1
|
Busch L, Eggert S, Endres K, Bufe B. The Hidden Role of Non-Canonical Amyloid β Isoforms in Alzheimer's Disease. Cells 2022; 11:3421. [PMID: 36359817 PMCID: PMC9654995 DOI: 10.3390/cells11213421] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 09/08/2024] Open
Abstract
Recent advances have placed the pro-inflammatory activity of amyloid β (Aβ) on microglia cells as the focus of research on Alzheimer's Disease (AD). Researchers are confronted with an astonishing spectrum of over 100 different Aβ variants with variable length and chemical modifications. With the exception of Aβ1-42 and Aβ1-40, the biological significance of most peptides for AD is as yet insufficiently understood. We therefore aim to provide a comprehensive overview of the contributions of these neglected Aβ variants to microglia activation. First, the impact of Aβ receptors, signaling cascades, scavenger mechanisms, and genetic variations on the physiological responses towards various Aβ species is described. Furthermore, we discuss the importance of different types of amyloid precursor protein processing for the generation of these Aβ variants in microglia, astrocytes, oligodendrocytes, and neurons, and highlight how alterations in secondary structures and oligomerization affect Aβ neurotoxicity. In sum, the data indicate that gene polymorphisms in Aβ-driven signaling pathways in combination with the production and activity of different Aβ variants might be crucial factors for the initiation and progression of different forms of AD. A deeper assessment of their interplay with glial cells may pave the way towards novel therapeutic strategies for individualized medicine.
Collapse
Affiliation(s)
- Lukas Busch
- Department of Informatics and Microsystems Technology, University of Applied Sciences Kaiserslautern, D-66482 Zweibruecken, Germany
| | - Simone Eggert
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, D-37075 Goettingen, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Centre of the Johannes Gutenberg University, D-55131 Mainz, Germany
| | - Bernd Bufe
- Department of Informatics and Microsystems Technology, University of Applied Sciences Kaiserslautern, D-66482 Zweibruecken, Germany
| |
Collapse
|
2
|
Yong SJ, Yong MH, Teoh SL, Soga T, Parhar I, Chew J, Lim WL. The Hippocampal Vulnerability to Herpes Simplex Virus Type I Infection: Relevance to Alzheimer's Disease and Memory Impairment. Front Cell Neurosci 2021; 15:695738. [PMID: 34483839 PMCID: PMC8414573 DOI: 10.3389/fncel.2021.695738] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/20/2021] [Indexed: 12/24/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) as a possible infectious etiology in Alzheimer’s disease (AD) has been proposed since the 1980s. The accumulating research thus far continues to support the association and a possible causal role of HSV-1 in the development of AD. HSV-1 has been shown to induce neuropathological and behavioral changes of AD, such as amyloid-beta accumulation, tau hyperphosphorylation, as well as memory and learning impairments in experimental settings. However, a neuroanatomical standpoint of HSV-1 tropism in the brain has not been emphasized in detail. In this review, we propose that the hippocampal vulnerability to HSV-1 infection plays a part in the development of AD and amnestic mild cognitive impairment (aMCI). Henceforth, this review draws on human studies to bridge HSV-1 to hippocampal-related brain disorders, namely AD and aMCI/MCI. Next, experimental models and clinical observations supporting the neurotropism or predilection of HSV-1 to infect the hippocampus are examined. Following this, factors and mechanisms predisposing the hippocampus to HSV-1 infection are discussed. In brief, the hippocampus has high levels of viral cellular receptors, neural stem or progenitor cells (NSCs/NPCs), glucocorticoid receptors (GRs) and amyloid precursor protein (APP) that support HSV-1 infectivity, as well as inadequate antiviral immunity against HSV-1. Currently, the established diseases HSV-1 causes are mucocutaneous lesions and encephalitis; however, this review revises that HSV-1 may also induce and/or contribute to hippocampal-related brain disorders, especially AD and aMCI/MCI.
Collapse
Affiliation(s)
- Shin Jie Yong
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Petaling Jaya, Malaysia
| | - Min Hooi Yong
- Department of Psychology, School of Medical and Life Sciences, Sunway University, Petaling Jaya, Malaysia.,Aging Health and Well-being Research Centre, School of Medical and Life Sciences, Sunway University, Petaling Jaya, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Tomoko Soga
- Jeffrey Cheah School of Medicine and Health Sciences, Brain Research Institute Monash Sunway, Monash University Malaysia, Subang Jaya, Malaysia
| | - Ishwar Parhar
- Jeffrey Cheah School of Medicine and Health Sciences, Brain Research Institute Monash Sunway, Monash University Malaysia, Subang Jaya, Malaysia
| | - Jactty Chew
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Petaling Jaya, Malaysia
| | - Wei Ling Lim
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Petaling Jaya, Malaysia.,Aging Health and Well-being Research Centre, School of Medical and Life Sciences, Sunway University, Petaling Jaya, Malaysia
| |
Collapse
|
3
|
Liang Y, Raven F, Ward JF, Zhen S, Zhang S, Sun H, Miller SJ, Choi SH, Tanzi RE, Zhang C. Upregulation of Alzheimer's Disease Amyloid-β Protein Precursor in Astrocytes Both in vitro and in vivo. J Alzheimers Dis 2021; 76:1071-1082. [PMID: 32597805 DOI: 10.3233/jad-200128] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The amyloid cascade hypothesis of Alzheimer's disease (AD) posits that amyloid-β (Aβ) protein accumulation underlies the pathogenesis of the disease by leading to the formation of amyloid plaques, a pathologic hallmark of AD. Aβ is a proteolytic product of amyloid-β protein precursor (AβPP; APP), which is expressed in both neurons and astrocytes. Although considerable evidence shows that astrocytes may play critical roles in the pathogenesis of AD, the longitudinal changes of amyloid plaques in relationship to AβPP expression in astrocytes and cellular consequences are largely unknown. OBJECTIVE Here, we aimed to investigate astrocyte-related pathological changes of Aβ and AβPP using immunohistochemistry and biochemical studies in both animal and cell models. METHODS/RESULTS We utilized 5XFAD transgenic mice and found age-dependent upregulation of AβPP in astrocytes demonstrated with astrocytic reactive properties, which followed appearance of amyloid plaques in the brain. We also observed that AβPP proteins presented well-defined punctate immuno reactivity in young animals, whereas AβPP staining showed disrupted structures surrounding amyloid plaques in older mice. Moreover, we utilized astrocyte cell models and showed that pretreatment of Aβ42 resulted in downstream astrocyte autonomous changes, including up regulation in AβPP and BACE1 levels, as well as prolonged amyloidogenesis that could be reduced by pharmacological inhibition of BACE1. CONCLUSION Collectively, our results show that age-dependent AβPP up regulation in astrocytes is a key feature in AD, which will not only provide novel insights for understanding AD progression, but also may offer new therapeutic strategies for treating AD.
Collapse
Affiliation(s)
- Yingxia Liang
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.,Department of Anesthesiology, Weifang Medical University, Weifang, Shandong, China
| | - Frank Raven
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Joseph F Ward
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Sherri Zhen
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Siyi Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Haoqi Sun
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Sean J Miller
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Se Hoon Choi
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Can Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
4
|
Arnés M, Casas-Tintó S, Malmendal A, Ferrús A. Amyloid β42 peptide is toxic to non-neural cells in Drosophila yielding a characteristic metabolite profile and the effect can be suppressed by PI3K. Biol Open 2017; 6:1664-1671. [PMID: 29141953 PMCID: PMC5703620 DOI: 10.1242/bio.029991] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The human Aβ42 peptide is associated with Alzheimer's disease through its deleterious effects in neurons. Expressing the human peptide in adult Drosophila in a tissue- and time-controlled manner, we show that Aβ42 is also toxic in non-neural cells, neurosecretory and epithelial cell types in particular. This form of toxicity includes the aberrant signaling by Wingless morphogen leading to the eventual activation of Caspase 3. Preventing Caspase 3 activation by means of p53 keeps epithelial cells from elimination but maintains the Aβ42 toxicity yielding more severe deleterious effects to the organism. Metabolic profiling by nuclear magnetic resonance (NMR) of adult flies at selected ages post Aβ42 expression onset reveals characteristic changes in metabolites as early markers of the pathological process. All morphological and most metabolic features of Aβ42 toxicity can be suppressed by the joint overexpression of PI3K. Summary: The Alzheimer's disease-related Aβ42 peptide is toxic for non-neural cells. This toxicity can be detected by specific metabolite changes and suppressed by the overexpression of the enzyme PI3K.
Collapse
Affiliation(s)
- Mercedes Arnés
- Dept. of Molecular, Cellular and Developmental Neurobiology, Instituto Cajal, Avda. Doctor Arce, 37, 28002 Madrid, Spain
| | - Sergio Casas-Tintó
- Dept. of Molecular, Cellular and Developmental Neurobiology, Instituto Cajal, Avda. Doctor Arce, 37, 28002 Madrid, Spain
| | - Anders Malmendal
- Biochemistry and Structural Biology, Center for Molecular Protein Science, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Alberto Ferrús
- Dept. of Molecular, Cellular and Developmental Neurobiology, Instituto Cajal, Avda. Doctor Arce, 37, 28002 Madrid, Spain
| |
Collapse
|
5
|
Li JM, Huang LL, Liu F, Tang BS, Yan XX. Can brain impermeable BACE1 inhibitors serve as anti-CAA medicine? BMC Neurol 2017; 17:163. [PMID: 28841840 PMCID: PMC5574137 DOI: 10.1186/s12883-017-0942-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/14/2017] [Indexed: 12/21/2022] Open
Abstract
Background Cerebral amyloid angiopathy (CAA) is characterized by the deposition of ß-amyloid peptides (Aß) in and surrounding the wall of microvasculature in the central nervous system, together with parenchymal amyloid plaques collectively referred to as cerebral amyloidosis, which occurs in the brain commonly among the elderly and more frequently in patients with Alzheimer’s disease (AD). CAA is associated with vascular injury and may cause devastating neurological outcomes. No therapeutic approach is available for this lesion to date. Main body ß-Secretase 1 (BACE1) is the enzyme initiating Aß production. Brain permeable BACE1 inhibitors targeting primarily at the parenchymal plaque pathology are currently evaluated in clinical trials. This article presents findings in support of a role of BACE1 elevation in the development of CAA, in addition to plaque pathogenesis. The rationale, feasibility, benefit and strategic issues for developing BACE1 inhibitors against CAA are discussed. Brain impermeable compounds are considered preferable as they might exhibit sufficient anti-CAA efficacy without causing significant neuronal/synaptic side effects. Conclusion Early pharmacological intervention to the pathogenesis of CAA is expected to provide significant protection for cerebral vascular health and hence brain health. Brain impermeable BACE1 inhibitors should be optimized and tested as potential anti-CAA therapeutics.
Collapse
Affiliation(s)
- Jian-Ming Li
- Department of Neurology & Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.,Neuroscience Research Center, Changsha Medical University, Changsha, Hunan, 410219, China
| | - Li-Ling Huang
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Science, Changsha, Hunan, 410013, China
| | - Fei Liu
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Bei-Sha Tang
- Department of Neurology & Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xiao-Xin Yan
- Department of Neurology & Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China. .,Department of Anatomy and Neurobiology, Central South University School of Basic Medical Science, Changsha, Hunan, 410013, China.
| |
Collapse
|
6
|
Wang S, Bolós M, Clark R, Cullen CL, Southam KA, Foa L, Dickson TC, Young KM. Amyloid β precursor protein regulates neuron survival and maturation in the adult mouse brain. Mol Cell Neurosci 2016; 77:21-33. [DOI: 10.1016/j.mcn.2016.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 08/12/2016] [Accepted: 09/19/2016] [Indexed: 01/08/2023] Open
|
7
|
Garcia-Ratés S, Morrill P, Tu H, Pottiez G, Badin AS, Tormo-Garcia C, Heffner C, Coen CW, Greenfield SA. (I) Pharmacological profiling of a novel modulator of the α7 nicotinic receptor: Blockade of a toxic acetylcholinesterase-derived peptide increased in Alzheimer brains. Neuropharmacology 2016; 105:487-499. [PMID: 26867503 DOI: 10.1016/j.neuropharm.2016.02.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 02/01/2016] [Accepted: 02/05/2016] [Indexed: 01/08/2023]
Abstract
The primary cause of Alzheimer's disease is unlikely to be the much studied markers amyloid beta or tau. Their widespread distribution throughout the brain does not account for the specific identity and deep subcortical location of the primarily vulnerable neurons. Moreover an unusual and intriguing feature of these neurons is that, despite their diverse transmitters, they all contain acetylcholinesterase. Here we show for the first time that (1) a peptide derived from acetylcholinesterase, with independent trophic functions that turn toxic in maturity, is significantly raised in the Alzheimer midbrain and cerebrospinal fluid; (2) a synthetic version of this peptide enhances calcium influx and eventual production of amyloid beta and tau phosphorylation via an allosteric site on the α7 nicotinic receptor; (3) a synthetic cyclic version of this peptide is neuroprotective against the toxicity not only of its linear counterpart but also of amyloid beta, thereby opening up the prospect of a novel therapeutic approach.
Collapse
Affiliation(s)
- Sara Garcia-Ratés
- Neuro-Bio Ltd, Building F5, Culham Science Centre, Oxfordshire, OX14 3DB, United Kingdom.
| | - Paul Morrill
- Neuro-Bio Ltd, Building F5, Culham Science Centre, Oxfordshire, OX14 3DB, United Kingdom
| | - Henry Tu
- Neuro-Bio Ltd, Building F5, Culham Science Centre, Oxfordshire, OX14 3DB, United Kingdom
| | - Gwenael Pottiez
- Neuro-Bio Ltd, Building F5, Culham Science Centre, Oxfordshire, OX14 3DB, United Kingdom
| | - Antoine-Scott Badin
- Neuro-Bio Ltd, Building F5, Culham Science Centre, Oxfordshire, OX14 3DB, United Kingdom
| | - Cristina Tormo-Garcia
- Neuro-Bio Ltd, Building F5, Culham Science Centre, Oxfordshire, OX14 3DB, United Kingdom
| | - Catherine Heffner
- Neuro-Bio Ltd, Building F5, Culham Science Centre, Oxfordshire, OX14 3DB, United Kingdom
| | - Clive W Coen
- Neuro-Bio Ltd, Building F5, Culham Science Centre, Oxfordshire, OX14 3DB, United Kingdom
| | - Susan A Greenfield
- Neuro-Bio Ltd, Building F5, Culham Science Centre, Oxfordshire, OX14 3DB, United Kingdom
| |
Collapse
|
8
|
Bastakis GG, Savvaki M, Stamatakis A, Vidaki M, Karagogeos D. Tag1 deficiency results in olfactory dysfunction through impaired migration of mitral cells. Development 2015; 142:4318-28. [PMID: 26525675 DOI: 10.1242/dev.123943] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 10/22/2015] [Indexed: 01/01/2023]
Abstract
The olfactory system provides mammals with the abilities to investigate, communicate and interact with their environment. These functions are achieved through a finely organized circuit starting from the nasal cavity, passing through the olfactory bulb and ending in various cortical areas. We show that the absence of transient axonal glycoprotein-1 (Tag1)/contactin-2 (Cntn2) in mice results in a significant and selective defect in the number of the main projection neurons in the olfactory bulb, namely the mitral cells. A subpopulation of these projection neurons is reduced in Tag1-deficient mice as a result of impaired migration. We demonstrate that the detected alterations in the number of mitral cells are well correlated with diminished odor discrimination ability and social long-term memory formation. Reduced neuronal activation in the olfactory bulb and the corresponding olfactory cortex suggest that Tag1 is crucial for the olfactory circuit formation in mice. Our results underpin the significance of a numerical defect in the mitral cell layer in the processing and integration of odorant information and subsequently in animal behavior.
Collapse
Affiliation(s)
- George G Bastakis
- Department of Basic Science, Faculty of Medicine, University of Crete and Institute of Molecular Biology and Biotechnology-FoRTH, Vassilika Vouton, Heraklion, Crete 71110, Greece
| | - Maria Savvaki
- Department of Basic Science, Faculty of Medicine, University of Crete and Institute of Molecular Biology and Biotechnology-FoRTH, Vassilika Vouton, Heraklion, Crete 71110, Greece
| | - Antonis Stamatakis
- Laboratory of Biology, Faculty of Nursing, School of Health Sciences, University of Athens, Papadiamantopoulou 123, Athens GR11527, Greece
| | - Marina Vidaki
- Department of Basic Science, Faculty of Medicine, University of Crete and Institute of Molecular Biology and Biotechnology-FoRTH, Vassilika Vouton, Heraklion, Crete 71110, Greece
| | - Domna Karagogeos
- Department of Basic Science, Faculty of Medicine, University of Crete and Institute of Molecular Biology and Biotechnology-FoRTH, Vassilika Vouton, Heraklion, Crete 71110, Greece
| |
Collapse
|
9
|
Small GW, Greenfield S. Current and Future Treatments for Alzheimer Disease. Am J Geriatr Psychiatry 2015; 23:1101-5. [PMID: 26614911 DOI: 10.1016/j.jagp.2015.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 08/29/2015] [Accepted: 08/31/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Gary W Small
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior (GWS), UCLA Longevity Center, David Geffen School of Medicine, University of California, Los Angeles, CA.
| | - Susan Greenfield
- Department of Pharmacology (SG), University of Oxford, Oxford, UK
| |
Collapse
|
10
|
Sagy-Bross C, Kasianov K, Solomonov Y, Braiman A, Friedman A, Hadad N, Levy R. The role of cytosolic phospholipase A2 α in amyloid precursor protein induction by amyloid beta1-42 : implication for neurodegeneration. J Neurochem 2015; 132:559-71. [PMID: 25533654 DOI: 10.1111/jnc.13012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 01/15/2023]
Abstract
Amyloid-β peptides generated by proteolysis of the β-amyloid precursor protein (APP) play an important role in the pathogenesis of Alzheimer's disease. The present study aimed to determine whether cytosolic phospholipase A2 α (cPLA2 α) plays a role in elevated APP protein expression induced by aggregated amyloid-β1-42 (Aβ) in cortical neurons and to elucidate its specific role in signal events leading to APP induction. Elevated cPLA2 α and its activity determined by phosphorylation on serine 505 as well as elevated APP protein expression, were detected in primary rat cortical neuronal cultures exposed to Aβ for 24 h and in cortical neuron of human amyloid-β1-42 brain infused mice. Prevention of cPLA2 α up-regulation and its activity by oligonucleotide antisense against cPLA2 α (AS) prevented the elevation of APP protein in cortical neuronal cultures and in mouse neuronal cortex. To determine the role of cPLA2 α in the signals leading to APP induction, increased cPLA2 α expression and activity induced by Aβ was prevented by means of AS in neuronal cortical cultures. Under these conditions, the elevated cyclooxygenase-2 and the production of prostaglandin E2 (PGE2 ) were prevented. Addition of PGE2 or cyclic AMP analogue (dbcAMP) to neuronal cultures significantly increased the expression of APP protein, while the presence protein kinase A inhibitor (H-89) attenuated the elevation of APP induced by Aβ. Inhibition of elevated cPLA2 α by AS prevented the activation of cAMP response element binding protein (CREB) as detected by its phosphorylated form, its translocation to the nucleus and its DNA binding induced by Aβ which coincided with cPLA2 α dependent activation of CREB in the cortex of Aβ brain infused mice. Our results show that accumulation of Aβ induced elevation of APP protein expression mediated by cPLA2 α, PGE2 release, and CREB activation via protein kinase A pathway.
Collapse
Affiliation(s)
- Chen Sagy-Bross
- Immunology and Infectious Diseases Laboratory, Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev and Soroka University Medical Center, Beer-Sheva, Israel
| | - Ksenia Kasianov
- Immunology and Infectious Diseases Laboratory, Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev and Soroka University Medical Center, Beer-Sheva, Israel
| | - Yulia Solomonov
- Immunology and Infectious Diseases Laboratory, Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev and Soroka University Medical Center, Beer-Sheva, Israel
| | - Alex Braiman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alon Friedman
- Department of Physiology and cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Nurit Hadad
- Immunology and Infectious Diseases Laboratory, Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev and Soroka University Medical Center, Beer-Sheva, Israel
| | - Rachel Levy
- Immunology and Infectious Diseases Laboratory, Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev and Soroka University Medical Center, Beer-Sheva, Israel
| |
Collapse
|
11
|
Guo Q, Zheng H, Justice NJ. Central CRF system perturbation in an Alzheimer's disease knockin mouse model. Neurobiol Aging 2012; 33:2678-91. [PMID: 22336193 DOI: 10.1016/j.neurobiolaging.2012.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 12/23/2011] [Accepted: 01/07/2012] [Indexed: 10/14/2022]
Abstract
Alzheimer's disease (AD) is often accompanied by changes in mood as well as increases in circulating cortisol levels, suggesting that regulation of the stress responsive hypothalamic-pituitary-adrenal (HPA) axis is disturbed. Here, we show that amyloid precursor protein (APP) is endogenously expressed in important limbic, hypothalamic, and midbrain nuclei that regulate hypothalamic-pituitary-adrenal axis activity. Furthermore, in a knockin mouse model of AD that expresses familial AD (FAD) mutations of both APP with humanized amyloid beta (hAβ), and presenilin 1 (PS1), in their endogenous patterns (APP/hAβ/PS1 animals), corticotropin releasing factor (CRF) levels are increased in key stress-related nuclei, resting corticosteroid levels are elevated, and animals display increased anxiety-related behavior. Endocrine and behavioral phenotypes can be normalized by loss of 1 copy of CRF receptor type-1 (Crfr1), consistent with a perturbation of central CRF signaling in APP/hAβ/PS1 animals. However, reductions in anxiety and corticosteroid levels conferred by heterozygosity of CRF receptor type-1 do not improve a deficit in working memory observed in APP/hAβ/PS1 mice, suggesting that perturbations of the CRF system are not the primary cause of decreased cognitive performance.
Collapse
Affiliation(s)
- Qinxi Guo
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
12
|
Oligodendrocytes are a novel source of amyloid peptide generation. Neurochem Res 2011; 34:2243-50. [PMID: 19557514 DOI: 10.1007/s11064-009-0022-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2009] [Indexed: 02/06/2023]
Abstract
Alzheimer’s disease is characterised by regional neuronal degeneration, synaptic loss, and the progressive deposition of the 4 kDa β-amyloid peptide (Aβ) in senile plaques and accumulation of tau protein as neurofibrillary tangles. Aβ derives from the larger precursor molecule, amyloid precursor protein (APP) by proteolytic processing via β- and γ-secretases. While APP expression is well documented in neurons and astrocytes, the case for oligodendrocytes is less clear. The latter cell type is reported to express different isoforms of APP, and we have confirmed this observation by immunocytochemistry in cultures of differentiated rat cortical oligodendrocytes. Moreover, by means of a sensitive electrochemiluminescent immunoassay employing Aβ C-terminal specific antibodies, mature oligodendrocytes are shown to secrete the 40 and 42 amino acid Aβ species (Aβ40 and Aβ42). Secretion of Aβ peptides was reduced by incubating oligodendrocytes with α- and β-secretase inhibitors, or a γ-secretase inhibitor. Disturbances of APP processing and/ or synthesis in oligodendrocytes may account for some myelin disorders observed in Alzheimer's disease and other senile dementias.
Collapse
|
13
|
|
14
|
Goggi JL, Lewis HD, Mok J, Harrison T, Shearman MS, Atack JR, Best JD. A comparative assessment of γ-secretase activity in transgenic and non-transgenic rodent brain. J Neurosci Methods 2006; 157:246-52. [PMID: 16859750 DOI: 10.1016/j.jneumeth.2006.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Revised: 04/24/2006] [Accepted: 05/01/2006] [Indexed: 10/24/2022]
Abstract
Amyloid-beta (Abeta) deposits are one of the hallmarks of the neuropathological degeneration observed in Alzheimer's disease (AD) and Abeta concentrations have been reported to vary in different brain regions of AD patients. Abeta is produced by the sequential cleavage of amyloid precursor protein (APP) by beta-secretase and gamma-secretase, respectively. Previous studies have shown that over-expression of the gamma-secretase complex leads to increased gamma-secretase proteolytic activity increasing Abeta production. However, it is not known whether brain regions with highest Abeta concentration also express relatively higher levels of gamma-secretase activity. Accordingly, the relationship between Abeta levels and gamma-secretase activity across brain regions was investigated and correlated in the brains of transgenic and non-transgenic rodents commonly used in AD research. The data demonstrated that Abeta levels do vary in different brain regions in both transgenic and non-transgenic mice but are not correlated with regional gamma-secretase activity. Furthermore, this study demonstrated that while mutations in the APP and PS1 sequences affect the absolute Abeta levels this is not reflected in an increase in gamma-secretase proteolytic activity. The data in the current paper indicate that this assay is able to measure the level of gamma-secretase activity in rodent species. Using this methodology will aid our understanding of physiological gamma-secretase function.
Collapse
Affiliation(s)
- Julian L Goggi
- Department of In Vivo Neuroscience, The Neuroscience Research Centre, Merck Sharp and Dohme Research Laboratories, Essex CM20 2QR, UK
| | | | | | | | | | | | | |
Collapse
|
15
|
Guo JP, Arai T, Miklossy J, McGeer PL. Abeta and tau form soluble complexes that may promote self aggregation of both into the insoluble forms observed in Alzheimer's disease. Proc Natl Acad Sci U S A 2006; 103:1953-8. [PMID: 16446437 PMCID: PMC1413647 DOI: 10.1073/pnas.0509386103] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Indexed: 11/18/2022] Open
Abstract
To date, there is no reasonable explanation as to why plaques and tangles simultaneously accumulate in Alzheimer's disease (AD). We demonstrate here by Western blotting and ELISA that a stable complex can form between tau and amyloid-beta protein (Abeta). This complex enhances tau phosphorylation by GSK3beta, but the phosphorylation then promotes dissociation of the complex. We have localized the sites of this interaction by using peptide membrane arrays. Abeta binds to multiple tau peptides, especially those in exons 7 and 9. This binding is sharply reduced or abolished by phosphorylation of specific serine and threonine residues. Conversely, tau binds to multiple Abeta peptides in the mid to C-terminal regions of Abeta. This binding is also significantly decreased by GSK3beta phosphorylation of tau. We used surface plasmon resonance to determine the binding affinity of Abeta for tau and found it to be in the low nanomolar range and almost 1,000-fold higher than tau for itself. In soluble extracts from AD and control brain tissue, we detected Abeta bound to tau in ELISAs. We also found by double immunostaining of AD brain tissue that phosphorylated tau and Abeta form separate insoluble complexes within the same neurons and their processes. We hypothesize that in AD, an initial step in the pathogenesis may be the intracellular binding of soluble Abeta to soluble nonphosphorylated tau, thus promoting tau phosphorylation and Abeta nucleation. Blocking the sites where Abeta initially binds to tau might arrest the simultaneous formation of plaques and tangles in AD.
Collapse
Affiliation(s)
- Jian-Ping Guo
- *Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, BC, Canada V6T 1Z3; and
| | - Tetsuaki Arai
- Tokyo Institute of Psychiatry, 2-1-8 Kamikitazawa, Setagaya-ku, Tokyo 156-8585,Japan
| | - Judit Miklossy
- *Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, BC, Canada V6T 1Z3; and
| | - Patrick L. McGeer
- *Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, BC, Canada V6T 1Z3; and
| |
Collapse
|
16
|
von Rotz RC, Kohli BM, Bosset J, Meier M, Suzuki T, Nitsch RM, Konietzko U. The APP intracellular domain forms nuclear multiprotein complexes and regulates the transcription of its own precursor. J Cell Sci 2004; 117:4435-48. [PMID: 15331662 DOI: 10.1242/jcs.01323] [Citation(s) in RCA: 242] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The physiological functions of the beta-amyloid precursor protein (APP) may include nuclear signaling. To characterize the role of the APP adaptor proteins Fe65, Jip1b, X11α (MINT1) and the chromatin-associated protein Tip60, we analyzed their interactions by confocal microscopy and co-immunoprecipitations. AICD corresponding to S3-cleaved APP bound to Fe65 that transported it to nuclei and docked it to Tip60. These proteins formed AICD-Fe65-Tip60 (AFT) complexes that were concentrated in spherical nuclear spots. γ-Secretase inhibitors prevented AFT-complex formation with AICD derived from full-length APP. The APP adaptor protein Jip1b also transported AICD to nuclei and docked it to Tip60, but AICD-Jip1b-Tip60 (AJT) complexes had different, speckle-like morphology. By contrast, X11α trapped AICD in the cytosol. Induced AICD expression identified the APP-effector genes APP, BACE, Tip60, GSK3β and KAI1, but not the Notch-effector gene Hes1 as transcriptional targets. These data establish a role for APP in nuclear signaling, and they suggest that therapeutic strategies designed to modulate the cleavage of APP affect AICD-dependent signaling.
Collapse
Affiliation(s)
- Ruth C von Rotz
- Division of Psychiatry Research, University of Zurich, August Forel-Str. 1, 8008 Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
17
|
Yan XX, Li T, Rominger CM, Prakash SR, Wong PC, Olson RE, Zaczek R, Li YW. Binding sites of gamma-secretase inhibitors in rodent brain: distribution, postnatal development, and effect of deafferentation. J Neurosci 2004; 24:2942-52. [PMID: 15044533 PMCID: PMC6729845 DOI: 10.1523/jneurosci.0092-04.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
gamma-Secretase is a multimeric complex consisted of presenilins (PSs) and three other proteins. PSs appear to be key contributors for the enzymatic center, the potential target of a number of recently developed gamma-secretase inhibitors. Using radiolabeled and unlabeled inhibitors as ligands, this study was aimed to determine the in situ distribution of gamma-secretase in the brain. Characterization using PS-1 knock-out mouse embryos revealed 50 and 80% reductions of gamma-secretase inhibitor binding density in the heterozygous (PS-1(+/-)) and homozygous (PS-1-/-) embryos, respectively, relative to the wild type (PS-1(+/+)). The pharmacological profile from competition binding assays suggests that the ligands may target at the N- and C-terminal fragments of PS essential for gamma-secretase activity. In the adult rat brain, the binding sites existed mostly in the forebrain, the cerebellum, and discrete brainstem areas and were particularly abundant in areas rich in neuronal terminals, e.g., olfactory glomeruli, CA3-hilus area, cerebellar molecular layer, and pars reticulata of the substantia nigra. In the developing rat brain, diffuse and elevated expression of binding sites occurred at the early postnatal stage relative to the adult. The possible association of binding sites with neuronal terminals in the adult brain was further investigated after olfactory deafferentation. A significant decrease with subsequent recovery of binding sites was noted in the olfactory glomeruli after chemical damage of the olfactory epithelium. The findings in this study support a physiological role of PS or gamma-secretase complex in neuronal and synaptic development and plasticity.
Collapse
Affiliation(s)
- Xiao-Xin Yan
- Bristol-Myers Squibb Company, Pharmaceutical Research Institute, Neuroscience Drug Discovery, Wallingford, Connecticut 06492, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Alzheimer disease and type 2 diabetes are characterized by increased prevalence with aging, a genetic predisposition, and comparable pathological features in the islet and brain (amyloid derived from amyloid beta protein in the brain in Alzheimer disease and islet amyloid derived from islet amyloid polypeptide in the pancreas in type 2 diabetes). Evidence is growing to link precursors of amyloid deposition in the brain and pancreas with the pathogenesis of Alzheimer disease and type 2 diabetes, respectively. Given these similarities, we questioned whether there may be a common underlying mechanism predisposing to islet and cerebral amyloid. To address this, we first examined the prevalence of type 2 diabetes in a community-based controlled study, the Mayo Clinic Alzheimer Disease Patient Registry (ADPR), which follows patients with Alzheimer disease versus control subjects without Alzheimer disease. In addition to this clinical study, we performed a pathological study of autopsy cases from this same community to determine whether there is an increased prevalence of islet amyloid in patients with Alzheimer disease and increased prevalence of cerebral amyloid in patients with type 2 diabetes. Patients who were enrolled in the ADPR (Alzheimer disease n = 100, non-Alzheimer disease control subjects n = 138) were classified according to fasting glucose concentration (FPG) as nondiabetic (FPG <110 mg/dl), impaired fasting glucose (IFG, FPG 110-125 mg/dl), and type 2 diabetes (FPG >126 mg/dl). The mean slope of FPG over 10 years in each case was also compared between Alzheimer disease and non-Alzheimer disease control subjects. Pancreas and brain were examined from autopsy specimens obtained from 105 humans (first, 28 cases of Alzheimer disease disease vs. 21 non-Alzheimer disease control subjects and, second, 35 subjects with type 2 diabetes vs. 21 non-type 2 diabetes control subjects) for the presence of islet and brain amyloid. Both type 2 diabetes (35% vs. 18%; P < 0.05) and IFG (46% vs. 24%; P < 0.01) were more prevalent in Alzheimer disease versus non-Alzheimer disease control subjects, so 81% of cases of Alzheimer disease had either type 2 diabetes or IFG. The slope of increase of FPG with age over 10 years was also greater in Alzheimer disease than non-Alzheimer disease control subjects (P < 0.01). Islet amyloid was more frequent (P < 0.05) and extensive (P < 0.05) in patients with Alzheimer disease than in non-Alzheimer disease control subjects. However, diffuse and neuritic plaques were not more common in type 2 diabetes than in control subjects. In cases of type 2 diabetes when they were present, the duration of type 2 diabetes correlated with the density of diffuse (P < 0.001) and neuritic plaques (P < 0.01). In this community cohort from southeast Minnesota, type 2 diabetes and IFG are more common in patients with Alzheimer disease than in control subjects, as is the pathological hallmark of type 2 diabetes, islet amyloid. However, there was no increase in brain plaque formation in cases of type 2 diabetes, although when it was present, it correlated in extent with duration of diabetes. These data support the hypothesis that patients with Alzheimer disease are more vulnerable to type 2 diabetes and the possibility of linkage between the processes responsible for loss of brain cells and beta-cells in these diseases.
Collapse
Affiliation(s)
- Juliette Janson
- Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | | | | |
Collapse
|
19
|
Pentreath VW, Mead C. Responses of Cultured Astrocytes, C6 Glioma and 1321NI Astrocytoma Cells to Amyloid beta-Peptide Fragments. NONLINEARITY IN BIOLOGY, TOXICOLOGY, MEDICINE 2004; 2:45-63. [PMID: 19330108 PMCID: PMC2647817 DOI: 10.1080/15401420490426990] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The effect of amyloid beta-peptide (betaAP), which can have both neurotrophic or neurotoxic effects on neurons and has been implicated in the pathogenesis of Alzheimer's disease (AD), was studied on astrocytes using primary cultures and astrocyte cell lines (rat C6 glioma, human 1321NI astrocytoma cells). The cultures were exposed to 0.0005-50 mug/ml) betaAP fragments 1-40, 25-35, 31-35, or 40-41 (control) for 24 hr. Some of the fragments were maintained at 37 degrees C for 48 hr to induce aggregation and some of the cell cultures were pretreated with the differentiating agent dBcAMP before the experiments. The astrocyte responses were evaluated for lysosome activity (neutral red assay) and levels of structural proteins, glial fibrillary acidic protein, vimentin, and S-100, which are altered in the dystrophic plaques with associated astrogliosis in AD. The cells frequently responded with biphasic responses, with initial (low-dose) activation-type responses (i.e., increases of indicator compared to controls), before reductions with altered morphology (increased branching of cells) at higher concentrations. However, cell death (with EC(50) values) was not observed, even at the maximum concentrations of betaAP fragments. The findings suggest that the astrocytes have a relatively high resistance against the betaAP toxicity.
Collapse
Affiliation(s)
- V W Pentreath
- Division of Biosciences, University of Salford, Salford, United Kingdom
| | | |
Collapse
|
20
|
Abstract
The amyloid precursor protein (APP) gene and its protein products have multiple functions in the central nervous system and fulfil criteria as neuractive peptides: presence, release and identity of action. There is increased understanding of the role of secretases (proteases) in the metabolism of APP and the production of its peptide fragments. The APP gene and its products have physiological roles in synaptic action, development of the brain, and in the response to stress and injury. These functions reveal the strategic importance of APP in the workings of the brain and point to its evolutionary significance.
Collapse
Affiliation(s)
- P K Panegyres
- Department of Neuropathology, Royal Perth Hospital, Western Australia.
| |
Collapse
|
21
|
Murphy GM, Eng LF, Cordell B, Wang Y, Ellis WG, Meissner L, Tinklenberg JR. Beta-amyloid precursor detected in human cerebral cortex. Prog Neuropsychopharmacol Biol Psychiatry 2001; 14:309-17. [PMID: 2113696 DOI: 10.1016/0278-5846(90)90019-d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
1. Amyloid deposition is one of the pathologic hallmarks of Alzheimer's disease. Since the isolation of the beta-amyloid gene, which revealed that the amyloid forming 4 kD protein is part of a larger precursor, interest has focused on the process by which amyloid is generated and deposited. 2. The authors have developed an immunologic means of detecting amyloid precursor proteins in human brain. 3. The method involves the expression of human beta-amyloid precursor cDNA in a recombinant vaccinia virus, so that antibodies are produced against the precursor proteins in their native forms. 4. By using this expression system, the amyloid precursor immunogens incorporate post-translational modifications that normally occur in vivo; this cannot be achieved with small synthetic peptides. 5. Using antibodies to the 695 residue amyloid precursor, we have detected using Western blot analysis a protein of approximately 120 kD in samples of cerebral cortex from three subjects with Alzheimer's disease and one control subject. 6. Additional antibodies to other amyloid-related proteins have been developed. These are being used to assess the differential expression of the various amyloid precursors and subdomains in additional cases.
Collapse
Affiliation(s)
- G M Murphy
- Department of Psychiatry, Stanford University School of Medicine, Palo Alto, CA
| | | | | | | | | | | | | |
Collapse
|
22
|
Xie YY, Yao ZB, Wu WT. Survival of motor neurons and expression of beta-amyloid protein in the aged rat spinal cord. Neuroreport 2000; 11:697-700. [PMID: 10757503 DOI: 10.1097/00001756-200003200-00009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The present study investigated expression of beta-amyloid protein (AP) and Amyloid precursor protein (APP) in spinal motor neurons of young adult (3 month old) and aged (26-30 month old) rats. The total number of spinal motor neurons in the seventh cervical (C7) spinal segment was also examined in both young adult and aged rats. There was an approximately 21% (p<0.001) decrease in the number of motor neurons of the C7 spinal segment in aged rats compared with young ones. Immunoreactivity (IR) of AP and APP was not observed in spinal motor neurons of young adult rats. In contrast, approximately 50% of the spinal motor neurons of the aged rats were APP positive. Furthermore, extensive immunoreactivity was found in the processes of spinal motor neurons of aged rats. These results have shown that AP and APP is coincident with the loss of motor neurons in the spinal cord of aged rats, and might be associated with the degenerative processes of ageing motor neurons.
Collapse
Affiliation(s)
- Y Y Xie
- Department of Anatomy, Faculty of Medicine, The University of Hong Kong, Hong Kong
| | | | | |
Collapse
|
23
|
Van den Heuvel C, Blumbergs PC, Finnie JW, Manavis J, Jones NR, Reilly PL, Pereira RA. Upregulation of amyloid precursor protein messenger RNA in response to traumatic brain injury: an ovine head impact model. Exp Neurol 1999; 159:441-50. [PMID: 10506515 DOI: 10.1006/exnr.1999.7150] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There is evidence that the amyloid precursor protein (APP) plays an important role in neuronal growth and synaptic plasticity and that its increased expression following traumatic brain injury represents an acute phase response to trauma. We hypothesized that the previously described increased APP expression in response to injury (Van den Heuvel et al., Acta Neurochir. Suppl. 71, 209-211) is due to increased mRNA expression and addressed this by examining the expression of APP mRNA and APP within neuronal cell bodies over time in an ovine head impact model. Twenty-five anesthetized and ventilated 2-year-old Merino ewes sustained a left temporal head impact using a humane stunner and 9 normal sheep were used as nonimpact controls. Following postimpact survival periods of 15, 30, 45, 60, and 120 min, brains were perfusion fixed in 4% paraformaldehyde and examined according to standard neuropathological protocol. APP mRNA and antigen expression were examined in 5-microm sections by nonisotopic in situ hybridization and APP immunocytochemistry. The percentage of brain area with APP immunoreactivity within neuronal cell bodies in the impacted animals increased with time from a mean of 7.5% at 15 min to 54.5% at 2 h. Control brains showed only very small numbers of weakly APP-positive neuronal cell bodies ranging from 2 to 14% (mean 7%). Increased expression of APP mRNA was first evident in impacted hemispheres at 30 min after impact and progressively increased over time to involve neurons in all sampled regions of the brain, suggesting increased transcription of APP. In contrast, APP mRNA was undetectable in tissue from nonimpacted sheep. These data show that APP mRNA and antigen expression are sensitive early indicators of neuronal injury with widespread upregulation occurring as early as 30 min after head impact.
Collapse
Affiliation(s)
- C Van den Heuvel
- Department of Pathology, University of Adelaide, South Australia
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
The effect of the secretory form of amyloid precursor protein (sAPP) on synaptic transmission was examined by using developing neuromuscular synapses in Xenopus cell cultures. The frequency of spontaneous postsynaptic currents (SSCs) was reduced by the addition of sAPP, whereas the amplitude of impulse-evoked postsynaptic currents (ESCs) was increased by sAPP. These opposing effects on spontaneous versus evoked release were separated by using the specific domain of APP. The C-terminal fragment of sAPP (CAPP) only reduced SSC frequency and did not affect ESCs. By contrast, the N-terminal fragment of sAPP (NAPP) did not affect SSC frequency but did increase ESC amplitude. The reduction of SSC frequency by sAPP appears to be mediated by activation of potassium channels through a cGMP-dependent pathway, whereas the increase of ESC amplitude is mediated by a different pathway involving activation of protein kinase(s). These results suggest the potential role of sAPP as a modulator of synaptic activity by two specific domains.
Collapse
|
25
|
Popović M, Caballero-Bleda M, Puelles L, Popović N. Importance of immunological and inflammatory processes in the pathogenesis and therapy of Alzheimer's disease. Int J Neurosci 1998; 95:203-36. [PMID: 9777440 DOI: 10.3109/00207459809003341] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The contribution of autoimmune processes or inflammatory components in the etiology and pathogenesis of Alzheimer's disease (AD) has been suspected for many years. The presence of antigen-presenting, HLA-DR-positive and other immunoregulatory cells, components of complement, inflammatory cytokines and acute phase reactants have been established in tissue of AD neuropathology. Although these data do not confirm the immune response as a primary cause of AD, they indicate involvement of immune processes at least as a secondary or tertiary reaction to the preexisting pathogen and point out its driving-force role in AD pathogenesis. These processes may contribute to systemic immune response. Thus, experimental and clinical studies indicate impairments in both humoral and cellular immunity in an animal model of AD as well as in AD patients. On the other hand, anti-inflammatory drugs applied for the treatment of some chronic inflammatory diseases have been shown to reduce risk of AD in these patients. Therefore, it seems that anti-inflammatory drugs and other substances which can control the activity of immunocompetent cells and the level of endogenous immune response can be valuable in the treatment of AD patients.
Collapse
Affiliation(s)
- M Popović
- Departamento de Ciencias Morfológicas y Psicobiología, Facultad de Medicina, Universidad de Murcia, Espinardo, Spain
| | | | | | | |
Collapse
|
26
|
Moir RD, Lynch T, Bush AI, Whyte S, Henry A, Portbury S, Multhaup G, Small DH, Tanzi RE, Beyreuther K, Masters CL. Relative increase in Alzheimer's disease of soluble forms of cerebral Abeta amyloid protein precursor containing the Kunitz protease inhibitory domain. J Biol Chem 1998; 273:5013-9. [PMID: 9478949 DOI: 10.1074/jbc.273.9.5013] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Although a number of studies have examined amyloid precursor protein (APP) mRNA levels in Alzheimer's disease (AD), no clear consensus has emerged as to whether the levels of transcripts for isoforms containing a Kunitz protease inhibitory (KPI)-encoded region are increased or decreased in AD. Here we compare AD and control brain for the relative amounts of APP protein containing KPI to APP protein lacking this domain. APP protein was purified from the soluble subcellular fraction and Triton X-100 membrane pellet extract of one hemisphere of AD (n = 10), normal (n = 7), and neurological control (n = 5) brains. The amount of KPI-containing APP in the purified protein samples was determined using two independent assay methods. The first assay exploited the inhibitory action of KPI-containing APP on trypsin. The second assay employed reflectance analysis of Western blots. The proportion of KPI-containing forms of APP in the soluble subcellular fraction of AD brains is significantly elevated (p < 0.01) compared with controls. Species containing a KPI domain comprise 32-41 and 76-77% of purified soluble APP from control and AD brains, respectively. For purified membrane-associated APP, 72-77 and 65-82% of control and AD samples, respectively, contain a KPI domain. Since KPI-containing species of APP may be more amyloidogenic (Ho, L., Fukuchi, K., and Yonkin, S. G. (1996) J. Biol. Chem. 271, 30929-30934), our findings support an imbalance of isoforms as one possible mechanism for amyloid deposition in sporadic AD.
Collapse
Affiliation(s)
- R D Moir
- Department of Pathology, The University of Melbourne, Parkville, 3052, Australia and The Mental Health Research Institute of Victoria, Parkville 3052, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Morimoto T, Ohsawa I, Takamura C, Ishiguro M, Kohsaka S. Involvement of amyloid precursor protein in functional synapse formation in cultured hippocampal neurons. J Neurosci Res 1998; 51:185-95. [PMID: 9469572 DOI: 10.1002/(sici)1097-4547(19980115)51:2<185::aid-jnr7>3.0.co;2-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Amyloid precursor protein (APP) is known to be widely expressed in neuronal cells, and enriched in the central and peripheral synaptic sites. Although it has been proposed that APP functions in synaptogenesis, no direct evidence has yet been reported. In this study we investigated the involvement of APP in functional synapse formation by monitoring spontaneous oscillations of intracellular Ca2+ concentration ([Ca2+]i) in cultured hippocampal neurons. As more and more neurons form synapses with each other during the culture period, increasing numbers of neuronal cells show synchronized spontaneous oscillations of [Ca2+]i. The number of neurons that showed synchronized spontaneous oscillations of [Ca2+]i was significantly lower when cultured in the presence of monoclonal antibody 22C11 against the N-terminal portion of APP. Moreover, incubation with excess amounts of the secretory form of APP or the N-terminal fragment of APP also inhibited the increase in number of neurons with synchronized spontaneous oscillations of [Ca2+]i. The addition of monoclonal antibody 22C11 or secretory form of APP did not, however, affect MAP-2-positive neurite outgrowth. These findings suggest that APP play a role in functional synapse formation during CNS development.
Collapse
Affiliation(s)
- T Morimoto
- Department of Neurochemistry, National Institute of Neuroscience, Tokyo, Japan
| | | | | | | | | |
Collapse
|
28
|
Struble RG, Dhanraj DN, Mei Y, Wilson M, Wang R, Ramkumar V. Beta-amyloid precursor protein-like immunoreactivity is upregulated during olfactory nerve regeneration in adult rats. Brain Res 1998; 780:129-37. [PMID: 9473628 DOI: 10.1016/s0006-8993(97)01187-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Beta-amyloid precursor protein (APP) is the source of beta-amyloid, which forms the cores of senile plaques in Alzheimer's Disease. However, the function of this precursor protein is currently unknown and an adult animal in which this protein varied substantially would be valuable. We used subcutaneous diethyldithiocarbamate to reversibly lesion the olfactory epithelium in adult rats and found that whole-bulb levels of APP-like immunoreactivity significantly decreased after the lesion, then increased reaching almost five-fold normal levels six weeks after treatment. Growth cone associated protein (GAP43) decreased when the nerve degenerated, then increased, replicating previous studies of olfactory nerve regeneration. Immunocytochemical techniques identified APP immunoreactive perikarya and fibers in and around glomeruli at three days to one week post-lesion and upregulation of APP-like immunoreactivity in mitral cells and dendrites at five weeks. Olfactory nerve regeneration appears to be a useful in vivo model system to understand the regulation of APP-like proteins.
Collapse
Affiliation(s)
- R G Struble
- Center for Alzheimer's Disease, Southern Illinois University School of Medicine, Springfield 62794-1413, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Panegyres PK. The amyloid precursor protein gene: a neuropeptide gene with diverse functions in the central nervous system. Neuropeptides 1997; 31:523-35. [PMID: 9574821 DOI: 10.1016/s0143-4179(97)90000-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The amyloid precursor protein (APP) is a member of a family of proteins found in the central nervous system with a fundamental role in the pathogenesis of Alzheimer's disease. This review describes the experimental evidence that has provided functional insights into this protein and emphasizes the importance of APP in many neurobiological processes.
Collapse
Affiliation(s)
- P K Panegyres
- Department of Neuropathology, Royal Perth Hospital, Western Australia.
| |
Collapse
|
30
|
Meng SZ, Arai Y, Deguchi K, Takashima S. Early detection of axonal and neuronal lesions in prenatal-onset periventricular leukomalacia. Brain Dev 1997; 19:480-4. [PMID: 9408595 DOI: 10.1016/s0387-7604(97)00068-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The expression of beta-amyloid precursor protein (beta-APP) immunoreactivity was investigated in 16 cases of prenatal-onset periventricular leukomalacia (PVL). beta-APP positive axons were found in the early stage of prenatal PVL, which included coagulation necrosis, microglial activation, axonal swelling or astrogliosis, but were not detectable in the late stage of prenatal PVL. Furthermore, beta-APP immunoreactive neurons were also observed in the fifth layer of pyramidal neurons of the cerebral cortex, corresponding to the beta-APP positive axons in PVL. Thus, beta-APP is detected as an early sign of axonal and neuronal lesions in prenatal-onset PVL, and neuronal beta-APP in the cerebral cortex may function to repair cell damage. In addition, prenatal PVL occurred at various stages before birth.
Collapse
Affiliation(s)
- S Z Meng
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry
| | | | | | | |
Collapse
|
31
|
Garcia-Ladona FJ, Huss Y, Frey P, Ghandour MS. Oligodendrocytes express different isoforms of beta-amyloid precursor protein in chemically defined cell culture conditions: in situ hybridization and immunocytochemical detection. J Neurosci Res 1997; 50:50-61. [PMID: 9379493 DOI: 10.1002/(sici)1097-4547(19971001)50:1<50::aid-jnr6>3.0.co;2-k] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The expression of beta-amyloid precursor protein (betaAPP) by astrocytes is well documented; however, data concerning oligodendrocytes remain controversial. The main goal of the present study was to determine whether or not oligodendrocytes in culture constitutively express the different betaAPP isoforms. Oligodendrocytes were cultured in a chemically defined medium that avoids putative effects of unknown serum factors on oligodendrocyte development. We have employed immunocytochemistry and in situ hybridization with antibodies and synthetic oligonucleotides recognizing, respectively, specific protein epitopes and mRNA transcripts of rat betaAPP isoforms. Oligodendrocytes, in both mixed primary cultures in the presence of serum or in secondary cultures in defined medium, were clearly labeled by antibodies directed to different betaAPP sequences. Antibodies against the serine protease inhibitor domain of betaAPP, also strongly labelled oligodendrocytes. Immunohistochemistry and in situ hybridization were combined to determine precisely the expression of different isoforms of betaAPP. In situ hybridization revealed the presence in oligodendrocytes of mRNA transcripts coding not only for betaAPP695 but also for betaAPP770 and betaAPP751. This indicates that betaAPP immunoreactivity found in oligodendrocytes corresponds to constitutive expression of betaAPP. Oligodendrocyte cultured in chemically defined medium are able to express not only betaAPP695 but also betaAPP770, betaAPP751 isoforms containing the Kunitz protease inhibitor domain. Although the role of betaAPP in the pathological processes of Alzheimer's disease (AD) remains unknown, possible disturbances of betaAPP processing and/or synthesis in oligodendrocytes may account for some myelin disorders observed in AD and other senile dementias.
Collapse
Affiliation(s)
- F J Garcia-Ladona
- Laboratoire de Neurobiologie Ontogénique (ERS 110), Centre de Neurochimie du CNRS, Strasbourg, France
| | | | | | | |
Collapse
|
32
|
Blanchard V, Czech C, Bonici B, Clavel N, Gohin M, Dalet K, Revah F, Pradier L, Imperato A, Moussaoui S. Immunohistochemical analysis of presenilin 2 expression in the mouse brain: distribution pattern and co-localization with presenilin 1 protein. Brain Res 1997; 758:209-17. [PMID: 9203550 DOI: 10.1016/s0006-8993(97)00231-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Missense mutations of presenilin 1 (PS-1) and presenilin 2 (PS-2) genes cause the majority of early-onset familial forms of Alzheimer's disease (AD). We previously characterized the distribution of the PS-1 protein in the mouse brain by immunohistochemistry using an antibody directed against an epitope located in the large hydrophilic loop [Moussaoui, S., Czech, C., Pradier, L., Blanchard, V., Bonici, B., Gohin, M., Imperato, A. and Revah, F., Immunohistochemical analysis of presenilin 1 expression in the mouse brain, FEBS Lett., 383 (1996) 219-222]. Similarly, we now report the distribution pattern of PS-2 protein in the mouse brain. For these experiments we used a polyclonal antibody raised against a synthetic peptide corresponding to the amino-acid sequence 7-24 of the predicted human PS-2 protein. The specificity of the antibody was evidenced by its ability to recognize PS-2 protein in immunoprecipitation studies and by antigen-peptide competition. In the mouse brain, PS-2 protein was present in numerous cerebral structures, but its distribution in these structures did not correlate with their susceptibility to AD pathology. In all examined structures of the gray matter, PS-2 protein was concentrated in neuronal cell bodies but it was not detected in the glial cells of the white matter. The regional distribution pattern of PS-2 protein was almost identical to that of PS-1 protein. Moreover, PS-2 protein co-localized with PS-1 protein in a large number of neuronal cell bodies. In terms of subcellular localization, PS-2 immunostaining was present almost exclusively in neuronal cell bodies while PS-1 immunostaining was also present in dendrites. This could be explained by the different epitopes of the antibodies and the known proteolytic processing of both presenilins in vivo [Tanzi, R.E., Kovacs, D.M., Kim, T.-W., Moir, R.D., Guenette, S.Y. and Wasco, W., The presenilin genes and their role in early-onset familial Alzheimer's disease, Alzheimer's disease Rev., 1 (1996) 91-98]. Within neuronal cell bodies, the immunostaining of PS-2 protein, as well as that of PS-1 protein, had a reticular and granular appearance. This suggests in agreement with previous observations on PS-1 and PS-2 in COS and H4 cells [Kovacs, D.M., Fausett, H.J., Page, K.J., Kim, T.-W., Moir, R.D., Merriam, D.E., Hollister, R.D., Hallmark, O.G., Mancini, R., Felsenstein, K.M., Hyman, B.T., Tanzi, R.E., Wasco, W., Alzheimer-associated presenilins 1 and 2: neuronal expression in brain and localization to intracellular membranes in mammalian cells, Nature Med., 2 (1996) 224-229] that these proteins are situated in intracytoplasmic organelles, possibly the endoplasmic reticulum and the Golgi complex.
Collapse
Affiliation(s)
- V Blanchard
- Rhône-Poulenc Rorer, Centre de Recherche de Vitry-Alfortville, Vitry-sur-Seine, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Chauvet N, Apert C, Dumoulin A, Epelbaum J, Alonso G. Mab22C11 antibody to amyloid precursor protein recognizes a protein associated with specific astroglial cells of the rat central nervous system characterized by their capacity to support axonal outgrowth. J Comp Neurol 1997. [DOI: 10.1002/(sici)1096-9861(19970127)377:4<550::aid-cne6>3.0.co;2-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
34
|
Masliah E, Alford M, DeTeresa R, Mallory M, Hansen L. Deficient glutamate transport is associated with neurodegeneration in Alzheimer's disease. Ann Neurol 1996; 40:759-66. [PMID: 8957017 DOI: 10.1002/ana.410400512] [Citation(s) in RCA: 331] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The mechanisms of synapse damage in Alzheimer's disease (AD) are not fully understood. Deficient functioning of glutamate transporters might be involved in synaptic pathology and neurodegeneration by failing to clear excess glutamate at the synaptic cleft. In AD, glutamate transporter activity as assessed by D-[3H]aspartate binding is decreased; however, it is not clear to what extent it is associated with the neurodegenerative process and cognitive alterations. For this purpose, levels of D- and L-[3H]aspartate binding in midfrontal cortex were correlated with synaptophysin levels, brain spectrin degradation product levels, and clinical and neuropathological indicators of AD. Compared to control brains, AD brains displayed a 34% decrease in levels of D-[3H]aspartate binding, a 30% decrease in L-[3H]aspartate binding, and a 48% loss of synaptophysin immunoreactivity. Increased levels of brain spectrin degradation products correlated with a decrease in levels of D-[3H] and L-[3H]aspartate binding, and decreased levels of synaptophysin immunoreactivity. Levels of L-[3H]aspartate binding correlated with levels of synaptophysin immunoreactivity. These results suggest that decreased glutamate transporter activity in AD is associated with increased excitotoxicity and neurodegeneration, supporting the possibility that abnormal functioning of this system might be involved in the pathogenesis of synaptic damage in AD.
Collapse
Affiliation(s)
- E Masliah
- Department of Neurosciences, University of California San Diego, La Jolla 92093-0624, USA
| | | | | | | | | |
Collapse
|
35
|
Abstract
The tissue response after brain damage implicates the cellular "activation" of astrocytes and microglia. This glial response is referred as reactive gliosis. Using immunohistochemical markers, we have analyzed the neuronal and glial response to some neurotoxic-induced lesions. We have compared the effects of two glutamate analogs, AMPA and kainic acid, with those of traumatic injury. Our data showed that the time-course of appearance, the relative contribution of and the behavior of reactive astrocytes and microglial cells were clearly different after AMPA or kainic acid administration. The immunoreactivity associated with microglia response, with respect to the immunoreactivity associated with reactive astrocytes, was higher after AMPA damage than after kainic acid treatment. In both cases, however, glial cells were more abundant than after traumatic lesions. Interestingly, the CA1 pyramidal neurons affected by AMPA and some cortical neurons affected by traumatic injury responded with an overexpression of amyloid precursor protein, whereas no neuronal response was detected after the kainic acid treatment. Our data suggest that the gliotic response is highly specific to the type of insult and heterogeneous depending on the brain area affected.
Collapse
Affiliation(s)
- M Araujo
- Centro de Biología Molecular Severo Ochoa, CSIC-Universidad Autonoma de Madrid, Cantoblanco-Madrid, Spain
| | | |
Collapse
|
36
|
Greenberg BD, Savage MJ, Howland DS, Ali SM, Siedlak SL, Perry G, Siman R, Scott RW. APP transgenesis: approaches toward the development of animal models for Alzheimer disease neuropathology. Neurobiol Aging 1996; 17:153-71. [PMID: 8744397 DOI: 10.1016/0197-4580(96)00001-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
37
|
Siman R, Greenberg BD. Alzheimer’s Disease. Neurotherapeutics 1996. [DOI: 10.1007/978-1-59259-466-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
38
|
Abstract
To assess the role of microglial cells in senile plaque (SP) formation, we examined the density and distribution of microglia in the temporal neocortex of three groups of nondemented individuals, chosen to represent sequential stages of SP formation (no SP, n = 14; diffuse plaques (DP) only, n = 12; both DP and neuritic plaques (NP), n = 14) and patients with Alzheimer's disease (AD, n = 11). The mean density of microglia was significantly greater in the AD group. In nondemented individuals, the presence of NP but not DP was associated with an increased number of microglial cells. Most NP (91%) were focally associated with microglial cells. DP less commonly contained microglia, however, individuals with some NP had microglia within a greater proportion of their DP (47%) than did those with only DP (19%). These findings suggest that: (a) microglia are not involved in the formation of DP; (b) the presence of NP is associated with both an overall increase in microglia and the focal aggregation of cells around NP; (c) microglia may be locally involved in the conversion of DP into NP. This final point represents the most significant aspect of this study, providing the first quantitative evidence to support a specific role for microglia in the formation of NP from DP.
Collapse
Affiliation(s)
- I R Mackenzie
- Department of Pathology (Neuropathology), University of Western Ontario, London, Canada
| | | | | |
Collapse
|
39
|
McKenzie JE, Gentleman SM, Roberts GW, Graham DI, Royston MC. Quantification of beta APP immunoreactive pre-alpha cells in the entorhinal cortex using image analysis. NEURODEGENERATION : A JOURNAL FOR NEURODEGENERATIVE DISORDERS, NEUROPROTECTION, AND NEUROREGENERATION 1995; 4:299-306. [PMID: 8581562 DOI: 10.1016/1055-8330(95)90019-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The neuropathological diagnosis of Alzheimer's disease requires an assessment of the quantity of pathology present. Advances in molecular biology have highlighted the role of beta-amyloid precursor protein (beta APP) in the pathogenesis of the disease. This protein is found in neurons and other cells and many neuropathological studies would benefit from a method which generates reliable data on the numbers of cells containing significant amounts of the protein. Classically, generation of such data would have involved laborious manual counting. This particular approach carries low levels of inter- and intra-rater reliability and is much dependent on the skill and experience of the operator. We have used immunocytochemistry to specifically define a single cell population, pre-alpha cells, containing beta APP, and have developed a computerized cell counting programme that can reliably quantify these cells in human post-mortem brain samples. We have obtained a high level of accuracy (> 95%) and efficiency in identifying and quantifying target cells and have demonstrated that our protocol can be used effectively by both novice and expert. This method could be easily configured to provide quantitative data for a wide range of immunocytochemically defined cell populations.
Collapse
Affiliation(s)
- J E McKenzie
- Department of Psychiatry & Anatomy, Charing Cross and Westminster Medical School, London
| | | | | | | | | |
Collapse
|
40
|
Kim TW, Wu K, Xu JL, McAuliffe G, Tanzi RE, Wasco W, Black IB. Selective localization of amyloid precursor-like protein 1 in the cerebral cortex postsynaptic density. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1995; 32:36-44. [PMID: 7494461 DOI: 10.1016/0169-328x(95)00328-p] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Senile plaques, a hallmark of Alzheimer's disease (AD), contain amyloid beta-peptide (A beta), which is generated from the larger amyloid beta protein precursor (APP). In addition to APP, several APP-related proteins have been recently identified in different organisms, including Drosophila amyloid precursor protein-like protein (APPL). Deficiency of APPL causes behavioral deficits in Drosophila, implicating a role in brain function. Moreover, mouse and human cDNA clones encoding amyloid precursor-like proteins (APLP1 and APLP2) have been identified and exhibit extensive sequence similarity to the APPL and APP genes. To define the potential role of APLP in the mammalian brain, we sought to directly localize APLP1 within the complex cortical synaptic structure. We focused on the postsynaptic density (PSD), which appears to be central to synaptic function. We now report that the 90 kDa APLP1, the first known APLP, is localized to the PSD from rat and human cerebral cortex. APLP1 increased during cortical synaptic development, suggesting a role in synaptogenesis or synaptic maturation. In contrast, APP was predominantly expressed in the synaptic membrane fraction, but was barely detectable in the PSD, including different subcellular distributions of APP and APLP1. Our observations raise the possibility that APLP1, a homologue of APPL, which appears to be necessary for normal behavior in Drosophila, participates in brain synaptic function in mammals.
Collapse
Affiliation(s)
- T W Kim
- Department of Neuroscience and Cell Biology, UMDNJ/Robert Wood Johnson Medical School, Piscataway, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Li GL, Farooque M, Holtz A, Olsson Y. Changes of beta-amyloid precursor protein after compression trauma to the spinal cord: an experimental study in the rat using immunohistochemistry. J Neurotrauma 1995; 12:269-77. [PMID: 7473801 DOI: 10.1089/neu.1995.12.269] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We evaluated by immunohistochemistry the changes of beta-amyloid precursor protein (beta APP) and beta-amyloid peptide (beta A) in the spinal cord of rats with compression injury at Th8-9 of mild, moderate, and severe degrees. The spinal cord of normal rats and animals with laminectomy revealed immunoreactivity to beta APP in nerve cell bodies, the initial part of a few axons of the gray matter, and in scattered glial cells. At 4 h after compression, beta APP-immunoreactivity occurred in a few swollen axons of the longitudinal tracts; such beta APP-immunoreactive axons remained throughout the experimental period of 9 days. The number of immunoreactive axons and the intensity of their immunoreactivity were increased in rats with moderate and severe compression. The caudal Th10 segment exhibited more pronounced accumulation of beta APP immunoreactivity than the cranial Th segment. There was no evidence of beta A accumulation after compression injury. In conclusion, there is a rapidly occurring, long-lasting accumulation of immunoreactive beta-amyloid precursor protein after compression injury of rat spinal cord. This accumulation is related to the degree of impact to the cord.
Collapse
Affiliation(s)
- G L Li
- Laboratory of Neuropathology, University Hospital, Uppsala, Sweden
| | | | | | | |
Collapse
|
42
|
Calingasan NY, Gandy SE, Baker H, Sheu KF, Kim KS, Wisniewski HM, Gibson GE. Accumulation of amyloid precursor protein-like immunoreactivity in rat brain in response to thiamine deficiency. Brain Res 1995; 677:50-60. [PMID: 7606469 DOI: 10.1016/0006-8993(95)00136-e] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Thiamine deficiency (TD) is a classical model of impaired cerebral oxidation. As in Alzheimer's disease (AD), TD is characterized by selective neuronal loss, decreased activities of thiamine pyrophosphate-dependent enzymes, cholinergic deficits and memory loss. Amyloid beta-protein (A beta), a approximately 4 kDa fragment of the beta-amyloid precursor protein (APP), accumulates in the brains of patients with AD or Down's syndrome. In the current study, we examined APP and A beta immunoreactivity in the brains of thiamine-deficient rats. Animals received thiamine-deficient diet ad libitum and daily injections of the thiamine antagonist, pyrithiamine. Immunocytochemical staining and immunoblotting utilized a rabbit polyclonal antiserum against human APP645-694 (numbering according to APP695 isoform). Three, 6 and 9 days of TD did not appear to damage any brain region nor change APP-like immunoreactivity. However, 13 days of TD led to pathological lesions mainly in the thalamus, mammillary body, inferior colliculus and some periventricular areas. While immunocytochemistry and thioflavine S histochemistry failed to show fibrillar beta-amyloid, APP-like immunoreactivity accumulated in aggregates of swollen, abnormal neurites and perikarya along the periphery of the infarct-like lesion in the thalamus and medial geniculate nucleus. Immunoblotting of the thalamic region around the lesion revealed increased APP-like holoprotein immunoreactivity. APP-like immunoreactive neurites were scattered in the mammillary body and medial vestibular nuclei where the lesion did not resemble infarcts. In the inferior colliculus, increased perikaryal APP-like immunostaining occurred in neurons surrounding necrotic areas. Regions without apparent pathological lesions showed no alteration in APP-like immunoreactivity. Thus, the oxidative insult associated with cell loss, hemorrhage and infarct-like lesions during TD leads to altered APP metabolism. This is the first report to show a relationship between changes in APP expression, oxidative metabolism and selective cell damage caused by nutritional/cofactor deficiency. This model appears useful in defining the role of APP in the reponse to central nervous system injury, and may also be relevant to the pathophysiology of Wernicke-Korsakoff syndrome and AD.
Collapse
Affiliation(s)
- N Y Calingasan
- Cornell University Medical College, Burke Medical Research Institute, White Plains, NY 10605, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Palacios G, Mengod G, Tortosa A, Ferrer I, Palacios JM. Increased beta-amyloid precursor protein expression in astrocytes in the gerbil hippocampus following ischaemia: association with proliferation of astrocytes. Eur J Neurosci 1995; 7:501-10. [PMID: 7773447 DOI: 10.1111/j.1460-9568.1995.tb00346.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Increases in beta-amyloid precursor proteins (APP), which include the beta-amyloid senile plaque protein present in patients with Alzheimer's disease, have been shown to occur in models of neuronal damage and neurotoxic cell injury. This observation led us to examine the expression of these proteins after transient ischaemic episodes in the gerbil. Animals were killed 2-28 days after ischaemia and APP were detected by immunocytochemistry at the light and electron microscopic levels with an antibody raised against the C-terminal region of these proteins. The gliotic reaction was also examined using glial fibrillary acid protein (GFAP) immunoreactivity. Two days after ischaemia, neuronal cell death was observed in the hippocampal CA1 region accompanied by astrocyte hypertrophy. These hypertrophic astrocytes were found to be GFAP positive but stained weakly for APP. Seven days after ischaemia both astrocyte hypertrophia and hyperplasia, with identified mitotic figures, were observed. These hyperplasic astrocytes were intensely stained by the APP antibody, and were observed up to 28 days after ischaemia. This shows that neuronal cell death produced by transient ischaemia is followed by an increased APP expression which appears to be associated with the hyperplasic astrocytes but not with the initial hypertrophy of this cell population. These results, when taken together with those obtained in other models of neuronal damage or death, clearly suggest that APP expression follows neuronal death and is associated with astrocyte proliferation.
Collapse
Affiliation(s)
- G Palacios
- Cell Biology Department, Facultad de Medicina, Universidad Autónoma de Barcelona, Bellaterra, Spain
| | | | | | | | | |
Collapse
|
44
|
Barber K, Enam SA, Bodovitz S, Falduto M, Frail D, Klein WL. Particulate forms of APP in the extracellular milieu of cultured cells. Exp Neurol 1995; 132:42-53. [PMID: 7720825 DOI: 10.1016/0014-4886(95)90057-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The principle externalized forms of amyloid precursor protein (APP) are soluble and well-characterized, but some evidence has suggested the additional presence of externalized APP in a nonsoluble form. To further assess this possibility, the current study has applied high resolution microscopy protocols in addition to immunoprecipitation to characterize externalized APP in three commonly used cell culture models (SH-SY5Y human neuroblastoma cells, fetal rat brain cells, and HEK 293 human embryonic kidney cells). Confocal immunofluorescence microscopy, using an antiserum against the c-terminal domain of APP, showed typical cell-associated APP, but hot spots of APP also were evident in cell-free areas, apparently associated with the culture substrata. These hot-spots were examined for evidence of cellular deterioration by whole mount transmission electron microscopy. Neither cell debris nor disrupted cells were present. Instead, the hot spots of substratum-bound APP comprised discrete microparticles, approximately 50-100 nm across. These microparticles also could be found near cells and in some cases were attached to cell surface fibrils. Substratum-bound APP also could be found clustered within the extracellular matrix made by primary cell cultures. Occurrence of APP in extracellular microparticles was verified by centrifugation-immunoprecipitation analysis of media conditioned by APP-transfected cells. Radiolabeling data showed that particulate APP was from metabolically active cells. Metabolic labeling of particle-associated APP, as well as the absence of cellular debris near the APP-containing particles, suggests that the occurrence of nonsoluble APP in the extracellular milieu derives from a physiologically active process.
Collapse
Affiliation(s)
- K Barber
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | | | | | |
Collapse
|
45
|
Tomimoto H, Akiguchi I, Wakita H, Nakamura S, Kimura J. Ultrastructural localization of amyloid protein precursor in the normal and postischemic gerbil brain. Brain Res 1995; 672:187-95. [PMID: 7749741 DOI: 10.1016/0006-8993(94)01160-j] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Intracellular localization of amyloid protein precursor (APP) in the normal and postischemic gerbil brain was examined by immunoelectron microscopy. In the normal brain, APP immunoreactivity was localized to the multivesicular body, the nuclear membrane, Golgi apparatus and rough endoplasmic reticulum. After ischemia for 5 min and reperfusion for 24 h, some neurons became intensely immunoreactive for APP in the subiculum and CA3 region of the hippocampus and layers III and V/VI of the cerebral cortex. No intense labeling occurred in glial cells. Intensely labeled neurons were characterized by eccentric nuclei and accumulation of cellular organelles in the center of the neuronal perikarya, as well as a strongly immunoreactive nuclear membrane and cisternal structures, which were presumed to be dispersed Golgi apparatus and/or fragmented rough ER. APP immunoreactivity in the multivesicular body suggests re-internalization of APP and its degradation in the endosomal-lysosomal pathway. The ultrastructural features of neurons with intense APP immunoreactivity suggested mild neuronal damage, similar to those found in central chromatolysis. This indicates that accumulation of APP in these neurons is caused by disturbance of axonal transport, although the information does not allow us to exclude the possibility of an increase in APP production.
Collapse
Affiliation(s)
- H Tomimoto
- Department of Neurology, Faculty of Medicine, Kyoto University, Japan
| | | | | | | | | |
Collapse
|
46
|
Das S, Potter H. Expression of the Alzheimer amyloid-promoting factor antichymotrypsin is induced in human astrocytes by IL-1. Neuron 1995; 14:447-56. [PMID: 7857652 DOI: 10.1016/0896-6273(95)90300-3] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The amyloid deposits of Alzheimer's disease contain, in addition to the beta protein (A beta), lesser amounts of other proteins including the protease inhibitor alpha 1-antichymotrypsin (ACT). We have recently shown that ACT acts as a pathological chaperone, binding to the beta protein and strongly promoting its polymerization into amyloid filaments in vitro. The data of this paper show that ACT synthesis is induced in cultured human astrocytes by IL-1, a lymphokine whose expression is strongly up-regulated in microglial cells in affected areas of Alzheimer's disease brain. Furthermore, unfractionated glial cultures containing both astrocytes and microglia from human cortex (which develops amyloid in Alzheimer's disease) spontaneously express IL-1 and ACT as they reach confluence. In contrast, confluent mixed glial cultures similarly prepared from human cerebellum or brain stem, or from rat brain-tissues not prone to amyloid formation-do not express ACT unless supplemented with exogenous IL-1. The same regional difference in IL-1 expression by microglia is seen in vivo in Alzheimer's disease. These results indicate that the IL-1-induced expression of ACT may help direct the region-specific production of mature amyloid filaments in the Alzheimer brain.
Collapse
Affiliation(s)
- S Das
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
47
|
Iwai A, Masliah E, Yoshimoto M, Ge N, Flanagan L, de Silva HA, Kittel A, Saitoh T. The precursor protein of non-A beta component of Alzheimer's disease amyloid is a presynaptic protein of the central nervous system. Neuron 1995; 14:467-75. [PMID: 7857654 DOI: 10.1016/0896-6273(95)90302-x] [Citation(s) in RCA: 1010] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Non-A beta component of Alzheimer's disease amyloid (NAC) is the second component in the amyloid from brain tissue of patients affected with Alzheimer's disease. Its precursor protein (NACP) was shown to be a brain-specific protein. In rat brain, NACP was more abundant in the neocortex, hippocampus, olfactory bulb, striatum, thalamus, and cerebellum and less abundant in the brain stem. Confocal laser microscopy analysis revealed that anti-NACP immunostaining was colocalized with synaptophysin-immunoreactive presynaptic terminals. Ultrastructural analysis showed that NACP immunoreactivity was associated with synaptic vesicles. NACP sequence showed 95% identity with that of rat synuclein 1, a synaptic/nuclear protein previously identified in rat brain, and good homology with Torpedo synuclein from the electric organ synapse and bovine phosphoneuroprotein 14 (PNP-14), a brain-specific protein present in synapses. Therefore, NACP is a synaptic protein, suggesting that synaptic aberration observed in senile plaques might be involved in amyloidogenesis in Alzheimer's disease.
Collapse
Affiliation(s)
- A Iwai
- Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla 92093-0624
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Töpper R, Gehrmann J, Banati R, Schwarz M, Block F, Noth J, Kreutzberg GW. Rapid appearance of beta-amyloid precursor protein immunoreactivity in glial cells following excitotoxic brain injury. Acta Neuropathol 1995; 89:23-8. [PMID: 7709727 DOI: 10.1007/bf00294255] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Clinical and experimental data have indicated an up-regulation of amyloid precursor protein (APP) after various types of CNS injury. In the present study the cellular source of lesion-induced APP has been investigated in a neurotoxic CNS model. Quinolinic acid injection into the striatum results in neuronal degeneration, while glial cells survive. APP immunoreactivity was detected in glial cells starting at postoperative day 3 and persisted until day 21, the last time point studied. Double immunocytochemistry identified the majority of APP-immunoreactive cells as glial fibrillary acidic protein-immunoreactive astrocytes. There was no evidence of amyloid fibril deposition during this time. It is concluded that following excitotoxic neuronal degneration APP is mainly produced by reactive astrocytes in the lesioned area.
Collapse
Affiliation(s)
- R Töpper
- Max-Planck-Institute of Psychiatry, Department of Neuromorphology, Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|
49
|
Mucke L, Masliah E, Johnson WB, Ruppe MD, Alford M, Rockenstein EM, Forss-Petter S, Pietropaolo M, Mallory M, Abraham CR. Synaptotrophic effects of human amyloid beta protein precursors in the cortex of transgenic mice. Brain Res 1994; 666:151-67. [PMID: 7882025 DOI: 10.1016/0006-8993(94)90767-6] [Citation(s) in RCA: 224] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The amyloid precursor protein (APP) is involved in Alzheimer's disease (AD) because its degradation products accumulate abnormally in AD brains and APP mutations are associated with early onset AD. However, its role in health and disease appears to be complex, with different APP derivatives showing either neurotoxic or neurotrophic effects in vitro. To elucidate the effects APP has on the brain in vivo, cDNAs encoding different forms of human APP (hAPP) were placed downstream of the neuron-specific enolase (NSE) promoter. In multiple lines of NSE-hAPP transgenic mice neuronal overexpression of hAPP was accompanied by an increase in the number of synaptophysin immunoreactive (SYN-IR) presynaptic terminals and in the expression of the growth-associated marker GAP-43. In lines expressing moderate levels of hAPP751 or hAPP695, this effect was more prominent in homozygous than in heterozygous transgenic mice. In contrast, a line with several-fold higher levels of hAPP695 expression showed less increase in SYN-IR presynaptic terminals per amount of hAPP expressed than the lower expressor lines and a decrease in synaptotrophic effects in homozygous compared with heterozygous offspring. Transgenic mice (2-24 months of age) showed no evidence for amyloid deposits or neurodegeneration. These findings suggest that APP may be important for the formation/maintenance of synapses in vivo and that its synaptotrophic effects may be critically dependent on the expression levels of different APP isoforms. Alterations in APP expression, processing or function could contribute to the synaptic pathology seen in AD.
Collapse
Affiliation(s)
- L Mucke
- Department of Neuropharmacology, Scripps Research Institute, La Jolla, CA 92037
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Gegelashvili G, Schousboe A, Linnemann D. Expression of amyloid precursor protein (APP) in rat brain and cultured neural cells. Int J Dev Neurosci 1994; 12:703-8. [PMID: 7747597 DOI: 10.1016/0736-5748(94)90050-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cell type-specific and developmental patterns of APP expression were investigated in rat brain and cultured neural cells. Nearly all astrocytes were APP-positive, whereas only selected population of neurons appeared to express APP. In these neurons, APP immunoreactivity was preferentially restricted to single processes. mRNAs encoding the major APP isoforms, APP695 and APP770, were co-expressed as 3.4-3.6 kb transcripts both in astrocytes and neurons. In addition, an unusual 2.8 kb mRNA size class was revealed in cultured cerebellar granule neurons by means of the probe recognizing APP770 mRNA. Also, for the first time, APP714 mRNA was detected in rat brain by northern blotting. The steady-state levels of these transcripts were increased from birth up to postnatal day 20, whereas no apparent changes were observed after reaching adulthood. These data hint at the involvement of APP in the major morphogenetic events taking place in rat brain during the first three postnatal weeks.
Collapse
Affiliation(s)
- G Gegelashvili
- Sarajishvili Institute of Clinical and Experimental Neurology, Tbilisi, Republic of Georgia
| | | | | |
Collapse
|