uvnäs-Moberg K, Petersson M, Olausson HA, Jiménez-Estrada I. Neuropeptides as neuroprotective agents: Oxytocin a forefront developmental player in the mammalian brain. Prog Neurobiol 2014; 123:37-78. [DOI: 10.1016/j.pneurobio.2014.10.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/06/2014] [Indexed: 02/07/2023]
|
8
|
Melo AI. Role of sensory, social, and hormonal signals from the mother on the development of offspring. ADVANCES IN NEUROBIOLOGY 2014; 10:219-48. [PMID: 25287543 DOI: 10.1007/978-1-4939-1372-5_11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
For mammals, sensory, social, and hormonal experience early in life is essential for the continuity of the infant's development. These experiences come from the mother through maternal care, and have enduring effects on the physiology and behavior of the adult organism. Disturbing the mother-offspring interaction by maternal deprivation (neglect) or exposure to adverse events as chronic stress, maltreatment, or sexual abuse has negative effects on the mental, psychological, physiological, and behavioral health. Indeed, these kinds of negative experiences can be the source of some neuropsychiatric diseases as depression, anxiety, impulsive aggression, and antisocial behavior. The purpose of this chapter is to review the most relevant evidence that supports the participation of cues from the mother and/or littermates during the postnatal preweaning period for the development of nervous system of the offspring. These findings come from the most frequently utilized experimental paradigms used in animal models, such as natural variations in maternal behavior, handling, partial maternal deprivation, and total maternal deprivation and artificial rearing. Through the use of these experimental procedures, it is possible to positively (handling paradigm), or negatively (maternal deprivation paradigms), affect the offspring's development. Finally, this chapter reviews the importance of the hormones that pups ingest through the maternal milk during early lactation on the development of several physiological systems, including the immune, endocrine systems, as well as on the adult behavior of the offspring.
Collapse
Affiliation(s)
- Angel I Melo
- Centro de Investigación en Reproducción Animal, CINVESTAV-Laboratorio Tlaxcala, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico,
| |
Collapse
|
9
|
Doerge DR, Twaddle NC, Churchwell MI, Newbold RR, Delclos KB. Lactational transfer of the soy isoflavone, genistein, in Sprague-Dawley rats consuming dietary genistein. Reprod Toxicol 2005; 21:307-12. [PMID: 16257506 DOI: 10.1016/j.reprotox.2005.09.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Revised: 08/15/2005] [Accepted: 09/13/2005] [Indexed: 10/25/2022]
Abstract
Exposures of Sprague-Dawley rats to the soy isoflavone, genistein, throughout the entire lifespan have produced a number of effects on reproductive tissues, immune function, neuroendocrine function and behavior. Our previous studies investigated pharmacokinetics and disposition of genistein during adult and fetal periods and this study describes the internal exposures of post-natal day 10 (PND10) rat pups due to lactational transfer of genistein. Conjugated and aglycone forms of genistein were measured by using LC/MS/MS in serum (PND10) and milk (PND7) from lactating dams consuming a genistein-fortified soy-free diet, and in serum from their pups at a time when milk was the only food source (PND10). This study shows that limited lactational transfer of genistein to rat pups occurs and that internal exposures to the active aglycone form of genistein are generally lower than those measured previously in the fetal period. These results suggest that developmental effects attributable to genistein exposure in our chronic and multi-generation studies are more likely to result from fetal exposures because of the higher levels of the active estrogenic aglycone form of genistein in utero, although the possibility of neonatal responses cannot be excluded.
Collapse
Affiliation(s)
- Daniel R Doerge
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA.
| | | | | | | | | |
Collapse
|
10
|
Jankowski M, Danalache B, Wang D, Bhat P, Hajjar F, Marcinkiewicz M, Paquin J, McCann SM, Gutkowska J. Oxytocin in cardiac ontogeny. Proc Natl Acad Sci U S A 2004; 101:13074-9. [PMID: 15316117 PMCID: PMC516519 DOI: 10.1073/pnas.0405324101] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Previous studies demonstrated the presence of oxytocin (OT) and oxytocin receptors (OTRs) in the heart. The present work provides results supporting a potential role of OT in cardiomyogenesis. Here, we show a maximal OT and OTR protein level in the developing rat heart at day 21 of gestation and postnatal days 1-4, when cardiac myocytes are at a stage of intense hyperplasia. Between postnatal days 1 and 66, OT decreased linearly in all heart chambers (4.1- to 6.6-fold). Correspondingly, immunocytochemistry demonstrated that OTRs, which were eminent in postnatal cardiomyocytes, declined with age to low levels in adults. Interestingly, in coronary vasculature, OTRs developed in endothelial cells at postnatal days 12 and 22 and achieved a plateau in adult rats. These findings suggest that OT can be involved in developmental formation of the coronary vessels. In vivo, the OT/OTR system in the fetal heart was sensitive to the actions of retinoic acid (RA), recognized as a major cardiac morphogen. RA treatment produced a significant increase (2- to 3-fold) both in the OT concentration and in the OT mRNA levels. Ex vivo, an OT antagonist inhibited RA-mediated cardiomyocyte differentiation of P19 embryonic stem cells. The decline of cardiac OT expression from infancy to adulthood of the rat and changes in cell types expressing OTR indicate a dynamic regulation of the OT system in the heart rather than constitutive expression. The results support the hypothesis that RA induces cardiomyogenesis by activation of the cardiac OT system.
Collapse
Affiliation(s)
- Marek Jankowski
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal, Hôtel-Dieu, 3840 Rue Saint-Urbain, Montréal, QC, Canada H2W 1T8
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
This paper examines the developmental effects of the mammalian neuropeptide, oxytocin (OT). In adults, OT is the most abundant neuropeptide in the hypothalamus and serves integrative functions, coordinating behavioral and physiological processes. For example, OT has been implicated in parturition, lactation, maternal behavior and pair bond formation. In addition, OT is capable of moderating behavioral responses to various stressors as well as the reactivity of the hypothalamic-pituitary-adrenal (HPA) axis. Neonates may be exposed to hormones of maternal origin, possibly including peptides administered to the mother in the perinatal period to hasten or delay birth and in milk; however, whether peptide hormones from the mother influence the developing infant remains to be determined. In rodents, endogenous OT is first synthesized during the early postnatal period, although its functions at this time are not well known. Experiments in neonatal prairie voles have documented the capacity of OT and OT receptor antagonists to have immediate and lifelong consequences for social behaviors, including adult pair bonding and parental behaviors, as well as the reactivity of the HPA axis; most of these effects are sexually dimorphic. Possible mechanisms for such effects, including long-lasting changes in OT and vasopressin, are summarized.
Collapse
Affiliation(s)
- C Sue Carter
- Department of Psychiatry, Brain-Body Center, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
12
|
Cheng G, Marotte LR, Mai JK, Ashwell KWS. Early development of the hypothalamus of a wallaby (Macropus eugenii). J Comp Neurol 2002; 453:199-215. [PMID: 12373784 DOI: 10.1002/cne.10395] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We have studied the development of the hypothalamus of an Australian marsupial, the tammar wallaby (Macropus eugenii), to provide an initial anatomic framework for future research on the developing hypothalamus of diprotodontid metatheria. Cytoarchitectural (hematoxylin and eosin), immunohistochemical (CD 15 and growth associated protein, GAP-43), tritiated thymidine autoradiography, and carbocyanine dye tracing techniques were applied. Until 12 days after birth (P12), the developing hypothalamus consisted of mainly a ventricular germinal zone with a thin marginal layer, but by P25, most hypothalamic nuclei were well differentiated, indicating that the bulk of hypothalamic cytoarchitectural development occurs between P12 and P25. Strong CD 15 immunoreactivity was found in radial glial fibers in the rostral hypothalamus during early developmental ages, separating individual hypothalamic compartments. Immunoreactivity for GAP-43 was used to reveal developing fiber bundles. The medial forebrain bundle was apparent by P0, and the fornix appeared at P12. Tritiated thymidine autoradiography revealed lateral-to-medial and dorsal-to-ventral neurogenetic gradients similar to those seen in rodents. Dye tracing showed that projections to the posterior pituitary arose from the supraoptic nucleus at P5 and from the paraventricular nucleus at P10. Projections to the medulla were first found from the lateral hypothalamic area at P0 and paraventricular nucleus at P10. In conclusion, the pattern of development of the wallaby hypothalamus is broadly similar to that found in eutheria, with comparable neurogenetic compartments to those identified in rodents. Because most hypothalamic maturation takes place after birth, wallabies provide a useful model for experimentally manipulating the developing mammalian hypothalamus.
Collapse
Affiliation(s)
- Gang Cheng
- Department of Anatomy, School of Medical Sciences, The University of New South Wales, 2052 New South Wales, Australia.
| | | | | | | |
Collapse
|
13
|
Sohlström A, Carlsson-Skwirut C, Bang P, Brismar K, Uvnäs-Moberg K. Effects of oxytocin treatment early in pregnancy on fetal growth in ad libitum-fed and food-restricted rats. Pediatr Res 1999; 46:339-44. [PMID: 10473052 DOI: 10.1203/00006450-199909000-00016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The effects of oxytocin on fetal and placental growth and on maternal weight gain and accumulation of body fat were studied in ad libitum-fed and food-restricted (receiving 70% of the food intake of the ad libitum-fed group) pregnant rats. Further, a possible role of the IGF axis in mediating oxytocin-induced changes was assessed. Pregnant rats were injected subcutaneously once a day during gestational d 1-5 with saline or oxytocin (1 mg/kg). Ad libitum-fed oxytocin-treated pregnant rats had higher circulating levels of IGF-I, larger placentas, fetuses, and newborn pups and contained less body fat at the end of pregnancy. In food-restricted dams, oxytocin-treatment had no effect on fetal and placental growth. Additionally, food restriction attenuated the normal increase in IGF binding protein-3 protease proteolysis during pregnancy. The results show that oxytocin may affect maternal adaptations to pregnancy and stimulate fetal growth. We suggest that this effect may be mediated by increased IGF-I in ad libitum-fed animals, whereas food restriction may block this effect by resulting in low levels of circulating IGF-I and by attenuating the pregnancy-associated increase in IGF binding protein-3 protease activity and, thereby, further compromise IGF bioavailability.
Collapse
Affiliation(s)
- A Sohlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
14
|
Abstract
Autism is a poorly understood developmental disorder characterized by social impairment, communication deficits, and compulsive behavior. The authors review evidence from animal studies demonstrating that the nonapeptides, oxytocin and vasopressin, have unique effects on the normal expression of species-typical social behavior, communication, and rituals. Based on this evidence, they hypothesize that an abnormality in oxytocin or vasopressin neurotransmission may account for several features of autism. As autism appears to be a genetic disorder, mutations in the various peptide, peptide receptor, or lineage-specific developmental genes could lead to altered oxytocin or vasopressin neurotransmission. Many of these genes have been cloned and sequenced, and several polymorphisms have been identified. Recent gene targeting studies that alter expression of either the peptides or their receptors in the rodent brain partially support the autism hypothesis. While previous experience suggests caution in hypothesizing a cause or suggesting a treatment for autism, the available preclinical evidence with oxytocin and vasopressin recommends the need for clinical studies using gene scanning, pharmacological and neurobiological approaches.
Collapse
Affiliation(s)
- T R Insel
- Yerkes Regional Primate Research Center, Emory University, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
15
|
Abstract
The purpose of this paper is to review existing behavioral and neuroendocrine perspectives on social attachment and love. Both love and social attachments function to facilitate reproduction, provide a sense of safety, and reduce anxiety or stress. Because social attachment is an essential component of love, understanding attachment formation is an important step toward identifying the neurobiological substrates of love. Studies of pair bonding in monogamous rodents, such as prairie voles, and maternal attachment in precocial ungulates offer the most accessible animal models for the study of mechanisms underlying selective social attachments and the propensity to develop social bonds. Parental behavior and sexual behavior, even in the absence of selective social behaviors, are associated with the concept of love; the analysis of reproductive behaviors, which is far more extensive than our understanding of social attachment, also suggests neuroendocrine substrates for love. A review of these literatures reveals a recurrent association between high levels of activity in the hypothalamic pituitary adrenal (HPA) axis and the subsequent expression of social behaviors and attachments. Positive social behaviors, including social bonds, may reduce HPA axis activity, while in some cases negative social interactions can have the opposite effect. Central neuropeptides, and especially oxytocin and vasopressin have been implicated both in social bonding and in the central control of the HPA axis. In prairie voles, which show clear evidence of pair bonds, oxytocin is capable of increasing positive social behaviors and both oxytocin and social interactions reduce activity in the HPA axis. Social interactions and attachment involve endocrine systems capable of decreasing HPA reactivity and modulating the autonomic nervous system, perhaps accounting for health benefits that are attributed to loving relationships.
Collapse
Affiliation(s)
- C S Carter
- Department of Biology, University of Maryland, College Park 20742, USA.
| |
Collapse
|