1
|
Cheng X, Chen X, Zhang M, Wan Y, Ge S, Cheng X. Sparcl1 and Atherosclerosis. J Inflamm Res 2023; 16:2121-2127. [PMID: 37220502 PMCID: PMC10200116 DOI: 10.2147/jir.s406907] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/03/2023] [Indexed: 05/25/2023] Open
Abstract
Atherosclerosis and its complications constitute some of the major diseases affecting humans worldwide. A core component of atherogenesis is endothelial cell damage and dysfunction, which also includes factors such as adhesion and proliferation of various cells. Multiple studies have shown that atherosclerosis and cancer share a common pathophysiological process and exhibit a degree of similarity. Sparcl-1 is a cysteine-rich secretory stromal cell protein present in the extracellular matrix and belongs to the Sparc family of proteins. Its role in tumor development has been widely investigated; however, its role in cardiovascular diseases has rarely been studied. Sparcl-1 is considered an oncogene correlated with the regulation of cell adhesion, migration, and proliferation and is also related to blood vessel integrity. In this review, the potential link between Sparcl-1 and atherosclerosis development is investigated, and recommendations on future research on the role of Sparcl-1 in atherogenesis are provided.
Collapse
Affiliation(s)
- Xu Cheng
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People’s Republic of China
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, Anhui, 230022, People’s Republic of China
| | - Xinyan Chen
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, Anhui, 230022, People’s Republic of China
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People’s Republic of China
| | - Min Zhang
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People’s Republic of China
| | - Yufeng Wan
- Department of Otolaryngology-Head Neck Surgery, the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui, 238001, People’s Republic of China
| | - Shenglin Ge
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People’s Republic of China
| | - Xiaowen Cheng
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, Anhui, 230022, People’s Republic of China
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People’s Republic of China
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, Anhui, 233030, People’s Republic of China
| |
Collapse
|
2
|
Nuñez-delMoral A, Bianchi PC, Brocos-Mosquera I, Anesio A, Palombo P, Camarini R, Cruz FC, Callado LF, Vialou V, Erdozain AM. The Matricellular Protein Hevin Is Involved in Alcohol Use Disorder. Biomolecules 2023; 13:biom13020234. [PMID: 36830603 PMCID: PMC9953008 DOI: 10.3390/biom13020234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
Astrocytic-secreted matricellular proteins have been shown to influence various aspects of synaptic function. More recently, they have been found altered in animal models of psychiatric disorders such as drug addiction. Hevin (also known as Sparc-like 1) is a matricellular protein highly expressed in the adult brain that has been implicated in resilience to stress, suggesting a role in motivated behaviors. To address the possible role of hevin in drug addiction, we quantified its expression in human postmortem brains and in animal models of alcohol abuse. Hevin mRNA and protein expression were analyzed in the postmortem human brain of subjects with an antemortem diagnosis of alcohol use disorder (AUD, n = 25) and controls (n = 25). All the studied brain regions (prefrontal cortex, hippocampus, caudate nucleus and cerebellum) in AUD subjects showed an increase in hevin levels either at mRNA or/and protein levels. To test if this alteration was the result of alcohol exposure or indicative of a susceptibility factor to alcohol consumption, mice were exposed to different regimens of intraperitoneal alcohol administration. Hevin protein expression was increased in the nucleus accumbens after withdrawal followed by a ethanol challenge. The role of hevin in AUD was determined using an RNA interference strategy to downregulate hevin expression in nucleus accumbens astrocytes, which led to increased ethanol consumption. Additionally, ethanol challenge after withdrawal increased hevin levels in blood plasma. Altogether, these results support a novel role for hevin in the neurobiology of AUD.
Collapse
Affiliation(s)
- Amaia Nuñez-delMoral
- Department of Pharmacology, University of the Basque Country, UPV/EHU, 48940 Leioa, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Paula C. Bianchi
- Department of Pharmacology, Universidade Federal de São Paulo-UNIFESP, São Paulo 04023-062, Brazil
| | - Iria Brocos-Mosquera
- Department of Pharmacology, University of the Basque Country, UPV/EHU, 48940 Leioa, Spain
| | - Augusto Anesio
- Department of Pharmacology, Universidade Federal de São Paulo-UNIFESP, São Paulo 04023-062, Brazil
| | - Paola Palombo
- Department of Pharmacology, Universidade Federal de São Paulo-UNIFESP, São Paulo 04023-062, Brazil
| | - Rosana Camarini
- Department of Pharmacology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil
| | - Fabio C. Cruz
- Department of Pharmacology, Universidade Federal de São Paulo-UNIFESP, São Paulo 04023-062, Brazil
| | - Luis F. Callado
- Department of Pharmacology, University of the Basque Country, UPV/EHU, 48940 Leioa, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
- Biocruces-Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Vincent Vialou
- Institute of Biology Paris Seine, Neuroscience Paris Seine, CNRS UMR8246, INSERM U1130, Sorbonne Université, 75005 Paris, France
- Correspondence: (V.V.); (A.M.E.); Tel.: +33-1-44-27-60-98 (V.V.); +34-601-28-48 (A.M.E.)
| | - Amaia M. Erdozain
- Department of Pharmacology, University of the Basque Country, UPV/EHU, 48940 Leioa, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
- Correspondence: (V.V.); (A.M.E.); Tel.: +33-1-44-27-60-98 (V.V.); +34-601-28-48 (A.M.E.)
| |
Collapse
|
3
|
He K, Li C, Yuan H, Jiang K, Deng G. Immunological role and prognostic value of SPARCL1 in pan-cancer analysis. Pathol Oncol Res 2022; 28:1610687. [PMID: 36483097 PMCID: PMC9722748 DOI: 10.3389/pore.2022.1610687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022]
Abstract
Background: Secreted protein acidic and rich in cysteine-like 1 (SPARCL1) was a kind of extracellular matrix glycoprotein. SPARCL1 was strongly inhibited in most cancers. However, the potential functions of SPARCL1 in the pan-cancer cohort have not been widely studied. Methods: We evaluated the transcriptional level and the prognostic value of SPARCL1 in 33 types of cancer and revealed the relationship between genetic alterations of SPARCL1 and the tumor mutation burden. Meanwhile, we assessed the correlations between SPARCL1 and tumor-infiltrating lymphocytes across cancers. Results: The transcriptional level of SPARCL1 was inhibited in most cancers. Although SPARCL1 was down-regulated in most cancers, SPARCL1 might play a protective or detrimental role in different cancers. We demonstrated that mutation count was elevated in the altered SPARCL1 group in several cancers. Additionally, we found a significant positive correlation between SPARCL1 and macrophage infiltration levels in most cancers. Especially, marker sets of M2 macrophages were strongly related to SPARCL1 in cholangiocarcinoma, colon adenocarcinoma, rectum adenocarcinoma, and pancreatic adenocarcinoma. Conclusion: Our study found that SPARCL1 might work as a biomarker for prognosis and immune infiltration in pan-cancer analysis.
Collapse
Affiliation(s)
- Kangwei He
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China,Department of Urology Affiliated Hangzhou First People’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Changjiu Li
- Department of Urology Affiliated Hangzhou First People’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hui Yuan
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China,Department of Urology Affiliated Hangzhou First People’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kang Jiang
- Department of Urology Affiliated Hangzhou First People’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Gang Deng
- Department of Urology Affiliated Hangzhou First People’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China,*Correspondence: Gang Deng,
| |
Collapse
|
4
|
Characterization of Hevin (SPARCL1) Immunoreactivity in Postmortem Human Brain Homogenates. Neuroscience 2021; 467:91-109. [PMID: 34033869 DOI: 10.1016/j.neuroscience.2021.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 11/22/2022]
Abstract
Hevin is a matricellular glycoprotein that plays important roles in neural developmental processes such as neuronal migration, synaptogenesis and synaptic plasticity. In contrast to other matricellular proteins whose expression decreases when development is complete, hevin remains highly expressed, suggesting its involvement in adult brain function. In vitro studies have shown that hevin can have different post-translational modifications. However, the glycosylation pattern of hevin in the human brain remains unknown, as well as its relative distribution and localization. The present study provides the first thorough characterization of hevin protein expression by Western blot in postmortem adult human brain. Our results demonstrated two major specific immunoreactive bands for hevin: an intense band migrating around 130 kDa, and a band migrating around 100 kDa. Biochemical assays revealed that both hevin bands have a different glycosylation pattern. Subcellular fractionation showed greater expression in membrane-enriched fraction than in cytosolic preparation, and a higher expression in prefrontal cortex (PFC) compared to hippocampus (HIP), caudate nucleus (CAU) and cerebellum (CB). We confirmed that a disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS4) and matrixmetalloproteinase 3 (MMP-3) proteases digestion led to an intense double band with similar molecular weight to that described as SPARC-like fragment (SLF). Finally, hevin immunoreactivity was also detected in human astrocytoma, meningioma, cerebrospinal fluid and serum samples, but was absent from any blood cell type.
Collapse
|
5
|
Ge L, Zhuo Y, Wu P, Liu Y, Qi L, Teng X, Duan D, Chen P, Lu M. Olfactory ensheathing cells facilitate neurite sprouting and outgrowth by secreting high levels of hevin. J Chem Neuroanat 2019; 104:101728. [PMID: 31783092 DOI: 10.1016/j.jchemneu.2019.101728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
Abstract
Transplantation of olfactory ensheathing cells (OECs) has been shown to enhance synapse formation. However, the mechanisms underlying this effect are not completely understood. We performed profiling of the OEC and astrocyte secretomes via a proteomics approach, in case hevin secreted by astrocytes might be involved in the formation of synapses. Semi-quantitative proteomic analysis revealed that 25 proteins were highly expressed, and 22 were weakly expressed in OEC conditioned medium compared with astrocyte conditioned medium. These molecules are highly associated with neural differentiation and regeneration, enzyme regulatory activity, and growth factor binding. The quantification data of clusterin, fibronectin, hevin, insulin-like growth factor binding protein 2 and secreted protein acidic and rich in cysteine were further confirmed by western blotting. Moreover, the addition of hevin in the culture medium improved neurite sprouting and outgrowth of differentiated neural stem cells. The greater expression of hevin in OEC conditioned medium than in astrocyte conditioned medium was associated with a greater capacity of synaptic formation. Thus, our results indicate that soluble factors secreted by OECs provide a permissive environment for nerve repair, and hevin is one of the key molecules facilitating neurite sprouting and outgrowth.
Collapse
Affiliation(s)
- Lite Ge
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China; Hunan Provincial Key Laboratory of Neurorestoratology, the Second Affiliated Hospital (the 921st Hospital of PLA), Hunan Normal University, Changsha,China
| | - Yi Zhuo
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China; Hunan Provincial Key Laboratory of Neurorestoratology, the Second Affiliated Hospital (the 921st Hospital of PLA), Hunan Normal University, Changsha,China
| | - Pei Wu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yisong Liu
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Linyu Qi
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xiaohua Teng
- Hunan Provincial Key Laboratory of Neurorestoratology, the Second Affiliated Hospital (the 921st Hospital of PLA), Hunan Normal University, Changsha,China
| | - Da Duan
- Hunan Provincial Key Laboratory of Neurorestoratology, the Second Affiliated Hospital (the 921st Hospital of PLA), Hunan Normal University, Changsha,China.
| | - Ping Chen
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China.
| | - Ming Lu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China; Hunan Provincial Key Laboratory of Neurorestoratology, the Second Affiliated Hospital (the 921st Hospital of PLA), Hunan Normal University, Changsha,China.
| |
Collapse
|
6
|
Wang Y, Liu S, Yan Y, Li S, Tong H. SPARCL1 promotes C2C12 cell differentiation via BMP7-mediated BMP/TGF-β cell signaling pathway. Cell Death Dis 2019; 10:852. [PMID: 31699966 PMCID: PMC6838091 DOI: 10.1038/s41419-019-2049-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/23/2019] [Accepted: 10/07/2019] [Indexed: 12/21/2022]
Abstract
The extracellular matrix (ECM) is known to regulate tissue development and cell morphology, movement, and differentiation. SPARCL1 is an ECM protein, but its role in mouse cell differentiation has not been widely investigated. The results of western blotting and immunofluorescence showed that SPARCL1 is associated with the repair of muscle damage in mice and that SPARCL1 binds to bone morphogenetic protein 7 (BMP7) by regulating BMP/transforming growth factor (TGF)-β cell signaling. This pathway promotes the differentiation of C2C12 cells. Using CRISPR/Cas9 technology, we also showed that SPARCL1 activates BMP/TGF-β to promote the differentiation of C2C12 cells. BMP7 molecules were found to interact with SPARCL1 by immunoprecipitation analysis. Western blotting and immunofluorescence were performed to verify the effect of BMP7 on C2C12 cell differentiation. Furthermore, SPARCL1 was shown to influence the expression of BMP7 and activity of the BMP/TGF-β signaling pathway. Finally, SPARCL1 activation was accompanied by BMP7 inhibition in C2C12 cells, which confirmed that SPARCL1 affects BMP7 expression and can promote C2C12 cell differentiation through the BMP/TGF-β pathway. The ECM is essential for muscle regeneration and damage repair. This study intends to improve the understanding of the molecular mechanisms of muscle development and provide new treatment ideas for muscle injury diseases.
Collapse
Affiliation(s)
- YuXin Wang
- The Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - ShuaiYu Liu
- The Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - YunQin Yan
- The Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - ShuFeng Li
- The Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - HuiLi Tong
- The Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China. .,Life Science and Biotechnology Research Center, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| |
Collapse
|
7
|
Cartography of hevin-expressing cells in the adult brain reveals prominent expression in astrocytes and parvalbumin neurons. Brain Struct Funct 2019; 224:1219-1244. [PMID: 30656447 DOI: 10.1007/s00429-019-01831-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 01/08/2019] [Indexed: 02/03/2023]
Abstract
Hevin, also known as SPARC-like 1, is a member of the secreted protein acidic and rich in cysteine family of matricellular proteins, which has been implicated in neuronal migration and synaptogenesis during development. Unlike previously characterized matricellular proteins, hevin remains strongly expressed in the adult brain in both astrocytes and neurons, but its precise pattern of expression is unknown. The present study provides the first systematic description of hevin mRNA distribution in the adult mouse brain. Using isotopic in situ hybridization, we showed that hevin is strongly expressed in the cortex, hippocampus, basal ganglia complex, diverse thalamic nuclei and brainstem motor nuclei. To identify the cellular phenotype of hevin-expressing cells, we used double fluorescent in situ hybridization in mouse and human adult brains. In the mouse, hevin mRNA was found in the majority of astrocytes but also in specific neuronal populations. Hevin was expressed in almost all parvalbumin-positive projection neurons and local interneurons. In addition, hevin mRNA was found in: (1) subsets of other inhibitory GABAergic neuronal subtypes, including calbindin, cholecystokinin, neuropeptide Y, and somatostatin-positive neurons; (2) subsets of glutamatergic neurons, identified by the expression of the vesicular glutamate transporters VGLUT1 and VGLUT2; and (3) the majority of cholinergic neurons from motor nuclei. Hevin mRNA was absent from all monoaminergic neurons and cholinergic neurons of the ascending pathway. A similar cellular profile of expression was observed in human, with expression of hevin in parvalbumin interneurons and astrocytes in the cortex and caudate nucleus as well as in cortical glutamatergic neurons. Furthermore, hevin transcript was enriched in ribosomes of astrocytes and parvalbumin neurons providing a direct evidence of hevin mRNAs translation in these cell types. This study reveals the unique and complex expression profile of the matricellular protein hevin in the adult brain. This distribution is compatible with a role of hevin in astrocytic-mediated adult synaptic plasticity and in the regulation of network activity mediated by parvalbumin-expressing neurons.
Collapse
|
8
|
Merkurjev D, Hong WT, Iida K, Oomoto I, Goldie BJ, Yamaguti H, Ohara T, Kawaguchi SY, Hirano T, Martin KC, Pellegrini M, Wang DO. Synaptic N6-methyladenosine (m6A) epitranscriptome reveals functional partitioning of localized transcripts. Nat Neurosci 2018; 21:1004-1014. [DOI: 10.1038/s41593-018-0173-6] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 05/14/2018] [Indexed: 01/21/2023]
|
9
|
Ferrer-Ferrer M, Dityatev A. Shaping Synapses by the Neural Extracellular Matrix. Front Neuroanat 2018; 12:40. [PMID: 29867379 PMCID: PMC5962695 DOI: 10.3389/fnana.2018.00040] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/25/2018] [Indexed: 11/13/2022] Open
Abstract
Accumulating data support the importance of interactions between pre- and postsynaptic neuronal elements with astroglial processes and extracellular matrix (ECM) for formation and plasticity of chemical synapses, and thus validate the concept of a tetrapartite synapse. Here we outline the major mechanisms driving: (i) synaptogenesis by secreted extracellular scaffolding molecules, like thrombospondins (TSPs), neuronal pentraxins (NPs) and cerebellins, which respectively promote presynaptic, postsynaptic differentiation or both; (ii) maturation of synapses via reelin and integrin ligands-mediated signaling; and (iii) regulation of synaptic plasticity by ECM-dependent control of induction and consolidation of new synaptic configurations. Particularly, we focused on potential importance of activity-dependent concerted activation of multiple extracellular proteases, such as ADAMTS4/5/15, MMP9 and neurotrypsin, for permissive and instructive events in synaptic remodeling through localized degradation of perisynaptic ECM and generation of proteolytic fragments as inducers of synaptic plasticity.
Collapse
Affiliation(s)
- Maura Ferrer-Ferrer
- Molecular Neuroplasticity German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Alexander Dityatev
- Molecular Neuroplasticity German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.,Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
10
|
Liu C, Tong H, Li S, Yan Y. Effect of ECM2 expression on bovine skeletal muscle-derived satellite cell differentiation. Cell Biol Int 2018; 42:525-532. [PMID: 29274297 DOI: 10.1002/cbin.10927] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 12/20/2017] [Indexed: 12/27/2022]
Abstract
Extracellular matrix components have important regulatory functions during cell proliferation and differentiation. In recent study, extracellular matrix were shown to have a strong effect on skeletal muscle differentiation. Here, we aimed to elucidate the effects of extracellular matrix protein 2 (ECM2), an extracellular matrix component, on the differentiation of bovine skeletal muscle-derived satellite cells (MDSCs). Western blot and immunofluorescence analyses were used to elucidate the ECM2 expression pattern in bovine MDSCs during differentiation in vitro. CRISPR/Cas9 technology was used to activate or inhibit ECM2 expression to study its effects on the in vitro differentiation of bovine MDSCs. ECM2 expression was shown to increase gradually during bovine MDSC differentiation, and the levels of this protein were higher in more highly differentiated myotubes. ECM2 activation promoted MDSC differentiation, whereas its suppression inhibited the differentiation of these cells. Here, for the first time, we demonstrated the importance of ECM2 expression during bovine MDSC differentiation; these results could lead to treatments that help to increase beef cattle muscularity.
Collapse
Affiliation(s)
- Chang Liu
- The Laboratory of Cell and Development, Northeast Agricultural University, Changjiang Road No. 600, Xiang Fang Strict, Harbin, Heilongjiang, 150030, China
| | - Huili Tong
- The Laboratory of Cell and Development, Northeast Agricultural University, Changjiang Road No. 600, Xiang Fang Strict, Harbin, Heilongjiang, 150030, China
| | - Shufeng Li
- The Laboratory of Cell and Development, Northeast Agricultural University, Changjiang Road No. 600, Xiang Fang Strict, Harbin, Heilongjiang, 150030, China
| | - Yunqin Yan
- The Laboratory of Cell and Development, Northeast Agricultural University, Changjiang Road No. 600, Xiang Fang Strict, Harbin, Heilongjiang, 150030, China
| |
Collapse
|
11
|
Li T, Liu X, Yang A, Fu W, Yin F, Zeng X. Associations of tumor suppressor SPARCL1 with cancer progression and prognosis. Oncol Lett 2017; 14:2603-2610. [PMID: 28927026 PMCID: PMC5588123 DOI: 10.3892/ol.2017.6546] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 04/13/2017] [Indexed: 01/03/2023] Open
Abstract
SPARC-like protein 1 (SPARCL1), a member of the family of secreted proteins which is acidic and rich in cysteine, is a potential tumor suppressor gene in most types of tumor. A systemic review and bioinformatics analysis was carried out to determine the associations between SPARCL1 and tumor progression and clinical factors. Downregulation of SPARCL1, thought to be regulated by epigenetic modifications including DNA methylation, serves important functions in tumor progression and development, with its regulatory functions on cell viability, migration, invasion, cell adhesion and drug resistance. Downregulation of SPARCL1 was markedly associated with a poor overall survival rate of patients with one of ≥7 solid tumors and predicted increased mortality in patients with one of ≥4 distinct tumor types. The present review indicated that SPARCL1 may be a therapeutic target for cancer treatment and a biomarker to determine prognosis.
Collapse
Affiliation(s)
- Ting Li
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xia Liu
- Centre for Translational Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Antai Yang
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Wenjie Fu
- Centre for Translational Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Fuqiang Yin
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Key Laboratory of High-Incidence-Tumor Prevention and Treatment, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiaoyun Zeng
- Key Laboratory of High-Incidence-Tumor Prevention and Treatment, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
12
|
Miller SJ, Zhang PW, Glatzer J, Rothstein JD. Astroglial transcriptome dysregulation in early disease of an ALS mutant SOD1 mouse model. J Neurogenet 2016; 31:37-48. [DOI: 10.1080/01677063.2016.1260128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Sean J. Miller
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Brain Science Institute, Johns Hopkins University, Baltimore, MD, USA
- Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ping-wu Zhang
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Brain Science Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Jenna Glatzer
- The Brain Science Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Jeffrey D. Rothstein
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Brain Science Institute, Johns Hopkins University, Baltimore, MD, USA
- Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
13
|
Martinek N, Shahab J, Sodek J, Ringuette M. Is SPARC an Evolutionarily Conserved Collagen Chaperone? J Dent Res 2016; 86:296-305. [PMID: 17384023 DOI: 10.1177/154405910708600402] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The construction of collagen fiber scaffolds, which provide the structural integrity of the extracellular matrix of connective tissues and basement membranes, is initiated by a complex mechanism of protein-folding, whereby pro-collagen α-chains are assembled into triple-helical procollagen molecules. This unique assembly of the procollagen molecules is guided by several endoplasmic reticulum resident molecular chaperones, including HSP47, which dissociates from procollagen molecules prior to their transport from the endoplasmic reticulum into the cis-Golgi network. SPARC, an evolutionarily conserved collagen-binding glycoprotein, which is frequently co-expressed with collagen in rapidly remodeling tissues, binds to the triple-helical region of procollagen molecules. Analysis of data from genome projects indicates that specific amino acids and sequences in SPARC that are critical for collagen binding are evolutionarily conserved in organisms ranging from nematodes to mammals. Studies of invertebrates, which do not encode HSP47, indicate that SPARC expression is required for the deposition of collagen IV in basal lamina during embryonic development. In mammals, defects in collagen deposition have been observed in normal and wound-healing tissues in the absence of SPARC expression. Based on these and other observations, we propose that intracellular SPARC acts as a collagen molecular chaperone in the endoplasmic reticulum, and that in higher organisms, SPARC acts in concert with HSP47 to ensure that only correctly folded procollagen molecules exit the endoplasmic reticulum. In contrast to HSP47, SPARC is transported from the endoplasmic reticulum through the Golgi network and into secretory vesicles for exocytosis at the plasma membrane. Hence, SPARC may also play a role in regulating post-endoplasmic reticulum events that promote collagen fibrillogenesis.
Collapse
Affiliation(s)
- N Martinek
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, Canada M5S 3G5
| | | | | | | |
Collapse
|
14
|
Singh SK, Stogsdill JA, Pulimood NS, Dingsdale H, Kim YH, Pilaz LJ, Kim IH, Manhaes AC, Rodrigues WS, Pamukcu A, Enustun E, Ertuz Z, Scheiffele P, Soderling SH, Silver DL, Ji RR, Medina AE, Eroglu C. Astrocytes Assemble Thalamocortical Synapses by Bridging NRX1α and NL1 via Hevin. Cell 2016; 164:183-196. [PMID: 26771491 DOI: 10.1016/j.cell.2015.11.034] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 08/18/2015] [Accepted: 11/10/2015] [Indexed: 11/16/2022]
Abstract
Proper establishment of synapses is critical for constructing functional circuits. Interactions between presynaptic neurexins and postsynaptic neuroligins coordinate the formation of synaptic adhesions. An isoform code determines the direct interactions of neurexins and neuroligins across the synapse. However, whether extracellular linker proteins can expand such a code is unknown. Using a combination of in vitro and in vivo approaches, we found that hevin, an astrocyte-secreted synaptogenic protein, assembles glutamatergic synapses by bridging neurexin-1alpha and neuroligin-1B, two isoforms that do not interact with each other. Bridging of neurexin-1alpha and neuroligin-1B via hevin is critical for the formation and plasticity of thalamocortical connections in the developing visual cortex. These results show that astrocytes promote the formation of synapses by modulating neurexin/neuroligin adhesions through hevin secretion. Our findings also provide an important mechanistic insight into how mutations in these genes may lead to circuit dysfunction in diseases such as autism.
Collapse
Affiliation(s)
- Sandeep K Singh
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710.
| | - Jeff A Stogsdill
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710
| | - Nisha S Pulimood
- Department of Pediatrics, University of Maryland, School of Medicine, Baltimore, MD 21201
| | - Hayley Dingsdale
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710
| | - Yong Ho Kim
- Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710
| | - Louis-Jan Pilaz
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710
| | - Il Hwan Kim
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710
| | - Alex C Manhaes
- Department of Pediatrics, University of Maryland, School of Medicine, Baltimore, MD 21201
| | - Wandilson S Rodrigues
- Department of Pediatrics, University of Maryland, School of Medicine, Baltimore, MD 21201
| | - Arin Pamukcu
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710
| | - Eray Enustun
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710
| | - Zeynep Ertuz
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710
| | | | - Scott H Soderling
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710; Duke Institute for Brain Sciences (DIBS), Durham, NC 27710
| | - Debra L Silver
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710; Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710; Duke Institute for Brain Sciences (DIBS), Durham, NC 27710
| | - Ru-Rong Ji
- Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710
| | - Alexandre E Medina
- Department of Pediatrics, University of Maryland, School of Medicine, Baltimore, MD 21201
| | - Cagla Eroglu
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710; Duke Institute for Brain Sciences (DIBS), Durham, NC 27710.
| |
Collapse
|
15
|
Jakharia A, Borkakoty B, Singh S. Expression of SPARC like protein 1 (SPARCL1), extracellular matrix-associated protein is down regulated in gastric adenocarcinoma. J Gastrointest Oncol 2016; 7:278-83. [PMID: 27034797 DOI: 10.3978/j.issn.2078-6891.2015.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND SPARC-like protein 1 (SPARCL1/Hevin), a member of the SPARC family is defined by the presence of a highly acidic domain-I, a follistatin-like domain, and an extracellular calcium (EC) binding domain. SPARCL1 has been shown to be down-regulated in many types of cancer and may serve as a negative regulator of cell growth and proliferation. METHODS Both tumor and adjacent normal tissue were collected from patients with gastric adenocarcinoma. Monoclonal antibody developed against recombinant SPARCL1 was used to analyze the expression of SPARCL1 by immunohisto chemical and western blotting (WB) analysis. RESULTS The expression of SPARCL1 was found to be significantly lower or negligible in gastric adenocarcinoma tissues in nearly all of the cases in comparison with adjacent normal tissue. This comparison was found to be independent of the patient's age, sex, and stage of cancer. CONCLUSIONS We postulate that down regulation of SPARCL1 may be related to inactivation of its tumor suppressor functions and might play an important role in the development of gastric adenocarcinoma.
Collapse
Affiliation(s)
- Aniruddha Jakharia
- 1 Imgenex India Pvt. Ltd., Bhubaneswar, India ; 2 Regional Medical Research Centre for NE Region (Indian Council of Medical Research), Assam, India
| | - Biswajyoti Borkakoty
- 1 Imgenex India Pvt. Ltd., Bhubaneswar, India ; 2 Regional Medical Research Centre for NE Region (Indian Council of Medical Research), Assam, India
| | - Sujay Singh
- 1 Imgenex India Pvt. Ltd., Bhubaneswar, India ; 2 Regional Medical Research Centre for NE Region (Indian Council of Medical Research), Assam, India
| |
Collapse
|
16
|
Chung WS, Allen NJ, Eroglu C. Astrocytes Control Synapse Formation, Function, and Elimination. Cold Spring Harb Perspect Biol 2015; 7:a020370. [PMID: 25663667 DOI: 10.1101/cshperspect.a020370] [Citation(s) in RCA: 502] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Astrocytes, through their close associations with synapses, can monitor and alter synaptic function, thus actively controlling synaptic transmission in the adult brain. Besides their important role at adult synapses, in the last three decades a number of critical findings have highlighted the importance of astrocytes in the establishment of synaptic connectivity in the developing brain. In this article, we will review the key findings on astrocytic control of synapse formation, function, and elimination. First, we will summarize our current structural and functional understanding of astrocytes at the synapse. Then, we will discuss the cellular and molecular mechanisms through which developing and mature astrocytes instruct the formation, maturation, and refinement of synapses. Our aim is to provide an overview of astrocytes as important players in the establishment of a functional nervous system.
Collapse
Affiliation(s)
- Won-Suk Chung
- Stanford University, School of Medicine, Department of Neurobiology, Stanford, California 94305
| | - Nicola J Allen
- Salk Institute for Biological Studies, Molecular Neurobiology Laboratory, La Jolla, California 92037
| | - Cagla Eroglu
- Duke University Medical Center, Cell Biology and Neurobiology Departments, Duke Institute for Brain Sciences, Durham, North Carolina 27710
| |
Collapse
|
17
|
Risher WC, Patel S, Kim IH, Uezu A, Bhagat S, Wilton DK, Pilaz LJ, Singh Alvarado J, Calhan OY, Silver DL, Stevens B, Calakos N, Soderling SH, Eroglu C. Astrocytes refine cortical connectivity at dendritic spines. eLife 2014; 3. [PMID: 25517933 PMCID: PMC4286724 DOI: 10.7554/elife.04047] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 12/16/2014] [Indexed: 11/13/2022] Open
Abstract
During cortical synaptic development, thalamic axons must establish synaptic connections despite the presence of the more abundant intracortical projections. How thalamocortical synapses are formed and maintained in this competitive environment is unknown. Here, we show that astrocyte-secreted protein hevin is required for normal thalamocortical synaptic connectivity in the mouse cortex. Absence of hevin results in a profound, long-lasting reduction in thalamocortical synapses accompanied by a transient increase in intracortical excitatory connections. Three-dimensional reconstructions of cortical neurons from serial section electron microscopy (ssEM) revealed that, during early postnatal development, dendritic spines often receive multiple excitatory inputs. Immuno-EM and confocal analyses revealed that majority of the spines with multiple excitatory contacts (SMECs) receive simultaneous thalamic and cortical inputs. Proportion of SMECs diminishes as the brain develops, but SMECs remain abundant in Hevin-null mice. These findings reveal that, through secretion of hevin, astrocytes control an important developmental synaptic refinement process at dendritic spines.
Collapse
Affiliation(s)
- W Christopher Risher
- Department of Cell Biology, Duke University Medical Center, Durham, United States
| | - Sagar Patel
- Department of Cell Biology, Duke University Medical Center, Durham, United States
| | - Il Hwan Kim
- Department of Cell Biology, Duke University Medical Center, Durham, United States
| | - Akiyoshi Uezu
- Department of Cell Biology, Duke University Medical Center, Durham, United States
| | - Srishti Bhagat
- Department of Neurobiology, Duke University Medical Center, Durham, United States
| | - Daniel K Wilton
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, United States
| | - Louis-Jan Pilaz
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
| | | | - Osman Y Calhan
- Department of Cell Biology, Duke University Medical Center, Durham, United States
| | - Debra L Silver
- Department of Cell Biology, Duke University Medical Center, Durham, United States
| | - Beth Stevens
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, United States
| | - Nicole Calakos
- Department of Neurobiology, Duke University Medical Center, Durham, United States
| | - Scott H Soderling
- Department of Cell Biology, Duke University Medical Center, Durham, United States
| | - Cagla Eroglu
- Department of Cell Biology, Duke University Medical Center, Durham, United States
| |
Collapse
|
18
|
Lundberg YW, Xu Y, Thiessen KD, Kramer KL. Mechanisms of otoconia and otolith development. Dev Dyn 2014; 244:239-53. [PMID: 25255879 DOI: 10.1002/dvdy.24195] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 08/25/2014] [Accepted: 08/26/2014] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Otoconia are bio-crystals that couple mechanic forces to the sensory hair cells in the utricle and saccule, a process essential for us to sense linear acceleration and gravity for the purpose of maintaining bodily balance. In fish, structurally similar bio-crystals called otoliths mediate both balance and hearing. Otoconia abnormalities are common and can cause vertigo and imbalance in humans. However, the molecular etiology of these illnesses is unknown, as investigators have only begun to identify genes important for otoconia formation in recent years. RESULTS To date, in-depth studies of selected mouse otoconial proteins have been performed, and about 75 zebrafish genes have been identified to be important for otolith development. CONCLUSIONS This review will summarize recent findings as well as compare otoconia and otolith development. It will provide an updated brief review of otoconial proteins along with an overview of the cells and cellular processes involved. While continued efforts are needed to thoroughly understand the molecular mechanisms underlying otoconia and otolith development, it is clear that the process involves a series of temporally and spatially specific events that are tightly coordinated by numerous proteins. Such knowledge will serve as the foundation to uncover the molecular causes of human otoconia-related disorders.
Collapse
Affiliation(s)
- Yunxia Wang Lundberg
- Vestibular Genetics Laboratory, Boys Town National Research Hospital, Omaha, Nebraska
| | | | | | | |
Collapse
|
19
|
Lundberg YW, Xu Y, Thiessen KD, Kramer KL. Mechanisms of otoconia and otolith development. Dev Dyn 2014. [PMID: 25255879 DOI: 10.1002/dvdy.24195(2014)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Otoconia are bio-crystals that couple mechanic forces to the sensory hair cells in the utricle and saccule, a process essential for us to sense linear acceleration and gravity for the purpose of maintaining bodily balance. In fish, structurally similar bio-crystals called otoliths mediate both balance and hearing. Otoconia abnormalities are common and can cause vertigo and imbalance in humans. However, the molecular etiology of these illnesses is unknown, as investigators have only begun to identify genes important for otoconia formation in recent years. RESULTS To date, in-depth studies of selected mouse otoconial proteins have been performed, and about 75 zebrafish genes have been identified to be important for otolith development. CONCLUSIONS This review will summarize recent findings as well as compare otoconia and otolith development. It will provide an updated brief review of otoconial proteins along with an overview of the cells and cellular processes involved. While continued efforts are needed to thoroughly understand the molecular mechanisms underlying otoconia and otolith development, it is clear that the process involves a series of temporally and spatially specific events that are tightly coordinated by numerous proteins. Such knowledge will serve as the foundation to uncover the molecular causes of human otoconia-related disorders.
Collapse
Affiliation(s)
- Yunxia Wang Lundberg
- Vestibular Genetics Laboratory, Boys Town National Research Hospital, Omaha, Nebraska
| | | | | | | |
Collapse
|
20
|
Chatterjee A, Villarreal G, Rhee DJ. Matricellular proteins in the trabecular meshwork: review and update. J Ocul Pharmacol Ther 2014; 30:447-63. [PMID: 24901502 DOI: 10.1089/jop.2014.0013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Abstract Primary open-angle glaucoma (POAG) is a leading cause of blindness worldwide, and intraocular pressure (IOP) is an important modifiable risk factor. IOP is a function of aqueous humor production and aqueous humor outflow, and it is thought that prolonged IOP elevation leads to optic nerve damage over time. Within the trabecular meshwork (TM), the eye's primary drainage system for aqueous humor, matricellular proteins generally allow cells to modulate their attachments with and alter the characteristics of their surrounding extracellular matrix (ECM). It is now well established that ECM turnover in the TM affects outflow facility, and matricellular proteins are emerging as significant players in IOP regulation. The formalized study of matricellular proteins in TM has gained increased attention. Secreted protein acidic and rich in cysteine (SPARC), myocilin, connective tissue growth factor (CTGF), and thrombospondin-1 and -2 (TSP-1 and -2) have been localized to the TM, and a growing body of evidence suggests that these matricellular proteins play an important role in IOP regulation and possibly the pathophysiology of POAG. As evidence continues to emerge, these proteins are now seen as potential therapeutic targets. Further study is warranted to assess their utility in treating glaucoma in humans.
Collapse
Affiliation(s)
- Ayan Chatterjee
- Department of Ophthalmology and Visual Sciences, University Hospitals Eye Institute, Case Western Reserve University School of Medicine , Cleveland, Ohio
| | | | | |
Collapse
|
21
|
Astrocyte-secreted matricellular proteins in CNS remodelling during development and disease. Neural Plast 2014; 2014:321209. [PMID: 24551460 PMCID: PMC3914553 DOI: 10.1155/2014/321209] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 12/18/2013] [Indexed: 12/20/2022] Open
Abstract
Matricellular proteins are secreted, nonstructural proteins that regulate the extracellular matrix (ECM) and interactions between cells through modulation of growth factor signaling, cell adhesion, migration, and proliferation. Despite being well described in the context of nonneuronal tissues, recent studies have revealed that these molecules may also play instrumental roles in central nervous system (CNS) development and diseases. In this minireview, we discuss the matricellular protein families SPARC (secreted protein acidic and rich in cysteine), Hevin/SC1 (SPARC-like 1), TN-C (Tenascin C), TSP (Thrombospondin), and CCN (CYR61/CTGF/NOV), which are secreted by astrocytes during development. These proteins exhibit a reduced expression in adult CNS but are upregulated in reactive astrocytes following injury or disease, where they are well placed to modulate the repair processes such as tissue remodeling, axon regeneration, glial scar formation, angiogenesis, and rewiring of neural circuitry. Conversely, their reexpression in reactive astrocytes may also lead to detrimental effects and promote the progression of neurodegenerative diseases.
Collapse
|
22
|
Chaurasia SS, Perera PR, Poh R, Lim RR, Wong TT, Mehta JS. Hevin plays a pivotal role in corneal wound healing. PLoS One 2013; 8:e81544. [PMID: 24303054 PMCID: PMC3841198 DOI: 10.1371/journal.pone.0081544] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 10/23/2013] [Indexed: 01/01/2023] Open
Abstract
Background Hevin is a matricellular protein involved in tissue repair and remodeling via interaction with the surrounding extracellular matrix (ECM) proteins. In this study, we examined the functional role of hevin using a corneal stromal wound healing model achieved by an excimer laser-induced irregular phototherapeutic keratectomy (IrrPTK) in hevin-null (hevin-/-) mice. We also investigated the effects of exogenous supplementation of recombinant human hevin (rhHevin) to rescue the stromal cellular components damaged by the excimer laser. Methodology/Principal Findings Wild type (WT) and hevin-/- mice were divided into three groups at 4 time points- 1, 2, 3 and 4 weeks. Group I served as naïve without any treatment. Group II received epithelial debridement and underwent IrrPTK using excimer laser. Group III received topical application of rhHevin after IrrPTK surgery for 3 days. Eyes were analyzed for corneal haze and matrix remodeling components using slit lamp biomicroscopy, in vivo confocal microscopy, light microscopy (LM), transmission electron microscopy (TEM), immunohistochemistry (IHC) and western blotting (WB). IHC showed upregulation of hevin in IrrPTK-injured WT mice. Hevin-/- mice developed corneal haze as early as 1-2 weeks post IrrPTK-treatment compared to the WT group, which peaked at 3-4 weeks. They also exhibited accumulation of inflammatory cells, fibrotic components of ECM proteins and vascularized corneas as seen by IHC and WB. LM and TEM showed activated keratocytes (myofibroblasts), inflammatory debris and vascular tissues in the stroma. Exogenous application of rhHevin for 3 days reinstated inflammatory index of the corneal stroma similar to WT mice. Conclusions/Significance Hevin is transiently expressed in the IrrPTK-injured corneas and loss of hevin predisposes them to aberrant wound healing. Hevin-/- mice develop early corneal haze characterized by severe chronic inflammation and stromal fibrosis that can be rescued with exogenous administration of rhHevin. Thus, hevin plays a pivotal role in the corneal wound healing.
Collapse
Affiliation(s)
- Shyam S. Chaurasia
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore, Singapore
- Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- * E-mail:
| | - Promoda R. Perera
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Rebekah Poh
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Rayne R. Lim
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Tina T. Wong
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore, Singapore
- Singapore National Eye Centre, Singapore, Singapore
- School of Material Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Jodhbir S. Mehta
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore, Singapore
- Singapore National Eye Centre, Singapore, Singapore
- Department of Clinical Sciences, Duke-NUS Graduate Medical School, Singapore, Singapore
| |
Collapse
|
23
|
Lloyd-Burton S, Roskams AJ. SPARC-like 1 (SC1) is a diversely expressed and developmentally regulated matricellular protein that does not compensate for the absence of SPARC in the CNS. J Comp Neurol 2013; 520:2575-90. [PMID: 22173850 DOI: 10.1002/cne.23029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SPARC-like 1 (SC1) is a member of the SPARC family of matricellular proteins that has been implicated in the regulation of processes such as cell migration, proliferation, and differentiation. Here we show that SC1 exhibits remarkably diverse and dynamic expression in the developing and adult nervous system. During development, SC1 localizes to radial glia and pial-derived structures, including the vasculature, choroid plexus, and pial membranes. SC1 is not downregulated in postnatal development, but its expression shifts to distinct time windows in subtypes of glia and neurons, including astrocytes, large projection neurons, Bergmann glia, Schwann cells, and ganglionic satellite cells. In addition, SC1 expression levels and patterns are not altered in the SPARC null mouse, suggesting that SC1 does not compensate for the absence of SPARC. We conclude that SC1 and SPARC may share significant homology, but are likely to have distinct but complementary roles in nervous system development.
Collapse
Affiliation(s)
- Samantha Lloyd-Burton
- Department of Zoology, Life Sciences Institute and Brain Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | | |
Collapse
|
24
|
Hu H, Zhang H, Ge W, Liu X, Loera S, Chu P, Chen H, Peng J, Zhou L, Yu S, Yuan Y, Zhang S, Lai L, Yen Y, Zheng S. Secreted protein acidic and rich in cysteines-like 1 suppresses aggressiveness and predicts better survival in colorectal cancers. Clin Cancer Res 2012; 18:5438-48. [PMID: 22891198 DOI: 10.1158/1078-0432.ccr-12-0124] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Secreted protein acidic and rich in cysteines-like 1 (SPARCL1) is an extracellular matrix glycoprotein with malignancy-suppressing potential. The hypothesis that SPARCL1 reduces cancer invasiveness and predicts better survival in colorectal cancers (CRC) was investigated. EXPERIMENTAL DESIGN Stable SPARCL1 transfectants, RKO-SPARCL1, and corresponding vector control were constructed and implanted into nude mice to generate a mouse xenograft model of liver metastasis. Also, a retrospective outcome study was conducted on the COH set (222 CRCs) and ZJU set (412 CRCs). The protein expression level of SPARCL1 was determined by immunohistochemistry. The Kaplan-Meier and Cox analyses were used for survival analysis. The association of SPARCL1 with mesenchymal-epithelial transition (MET) was examined by reverse transcription PCR (RT-PCR) and Western blot analysis. RESULTS The ectopic expression of SPARCL1 significantly reduced the potential for anchorage-independent growth, migration, invasion and induced cell differentiation in RKO and SW620 cells. In mouse xenograft model, the expression of SPARCL1 significantly reduced the liver metastasis (P < 0.01). The patient-based studies revealed that the expression of SPARCL1 was related to better differentiation (P < 0.01), less lymph node involvement [OR, 0.67; 95% confidence interval (CI), 0.45-1.00], and less distant metastasis (OR, 0.38; 95% CI, 0.18-0.79). The Kaplan-Meier and Cox analysis showed that the expression of SPARCL1 was associated with better overall survival (log-rank: P < 0.01; HR, 0.57; 95% CI, 0.39-0.84). Transfection of SPARCL1 induced MET of colon cancer cells. CONCLUSION SPARCL1 functions as a tumor suppressor promoting differentiation possibly via MET, which inhibits the aggressiveness of CRCs.
Collapse
Affiliation(s)
- Hanguang Hu
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
SC1/hevin identifies early white matter injury after ischemia and intracerebral hemorrhage in young and aged rats. J Neuropathol Exp Neurol 2012; 71:480-93. [PMID: 22588386 DOI: 10.1097/nen.0b013e318256901c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The progression of white matter damage after ischemic and hemorrhagic strokes can exacerbate the initial injury, but little is known about the processes involved. We show that the antiadhesive matricellular glycoprotein SC1 is a novel early marker of white matter damage in 3 models of acute injury in the rat striatum: transient focal ischemia, intracerebral hemorrhage, and a needle penetration wound. SC1 was restricted to the damaged portions of axon bundles that bordered stroke lesions in young-adult and aged rats. SC1 peaked at 1 and 3 days after intracerebral hemorrhage and at 7 days after ischemia. The SC1-positive bundles usually expressed degraded myelin basic protein and amyloid precursor protein, a marker of axonal injury. At the hematoma edge, SC1 was seen in a few axon bundles that retained myelin basic protein staining. In these bundles, punctate SC1 staining filled individual axons, extended beyond a core of pan-axonal neurofilament and NF200 and was inside or overlapped with myelin basic protein staining when it was present. Aged rats had less SC1 (and amyloid precursor protein) after both types of stroke, suggesting a reduced axonal response. SC1 also labeled amyloid precursor protein-positive axon bundles along the needle penetration tract of saline-injected rats; thus, SC1 appears to characterize damaged striatal white matter damage after multiple types of injury.
Collapse
|
26
|
Kijima N, Hosen N, Kagawa N, Hashimoto N, Nakano A, Fujimoto Y, Kinoshita M, Sugiyama H, Yoshimine T. CD166/activated leukocyte cell adhesion molecule is expressed on glioblastoma progenitor cells and involved in the regulation of tumor cell invasion. Neuro Oncol 2011; 14:1254-64. [PMID: 22166264 DOI: 10.1093/neuonc/nor202] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
For improvement of prognosis for glioblastoma patients, which remains poor, identification and targeting of glioblastoma progenitor cells are crucial. In this study, we found that the cluster of differentiation (CD)166/activated leukocyte cell adhesion molecule (ALCAM) was highly expressed on CD133+ glioblastoma progenitor cells. ALCAM+ CD133+ cells were highly enriched with tumor sphere-initiating cells in vitro. Among gliomas with isocitrate dehydrogenase-1/R132H mutation, the frequencies of ALCAM+ cells were significantly higher for glioblastomas than for World Health Organization grade II or III gliomas. The function of ALCAM in glioblastoma was then investigated. An in vitro invasion assay showed that transfection of ALCAM small interfering RNA or small hairpin RNA into glioblastoma cells significantly increased cell invasion without affecting cell proliferation. A soluble isoform of ALCAM (sALCAM) was also expressed in all glioblastoma samples and at levels that correlated well with ALCAM expression levels. In vitro invasion of glioblastoma cells was significantly enhanced by administration of purified sALCAM. Furthermore, overexpression of sALCAM in U87MG glioblastoma cells promoted tumor progression in i.c. transplants into immune-deficient mice. In summary, we were able to show that ALCAM constitutes a novel glioblastoma progenitor cell marker. We could also demonstrate that ALCAM and its soluble isoform are involved in the regulation of glioblastoma invasion and progression.
Collapse
Affiliation(s)
- Noriyuki Kijima
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
SC1/hevin and reactive gliosis after transient ischemic stroke in young and aged rats. J Neuropathol Exp Neurol 2011; 70:913-29. [PMID: 21937915 DOI: 10.1097/nen.0b013e318231151e] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
SC1 is a member of the SPARC family of glycoproteins that regulate cell-matrix interactions in the developing brain. SC1 is expressed in astrocytes, but nothing is known about the expression in the aged or after stroke. We found that after focal striatal ischemic infarction in adult rats, SC1 increased in astrocytes surrounding the infarct and in the glial scar, but in aged rats, SC1 was lower at the lesion edge. Glial fibrillary acidic protein (GFAP) also increased, but it was less prominent in reactive astrocytes further from the lesion in the aged rats. On the basis of their differential expression of several molecules, 2 types of reactive astrocytes with differing spatiotemporal distributions were identified. On Days 3 and 7, SC1 was prevalent in cells expressing markers of classic reactive astrocytes (GFAP, vimentin, nestin, S100β), as well as apoliprotein E (ApoE), interleukin 1β, aggrecanase 1 (ADAMTS4), and heat shock protein 25 (Hsp25). Adjacent to the lesion on Days 1 and 3, astrocytes with low GFAP levels and a "starburst" SC1 pattern expressed S100β, ApoE, and Hsp32 but not vimentin, nestin, interleukin 1β, ADAMTS4, or Hsp25. Neither cell type was immunoreactive for NG2,CC-1, CD11b, or ionized calcium-binding adapter-1. Their differing expression of inflammation-related and putatively protective molecules suggests different roles for starburst and classic reactive astrocytes in the early glial responses to ischemia.
Collapse
|
28
|
Control of excitatory CNS synaptogenesis by astrocyte-secreted proteins Hevin and SPARC. Proc Natl Acad Sci U S A 2011; 108:E440-9. [PMID: 21788491 DOI: 10.1073/pnas.1104977108] [Citation(s) in RCA: 442] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Astrocytes regulate synaptic connectivity in the CNS through secreted signals. Here we identified two astrocyte-secreted proteins, hevin and SPARC, as regulators of excitatory synaptogenesis in vitro and in vivo. Hevin induces the formation of synapses between cultured rat retinal ganglion cells. SPARC is not synaptogenic, but specifically antagonizes synaptogenic function of hevin. Hevin and SPARC are expressed by astrocytes in the superior colliculus, the synaptic target of retinal ganglion cells, concurrent with the excitatory synaptogenesis. Hevin-null mice had fewer excitatory synapses; conversely, SPARC-null mice had increased synaptic connections in the superior colliculus. Furthermore, we found that hevin is required for the structural maturation of the retinocollicular synapses. These results identify hevin as a positive and SPARC as a negative regulator of synapse formation and signify that, through regulation of relative levels of hevin and SPARC, astrocytes might control the formation, maturation, and plasticity of synapses in vivo.
Collapse
|
29
|
Xu Y, Zhang H, Yang H, Zhao X, Lovas S, Lundberg YYW. Expression, functional, and structural analysis of proteins critical for otoconia development. Dev Dyn 2011; 239:2659-73. [PMID: 20803598 DOI: 10.1002/dvdy.22405] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Otoconia, developed during late gestation and perinatal stages, couple mechanic force to the sensory hair cells in the vestibule for motion detection and bodily balance. In the present work, we have investigated whether compensatory deposition of another protein(s) may have taken place to partially alleviate the detrimental effects of Oc90 deletion by analyzing a comprehensive list of plausible candidates, and have found a drastic increase in the deposition of Sparc-like 1 (aka Sc1 or hevin) in Oc90 null versus wt otoconia. We show that such up-regulation is specific to Sc1, and that stable transfection of Oc90 and Sc1 full-length expression constructs in NIH/3T3 cells indeed promotes matrix calcification. Analysis and modeling of Oc90 and Sc1 protein structures show common features that may be critical requirements for the otoconial matrix backbone protein. Such information will serve as the foundation for future regenerative purposes.
Collapse
Affiliation(s)
- Yinfang Xu
- Vestibular Neurogenetics Laboratory, Boys Town National Research Hospital, Omaha, Nebraska 68131, USA
| | | | | | | | | | | |
Collapse
|
30
|
Brellier F, Ruggiero S, Zwolanek D, Martina E, Hess D, Brown-Luedi M, Hartmann U, Koch M, Merlo A, Lino M, Chiquet-Ehrismann R. SMOC1 is a tenascin-C interacting protein over-expressed in brain tumors. Matrix Biol 2011; 30:225-33. [PMID: 21349332 DOI: 10.1016/j.matbio.2011.02.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 02/04/2011] [Accepted: 02/10/2011] [Indexed: 12/18/2022]
Abstract
Tenascin-C is an extracellular matrix protein over-expressed in a large variety of cancers. In the present study, we aimed at identifying new interactors of tenascin-C by purifying secreted proteins on a tenascin-C affinity column. Analysis of eluates by mass spectrometry revealed phosphoglycerate kinase 1, clusterin, fibronectin, SPARC-related modular calcium-binding protein 1 (SMOC1) and nidogen-2 as potential interactors of tenascin-C. The interaction between tenascin-C and SMOC1 was confirmed by co-immunoprecipitation and further analyzed by Surface Plasmon Resonance Spectroscopy, which revealed an apparent dissociation constant (K(D)) value of 2.59∗10(-9)M. Further analyses showed that this binding is reduced in the presence of EDTA. To investigate whether SMOC1 itself could be over-expressed in the context of tumorigenesis, we analyzed data of two independent RNA profiling studies and found that mRNA levels of SMOC1 are significantly increased in oligodendrogliomas compared to control brain samples. In support of these data, western blot analysis of protein extracts from 12 oligodendrogliomas, 4 astrocytomas and 13 glioblastomas revealed elevated levels compared to healthy brain extract. Interestingly, cell migration experiments revealed that SMOC1 can counteract the chemo-attractive effect of tenascin-C on U87 glioma cells. The present study thus identified SMOC1 as a new cancer-associated protein capable of interacting with tenascin-C in vitro.
Collapse
Affiliation(s)
- Florence Brellier
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Koehler A, Desser S, Chang B, MacDonald J, Tepass U, Ringuette M. Molecular evolution of SPARC: absence of the acidic module and expression in the endoderm of the starlet sea anemone, Nematostella vectensis. Dev Genes Evol 2009; 219:509-21. [DOI: 10.1007/s00427-009-0313-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 12/02/2009] [Indexed: 11/29/2022]
|
32
|
Eroglu C. The role of astrocyte-secreted matricellular proteins in central nervous system development and function. J Cell Commun Signal 2009; 3:167-76. [PMID: 19904629 PMCID: PMC2778595 DOI: 10.1007/s12079-009-0078-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 10/01/2009] [Indexed: 11/28/2022] Open
Abstract
Matricellular proteins, such as thrombospondins (TSPs1-4), SPARC, SPARC-like1 (hevin) and tenascin C are expressed by astrocytes in the central nervous system (CNS) of rodents. The spatial and temporal expression patterns of these proteins suggest that they may be involved in important developmental processes such as cell proliferation and maturation, cell migration, axonal guidance and synapse formation. In addition, upon injury to the nervous system the expression of these proteins is upregulated, suggesting that they play a role in tissue remodeling and repair in the adult CNS. The genes encoding these proteins have been disrupted in mice. Interestingly, none of these proteins are required for survival, and furthermore, there are no evident abnormalities at the gross anatomical level in the CNS. However, detailed analyses of some of these mice in the recent years have revealed interesting CNS phenotypes. Here we will review the expression of these proteins in the CNS. We will discuss a newly described function for thrombospondins in synapse formation in the CNS in detail, and speculate whether other matricellular proteins could play similar roles in nervous system development and function.
Collapse
Affiliation(s)
- Cagla Eroglu
- Cell Biology, Duke University Medical Center, 333A Nanaline Duke Bldg., Box 3709, Durham, NC 27710 USA
| |
Collapse
|
33
|
Lively S, Brown IR. The extracellular matrix protein SC1/Hevin localizes to multivesicular bodies in Bergmann glial fibers in the adult rat cerebellum. Neurochem Res 2009; 35:315-22. [PMID: 19757034 DOI: 10.1007/s11064-009-0057-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 08/28/2009] [Indexed: 02/06/2023]
Abstract
SC1 is an extracellular matrix molecule prominent in the mammalian brain. In the cerebellum, SC1 localizes to Bergmann glial cells and perisynaptic glial processes that envelop synapses in the molecular layer. In the present study, confocal microscopy revealed a punctate distribution of SC1 along Bergmann glial fibers that colocalized with the intermediate filament GFAP when fibers were viewed in cross-section. Immunoelectron microscopy showed that the punctate SC1 pattern corresponded to the localization of SC1 in multivesicular bodies situated within Bergmann glial fibers. The pattern of SC1 localization was not disrupted following hyperthermia or pilocarpine-induced status epilepticus. The present study suggests that SC1 protein may reach its destination in perisynaptic glial processes and glial endfeet by transport along Bergmann glial fibers in multivesicular bodies and that this process is preserved following stress.
Collapse
Affiliation(s)
- Starlee Lively
- Center for the Neurobiology of Stress, University of Toronto at Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | | |
Collapse
|
34
|
Chittka A, Volff J, Wizenmann A. Identification of genes differentially expressed in dorsal and ventral chick midbrain during early development. BMC DEVELOPMENTAL BIOLOGY 2009; 9:29. [PMID: 19397791 PMCID: PMC2686707 DOI: 10.1186/1471-213x-9-29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 04/27/2009] [Indexed: 11/20/2022]
Abstract
Background During the development of the central nervous system (CNS), patterning processes along the dorsoventral (DV) axis of the neural tube generate different neuronal subtypes. As development progresses these neurons are arranged into functional units with varying cytoarchitecture, such as laminae or nuclei for efficient relaying of information. Early in development ventral and dorsal regions are similar in size and structure. Different proliferation rates and cell migration patterns are likely to result in the formation of laminae or nuclei, eventually. However, the underlying molecular mechanisms that establish these different structural arrangements are not well understood. We undertook a differential display polymerase chain reaction (DD-PCR) screen to identify genes with distinct expression patterns between dorsal and ventral regions of the chick midbrain in order to identify genes which regulate the sculpturing of such divergent neuronal organisation. We focused on the DV axis of the early chick midbrain since mesencephalic alar plate and basal plate develop into laminae and nuclei, respectively. Results We identified 53 differentially expressed bands in our initial screen. Twenty-six of these could be assigned to specific genes and we could unambiguously show the differential expression of five of the isolated cDNAs in vivo by in situ mRNA expression analysis. Additionally, we verified differential levels of expression of a selected number of genes by using reverse transcriptase (RT) PCR method with gene-specific primers. One of these genes, QR1, has been previously cloned and we present here a detailed study of its early developmental time course and pattern of expression providing some insights into its possible function. Our phylogenetic analysis of QR1 shows that it is the chick orthologue of Sparc-like 1/Hevin/Mast9 gene in mice, rats, dogs and humans, a protein involved in cell adhesion. Conclusion This study reveals some possible networks, which might be involved in directing the difference in neuronal specification and cytoarchitecture observed in the brain.
Collapse
Affiliation(s)
- A Chittka
- Junior Research Group, Biozentrum, Am Hubland, 97074 Würzburg, Germany.
| | | | | |
Collapse
|
35
|
Lively S, Brown IR. The extracellular matrix protein SC1/hevin localizes to excitatory synapses following status epilepticus in the rat lithium-pilocarpine seizure model. J Neurosci Res 2008; 86:2895-905. [PMID: 18488994 DOI: 10.1002/jnr.21735] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The epileptic brain is characterized by increased susceptibility to neuronal hyperexcitability. The rat lithium-pilocarpine model, which mimics many features of temporal lobe epilepsy, has been used to study processes leading to the development of recurrent seizures. After a prolonged seizure episode, termed status epilepticus (SE), neural changes occur during a period known as epileptogenesis and include neuronal cell death, reactive gliosis, axonal sprouting, and synaptogenesis. Extracellular matrix adhesion molecules are important regulators of synaptogenesis and axonal sprouting resulting from SE. SC1, also known as hevin, is an antiadhesive extracellular matrix molecule that localizes to synapses in the mammalian brain. In this study, the distribution of SC1 protein in neurons following SE was examined using the lithium-pilocarpine model. SC1 protein levels in neuronal cell bodies showed a transient decrease at 1 day post-SE, which coincided with an increase of SC1 in the synapse-rich neuropil that was identified with the synaptic marker synaptophysin. Immunoelectron microscopy confirmed the decrease of SC1 signal in neurons at 1 day post-SE and showed that SC1 remained localized to postsynaptic elements throughout the seizure time course. Increased colocalization of SC1 was detected with the excitatory synaptic markers vesicular glutamate transporter 1 (VGLUT1), AMPA receptor subunit GluR1, and N-methyl-D-aspartate receptor subunit NR1, but not with the inhibitory synaptic markers vesicular gamma-aminobutyric acid (GABA) transporter (VGAT) and GABA(A) receptor subunit beta2 (GABA(A) beta2), which could reflect enhanced association of SC1 with excitatory synapses. These findings suggest that SC1 may be involved in synaptic modifications underlying epileptogenesis.
Collapse
Affiliation(s)
- Starlee Lively
- Center for the Neurobiology of Stress, University of Toronto at Scarborough, Toronto, Ontario, Canada
| | | |
Collapse
|
36
|
Rhee DJ, Haddadin RI, Kang MH, Oh DJ. Matricellular proteins in the trabecular meshwork. Exp Eye Res 2008; 88:694-703. [PMID: 19101543 DOI: 10.1016/j.exer.2008.11.032] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2008] [Revised: 11/14/2008] [Accepted: 11/20/2008] [Indexed: 12/17/2022]
Abstract
The trabecular meshwork is one of the primary tissues of interest in the normal regulation and dysregulation of intraocular pressure (IOP) that is a causative risk factor for primary open-angle glaucoma. Matricellular proteins generally function to allow cells to modulate their attachments with and alter the characteristics of their surrounding extracellular matrix (ECM). In non-ocular tissues, matricellular proteins generally increase fibrosis. Since ECM turnover is very important to the outflow facility, matricellular proteins may have a significant role in the regulation of IOP. The formalized study of matricellular proteins in trabecular meshwork is in its infancy. SPARC, thrombospondins-1 and -2, and tenascins-C and -X, and osteopontin have been localized to varying areas within the trabecular meshwork. Preliminary evidence indicates that SPARC and thrombospondin-1 play a role in the regulation of IOP and possibly the pathophysiology of glaucoma. These data show promise that matricellular proteins are involved in IOP dysregulation and are potential therapeutic targets. Further study is needed to clarify these roles.
Collapse
Affiliation(s)
- Douglas J Rhee
- Department of Ophthalmology, Massachusetts Eye & Ear Infirmary, Boston, MA 02114, USA.
| | | | | | | |
Collapse
|
37
|
Takahata T, Komatsu Y, Watakabe A, Hashikawa T, Tochitani S, Yamamori T. Differential expression patterns of occ1-related genes in adult monkey visual cortex. ACTA ACUST UNITED AC 2008; 19:1937-51. [PMID: 19073625 PMCID: PMC2705702 DOI: 10.1093/cercor/bhn220] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We have previously revealed that occ1 is preferentially expressed in the primary visual area (V1) of the monkey neocortex. In our attempt to identify more area-selective genes in the macaque neocortex, we found that testican-1, an occ1-related gene, and its family members also exhibit characteristic expression patterns along the visual pathway. The expression levels of testican-1 and testican-2 mRNAs as well as that of occ1 mRNA start of high in V1, progressively decrease along the ventral visual pathway, and end of low in the temporal areas. Complementary to them, the neuronal expression of SPARC mRNA is abundant in the association areas and scarce in V1. Whereas occ1, testican-1, and testican-2 mRNAs are preferentially distributed in thalamorecipient layers including “blobs,” SPARC mRNA expression avoids these layers. Neither SC1 nor testican-3 mRNA expression is selective to particular areas, but SC1 mRNA is abundantly observed in blobs. The expressions of occ1, testican-1, testican-2, and SC1 mRNA were downregulated after monocular tetrodotoxin injection. These results resonate with previous works on chemical and functional gradients along the primate occipitotemporal visual pathway and raise the possibility that these gradients and functional architecture may be related to the visual activity–dependent expression of these extracellular matrix glycoproteins.
Collapse
Affiliation(s)
- Toru Takahata
- Division of Brain Biology, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Lively S, Brown IR. Extracellular matrix protein SC1/hevin in the hippocampus following pilocarpine-induced status epilepticus. J Neurochem 2008; 107:1335-46. [PMID: 18808451 DOI: 10.1111/j.1471-4159.2008.05696.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pilocarpine-induced status epilepticus (SE) mimics many features of temporal lobe epilepsy and is a useful model to study neural changes that result from prolonged seizure activity. In this study, distribution of the anti-adhesive extracellular matrix protein SC1 was examined in the rat hippocampus following SE. Western blotting showed decreased levels of SC1 protein in the week following SE. Immunohistochemistry demonstrated that the decrease in overall SC1 protein levels was reflected by a reduction of SC1 signal in granule cells of the dentate gyrus. Interestingly, levels of SC1 protein in neurons of the seizure-resistant CA2 sector of the hippocampus did not change throughout the seizure time course. However, at 1 day post-SE, a subset of neurons of the hippocampal CA1, CA3, and hilar regions, which are noted for extensive neuronal degeneration after SE, exhibited a transient increase in SC1 signal. Neurons exhibiting enhanced SC1 signal were not detected at 7 days post-SE. The cellular stress response was also examined. A prominent induction of heat-shock protein (Hsp70) and Hsp27 was detected following SE, while levels of constitutively expressed Hsp40, Hsp90, Hsp110, and Hsc70 showed little change at the time points examined. The subset of neurons that demonstrated a transient increase in SC1 colocalized with the cellular stress marker Hsp70, the degeneration marker Fluoro-Jade B, and the neuron activity marker activity-regulated cytoskeleton-associated protein (Arc). Taken together, these findings suggest that SC1 may be a component of the 'matrix response' involved in remodeling events associated with neuronal degeneration following neural injury.
Collapse
Affiliation(s)
- Starlee Lively
- Center for the Neurobiology of Stress, University of Toronto at Scarborough, Toronto, Ontario, Canada
| | | |
Collapse
|
39
|
Giudici C, Raynal N, Wiedemann H, Cabral WA, Marini JC, Timpl R, Bächinger HP, Farndale RW, Sasaki T, Tenni R. Mapping of SPARC/BM-40/osteonectin-binding sites on fibrillar collagens. J Biol Chem 2008; 283:19551-60. [PMID: 18487610 DOI: 10.1074/jbc.m710001200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 33-kDa matrix protein SPARC (BM-40, osteonectin) binds several collagen types with moderate affinity. The collagen-binding site resides in helix alphaA of the extracellular calcium-binding domain of SPARC and is partially masked by helix alphaC. Previously, we found that the removal of helix alphaC caused a 10-fold increase in the affinity of SPARC for collagen, and we identified amino acids crucial for binding by site-directed mutagenesis. In this study, we used rotary shadowing, CNBr peptides, and synthetic peptides to map binding sites of SPARC onto collagens I, II, and III. Rotary shadowing and electron microscopy of SPARC-collagen complexes identified a major binding site approximately 180 nm from the C terminus of collagen. SPARC binding was also detected with lower frequency near the matrix metalloproteinase cleavage site. These data fit well with our analysis of SPARC binding to CNBr peptides, denaturation of which abolished binding, indicating triple-helical conformation of collagen to be essential. SPARC binding was substantially decreased in two of seven alpha2(I) mutant procollagen I samples and after N-acetylation of Lys/Hyl side chains in wild-type collagen. Synthetic peptides of collagen III were used to locate the binding sites, and we found SPARC binding activity in a synthetic triple-helical peptide containing the sequence GPOGPSGPRGQOGVMGFOGPKGNDGAO (where O indicates 4-hydroxyproline), with affinity for SPARC comparable with that of procollagen III. This sequence is conserved among alpha chains of collagens I, II, III, and V. In vitro collagen fibrillogenesis was delayed in the presence of SPARC, suggesting that SPARC might modulate collagen fibril assembly in vivo.
Collapse
Affiliation(s)
- Camilla Giudici
- Max-Planck-Institut für Biochemie, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Lively S, Brown IR. Localization of the extracellular matrix protein SC1 coincides with synaptogenesis during rat postnatal development. Neurochem Res 2008; 33:1692-700. [PMID: 18335312 DOI: 10.1007/s11064-008-9606-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Accepted: 01/23/2008] [Indexed: 12/12/2022]
Abstract
SC1 is an extracellular matrix protein that belongs to the SPARC family of matricellular molecules. This anti-adhesive protein localizes to synapses in the adult rat brain and has been postulated to modulate synapse shape. In this study, increased levels of SC1 were detected from postnatal days 10-20, with a peak at postnatal day 15, a period of intense synaptogenesis. During this time, increased colocalization of SC1 with the synaptic marker synaptophysin was observed in synapse-rich regions of the cerebellum and the cerebral cortex. These findings indicate that the pattern of SC1 localization coincided with synaptogenesis during rat postnatal development.
Collapse
Affiliation(s)
- Starlee Lively
- Center for the Neurobiology of Stress, University of Toronto at Scarborough, 1265 Military Trail, Toronto, ON, Canada, M1C 1A4
| | | |
Collapse
|
41
|
Pellissier F, Gerber A, Bauer C, Ballivet M, Ossipow V. The adhesion molecule Necl-3/SynCAM-2 localizes to myelinated axons, binds to oligodendrocytes and promotes cell adhesion. BMC Neurosci 2007; 8:90. [PMID: 17967169 PMCID: PMC2176061 DOI: 10.1186/1471-2202-8-90] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Accepted: 10/29/2007] [Indexed: 01/15/2023] Open
Abstract
Background Cell adhesion molecules are plasma membrane proteins specialized in cell-cell recognition and adhesion. Two related adhesion molecules, Necl-1 and Necl-2/SynCAM, were recently described and shown to fulfill important functions in the central nervous system. The purpose of the work was to investigate the distribution, and the properties of Necl-3/SynCAM-2, a previously uncharacterized member of the Necl family with which it shares a conserved modular organization and extensive sequence homology. Results We show that Necl-3/SynCAM-2 is a plasma membrane protein that accumulates in several tissues, including those of the central and peripheral nervous system. There, Necl-3/SynCAM-2 is expressed in ependymal cells and in myelinated axons, and sits at the interface between the axon shaft and the myelin sheath. Several independent assays demonstrate that Necl-3/SynCAM-2 functionally and selectively interacts with oligodendrocytes. We finally prove that Necl-3/SynCAM-2 is a bona fide adhesion molecule that engages in homo- and heterophilic interactions with the other Necl family members, leading to cell aggregation. Conclusion Collectively, our manuscripts and the works on Necl-1 and SynCAM/Necl-2 reveal a complex set of interactions engaged in by the Necl proteins in the nervous system. Our work also support the notion that the family of Necl proteins fulfils key adhesion and recognition functions in the nervous system, in particular between different cell types.
Collapse
Affiliation(s)
- François Pellissier
- Department of Biochemistry, University of Geneva, 30 Quai Ernest Ansermet, Sciences II, 1211 Geneva 4, Switzerland.
| | | | | | | | | |
Collapse
|
42
|
Lively S, Brown IR. Analysis of the extracellular matrix protein SC1 during reactive gliosis in the rat lithium-pilocarpine seizure model. Brain Res 2007; 1163:1-9. [PMID: 17628511 DOI: 10.1016/j.brainres.2007.05.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 05/11/2007] [Accepted: 05/19/2007] [Indexed: 01/13/2023]
Abstract
When the nervous system is subjected to stressful stimuli, reactive gliosis often ensues. This phenomenon consists of the hypertrophy of astrocyte processes as well as the proliferation of these cells. In this study, the lithium-pilocarpine model of temporal lobe epilepsy was employed to study the effects of status epilepticus (SE) on the localization of SC1 protein in reactive astrocytes. SC1 is an anti-adhesive extracellular matrix protein strongly expressed in the mammalian brain. At 1 day following SE, SC1 transiently localized to hypertrophied astrocyte processes that were closely associated with neurons and blood vessels. SC1 was also detected at 7 days post-SE in proliferating astrocytes labeled with the cell division marker PCNA. These findings indicate that the anti-adhesive protein SC1 is ideally localized to create an environment conducive to process extension and cellular proliferation in reactive astrocytes.
Collapse
Affiliation(s)
- Starlee Lively
- Center for Neurobiology of Stress, University of Toronto at Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| | | |
Collapse
|
43
|
Esposito I, Kayed H, Keleg S, Giese T, Helene Sage E, Schirmacher P, Friess H, Kleeff J. Tumor-suppressor function of SPARC-like protein 1/Hevin in pancreatic cancer. Neoplasia 2007; 9:8-17. [PMID: 17325739 PMCID: PMC1803032 DOI: 10.1593/neo.06646] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2006] [Revised: 11/11/2006] [Accepted: 11/13/2006] [Indexed: 12/20/2022] Open
Abstract
SPARC-like protein 1 (SPARCL1), a member of the SPARC family, is downregulated in various tumors. In the present study, the expression and localization of SPARCL1 were analyzed in a wide range of nontumorous and neoplastic pancreatic tissues by quantitative reverse transcription-polymerase chain reaction, laser capture microdissection, microarray analysis, and immunohistochemistry. For functional analysis, proliferation and invasion assays were used in cultured pancreatic cancer cells. Pancreatic ductal adenocarcinoma (PDAC) and other pancreatic neoplasms exhibited increased SPARCL1 mRNA levels compared to those of the normal pancreas. SPARCL1 mRNA levels were low to absent in microdissected and cultured pancreatic cancer cells, and promoter demethylation increased SPARCL1 levels only slightly in three of eight cell lines. SPARCL1 was observed in small capillaries in areas of inflammation/tumor growth and in some islet cells. In PDAC, 15.4% of vessels were SPARCL1-positive. In contrast, the percentage of SPARCL1-positive vessels was higher in chronic pancreatitis and benign and borderline pancreatic tumors. Recombinant SPARCL1 inhibited pancreatic cancer cell invasion and exerted moderate growth-inhibitory effects. In conclusion, SPARCL1 expression in pancreatic tissues is highly correlated with level of vascularity. Its anti-invasive effects and reduced expression in metastasis indicate tumor-suppressor function.
Collapse
Affiliation(s)
- Irene Esposito
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Hany Kayed
- Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| | - Shereen Keleg
- Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| | - Thomas Giese
- Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - E. Helene Sage
- Hope Heart Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Peter Schirmacher
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Helmut Friess
- Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| | - Jörg Kleeff
- Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
44
|
Lively S, Ringuette MJ, Brown IR. Localization of the extracellular matrix protein SC1 to synapses in the adult rat brain. Neurochem Res 2006; 32:65-71. [PMID: 17151913 DOI: 10.1007/s11064-006-9226-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Accepted: 11/06/2006] [Indexed: 10/23/2022]
Abstract
Extracellular matrix molecules play important roles in neural developmental processes such as axon guidance and synaptogenesis. When development is complete, many of these molecules are down-regulated, however the molecules that remain highly expressed are often involved in modulation of synaptic function. SC1 is an example of an extracellular matrix protein whose expression remains high in the adult rat brain. Confocal microscopy revealed that SC1 demonstrates a punctate pattern in synaptic enriched regions of the cerebral cortex and cerebellum. Higher resolution analysis using electron microscopy indicated that SC1 localizes to synapses, particularly the postsynaptic terminal. SC1 was also detected in perisynaptic glial processes that envelop synapses.
Collapse
Affiliation(s)
- Starlee Lively
- Center for the Neurobiology of Stress, University of Toronto at Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| | | | | |
Collapse
|
45
|
Rocnik EF, Liu P, Sato K, Walsh K, Vaziri C. The Novel SPARC Family Member SMOC-2 Potentiates Angiogenic Growth Factor Activity. J Biol Chem 2006; 281:22855-64. [PMID: 16774925 DOI: 10.1074/jbc.m513463200] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SMOC-2 is a novel member of the SPARC family of matricellular proteins. The purpose of this study was to determine whether SMOC-2 can modulate angiogenic growth factor activity and angiogenesis. SMOC-2 was localized in the extracellular periphery of cultured human umbilical vein endothelial cells (HUVECs). Ectopically expressed SMOC-2 was also secreted into the tissue culture medium. In microarray profiling experiments, a recombinant SMOC-2 adenovirus induced the expression of transcripts required for cell cycle progression in HUVECs. Consistent with a growth-stimulatory role for SMOC-2, its overexpression stimulated DNA synthesis in a dose-dependent manner. Overexpressed SMOC-2 also synergized with vascular endothelial growth factor or with basic fibroblast growth factor to stimulate DNA synthesis. Ectopically expressed SMOC-2 stimulated formation of network-like structures as determined by in vitro matrigel angiogenesis assays. Fetal calf serum enhanced the stimulatory effect of overexpressed SMOC-2 in this assay. Conversely, small interference RNA directed toward SMOC-2 inhibited network formation and proliferation. The angiogenic activity of SMOC-2 was also examined in experimental mice by subdermal implantation of Matrigel plugs containing SMOC-2 adenovirus. SMOC-2 adenovirus induced a 3-fold increase in the number of cells invading Matrigel plugs when compared with a control adenoviral vector. Basic fibroblast growth factor and SMOC-2 elicited a synergistic effect on cell invasion. Taken together, our results demonstrate that SMOC-2 is a novel angiogenic factor that potentiates angiogenic effects of growth factors.
Collapse
Affiliation(s)
- Edward F Rocnik
- Molecular Cardiology, Whitaker Cardiovascular Institute and Department of Genetics and Genomics, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| | | | | | | | | |
Collapse
|
46
|
Sullivan MM, Barker TH, Funk SE, Karchin A, Seo NS, Höök M, Sanders J, Starcher B, Wight TN, Puolakkainen P, Sage EH. Matricellular hevin regulates decorin production and collagen assembly. J Biol Chem 2006; 281:27621-32. [PMID: 16844696 DOI: 10.1074/jbc.m510507200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Matricellular proteins such as SPARC, thrombospondin 1 and 2, and tenascin C and X subserve important functions in extracellular matrix synthesis and cellular adhesion to extracellular matrix. By virtue of its reported interaction with collagen I and deadhesive activity on cells, we hypothesized that hevin, a member of the SPARC gene family, regulates dermal extracellular matrix and collagen fibril formation. We present evidence for an altered collagen matrix and levels of the proteoglycan decorin in the normal dermis and dermal wound bed of hevin-null mice. The dermal elastic modulus was also enhanced in hevin-null animals. The levels of decorin protein secreted by hevin-null dermal fibroblasts were increased by exogenous hevin in vitro, data indicating that hevin might regulate both decorin and collagen fibrillogenesis. We also report a decorin-independent function for hevin in collagen fibrillogenesis. In vitro fibrillogenesis assays indicated that hevin enhanced fibril formation kinetics. Furthermore, cell adhesion assays indicated that cells adhered differently to collagen fibrils formed in the presence of hevin. Our observations support the capacity of hevin to modulate the structure of dermal extracellular matrix, specifically by its regulation of decorin levels and collagen fibril assembly.
Collapse
Affiliation(s)
- Millicent M Sullivan
- Hope Heart Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington 98101, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Gersdorff N, Müller M, Schall A, Miosge N. Secreted modular calcium-binding protein-1 localization during mouse embryogenesis. Histochem Cell Biol 2006; 126:705-12. [PMID: 16736127 DOI: 10.1007/s00418-006-0200-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2006] [Indexed: 02/06/2023]
Abstract
BM-40 is an extracellular matrix-associated protein and is characterized by an extracellular calcium-binding domain as well as a follistatin-like domain. Secreted modular calcium-binding protein-1 (SMOC-1) is a new member of the BM-40 family. It consists of two thyroglobulin-like domains, a follistatin-like domain and a new domain without known homologues and is expressed ubiquitously in many adult murine tissues. Immunofluorescence studies, as well as immunogold electron microscopy, have confirmed the localization of SMOC-1 in or around basement membranes of adult murine skin, blood vessels, brain, kidney, skeletal muscle, and the zona pellucida surrounding the oocyte. In the present work, light microscopic immunohistochemistry has revealed that SMOC-1 is localized in the early mouse embryo day 7 throughout the entire endodermal basement membrane zone of the embryo proper. SMOC-1 mRNA is synthesized, even in early stages of mouse development, by mesenchymal as well as epithelial cells deriving from all three germ layers. In embryonic stage day 12, and fetal stages day 14, 16, and 18, the protein is present in the basement membrane zones of brain, blood vessels, skin, skeletal muscle, lung, heart, liver, pancreas, intestine, and kidney. This broad and organ-specific distribution suggests multifunctional roles of SMOC-1 during mouse embryogenesis.
Collapse
Affiliation(s)
- Nikolaus Gersdorff
- Department of Prosthodontics, Georg-August-Universität Göttingen, 37075 Göttingen, Germany
| | | | | | | |
Collapse
|
48
|
Yu ACH, Sun CX, Li Q, Liu HD, Wang CR, Zhao GP, Jin M, Lau LT, Fung YWW, Liu S. Identification of a mouse synaptic glycoprotein gene in cultured neurons. Neurochem Res 2006; 30:1289-94. [PMID: 16341590 DOI: 10.1007/s11064-005-8800-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2005] [Indexed: 12/19/2022]
Abstract
Neuronal differentiation and aging are known to involve many genes, which may also be differentially expressed during these developmental processes. From primary cultured cerebral cortical neurons, we have previously identified various differentially expressed gene transcripts from cultured cortical neurons using the technique of arbitrarily primed PCR (RAP-PCR). Among these transcripts, clone 0-2 was found to have high homology to rat and human synaptic glycoprotein. By in silico analysis using an EST database and the FACTURA software, the full-length sequence of 0-2 was assembled and the clone was named as mouse synaptic glycoprotein homolog 2 (mSC2). DNA sequencing revealed transcript size of mSC2 being smaller than the human and rat homologs. RT-PCR indicated that mSC2 was expressed differentially at various culture days. The mSC2 gene was located in various tissues with higher expression in brain, lung, and liver. Functions of mSC2 in neurons and other tissues remain elusive and will require more investigation.
Collapse
|
49
|
Gongidi V, Ring C, Moody M, Brekken R, Sage EH, Rakic P, Anton ES. SPARC-like 1 regulates the terminal phase of radial glia-guided migration in the cerebral cortex. Neuron 2005; 41:57-69. [PMID: 14715135 DOI: 10.1016/s0896-6273(03)00818-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Differential adhesion between migrating neurons and transient radial glial fibers enables the deployment of neurons into appropriate layers in the developing cerebral cortex. The identity of radial glial signals that regulate the termination of migration remains unclear. Here, we identified a radial glial surface antigen, SPARC (secreted protein acidic and rich in cysteine)-like 1, distributed predominantly in radial glial fibers passing through the upper strata of the cortical plate (CP) where neurons end their migration. Neuronal migration and adhesion assays indicate that SPARC-like 1 functions to terminate neuronal migration by reducing the adhesivity of neurons at the top of the CP. Cortical neurons fail to achieve appropriate positions in the absence of SPARC-like 1 function in vivo. Together, these data suggest that antiadhesive signaling via SPARC-like 1 on radial glial cell surfaces may enable neurons to recognize the end of migration in the developing cerebral cortex.
Collapse
Affiliation(s)
- Vik Gongidi
- UNC Neuroscience Center, Department of Cell and Molecular Physiology, The University of North Carolina School of Medicine, Chapel Hill, 27599, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Barker TH, Framson P, Puolakkainen PA, Reed M, Funk SE, Sage EH. Matricellular homologs in the foreign body response: hevin suppresses inflammation, but hevin and SPARC together diminish angiogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 166:923-33. [PMID: 15743803 PMCID: PMC1602349 DOI: 10.1016/s0002-9440(10)62312-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Implanted foreign materials, used to restore or assist tissue function, elicit an initial acute inflammatory response followed by chronic fibrosis that leads to the entrapment of the biomaterial in a thick, poorly vascularized collagenous capsule. Matricellular proteins, secreted macromolecules that interact with extracellular matrix proteins but do not in themselves serve structural roles, have been identified as important mediators of the foreign body response that includes inflammation, angiogenesis, and collagen synthesis and assembly. In this report we delineate functions of hevin and SPARC, two homologs of the SPARC family of matricellular proteins, in the foreign body response. Despite their sequence similarity, hevin and SPARC mediate different aspects of this fibrotic response. Using mice with targeted gene deletions, we show that hevin is central to the progression of biomaterial-induced inflammation whereas SPARC regulates the formation of the collagenous capsule. Although vascular density within the capsule is unaltered in the absence of either protein, SPARC-hevin double-null capsules show substantially increased numbers of vessels, indicating compensatory functions for these two proteins in the inhibition of angiogenesis. These results provide important information for further development of implant technology.
Collapse
Affiliation(s)
- Thomas H Barker
- Hope Heart Program, Benaroya Research Institute at Virginia Mason, 1201 Ninth Ave., Seattle, WA 98101, USA
| | | | | | | | | | | |
Collapse
|