1
|
Nikitovic D, Kukovyakina E, Berdiaki A, Tzanakakis A, Luss A, Vlaskina E, Yagolovich A, Tsatsakis A, Kuskov A. Enhancing Tumor Targeted Therapy: The Role of iRGD Peptide in Advanced Drug Delivery Systems. Cancers (Basel) 2024; 16:3768. [PMID: 39594723 PMCID: PMC11592346 DOI: 10.3390/cancers16223768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Chemotherapy remains the primary therapeutic approach in treating cancer. The tumor microenvironment (TME) is the complex network surrounding tumor cells, comprising various cell types, such as immune cells, fibroblasts, and endothelial cells, as well as ECM components, blood vessels, and signaling molecules. The often stiff and dense network of the TME interacts dynamically with tumor cells, influencing cancer growth, immune response, metastasis, and resistance to therapy. The effectiveness of the treatment of solid tumors is frequently reduced due to the poor penetration of the drug, which leads to attaining concentrations below the therapeutic levels at the site. Cell-penetrating peptides (CPPs) present a promising approach that improves the internalization of therapeutic agents. CPPs, which are short amino acid sequences, exhibit a high ability to pass cell membranes, enabling them to deliver drugs efficiently with minimal toxicity. Specifically, the iRGD peptide, a member of CPPs, is notable for its capacity to deeply penetrate tumor tissues by binding simultaneously integrins ανβ3/ανβ5 and neuropilin receptors. Indeed, ανβ3/ανβ5 integrins are characteristically expressed by tumor cells, which allows the iRGD peptide to home onto tumor cells. Notably, the respective dual-receptor targeting mechanism considerably increases the permeability of blood vessels in tumors, enabling an efficient delivery of co-administered drugs or nanoparticles into the tumor mass. Therefore, the iRGD peptide facilitates deeper drug penetration and improves the efficacy of co-administered therapies. Distinctively, we will focus on the iRGD mechanism of action, drug delivery systems and their application, and deliberate future perspectives in developing iRGD-conjugated therapeutics. In summary, this review discusses the potential of iRGD in overcoming barriers to drug delivery in cancer to maximize treatment efficiency while minimizing side effects.
Collapse
Affiliation(s)
- Dragana Nikitovic
- Department of Histology-Embryology, Medical School, University of Crete, 71003 Heraklion, Greece;
| | - Ekaterina Kukovyakina
- Department of Technology of Chemical Pharmaceutical and Cosmetic Products, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia; (E.K.); (A.L.); (E.V.); (A.K.)
| | - Aikaterini Berdiaki
- Department of Histology-Embryology, Medical School, University of Crete, 71003 Heraklion, Greece;
| | - Alexandros Tzanakakis
- School of Electrical and Computer Engineering, National Technical University of Athens, 15780 Athens, Greece;
| | - Anna Luss
- Department of Technology of Chemical Pharmaceutical and Cosmetic Products, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia; (E.K.); (A.L.); (E.V.); (A.K.)
| | - Elizaveta Vlaskina
- Department of Technology of Chemical Pharmaceutical and Cosmetic Products, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia; (E.K.); (A.L.); (E.V.); (A.K.)
| | - Anne Yagolovich
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Aristides Tsatsakis
- Forensic Medicine Department, Medical School, University of Crete, 71003 Heraklion, Greece;
| | - Andrey Kuskov
- Department of Technology of Chemical Pharmaceutical and Cosmetic Products, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia; (E.K.); (A.L.); (E.V.); (A.K.)
| |
Collapse
|
2
|
Painter C, Sankaranarayanan NV, Nagarajan B, Mandel Clausen T, West AM, Setiawan NJ, Park J, Porell RN, Bartels PL, Sandoval DR, Vasquez GJ, Chute JP, Godula K, Vander Kooi CW, Gordts PL, Corbett KD, Termini CM, Desai UR, Esko JD. Alteration of Neuropilin-1 and Heparan Sulfate Interaction Impairs Murine B16 Tumor Growth. ACS Chem Biol 2024; 19:1820-1835. [PMID: 39099090 PMCID: PMC11334110 DOI: 10.1021/acschembio.4c00389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024]
Abstract
Neuropilin-1 acts as a coreceptor with vascular endothelial growth factor receptors to facilitate binding of its ligand, vascular endothelial growth factor. Neuropilin-1 also binds to heparan sulfate, but the functional significance of this interaction has not been established. A combinatorial library screening using heparin oligosaccharides followed by molecular dynamics simulations of a heparin tetradecasaccharide suggested a highly conserved binding site composed of amino acid residues extending across the b1 and b2 domains of murine neuropilin-1. Mutagenesis studies established the importance of arginine513 and lysine514 for binding of heparin to a recombinant form of Nrp1 composed of the a1, a2, b1, and b2 domains. Recombinant Nrp1 protein bearing R513A,K514A mutations showed a significant loss of heparin-binding, heparin-induced dimerization, and heparin-dependent thermal stabilization. Isothermal calorimetry experiments suggested a 1:2 complex of heparin tetradecasaccharide:Nrp1. To study the impact of altered heparin binding in vivo, a mutant allele of Nrp1 bearing the R513A,K514A mutations was created in mice (Nrp1D) and crossbred to Nrp1+/- mice to examine the impact of altered heparan sulfate binding. Analysis of tumor formation showed variable effects on tumor growth in Nrp1D/D mice, resulting in a frank reduction in tumor growth in Nrp1D/- mice. Expression of mutant Nrp1D protein was normal in tissues, suggesting that the reduction in tumor growth was due to the altered binding of heparin/heparan sulfate to neuropilin-1. These findings suggest that the interaction of neuropilin-1 with heparan sulfate modulates its stability and its role in tumor formation and growth.
Collapse
Affiliation(s)
- Chelsea
D. Painter
- Department
of Cellular and Molecular Medicine, University
of California, San Diego, La Jolla, California 92093, United States
- Glycobiology
Research and Training Center, University
of California, San Diego, La Jolla, California 92093, United States
| | - Nehru Viji Sankaranarayanan
- Department
of Medicinal Chemistry, Virginia Commonwealth
University, Richmond, Virginia 23298, United States
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Balaji Nagarajan
- Department
of Medicinal Chemistry, Virginia Commonwealth
University, Richmond, Virginia 23298, United States
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Thomas Mandel Clausen
- Department
of Cellular and Molecular Medicine, University
of California, San Diego, La Jolla, California 92093, United States
- Glycobiology
Research and Training Center, University
of California, San Diego, La Jolla, California 92093, United States
| | - Alan M.V. West
- Department
of Cellular and Molecular Medicine, University
of California, San Diego, La Jolla, California 92093, United States
| | - Nicollette J. Setiawan
- Translational
Science and Therapeutics Division, Fred
Hutchinson Cancer Center, Seattle, Washington 98109, United States
| | - Jeeyoung Park
- Department
of Cellular and Molecular Medicine, University
of California, San Diego, La Jolla, California 92093, United States
| | - Ryan N. Porell
- Glycobiology
Research and Training Center, University
of California, San Diego, La Jolla, California 92093, United States
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Phillip L. Bartels
- Glycobiology
Research and Training Center, University
of California, San Diego, La Jolla, California 92093, United States
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Daniel R. Sandoval
- Department
of Cellular and Molecular Medicine, University
of California, San Diego, La Jolla, California 92093, United States
- Glycobiology
Research and Training Center, University
of California, San Diego, La Jolla, California 92093, United States
| | - Gabriel J. Vasquez
- Department
of Cellular and Molecular Medicine, University
of California, San Diego, La Jolla, California 92093, United States
| | - John P. Chute
- Samuel
Oschin Cancer Center, Cedars Sinai Medical
Center, Los Angeles, California 90048, United States
- Division
of Hematology & Cellular Therapy, Cedars
Sinai Medical Center, Los Angeles, California 90048, United States
- Regenerative
Medicine Institute, Cedars Sinai Medical
Center, Los Angeles, California 90048, United States
| | - Kamil Godula
- Glycobiology
Research and Training Center, University
of California, San Diego, La Jolla, California 92093, United States
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Craig W. Vander Kooi
- Department
of Biochemistry and Molecular Biology, University
of Florida, Gainesville, Florida 32610, United
States
| | - Philip L.S.M. Gordts
- Glycobiology
Research and Training Center, University
of California, San Diego, La Jolla, California 92093, United States
- Department
of Medicine, University of California, San
Diego, La Jolla, California 92093, United States
| | - Kevin D. Corbett
- Department
of Cellular and Molecular Medicine, University
of California, San Diego, La Jolla, California 92093, United States
- Department
of Molecular Biology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Christina M. Termini
- Translational
Science and Therapeutics Division, Fred
Hutchinson Cancer Center, Seattle, Washington 98109, United States
| | - Umesh R. Desai
- Department
of Medicinal Chemistry, Virginia Commonwealth
University, Richmond, Virginia 23298, United States
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Jeffrey D. Esko
- Department
of Cellular and Molecular Medicine, University
of California, San Diego, La Jolla, California 92093, United States
- Glycobiology
Research and Training Center, University
of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
3
|
Dhupar R, Powers AA, Eisenberg SH, Gemmill RM, Bardawil CE, Udoh HM, Cubitt A, Nangle LA, Soloff AC. Orchestrating Resilience: How Neuropilin-2 and Macrophages Contribute to Cardiothoracic Disease. J Clin Med 2024; 13:1446. [PMID: 38592275 PMCID: PMC10934188 DOI: 10.3390/jcm13051446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 04/10/2024] Open
Abstract
Immunity has evolved to balance the destructive nature of inflammation with wound healing to overcome trauma, infection, environmental insults, and rogue malignant cells. The inflammatory response is marked by overlapping phases of initiation, resolution, and post-resolution remodeling. However, the disruption of these events can lead to prolonged tissue damage and organ dysfunction, resulting long-term disease states. Macrophages are the archetypic phagocytes present within all tissues and are important contributors to these processes. Pleiotropic and highly plastic in their responses, macrophages support tissue homeostasis, repair, and regeneration, all while balancing immunologic self-tolerance with the clearance of noxious stimuli, pathogens, and malignant threats. Neuropilin-2 (Nrp2), a promiscuous co-receptor for growth factors, semaphorins, and integrins, has increasingly been recognized for its unique role in tissue homeostasis and immune regulation. Notably, recent studies have begun to elucidate the role of Nrp2 in both non-hematopoietic cells and macrophages with cardiothoracic disease. Herein, we describe the unique role of Nrp2 in diseases of the heart and lung, with an emphasis on Nrp2 in macrophages, and explore the potential to target Nrp2 as a therapeutic intervention.
Collapse
Affiliation(s)
- Rajeev Dhupar
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (R.D.); (H.M.U.)
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Surgical and Research Services, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| | - Amy A. Powers
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (R.D.); (H.M.U.)
| | - Seth H. Eisenberg
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (R.D.); (H.M.U.)
| | - Robert M. Gemmill
- Division of Hematology/Oncology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Charles E. Bardawil
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (R.D.); (H.M.U.)
| | - Hannah M. Udoh
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (R.D.); (H.M.U.)
| | - Andrea Cubitt
- aTyr Pharma, San Diego, CA 92121, USA; (A.C.); (L.A.N.)
| | | | - Adam C. Soloff
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (R.D.); (H.M.U.)
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Surgical and Research Services, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| |
Collapse
|
4
|
van der Veen I, Heredero Berzal A, Koster C, ten Asbroek ALMA, Bergen AA, Boon CJF. The Road towards Gene Therapy for X-Linked Juvenile Retinoschisis: A Systematic Review of Preclinical Gene Therapy in Cell-Based and Rodent Models of XLRS. Int J Mol Sci 2024; 25:1267. [PMID: 38279267 PMCID: PMC10816913 DOI: 10.3390/ijms25021267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
X-linked juvenile retinoschisis (XLRS) is an early-onset progressive inherited retinopathy affecting males. It is characterized by abnormalities in the macula, with formation of cystoid retinal cavities, frequently accompanied by splitting of the retinal layers, impaired synaptic transmission of visual signals, and associated loss of visual acuity. XLRS is caused by loss-of-function mutations in the retinoschisin gene located on the X chromosome (RS1, MIM 30083). While proof-of-concept studies for gene augmentation therapy have been promising in in vitro and rodent models, clinical trials in XLRS patients have not been successful thus far. We performed a systematic literature investigation using search strings related to XLRS and gene therapy in in vivo and in vitro models. Three rounds of screening (title/abstract, full text and qualitative) were performed by two independent reviewers until consensus was reached. Characteristics related to study design and intervention were extracted from all studies. Results were divided into studies using (1) viral and (2) non-viral therapies. All in vivo rodent studies that used viral vectors were assessed for quality and risk of bias using the SYRCLE's risk-of-bias tool. Studies using alternative and non-viral delivery techniques, either in vivo or in vitro, were extracted and reviewed qualitatively, given the diverse and dispersed nature of the information. For in-depth analysis of in vivo studies using viral vectors, outcome data for optical coherence tomography (OCT), immunohistopathology and electroretinography (ERG) were extracted. Meta-analyses were performed on the effect of recombinant adeno-associated viral vector (AAV)-mediated gene augmentation therapies on a- and b-wave amplitude as well as the ratio between b- and a-wave amplitudes (b/a-ratio) extracted from ERG data. Subgroup analyses and meta-regression were performed for model, dose, age at injection, follow-up time point and delivery method. Between-study heterogeneity was assessed with a Chi-square test of homogeneity (I2). We identified 25 studies that target RS1 and met our search string. A total of 19 of these studies reported rodent viral methods in vivo. Six of the 25 studies used non-viral or alternative delivery methods, either in vitro or in vivo. Of these, five studies described non-viral methods and one study described an alternative delivery method. The 19 aforementioned in vivo studies were assessed for risk of bias and quality assessments and showed inconsistency in reporting. This resulted in an unclear risk of bias in most included studies. All 19 studies used AAVs to deliver intact human or murine RS1 in rodent models for XLRS. Meta-analyses of a-wave amplitude, b-wave amplitude, and b/a-ratio showed that, overall, AAV-mediated gene augmentation therapy significantly ameliorated the disease phenotype on these parameters. Subgroup analyses and meta-regression showed significant correlations between b-wave amplitude effect size and dose, although between-study heterogeneity was high. This systematic review reiterates the high potential for gene therapy in XLRS, while highlighting the importance of careful preclinical study design and reporting. The establishment of a systematic approach in these studies is essential to effectively translate this knowledge into novel and improved treatment alternatives.
Collapse
Affiliation(s)
- Isa van der Veen
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (I.v.d.V.); (A.H.B.); (C.K.); (A.A.B.)
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Andrea Heredero Berzal
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (I.v.d.V.); (A.H.B.); (C.K.); (A.A.B.)
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Céline Koster
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (I.v.d.V.); (A.H.B.); (C.K.); (A.A.B.)
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Anneloor L. M. A. ten Asbroek
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Arthur A. Bergen
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (I.v.d.V.); (A.H.B.); (C.K.); (A.A.B.)
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Camiel J. F. Boon
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (I.v.d.V.); (A.H.B.); (C.K.); (A.A.B.)
- Department of Ophthalmology, Leiden University Medical Center, Leiden University, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
5
|
Pal D, De K, Yates TB, Kolape J, Muchero W. Mutating novel interaction sites in NRP1 reduces SARS-CoV-2 spike protein internalization. iScience 2023; 26:106274. [PMID: 36910328 PMCID: PMC9957656 DOI: 10.1016/j.isci.2023.106274] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 01/13/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
The global pandemic of coronavirus disease 2019 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has become a severe global health problem because of its rapid spread. Both Ace2 and NRP1 provide initial viral binding sites for SARS-CoV-2. Here, we show that cysteine residues located in the vestigial plasminogen-apple-nematode (PAN) domain of NRP1 are necessary for SARS-CoV-2 spike protein internalization. Mutating novel cysteine residues in the PAN altered NRP1 stability and downstream activation of extracellular signal-regulated kinase (ERK) signaling pathway and impaired its interaction with the spike protein. This resulted in a significant reduction in spike protein abundance in Vero-E6 cells for the original, alpha, and delta SARS-CoV-2 variants even in the presence of the Ace2. Moreover, mutating these cysteine residues in NRP1 significantly lowered its association with Plexin-A1. As the spike protein is a critical component for targeted therapy, our biochemical study may represent a distinct mechanism to develop a path for future therapeutic discovery.
Collapse
Affiliation(s)
- Debjani Pal
- Radioisotope Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
- Bioscience Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Kuntal De
- Bioscience Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Timothy B. Yates
- Bioscience Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN 37996, USA
| | - Jaydeep Kolape
- Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Wellington Muchero
- Bioscience Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN 37996, USA
- Corresponding author
| |
Collapse
|
6
|
Shtykalova S, Deviatkin D, Freund S, Egorova A, Kiselev A. Non-Viral Carriers for Nucleic Acids Delivery: Fundamentals and Current Applications. Life (Basel) 2023; 13:903. [PMID: 37109432 PMCID: PMC10142071 DOI: 10.3390/life13040903] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Over the past decades, non-viral DNA and RNA delivery systems have been intensively studied as an alternative to viral vectors. Despite the most significant advantage over viruses, such as the lack of immunogenicity and cytotoxicity, the widespread use of non-viral carriers in clinical practice is still limited due to the insufficient efficacy associated with the difficulties of overcoming extracellular and intracellular barriers. Overcoming barriers by non-viral carriers is facilitated by their chemical structure, surface charge, as well as developed modifications. Currently, there are many different forms of non-viral carriers for various applications. This review aimed to summarize recent developments based on the essential requirements for non-viral carriers for gene therapy.
Collapse
Affiliation(s)
- Sofia Shtykalova
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia
- Faculty of Biology, Saint-Petersburg State University, Universitetskaya Embankment 7-9, 199034 Saint-Petersburg, Russia
| | - Dmitriy Deviatkin
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia
- Faculty of Biology, Saint-Petersburg State University, Universitetskaya Embankment 7-9, 199034 Saint-Petersburg, Russia
| | - Svetlana Freund
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia
- Faculty of Biology, Saint-Petersburg State University, Universitetskaya Embankment 7-9, 199034 Saint-Petersburg, Russia
| | - Anna Egorova
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia
| | - Anton Kiselev
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia
| |
Collapse
|
7
|
Wrapp D, Ye X, Ku Z, Su H, Jones HG, Wang N, Mishra AK, Freed DC, Li F, Tang A, Li L, Jaijyan DK, Zhu H, Wang D, Fu TM, Zhang N, An Z, McLellan JS. Structural basis for HCMV Pentamer recognition by neuropilin 2 and neutralizing antibodies. SCIENCE ADVANCES 2022; 8:eabm2546. [PMID: 35275718 PMCID: PMC8916728 DOI: 10.1126/sciadv.abm2546] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Human cytomegalovirus (HCMV) encodes multiple surface glycoprotein complexes to infect a variety of cell types. The HCMV Pentamer, composed of gH, gL, UL128, UL130, and UL131A, enhances entry into epithelial, endothelial, and myeloid cells by interacting with the cell surface receptor neuropilin 2 (NRP2). Despite the critical nature of this interaction, the molecular determinants that govern NRP2 recognition remain unclear. Here, we describe the cryo-EM structure of NRP2 bound to Pentamer. The high-affinity interaction between these proteins is calcium dependent and differs from the canonical carboxyl-terminal arginine (CendR) binding that NRP2 typically uses. We also determine the structures of four neutralizing human antibodies bound to the HCMV Pentamer to define susceptible epitopes. Two of these antibodies compete with NRP2 binding, but the two most potent antibodies recognize a previously unidentified epitope that does not overlap the NRP2-binding site. Collectively, these findings provide a structural basis for HCMV tropism and antibody-mediated neutralization.
Collapse
Affiliation(s)
- Daniel Wrapp
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Xiaohua Ye
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zhiqiang Ku
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Hang Su
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Harrison G. Jones
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Nianshuang Wang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Akaash K. Mishra
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Daniel C. Freed
- Merck Research Laboratories, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | - Fengsheng Li
- Merck Research Laboratories, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | - Aimin Tang
- Merck Research Laboratories, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | - Leike Li
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Dabbu Kumar Jaijyan
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Hua Zhu
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Dai Wang
- Merck Research Laboratories, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | - Tong-Ming Fu
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Corresponding author. (Z.A.); (J.S.M.)
| | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
- Corresponding author. (Z.A.); (J.S.M.)
| |
Collapse
|
8
|
Sherafat A, Pfeiffer F, Reiss AM, Wood WM, Nishiyama A. Microglial neuropilin-1 promotes oligodendrocyte expansion during development and remyelination by trans-activating platelet-derived growth factor receptor. Nat Commun 2021; 12:2265. [PMID: 33859199 PMCID: PMC8050320 DOI: 10.1038/s41467-021-22532-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/08/2021] [Indexed: 02/02/2023] Open
Abstract
Nerve-glia (NG2) glia or oligodendrocyte precursor cells (OPCs) are distributed throughout the gray and white matter and generate myelinating cells. OPCs in white matter proliferate more than those in gray matter in response to platelet-derived growth factor AA (PDGF AA), despite similar levels of its alpha receptor (PDGFRα) on their surface. Here we show that the type 1 integral membrane protein neuropilin-1 (Nrp1) is expressed not on OPCs but on amoeboid and activated microglia in white but not gray matter in an age- and activity-dependent manner. Microglia-specific deletion of Nrp1 compromised developmental OPC proliferation in white matter as well as OPC expansion and subsequent myelin repair after acute demyelination. Exogenous Nrp1 increased PDGF AA-induced OPC proliferation and PDGFRα phosphorylation on dissociated OPCs, most prominently in the presence of suboptimum concentrations of PDGF AA. These findings uncover a mechanism of regulating oligodendrocyte lineage cell density that involves trans-activation of PDGFRα on OPCs via Nrp1 expressed by adjacent microglia.
Collapse
Affiliation(s)
- Amin Sherafat
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Friederike Pfeiffer
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Alexander M Reiss
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - William M Wood
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA.
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA.
- The Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
9
|
Kang S, Lee S, Park S. iRGD Peptide as a Tumor-Penetrating Enhancer for Tumor-Targeted Drug Delivery. Polymers (Basel) 2020; 12:E1906. [PMID: 32847045 PMCID: PMC7563641 DOI: 10.3390/polym12091906] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023] Open
Abstract
The unique structure and physiology of a tumor microenvironment impede intra-tumoral penetration of chemotherapeutic agents. A novel iRGD peptide that exploits the tumor microenvironment can activate integrin-dependent binding to tumor vasculatures and neuropilin-1 (NRP-1)-dependent transport to tumor tissues. Recent studies have focused on its dual-targeting ability to achieve enhanced penetration of chemotherapeutics for the efficient eradication of cancer cells. Both the covalent conjugation and the co-administration of iRGD with chemotherapeutic agents and engineered delivery vehicles have been explored. Interestingly, the iRGD-mediated drug delivery also enhances penetration through the blood-brain barrier (BBB). Recent studies have shown its synergistic effect with BBB disruptive techniques. The efficacy of immunotherapy involving immune checkpoint blockades has also been amplified by using iRGD as a targeting moiety. In this review, we presented the recent advances in iRGD technology, focusing on cancer treatment modalities, including the current clinical trials using iRGD. The iRGD-mediated nano-carrier system could serve as a promising strategy in drug delivery to the deeper tumor regions, and be combined with various therapeutic interventions due to its novel targeting ability.
Collapse
Affiliation(s)
| | | | - Soyeun Park
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 42601, Korea; (S.K.); (S.L.)
| |
Collapse
|
10
|
Neuropilin: Handyman and Power Broker in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1223:31-67. [PMID: 32030684 DOI: 10.1007/978-3-030-35582-1_3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Neuropilin-1 and neuropilin-2 form a small family of transmembrane receptors, which, due to the lack of a cytosolic protein kinase domain, act primarily as co-receptors for various ligands. Performing at the molecular level both the executive and organizing functions of a handyman as well as of a power broker, they are instrumental in controlling the signaling of various receptor tyrosine kinases, integrins, and other molecules involved in the regulation of physiological and pathological angiogenic processes. In this setting, the various neuropilin ligands and interaction partners on various cells of the tumor microenvironment, such as cancer cells, endothelial cells, cancer-associated fibroblasts, and immune cells, are surveyed. The suitability of various neuropilin-targeting substances and the intervention in neuropilin-mediated interactions is considered as a possible building block of tumor therapy.
Collapse
|
11
|
Battin C, De Sousa Linhares A, Paster W, Isenman DE, Wahrmann M, Leitner J, Zlabinger GJ, Steinberger P, Hofer J. Neuropilin-1 Acts as a Receptor for Complement Split Products. Front Immunol 2019; 10:2209. [PMID: 31572401 PMCID: PMC6753332 DOI: 10.3389/fimmu.2019.02209] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/02/2019] [Indexed: 01/07/2023] Open
Abstract
Complement split products (CSPs), such as the fragments C4d and C3d, which are generated as a consequence of complement regulatory processes, are established markers for disease activity in autoimmunity or antibody-mediated graft rejection. Since immunoglobulin-like transcript 4 (ILT4) was previously shown to interact with soluble CSPs, but not with CSPs covalently-bound to target surfaces following classical complement activation, the present study aimed to identify novel cellular receptors interacting with covalently-deposited CSPs. By applying an unbiased screening approach using a cDNA mammalian expression library generated from human monocyte-derived dendritic cells and probed with recombinant human C4d, we identified neuropilin-1 (NRP1) as a novel receptor for C4d, C3d, and iC3b. NRP1, a highly conserved type 1 transmembrane protein, plays important roles in the development of the nervous and cardiovascular system as well as in tumorigenesis through interaction with its established binding partners, such as vascular endothelial growth factor (VEGF) and semaphorin 3A (Sema3A). NRP1 is also expressed on immune cells and serves as a marker for murine Tregs. Although NRP1 contains domains homologous to ones found in some complement proteins, it has not been linked to the complement system. We demonstrate that binding of C4d to NRP1 expressing cells was dose-dependent and saturable, and had a KD value of 0.71 μM. Importantly, and in contrast to ILT4, NRP1 interacted with CSPs that were covalently bound to target surfaces in the course of complement activation, therefore representing a classical complement receptor. The binding site of CSPs was mapped to the b1 domain of the coagulation factor V/VIII homology domain of NRP1. Taken together, our results demonstrate a novel role for NRP1 as a receptor for CSPs deposited on surfaces during complement activation. Further work is required to elucidate the functional consequences of the NRP1-CSP interactions in immunity.
Collapse
Affiliation(s)
- Claire Battin
- Division of Immune Receptors and T Cell Activation, Center for Pathophysiology, Infectiology, and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Annika De Sousa Linhares
- Division of Immune Receptors and T Cell Activation, Center for Pathophysiology, Infectiology, and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Paster
- Division of Immune Receptors and T Cell Activation, Center for Pathophysiology, Infectiology, and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria.,Department of Clinical Cell Biology and FACS Core Unit, Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - David E Isenman
- Departments of Biochemistry and Immunology, University of Toronto, Toronto, ON, Canada
| | - Markus Wahrmann
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University Vienna, Vienna, Austria
| | - Judith Leitner
- Division of Immune Receptors and T Cell Activation, Center for Pathophysiology, Infectiology, and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Gerhard J Zlabinger
- Division of Clinical and Experimental Immunology, Center for Pathophysiology, Infectiology, and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter Steinberger
- Division of Immune Receptors and T Cell Activation, Center for Pathophysiology, Infectiology, and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Johannes Hofer
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University Vienna, Vienna, Austria
| |
Collapse
|
12
|
Oplawski M, Dziobek K, Grabarek B, Zmarzły N, Dąbruś D, Januszyk P, Brus R, Tomala B, Boroń D. Expression of NRP-1 and NRP-2 in Endometrial Cancer. Curr Pharm Biotechnol 2019; 20:254-260. [PMID: 30806307 PMCID: PMC6635647 DOI: 10.2174/1389201020666190219121602] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/25/2018] [Accepted: 02/10/2019] [Indexed: 01/23/2023]
Abstract
Background: Neuropilins (NRPs) participate in many processes related to cancer development such as angiogenesis, lymphangiogenesis and metastasis. Although endometrial cancer is one of the most common gynecological cancers, it has not been studied in terms of NRPs expression. Objective: The aim of this study was to investigate the potential utility of NRPs as important factors in the diagnosis and treatment of endometrial cancer. Methods: Our study consisted of 45 women diagnosed with endometrial cancer at the following degrees of histological differentiation: G1, 17; G2, 15; G3, 13 cases. The control group included 15 women without neoplastic changes. The immunohistochemical reactions were evaluated using light microscopy. Results: We did not detect the expression of NRP-1 and NRP-2 in the control group. NRP-1 expression was found exclusively in cancer cells. It was higher in G2 and G3 and reached about 190% of G1. NRP-2 expression was observed in the endothelium and was similar across all three cancer grades. In cancer cells, NRP-2 expression increased with the degree of histological differentiation. Conclusion: NRP1 and NRP2 are candidates for complementary diagnostic molecular markers and promising new targets for molecular, personalized anticancer therapies.
Collapse
Affiliation(s)
- Marcin Oplawski
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Krakow, Poland
| | - Konrad Dziobek
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Krakow, Poland
| | - Beniamin Grabarek
- Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Katowice, Poland
| | - Nikola Zmarzły
- Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Katowice, Poland
| | - Dariusz Dąbruś
- Faculty of Health Science, Public Higher Medical Professional School in Opole, Opole, Poland
| | - Piotr Januszyk
- Faculty of Health Science, Public Higher Medical Professional School in Opole, Opole, Poland
| | - Ryszard Brus
- Department of Nurse, High School of Strategic Planning, Koscielna 6, 41-303, Dabrowa Gornicza, Poland
| | - Barbara Tomala
- Faculty of Health Science, Public Higher Medical Professional School in Opole, Opole, Poland
| | - Dariusz Boroń
- Faculty of Health Science, Public Higher Medical Professional School in Opole, Opole, Poland.,Department of Histology and Cell Pathology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Katowice, Poland.,Katowice School of Technology, The University of Science and Art, Katowice, Poland
| |
Collapse
|
13
|
Niland S, Eble JA. Neuropilins in the Context of Tumor Vasculature. Int J Mol Sci 2019; 20:ijms20030639. [PMID: 30717262 PMCID: PMC6387129 DOI: 10.3390/ijms20030639] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 01/09/2023] Open
Abstract
Neuropilin-1 and Neuropilin-2 form a small family of plasma membrane spanning receptors originally identified by the binding of semaphorin and vascular endothelial growth factor. Having no cytosolic protein kinase domain, they function predominantly as co-receptors of other receptors for various ligands. As such, they critically modulate the signaling of various receptor tyrosine kinases, integrins, and other molecules involved in the regulation of physiological and pathological angiogenic processes. This review highlights the diverse neuropilin ligands and interacting partners on endothelial cells, which are relevant in the context of the tumor vasculature and the tumor microenvironment. In addition to tumor cells, the latter contains cancer-associated fibroblasts, immune cells, and endothelial cells. Based on the prevalent neuropilin-mediated interactions, the suitability of various neuropilin-targeted substances for influencing tumor angiogenesis as a possible building block of a tumor therapy is discussed.
Collapse
Affiliation(s)
- Stephan Niland
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany.
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany.
| |
Collapse
|
14
|
Song Y, Cao P, Gu Z, Xiao J, Lian M, Huang D, Xing J, Zhang Y, Feng X, Wang C. The Role of Neuropilin-1-FYN Interaction in Odontoblast Differentiation of Dental Pulp Stem Cells. Cell Reprogram 2018; 20:117-126. [PMID: 29486132 DOI: 10.1089/cell.2017.0041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Abnormal odontoblast differentiation of dental pulp stem cells (DPSCs) caused by inflammation is closely related to the development of dental caries. Neuropilin-1 (NRP1) is one of the members of neuropilin family. It can combine with disparate ligands involved in regulating cell differentiation. FYN belongs to the protein-tyrosine kinase family, which has been implicated in the control of cell growth, and the effect can be further strengthened by inflammatory factors. In our studies, we verified that NRP1 can form complexes with FYN and have the correlation changes in odontoblast differentiation of DPSCs. Therefore, we surmise that in the progress of dental caries, NRP1 interacts with FYN, by expanding inflammation and inhibition of odontoblast differentiation of DPSCs through nuclear factor kappa B (NF-κB) signaling pathway. In this subject, we first investigated the expression and interaction of NRP1 and FYN in DPSCs. And then, we researched the effect of this complex controlling downstream signal pathway in normal or inflammation stimulated DPSCs. Finally, we analyzed the relationship between this role and odontoblast differentiation of DPSCs. This research will provide the molecular mechanism of inflammation factors of dental caries through activating NF-κB signal regulating odontoblast differentiation in DPSCs for finding new potential drug targets for the clinical treatment of dental caries.
Collapse
Affiliation(s)
- Yihua Song
- 1 Province Key Laboratory for Inflammation and Molecular Drug Target, Department of Stomatology, Affiliated Hospital of Nantong University, Nantong University , Nantong, China
| | - Peipei Cao
- 1 Province Key Laboratory for Inflammation and Molecular Drug Target, Department of Stomatology, Affiliated Hospital of Nantong University, Nantong University , Nantong, China
| | - Zhifeng Gu
- 2 Department of Rheumatology, Affiliated Hospital of Nantong University , Nantong, China
| | - Jingwen Xiao
- 1 Province Key Laboratory for Inflammation and Molecular Drug Target, Department of Stomatology, Affiliated Hospital of Nantong University, Nantong University , Nantong, China
| | - Min Lian
- 1 Province Key Laboratory for Inflammation and Molecular Drug Target, Department of Stomatology, Affiliated Hospital of Nantong University, Nantong University , Nantong, China
| | - Dan Huang
- 1 Province Key Laboratory for Inflammation and Molecular Drug Target, Department of Stomatology, Affiliated Hospital of Nantong University, Nantong University , Nantong, China
| | - Jing Xing
- 1 Province Key Laboratory for Inflammation and Molecular Drug Target, Department of Stomatology, Affiliated Hospital of Nantong University, Nantong University , Nantong, China
| | - Ye Zhang
- 3 Department of Stomatology, Qidong People's Hospital , Nantong, China
| | - Xingmei Feng
- 1 Province Key Laboratory for Inflammation and Molecular Drug Target, Department of Stomatology, Affiliated Hospital of Nantong University, Nantong University , Nantong, China
| | - Chenfei Wang
- 1 Province Key Laboratory for Inflammation and Molecular Drug Target, Department of Stomatology, Affiliated Hospital of Nantong University, Nantong University , Nantong, China
| |
Collapse
|
15
|
Feinstein J, Ramkhelawon B. Netrins & Semaphorins: Novel regulators of the immune response. Biochim Biophys Acta Mol Basis Dis 2017; 1863:3183-3189. [PMID: 28918114 DOI: 10.1016/j.bbadis.2017.09.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 12/26/2022]
Abstract
Netrins and semaphorins, members of the neuronal guidance cue family, exhibit a rich biology with significant roles that extend beyond chemotactic guidance of the axons to build the neuronal patterns of the body. Screening of adult tissues and specific cellular subsets have illuminated that these proteins are also abundantly expressed under both steady state and pathological scenarios. This observation suggests that, in addition to their role in the development of the axonal tree, these proteins possess additional novel functions in adult physiopathology. Notably, a series of striking evidence has emerged in the literature describing their roles as potent regulators of both innate and adaptive immunity, providing extra dimension to our knowledge of neuronal guidance cues. In this review, we summarize the key complex roles of netrins and semaphorins outside the central nervous system (CNS) with focus on their immunomodulatory functions that impact pathophysiological conditions.
Collapse
Affiliation(s)
- Jordyn Feinstein
- Division of Vascular Surgery, Department of Surgery, New York University School of Medicine, 530 First Avenue, New York, NY 10016, USA; Department of Cell Biology, New York University School of Medicine, 530 First Avenue, New York, NY 10016, USA
| | - Bhama Ramkhelawon
- Division of Vascular Surgery, Department of Surgery, New York University School of Medicine, 530 First Avenue, New York, NY 10016, USA; Department of Cell Biology, New York University School of Medicine, 530 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
16
|
Song Y, Liu X, Feng X, Gu Z, Gu Y, Lian M, Xiao J, Cao P, Zheng K, Gu X, Li D, He P, Wang C. NRP1 Accelerates Odontoblast Differentiation of Dental Pulp Stem Cells Through Classical Wnt/β-Catenin Signaling. Cell Reprogram 2017; 19:324-330. [PMID: 28910136 DOI: 10.1089/cell.2017.0020] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Neuropilin-1 (NRP1) is one of the members of neuropilin family. It can combine with disparate ligands involved in regulating cell proliferation, apoptosis, and differentiation. The binding of NRP1 to Sema3A stimulates osteoblast differentiation through the classical Wnt/β-catenin pathway. However, the functions of NRP1 in dental pulp stem cells (DPSCs) are not clear. The aim of our study was to investigate how NRP1 controlled odontoblast differentiation in DPSCs and clarified the underlying mechanisms. NRP1 expression was increased in time-dependent manner along with cell odontoblast differentiation. Overexpression of NRP1 upregulated dentin matrix protein-1, dentin sialophosphoprotein, alkaline phosphatase protein level, and mineralization in DPSCs, while knockdown of NRP1 induced the opposite effects. SiNRP1 similar to DKK1 availably blocked classical Wnt/β-catenin signaling and odontoblast differentiation. In summary, NRP1, as a promoter of odontoblast differentiation, regulates DPSCs via the classical Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Yihua Song
- 1 Department of Stomatology, Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University , Nantong, China
| | - Xiaojuan Liu
- 2 Department of Pathogen Biology, Medical College, Nantong University , Nantong, China
| | - Xingmei Feng
- 1 Department of Stomatology, Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University , Nantong, China
| | - Zhifeng Gu
- 3 Department of Rheumatology, Affiliated Hospital of Nantong University , Nantong, China
| | - Yongchun Gu
- 4 Department of Stomatology, The First People's Hospital of Wujiang, Affliated Wujiang Hospital of Nantong University , Suzhou, China
| | - Min Lian
- 1 Department of Stomatology, Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University , Nantong, China
| | - Jingwen Xiao
- 1 Department of Stomatology, Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University , Nantong, China
| | - Peipei Cao
- 1 Department of Stomatology, Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University , Nantong, China
| | - Ke Zheng
- 1 Department of Stomatology, Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University , Nantong, China
| | - Xiaobing Gu
- 5 Department of Stomatology, The Second People's Hospital of Nantong , Nantong, China
| | - Dongping Li
- 5 Department of Stomatology, The Second People's Hospital of Nantong , Nantong, China
| | - Ping He
- 6 Department of Stomatology, Wuxi NO.2 People's Hospital , Wuxi, China
| | - Chenfei Wang
- 1 Department of Stomatology, Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University , Nantong, China
| |
Collapse
|
17
|
Sun S, Lei Y, Li Q, Wu Y, Zhang L, Mu PP, Ji GQ, Tang CX, Wang YQ, Gao J, Gao J, Li L, Zhuo L, Li YQ, Gao DS. Neuropilin-1 is a glial cell line-derived neurotrophic factor receptor in glioblastoma. Oncotarget 2017; 8:74019-74035. [PMID: 29088765 PMCID: PMC5650320 DOI: 10.18632/oncotarget.18630] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/12/2017] [Indexed: 01/13/2023] Open
Abstract
The aim of this study was to identify the receptor for glial cell line-derived neurotrophic factor (GDNF) in glioblastoma multiforme (GBM). After GST pull-down assays, membrane proteins purified from C6 rat glioma cells were subjected to liquid chromatography-tandem mass spectrometry (LC-MS/MS). The differentially expressed proteins were annotated using Gene Ontology, and neuropilin-1 (NRP1) was identified as the putative GDNF receptor in glioma. NRP1 was more highly expressed in human GBM brains and C6 rat glioma cells than in normal human brains or primary rat astrocytes. Immunofluorescence staining showed that NRP1 was recruited to the membrane by GDNF, and NRP1 co-immunoprecipitated with GDNF. Using the NRP1 and GDNF protein structures to assess molecular docking in the ZDOCK server and visualization with the PyMOL Molecular Graphics System revealed 8 H-bonds and stable positive and negative electrostatic interactions between NRP1 and GDNF. RNAi knockdown of NRP1 reduced proliferation of C6 glioma cells when stimulated with GDNF. NRP1 was an independent risk factor for both survival and recurrence in GBM patients. High NRP1 mRNA expression correlated with shorter OS and DFS (OS: χ2=4.6720, P=0.0307; DFS: χ2=11.013, P=0.0009). NRP1 is thus a GDNF receptor in glioma cells and a potential therapeutic target.
Collapse
Affiliation(s)
- Shen Sun
- Department of Anatomy and Histology, The Fourth Military Medical University, Xi'an, Shanxi, China.,Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Histology and Embryology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yu Lei
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Neurobiology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Qi Li
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yue Wu
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lin Zhang
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Pei-Pei Mu
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Guang-Quan Ji
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chuan-Xi Tang
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yu-Qian Wang
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jian Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jin Gao
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Li Li
- Department of Pathophysiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lang Zhuo
- Department of Epidemiology, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yun-Qing Li
- Department of Anatomy and Histology, The Fourth Military Medical University, Xi'an, Shanxi, China
| | - Dian-Shuai Gao
- Department of Anatomy and Histology, The Fourth Military Medical University, Xi'an, Shanxi, China.,Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
18
|
Meyer LAT, Fritz J, Pierdant-Mancera M, Bagnard D. Current drug design to target the Semaphorin/Neuropilin/Plexin complexes. Cell Adh Migr 2016; 10:700-708. [PMID: 27906605 PMCID: PMC5160035 DOI: 10.1080/19336918.2016.1261785] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/09/2016] [Accepted: 11/14/2016] [Indexed: 12/21/2022] Open
Abstract
The Semaphorin/Neuropilin/Plexin (SNP) complexes control a wide range of biological processes. Consistently, activity deregulation of these complexes is associated with many diseases. The increasing knowledge on SNP had in turn validated these molecular complexes as novel therapeutic targets. Targeting SNP activities by small molecules, antibodies and peptides or by soluble semaphorins have been proposed as new therapeutic approach. This review is focusing on the latest demonstration of this potential and discusses some of the key questions that need to be addressed before translating SNP targeting into clinically relevant approaches.
Collapse
Affiliation(s)
- Lionel A. T. Meyer
- INSERM U1109 – MN3T Lab, Fédération de Médecine Translationnelle, Labex Medalis, University of Strasbourg, France
| | - Justine Fritz
- INSERM U1109 – MN3T Lab, Fédération de Médecine Translationnelle, Labex Medalis, University of Strasbourg, France
| | - Marie Pierdant-Mancera
- INSERM U1109 – MN3T Lab, Fédération de Médecine Translationnelle, Labex Medalis, University of Strasbourg, France
| | - Dominique Bagnard
- INSERM U1109 – MN3T Lab, Fédération de Médecine Translationnelle, Labex Medalis, University of Strasbourg, France
| |
Collapse
|
19
|
Yelland T, Djordjevic S. Crystal Structure of the Neuropilin-1 MAM Domain: Completing the Neuropilin-1 Ectodomain Picture. Structure 2016; 24:2008-2015. [PMID: 27720589 PMCID: PMC5104691 DOI: 10.1016/j.str.2016.08.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/25/2016] [Accepted: 08/29/2016] [Indexed: 12/16/2022]
Abstract
Neuropilins (NRPs) are single-pass transmembrane receptors involved in several signaling pathways that regulate key physiological processes such as vascular morphogenesis and axon guidance. The MAM domain of NRP, which has previously been implicated in receptor multimerization, was the only portion of the ectopic domain of the NRPs for which the structure, until now, has been elusive. Using site-directed mutagenesis in the linker region preceding the MAM domain we generated a protein construct amenable to crystallization. Here we present the crystal structure of the MAM domain of human NRP1 at 2.24 Å resolution. The protein exhibits a jellyroll topology, with Ca2+ ions bound at the inter-strand space enhancing the thermostability of the domain. We show that the MAM domain of NRP1 is monomeric in solution and insufficient to drive receptor dimerization, which leads us to propose a different role for this domain in the context of NRP membrane assembly and signaling.
Collapse
Affiliation(s)
- Tamas Yelland
- The Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Snezana Djordjevic
- The Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
20
|
Wang Y, Cao Y, Mangalam AK, Guo Y, LaFrance-Corey RG, Gamez JD, Atanga PA, Clarkson BD, Zhang Y, Wang E, Angom RS, Dutta K, Ji B, Pirko I, Lucchinetti CF, Howe CL, Mukhopadhyay D. Neuropilin-1 modulates interferon-γ-stimulated signaling in brain microvascular endothelial cells. J Cell Sci 2016; 129:3911-3921. [PMID: 27591257 DOI: 10.1242/jcs.190702] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/31/2016] [Indexed: 02/06/2023] Open
Abstract
Inflammatory response of blood-brain barrier (BBB) endothelial cells plays an important role in pathogenesis of many central nervous system inflammatory diseases, including multiple sclerosis; however, the molecular mechanism mediating BBB endothelial cell inflammatory response remains unclear. In this study, we first observed that knockdown of neuropilin-1 (NRP1), a co-receptor of several structurally diverse ligands, suppressed interferon-γ (IFNγ)-induced C-X-C motif chemokine 10 expression and activation of STAT1 in brain microvascular endothelial cells in a Rac1-dependent manner. Moreover, endothelial-specific NRP1-knockout mice, VECadherin-Cre-ERT2/NRP1flox/flox mice, showed attenuated disease progression during experimental autoimmune encephalomyelitis, a mouse neuroinflammatory disease model. Detailed analysis utilizing histological staining, quantitative PCR, flow cytometry and magnetic resonance imaging demonstrated that deletion of endothelial NRP1 suppressed neuron demyelination, altered lymphocyte infiltration, preserved BBB function and decreased activation of the STAT1-CXCL10 pathway. Furthermore, increased expression of NRP1 was observed in endothelial cells of acute multiple sclerosis lesions. Our data identify a new molecular mechanism of brain microvascular endothelial inflammatory response through NRP1-IFNγ crosstalk that could be a potential target for intervention of endothelial cell dysfunction in neuroinflammatory diseases.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Ying Cao
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Ashutosh K Mangalam
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa city, IA 52242, USA
| | - Yong Guo
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Jeffrey D Gamez
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | - Yuebo Zhang
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Enfeng Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Ramcharan Singh Angom
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Kirthica Dutta
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Baoan Ji
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Istvan Pirko
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Charles L Howe
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| |
Collapse
|
21
|
Saad S, Dharmapatni AASSK, Crotti TN, Cantley MD, Algate K, Findlay DM, Atkins GJ, Haynes DR. Semaphorin-3a, neuropilin-1 and plexin-A1 in prosthetic-particle induced bone loss. Acta Biomater 2016; 30:311-318. [PMID: 26602825 DOI: 10.1016/j.actbio.2015.11.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 11/13/2015] [Accepted: 11/16/2015] [Indexed: 12/30/2022]
Abstract
Peri-prosthetic osteolysis (PPO) occurs in response to prosthetic wear particles causing an inflammatory reaction in the surrounding tissue that leads to subsequent bone loss. Semaphorin-3a (SEM3A), neuropilin-1 (NRP1) and plexin-A1 (PLEXA1) are axonal guidance molecules that have been recently implicated in regulating bone metabolism. This study investigated SEM3A, NRP1 and PLEXA1 protein and mRNA expression in human PPO tissue and polyethylene (PE) particle-stimulated human peripheral blood mononuclear cell (PBMC)-derived osteoclasts in vitro. In addition, the effects of tumour necrosis factor alpha (TNFα) on cultured osteoclasts was assessed. In PPO tissues, a granular staining pattern of SEM3A and NRP1 was observed within large multi-nucleated cells that contained prosthetic wear particles. Immunofluorescent staining confirmed the expression of SEM3A, NRP1 and PLEXA1 in large multi-nucleated human osteoclasts in vitro. Furthermore, SEM3A, NRP1 and PLEXA1 mRNA levels progressively increased throughout osteoclast differentiation induced by receptor activator of nuclear factor κB ligand (RANKL), and the presence of PE particles further increased mRNA expression of all three molecules. Soluble SEM3A was detected in human osteoclast culture supernatant at days 7 and 17 of culture, as assessed by ELISA. TNFα treatment for 72h markedly decreased the mRNA expression of SEM3A, NRP1 and PLEXA1 by human osteoclasts in vitro. Our findings suggest that SEM3A, NRP1 and PLEXA1 may have important roles in PPO, and their interactions, alone or as a complex, may have a role in pathological bone loss progression. STATEMENT OF SIGNIFICANCE Peri-prosthetic osteolysis occurs in response to prosthetic wear particles causing an inflammatory reaction in the surrounding tissue that leads to subsequent bone loss. The rate of hip and knee arthroplasty is increasing by at least 5% per year. However, these joint replacements have a finite lifespan, with data from the National Joint Replacement Registry (Australia) showing that the major cause of failure of total hip replacements is aseptic loosening. In aseptic loosening, wear particles liberated from prostheses are phagocytosed by macrophages, leading to release of inflammatory cytokines and up-regulation of osteoclast formation and activity. Semaphorin-3a, neuropilin-1 and plexin-A1 are axonal guidance molecules that have been recently implicated in regulating bone metabolism. This is the first report to show that these molecules may be involved in the implant failure.
Collapse
Affiliation(s)
- S Saad
- Discipline of Anatomy and Pathology, School of Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - A A S S K Dharmapatni
- Discipline of Anatomy and Pathology, School of Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - T N Crotti
- Discipline of Anatomy and Pathology, School of Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - M D Cantley
- Discipline of Anatomy and Pathology, School of Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - K Algate
- Discipline of Anatomy and Pathology, School of Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - D M Findlay
- Centre for Orthopedic and Trauma Research, The University of Adelaide, Adelaide, South Australia, Australia
| | - G J Atkins
- Centre for Orthopedic and Trauma Research, The University of Adelaide, Adelaide, South Australia, Australia
| | - D R Haynes
- Discipline of Anatomy and Pathology, School of Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
22
|
de Bruin A, A Cornelissen PW, Kirchmaier BC, Mokry M, Iich E, Nirmala E, Liang KH, D Végh AM, Scholman KT, Groot Koerkamp MJ, Holstege FC, Cuppen E, Schulte-Merker S, Bakker WJ. Genome-wide analysis reveals NRP1 as a direct HIF1α-E2F7 target in the regulation of motorneuron guidance in vivo. Nucleic Acids Res 2015; 44:3549-66. [PMID: 26681691 PMCID: PMC4856960 DOI: 10.1093/nar/gkv1471] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 12/01/2015] [Indexed: 02/03/2023] Open
Abstract
In this study, we explored the existence of a transcriptional network co-regulated by E2F7 and HIF1α, as we show that expression of E2F7, like HIF1α, is induced in hypoxia, and because of the previously reported ability of E2F7 to interact with HIF1α. Our genome-wide analysis uncovers a transcriptional network that is directly controlled by HIF1α and E2F7, and demonstrates both stimulatory and repressive functions of the HIF1α -E2F7 complex. Among this network we reveal Neuropilin 1 (NRP1) as a HIF1α-E2F7 repressed gene. By performing in vitro and in vivo reporter assays we demonstrate that the HIF1α-E2F7 mediated NRP1 repression depends on a 41 base pairs ‘E2F-binding site hub’, providing a molecular mechanism for a previously unanticipated role for HIF1α in transcriptional repression. To explore the biological significance of this regulation we performed in situ hybridizations and observed enhanced nrp1a expression in spinal motorneurons (MN) of zebrafish embryos, upon morpholino-inhibition of e2f7/8 or hif1α. Consistent with the chemo-repellent role of nrp1a, morpholino-inhibition of e2f7/8 or hif1α caused MN truncations, which was rescued in TALEN-induced nrp1ahu10012 mutants, and phenocopied in e2f7/8 mutant zebrafish. Therefore, we conclude that repression of NRP1 by the HIF1α-E2F7 complex regulates MN axon guidance in vivo.
Collapse
Affiliation(s)
- Alain de Bruin
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands Department of Pediatrics, Division of Molecular Genetics, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, The Netherlands
| | - Peter W A Cornelissen
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Bettina C Kirchmaier
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands Goethe Universität Frankfurt, Buchmann Institute of Molecular Life Sciences (BMLS), Neural and Vascular Guidance group, D-60438 Frankfurt am Main, Germany
| | - Michal Mokry
- Division of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3508 AB Utrecht, The Netherlands
| | - Elhadi Iich
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Ella Nirmala
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Kuo-Hsuan Liang
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Anna M D Végh
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Koen T Scholman
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Marian J Groot Koerkamp
- Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584 CG, The Netherlands
| | - Frank C Holstege
- Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584 CG, The Netherlands
| | - Edwin Cuppen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Stefan Schulte-Merker
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands Institute for Cardiovascular Organogenesis and Regeneration, Cells-in-Motion Cluster of Excellence, University of Münster, 48149 Münster, Germany
| | - Walbert J Bakker
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| |
Collapse
|
23
|
Li X, Parker MW, Vander Kooi CW. Control of cellular motility by neuropilin-mediated physical interactions. Biomol Concepts 2015; 5:157-66. [PMID: 25018786 DOI: 10.1515/bmc-2013-0035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The neuropilin (Nrp) family consists of multifunctional cell surface receptors with critical roles in a number of different cell and tissue types. A core aspect of Nrp function is in ligand-dependent cellular migration, where it controls the multistep process of cellular motility through integration of ligand binding and receptor signaling. At a molecular level, the role of Nrp in migration is intimately connected to the control of adhesive interactions and cytoskeletal reorganization. Here, we review the physiological role of Nrp in cellular adhesion and motility in the cardiovascular and nervous systems. We also discuss the emerging pathological role of Nrp in tumor cell migration and metastasis, providing motivation for continued efforts toward developing Nrp inhibitors.
Collapse
|
24
|
Bondeva T, Wolf G. Role of Neuropilin-1 in Diabetic Nephropathy. J Clin Med 2015; 4:1293-311. [PMID: 26239560 PMCID: PMC4485001 DOI: 10.3390/jcm4061293] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/28/2015] [Accepted: 06/09/2015] [Indexed: 02/07/2023] Open
Abstract
Diabetic nephropathy (DN) often develops in patients suffering from type 1 or type 2 diabetes mellitus. DN is characterized by renal injury resulting in proteinuria. Neuropilin-1 (NRP-1) is a single-pass transmembrane receptor protein devoid of enzymatic activity. Its large extracellular tail is structured in several domains, thereby allowing the molecule to interact with multiple ligands linking NRP-1 to different pathways through its signaling co-receptors. NRP-1’s role in nervous system development, immunity, and more recently in cancer, has been extensively investigated. Although its relation to regulation of apoptosis and cytoskeleton organization of glomerular vascular endothelial cells was reported, its function in diabetes mellitus and the development of DN is less clear. Several lines of evidence demonstrate a reduced NRP-1 expression in glycated-BSA cultured differentiated podocytes as well as in glomeruli from db/db mice (a model of type 2 Diabetes) and in diabetic patients diagnosed with DN. In vitro studies of podocytes implicated NRP-1 in the regulation of podocytes’ adhesion to extracellular matrix proteins, cytoskeleton reorganization, and apoptosis via not completely understood mechanisms. However, the exact role of NRP-1 during the onset of DN is not yet understood. This review intends to shed more light on NRP-1 and to present a link between NRP-1 and its signaling complexes in the development of DN.
Collapse
Affiliation(s)
- Tzvetanka Bondeva
- Department of Internal Medicine III, University Hospital Jena, Jena, 07747, Germany.
| | - Gunter Wolf
- Department of Internal Medicine III, University Hospital Jena, Jena, 07747, Germany.
| |
Collapse
|
25
|
Altered hippocampal-dependent memory and motor function in neuropilin 2-deficient mice. Transl Psychiatry 2015; 5:e521. [PMID: 25734514 PMCID: PMC4354347 DOI: 10.1038/tp.2015.17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/16/2014] [Accepted: 01/12/2015] [Indexed: 01/19/2023] Open
Abstract
Semaphorins have an important role in synapse refinement in the mammalian nervous system. The class 3 semaphorin-3F (Sema3F) acting through neuropilin 2/plexin-A3 (Nrp2/PlexA3) holoreceptor complex signals in vivo to restrain apical dendritic spine morphogenesis of cortical pyramidal neurons and hippocampal neurons during postnatal development and mediates excitatory synaptic transmission. Semaphorin signaling has been implicated in the etiology of a number of neurodevelopmental disorders; however, the effects on behavior and mental function of dysregulated Sema3F-Nrp2 signaling have not been fully addressed. The present study is the first behavioral investigation of mice harboring a mutation of the nrp2 gene. Given that loss of Nrp2 signaling alters cortical and hippocampal synaptic organization, we investigated performance of nrp2-deficient mice on learning and sensorimotor function that are known to depend on cortical and hippocampal circuitry. When compared with age-matched controls, nrp2 null mice showed striking impairments in object recognition memory and preference for social novelty. In addition, nrp2(-/-) mice displayed impaired motor function in the rotarod test and in observations of grooming behavior. Exploration of novel olfactory sensory stimuli and nociception were unaffected by the loss of Nrp2. Overall, loss of Nrp2 may induce aberrant processing within hippocampal and corticostriatal networks that may contribute to neurodevelopmental disease mechanisms.
Collapse
|
26
|
Immunological functions of the neuropilins and plexins as receptors for semaphorins. Nat Rev Immunol 2013; 13:802-14. [PMID: 24319778 DOI: 10.1038/nri3545] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Semaphorins were originally identified as axon-guidance molecules that function during neuronal development. However, cumulative evidence indicates that semaphorins also participate in immune responses, both physiological and pathological, and they are now considered to be potential diagnostic and/or therapeutic targets for a range of diseases. The primary receptors for semaphorins are neuropilins and plexins, which have cell type-specific patterns of expression and are involved in multiple signalling responses. In this Review, we focus on the roles of neuropilin 1 (NRP1) and plexins in the regulation of the immune system, and we summarize recent advances in our understanding of their pathological implications.
Collapse
|
27
|
Campos-Mora M, Morales RA, Gajardo T, Catalán D, Pino-Lagos K. Neuropilin-1 in transplantation tolerance. Front Immunol 2013; 4:405. [PMID: 24324469 PMCID: PMC3839227 DOI: 10.3389/fimmu.2013.00405] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 11/08/2013] [Indexed: 01/13/2023] Open
Abstract
In the immune system, Neuropilin-1 (Nrp1) is a molecule that plays an important role in establishing the immunological synapse between dendritic cells (DCs) and T cells. Recently, Nrp1 has been identified as a marker that seems to distinguish natural T regulatory (nTreg) cells, generated in the thymus, from inducible T regulatory (iTreg) cells raised in the periphery. Given the crucial role of both nTreg and iTreg cells in the generation and maintenance of immune tolerance, the ability to phenotypically identify each of these cell populations in vivo is needed to elucidate their biological properties. In turn, these properties have the potential to be developed for therapeutic use to promote immune tolerance. Here we describe the nature and functions of Nrp1, including its potential use as a therapeutic target in transplantation tolerance.
Collapse
Affiliation(s)
- Mauricio Campos-Mora
- Immune Regulation and Tolerance Research Group, Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile , Santiago , Chile
| | | | | | | | | |
Collapse
|
28
|
Kita EM, Bertolesi GE, Hehr CL, Johnston J, McFarlane S. Neuropilin-1 biases dendrite polarization in the retina. Development 2013; 140:2933-41. [PMID: 23739132 DOI: 10.1242/dev.088286] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The majority of neurons in the nervous system exhibit a polarized morphology, with multiple short dendrites and a single long axon. It is clear that multiple factors govern polarization in developing neurons, and the biased accumulation of intrinsic determinants to one side of the cell, coupled with responses to asymmetrically localized extrinsic factors, appears to be crucial. A number of intrinsic factors have been identified, but surprisingly little is known about the identity of the extrinsic signals. Here, we show in vivo that neuropilin-1 (Nrp1) and its co-receptor plexinA1 (Plxna1) are necessary to bias the extension of the dendrites of retinal ganglion cells to the apical side of the cell, and ectopically expressed class III semaphorins (Sema3s) disrupt this process. Importantly, the requirement for Nrp1 and Plxna1 in dendrite polarization occurs at a developmental time point after the cells have already extended their basally directed axon. Thus, we propose a novel mechanism whereby an extrinsic factor, probably a Sema3, acts through Nrp1 and Plxna1 to promote the asymmetric outgrowth of dendrites independently of axon polarization.
Collapse
Affiliation(s)
- Elizabeth M Kita
- Hotchkiss Brain Institute, Department of Cell Biology and Anatomy, University of Calgary, 3330 Hospital Drive, Calgary, AB T2N 4N1, Canada
| | | | | | | | | |
Collapse
|
29
|
Cao Y, Hoeppner LH, Bach S, E G, Guo Y, Wang E, Wu J, Cowley MJ, Chang DK, Waddell N, Grimmond SM, Biankin AV, Daly RJ, Zhang X, Mukhopadhyay D. Neuropilin-2 promotes extravasation and metastasis by interacting with endothelial α5 integrin. Cancer Res 2013; 73:4579-4590. [PMID: 23689123 DOI: 10.1158/0008-5472.can-13-0529] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Metastasis, the leading cause of cancer death, requires tumor cell intravasation, migration through the bloodstream, arrest within capillaries, and extravasation to invade distant tissues. Few mechanistic details have been reported thus far regarding the extravasation process or re-entry of circulating tumor cells at metastatic sites. Here, we show that neuropilin-2 (NRP-2), a multifunctional nonkinase receptor for semaphorins, vascular endothelial growth factor (VEGF), and other growth factors, expressed on cancer cells interacts with α5 integrin on endothelial cells to mediate vascular extravasation and metastasis in zebrafish and murine xenograft models of clear cell renal cell carcinoma (RCC) and pancreatic adenocarcinoma. In tissue from patients with RCC, NRP-2 expression is positively correlated with tumor grade and is highest in metastatic tumors. In a prospectively acquired cohort of patients with pancreatic cancer, high NRP-2 expression cosegregated with poor prognosis. Through biochemical approaches as well as Atomic Force Microscopy (AFM), we describe a unique mechanism through which NRP-2 expressed on cancer cells interacts with α5 integrin on endothelial cells to mediate vascular adhesion and extravasation. Taken together, our studies reveal a clinically significant role of NRP-2 in cancer cell extravasation and promotion of metastasis.
Collapse
Affiliation(s)
- Ying Cao
- Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, Rochester, MN 55905
| | - Luke H Hoeppner
- Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, Rochester, MN 55905
| | - Steven Bach
- Bioengineering Program & Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA 18015
| | - Guangqi E
- Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, Rochester, MN 55905
| | - Yan Guo
- Bioengineering Program & Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA 18015
| | - Enfeng Wang
- Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, Rochester, MN 55905
| | - Jianmin Wu
- The Kinghorn Cancer Centre, Cancer Research Division, Garvan Institute of Medical Research, 370 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
| | - Mark J Cowley
- The Kinghorn Cancer Centre, Cancer Research Division, Garvan Institute of Medical Research, 370 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
| | - David K Chang
- The Kinghorn Cancer Centre, Cancer Research Division, Garvan Institute of Medical Research, 370 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia.,Department of Surgery, Bankstown Hospital, Eldridge Road, Bankstown, Sydney, NSW 2200, Australia.,South Western Sydney Clinical School, Faculty of Medicine, University of NSW, Liverpool NSW 2170, Australia
| | - Nicola Waddell
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Sean M Grimmond
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Andrew V Biankin
- The Kinghorn Cancer Centre, Cancer Research Division, Garvan Institute of Medical Research, 370 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia.,Department of Surgery, Bankstown Hospital, Eldridge Road, Bankstown, Sydney, NSW 2200, Australia.,South Western Sydney Clinical School, Faculty of Medicine, University of NSW, Liverpool NSW 2170, Australia
| | - Roger J Daly
- The Kinghorn Cancer Centre, Cancer Research Division, Garvan Institute of Medical Research, 370 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
| | - Xiaohui Zhang
- Bioengineering Program & Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA 18015
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, Rochester, MN 55905
| |
Collapse
|
30
|
Torigoe M, Yamauchi K, Tamada A, Matsuda I, Aiba A, Castellani V, Murakami F. Role of neuropilin-2 in the ipsilateral growth of midbrain dopaminergic axons. Eur J Neurosci 2013; 37:1573-83. [PMID: 23534961 DOI: 10.1111/ejn.12190] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 02/13/2013] [Accepted: 02/14/2013] [Indexed: 01/01/2023]
Abstract
Axonal projections in the CNS can be categorized as either crossed or uncrossed. Crossing and uncrossing of axons has been explained by attractive and repulsive molecules like Netrin-1 and Slits, which are secreted by midline structures. However, uncrossed projections can be established even in double knockout mice of slit1 and slit2 or of roundabout1 (robo1) and robo2, two receptors for Slits. Here, we found that a novel mechanism mediated by Neuropilin-2 (Nrp2) contributes to the formation of uncrossed projections of midbrain dopaminergic neurons (mDANs). Nrp2 transcriptional activities were detected in a subset of mDANs, and its protein was expressed in mDAN axons growing through the ipsilateral diencephalon. In nrp2(lac) (Z) (/lac) (Z) mice, mDAN axons aberrantly grew toward the ventral midline and even crossed it, suggesting that Nrp2 is necessary for the development of mDAN ipsilateral projections. We investigated the involvement of Semaphorin 3B (Sema3B) and Sema3F, two ligands of Nrp2, by analysing mDAN axon trajectories in single or double knockout mice. In both cases, mDAN axons still projected ipsilaterally, suggesting the involvement mechanisms independent of these Sema3s. Nrp2-deficient mDAN axons retained their responsiveness to Slit2, demonstrating that aberrant mDAN axons in nrp2(lac) (Z) (/lac) (Z) mice were not indirectly mediated by alterations in Slit/Robo signaling. Taken together, our results indicate that a novel mechanism mediated by Nrp2 contributes to the establishment of uncrossed projections by mDAN axons.
Collapse
Affiliation(s)
- Makio Torigoe
- Laboratory of Neuroscience, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Roney K, Holl E, Ting J. Immune plexins and semaphorins: old proteins, new immune functions. Protein Cell 2013; 4:17-26. [PMID: 23307780 DOI: 10.1007/s13238-012-2108-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 10/25/2012] [Indexed: 12/24/2022] Open
Abstract
Plexins and semaphorins are a large family of proteins that are involved in cell movement and response. The importance of plexins and semaphorins has been emphasized by their discovery in many organ systems including the nervous (Nkyimbeng-Takwi and Chapoval, 2011; McCormick and Leipzig, 2012; Yaron and Sprinzak, 2012), epithelial (Miao et al., 1999; Fujii et al., 2002), and immune systems (Takamatsu and Kumanogoh, 2012) as well as diverse cell processes including angiogenesis (Serini et al., 2009; Sakurai et al., 2012), embryogenesis (Perala et al., 2012), and cancer (Potiron et al., 2009; Micucci et al., 2010). Plexins and semaphorins are transmembrane proteins that share a conserved extracellular semaphorin domain (Hota and Buck, 2012). The plexins and semaphorins are divided into four and eight subfamilies respectively based on their structural homology. Semaphorins are relatively small proteins containing the extracellular semaphorin domain and short intracellular tails. Plexins contain the semaphorin domain and long intracellular tails (Hota and Buck, 2012). The majority of plexin and semaphorin research has focused on the nervous system, particularly the developing nervous system, where these proteins are found to mediate many common neuronal cell processes including cell movement, cytoskeletal rearrangement, and signal transduction (Choi et al., 2008; Takamatsu et al., 2010). Their roles in the immune system are the focus of this review.
Collapse
Affiliation(s)
- Kelly Roney
- Department of Microbiology and Immunology, 22-004 Lineberger Comprehensive Cancer Center, University of Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
32
|
Djordjevic S, Driscoll PC. Targeting VEGF signalling via the neuropilin co-receptor. Drug Discov Today 2012; 18:447-55. [PMID: 23228652 DOI: 10.1016/j.drudis.2012.11.013] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 11/20/2012] [Accepted: 11/28/2012] [Indexed: 12/14/2022]
Abstract
The blockade of tumour vascularisation and angiogenesis continues to be a focus for drug development in oncology and other pathologies. Historically, targeting vascular endothelial growth factor (VEGF) activity and its association with VEGF receptors (VEGFRs) has represented the most promising line of attack. More recently, the recognition that VEGFR co-receptors, neuropilin-1 and -2 (NRP1 and NRP2), are also engaged by specific VEGF isoforms in tandem with the VEGFRs has expanded the landscape for the development of modulators of VEGF-dependent signalling. Here, we review the recent structural characterisation of VEGF interactions with NRP subdomains and the impact this has had on drug development activity in this area.
Collapse
Affiliation(s)
- Snezana Djordjevic
- Department of Structural and Molecular Biology, Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | | |
Collapse
|
33
|
Parker MW, Guo HF, Li X, Linkugel AD, Vander Kooi CW. Function of members of the neuropilin family as essential pleiotropic cell surface receptors. Biochemistry 2012; 51:9437-46. [PMID: 23116416 DOI: 10.1021/bi3012143] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The neuropilin (Nrp) family consists of essential multifunctional vertebrate cell surface receptors. Nrps were initially characterized as receptors for class III Semaphorin (Sema3) family members, functioning in axon guidance. Nrps have also been shown to be critical for vascular endothelial growth factor-dependent angiogenesis. Intriguingly, recent data show that Nrp function in these seemingly divergent pathways is critically determined by ligand-mediated cross-talk, which underlies Nrp function in both physiological and pathological processes. In addition to functioning in these two pathways, Nrps have been shown to specifically function in a number of other fundamental signaling pathways as well. Multiple general mechanisms have been found to directly contribute to the pleiotropic function of Nrp. Here we review critical general features of Nrps that function as essential receptors integrating multiple molecular cues into diverse cellular signaling.
Collapse
Affiliation(s)
- Matthew W Parker
- Department of Molecular and Cellular Biochemistry, Center for Structural Biology, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | |
Collapse
|
34
|
Vieira JM, Ruhrberg C, Schwarz Q. VEGF receptor signaling in vertebrate development. Organogenesis 2012; 6:97-106. [PMID: 20885856 DOI: 10.4161/org.6.2.11686] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Accepted: 04/10/2008] [Indexed: 01/27/2023] Open
Abstract
The secreted glycoprotein vascular endothelial growth factor A (VEGF or VEGFA) affects many different cell types and modifies a wide spectrum of cellular behaviors in tissue culture models, including proliferation, migration, differentiation and survival. The versatility of VEGF signaling is reflected in the complex composition of its cell surface receptors and their ability to activate a variety of different downstream signaling molecules. A major challenge for VEGF research is to determine which of the specific signaling pathways identified in vitro control development and homeostasis of tissues containing VEGF-responsive cell types in vivo.
Collapse
|
35
|
Neufeld G, Sabag AD, Rabinovicz N, Kessler O. Semaphorins in angiogenesis and tumor progression. Cold Spring Harb Perspect Med 2012; 2:a006718. [PMID: 22315716 PMCID: PMC3253028 DOI: 10.1101/cshperspect.a006718] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The semaphorins were initially described as axon guidance factors, but have recently been implicated in a variety of physiological and developmental functions, including regulation of immune response, angiogenesis, and migration of neural crest cells. The semaphorin family contains more than 30 genes divided into seven subfamilies, all of which are characterized by the presence of a sema domain. The semaphorins transduce their signals by binding to one of the nine receptors belonging to the plexin family, or, in the case of the class 3 semaphorins, by binding to one of the two neuropilin receptors. Additional receptors, which form complexes with these primary semaphorin receptors, are also frequently involved in semaphorin signaling. Recent evidence suggests that some semaphorins can act as antiangiogenic and/or antitumorigenic agents whereas other semaphorins promote tumor progression and/or angiogenesis. Furthermore, loss of endogenous inhibitory semaphorin expression or function on one hand, and overexpression of protumorigenic semaphorins on the other hand, is associated with the progression of some tumor types.
Collapse
Affiliation(s)
- Gera Neufeld
- Cancer and Vascular Biology Research Center, Rappaport Research Institute in the Medical Sciences, Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa 31096, Israel.
| | | | | | | |
Collapse
|
36
|
Grandclement C, Borg C. Neuropilins: a new target for cancer therapy. Cancers (Basel) 2011; 3:1899-928. [PMID: 24212788 PMCID: PMC3757396 DOI: 10.3390/cancers3021899] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 03/23/2011] [Accepted: 04/01/2011] [Indexed: 02/07/2023] Open
Abstract
Recent investigations highlighted strong similarities between neural crest migration during embryogenesis and metastatic processes. Indeed, some families of axon guidance molecules were also reported to participate in cancer invasion: plexins/semaphorins/neuropilins, ephrins/Eph receptors, netrin/DCC/UNC5. Neuropilins (NRPs) are transmembrane non tyrosine-kinase glycoproteins first identified as receptors for class-3 semaphorins. They are particularly involved in neural crest migration and axonal growth during development of the nervous system. Since many types of tumor and endothelial cells express NRP receptors, various soluble molecules were also found to interact with these receptors to modulate cancer progression. Among them, angiogenic factors belonging to the Vascular Endothelial Growth Factor (VEGF) family seem to be responsible for NRP-related angiogenesis. Because NRPs expression is often upregulated in cancer tissues and correlated with poor prognosis, NRPs expression might be considered as a prognostic factor. While NRP1 was intensively studied for many years and identified as an attractive angiogenesis target for cancer therapy, the NRP2 signaling pathway has just recently been studied. Although NRP genes share 44% homology, differences in their expression patterns, ligands specificities and signaling pathways were observed. Indeed, NRP2 may regulate tumor progression by several concurrent mechanisms, not only angiogenesis but lymphangiogenesis, epithelial-mesenchymal transition and metastasis. In view of their multiples functions in cancer promotion, NRPs fulfill all the criteria of a therapeutic target for innovative anti-tumor therapies. This review focuses on NRP-specific roles in tumor progression.
Collapse
Affiliation(s)
- Camille Grandclement
- INSERM UMR 645, F-25020 Besançon, France; E-Mail:
- University of Franche-Comté, IFR133, F-25020 Besançon, France
- EFS Bourgogne Franche-Comté, F-25020 Besançon, France
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +33-3-81-61-56-15 or +33-3-81-66-93-21; Fax: +33-3-81-61-56-17
| | - Christophe Borg
- INSERM UMR 645, F-25020 Besançon, France; E-Mail:
- University of Franche-Comté, IFR133, F-25020 Besançon, France
- EFS Bourgogne Franche-Comté, F-25020 Besançon, France
- Department of Medical Oncology, CHU Besançon, F-25000 Besançon, France
| |
Collapse
|
37
|
Díaz-López A, Iniesta P, Morán A, Ortega P, Fernández-Marcelo T, Sánchez-Pernaute A, Torres AJ, Benito M, De Juan C. Expression of Human MDGA1 Increases Cell Motility and Cell-Cell Adhesion and Reduces Adhesion to Extracellular Matrix Proteins in MDCK Cells. CANCER MICROENVIRONMENT 2010; 4:23-32. [PMID: 21505559 DOI: 10.1007/s12307-010-0055-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 11/02/2010] [Indexed: 12/11/2022]
Abstract
Characterization of the novel human protein MDGA1 (MAM Domain containing Glycosylphosphatidylinositol Anchor-1) has been reported in our laboratory in the past few years. hMDGA1 is a glycoprotein containing 955 aminoacids (137 kDa) attached to the eukaryotic cell membrane by a GPI (Glycosylphosphatidylinositol) anchor and localized specifically into membrane microdomains known as lipid rafts. Moreover, MDGA1 protein contains structural features found in different types of cell adhesion molecules (CAMs) such as the presence of immunoglobulin domains and a MAM domain (Meprin, A5 protein, receptor protein-tyrosine phosphatase μ), suggesting a role of MDGA1 in cell migration and/or adhesion. In order to investigate this aim, stable MDCK cell lines expressing MDGA1 or the truncated proteins IgGPI (lacking the MAM domain) and MAMGPI (lacking Ig domains) were generated. Our results reveal that MDGA1 increases the ability of MDCK cells to migrate, as it contains both Ig and MAM domains which have been implicated in cell motility. In addition, cell adhesion to extracellular matrix proteins, mainly to collagen IV, is reduced by MDGA1 and the IgGPI and MAMGPI truncated proteins. Accordingly, silencing MDGA1 by siRNA revealed a significant increase in adhesion to collagen IV. Furthermore, MDGA1 expression, through the intrinsic properties of the MAM domain, increases cell-cell adhesion independently of the cell monolayer used, suggesting that MDGA1 mediates cell-cell adhesiveness in a heterophilic manner.
Collapse
|
38
|
Oligo-guanosine nucleotide induces neuropilin-1 internalization in endothelial cells and inhibits angiogenesis. Blood 2010; 116:3099-107. [PMID: 20606164 DOI: 10.1182/blood-2010-01-265801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ligand interaction with cognate cell-surface receptor often promotes receptor internalization, protecting cells from prolonged or excessive signaling from extracellular ligands. Compounds that induce internalization of surface receptors prevent ligand binding to cognate cell-surface receptors serving as inhibitors. Here, we show that synthetic polyriboguanosine (poly G) and oligo-deoxyriboguanosine (oligo G) reduce endothelial levels of surface neuropilin-1 (NRP1), a receptor shared by semaphorin 3A and vascular endothelial growth factor (VEGF), which plays critical roles in angiogenesis. Oligo G also reduces levels of cell-surface scavenger receptor expressed by endothelial cells I (SREC-I), but not levels of NRP2, gp130, CD31, VEGFR-1, or VEGFR-2. Poly or oligo A, T, and C do not promote NRP1 or SREC-I internalization. We find that oligo G binds to NRP1 with high affinity (Kd:1.3 ± 0.16 nM), bridges the extracellular domain of NRP1 to that of SREC-I, and induces coordinate internalization of NRP1 and SREC-I. In vitro, oligo G blocks the binding and function of VEGF(165) in endothelial cells. In vivo, intravitreal administration of oligo G reduces choroidal neovascularization in mice. These results demonstrate that synthetic oligo G is an inhibitor of pathologic angiogenesis that reduces cell-surface levels and function of NRP1 acting as an internalization inducer.
Collapse
|
39
|
Wang C, Li Z, Yang Z, Zhao H, Yang Y, Chen K, Cai X, Wang L, Shi Y, Qiu S, Fan J, Zha X. The effect of receptor protein tyrosine phosphatase kappa on the change of cell adhesion and proliferation induced by N-acetylglucosaminyltransferase V. J Cell Biochem 2010; 109:113-23. [PMID: 19911372 DOI: 10.1002/jcb.22387] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
N-acetylglucosaminyltransferase V (GnT-V) has been reported to be positively associated with tumor progression, but its mechanism still remains unknown. In the present study, we found that GnT-V overexpression not only changed the glycosylation of receptor protein tyrosine phosphatase kappa (RPTPkappa) but also decreased its protein level. Moreover, GnT-V overexpression decreased cell calcium-independent adhesion and increased the tyrosine phosphorylation level of beta-catenin, in which RPTPkappa played an important role. Since RPTPkappa has an RXKR motif, which is a favored cleavage site for furin, we used furin inhibitor to further explore the effect of RPTPkappa on the change of cell adhesion and beta-catenin signaling induced by GnT-V. Our results showed that preventing RPTPkappa cleavage rescued the above effects of GnT-V, suggesting that furin cleavage could be one of the factors for RPTPkappa to regulate cell adhesion and beta-catenin signaling in GnT-V overexpression cell lines. In addition, the increased tyrosine phosphorylation level of beta-catenin was associated with the increased nuclear level of beta-catenin and downstream signaling molecules such as c-myc and cyclin D1 that were associated with cell proliferation. Our results suggest that GnT-V could decrease human hepatoma SMMC-7721 cell adhesion and promote cell proliferation partially through RPTPkappa.
Collapse
Affiliation(s)
- Can Wang
- Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Blood vessels and neurons share guidance cues and cell-surface receptors to control their behaviour during embryogenesis. The transmembrane protein NRP1 (neuropilin 1) is present on both blood vessels and nerves and binds two structurally diverse ligands, the class 3 semaphorin SEMA3A and an isoform of the vascular endothelial growth factor VEGF-A termed VEGF(165) (VEGF(164) in mice). In vitro, SEMA3A competes with VEGF(164) for binding to NRP1 to modulate the migration of endothelial cells and neuronal progenitors. It was therefore hypothesized that NRP1 signalling controls neurovascular co-patterning by integrating competing VEGF(164) and SEMA3A signals. However, SEMA3A, but not VEGF(164), is required for axon patterning of motor and sensory nerves, and, vice versa, VEGF(164) rather than SEMA3A is required for blood vessel development. Ligand competition for NRP1 therefore does not explain neurovascular congruence. Instead, these ligands control different aspects of neurovascular patterning that have an impact on cardiovascular function. Thus SEMA3A/NRP1 signalling guides the NCC (neural crest cell) precursors of sympathetic neurons as well as their axonal projections. In addition, VEGF(164) and a second class 3 semaphorin termed SEMA3C contribute to the remodelling of the embryonic pharyngeal arch arteries and primitive heart outflow tract by acting on endothelium and NCCs respectively. Consequently, loss of either of these NRP1 ligands disrupts blood flow into and out of the heart. Multiple NRP1 ligands therefore co-operate to orchestrate cardiovascular morphogenesis.
Collapse
|
41
|
Jin Q, Alkhatib B, Cornetta K, Alkhatib G. Alternate receptor usage of neuropilin-1 and glucose transporter protein 1 by the human T cell leukemia virus type 1. Virology 2009; 396:203-12. [PMID: 19913864 DOI: 10.1016/j.virol.2009.10.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 07/17/2009] [Accepted: 10/12/2009] [Indexed: 02/07/2023]
Abstract
Recent studies have demonstrated that neuropilin 1 (NP-1) is involved in HTLV-1 entry; however, the role NP-1 plays in this process is not understood. We demonstrated that ectopic expression of human NP-1 but not NP-2 cDNA increased susceptibility to HTLV-1. SiRNA-mediated inhibition of NP-1 expression correlated with significant reduction of HTLV-1 Env-mediated fusion. The vascular endothelial growth factor (VEGF(165)) caused downmodulation of surface NP-1 and inhibited HTLV-1 infection of U87 cells. In contrast, VEGF(165) partially inhibited infection of primary astrocytes and had no significant effect on infection of HeLa cells. VEGF(165) and antibodies to the glucose transporter protein 1 (anti-GLUT-1) were both needed to block infection of primary astrocytes, however, only anti-GLUT-1 antibodies were sufficient to block infection of HeLa cells. HTLV-1 Env forms complexes with both NP-1 and GLUT-1 in primary human astrocytes. The alternate usage of these two cellular receptors may have important implications regarding HTLV-1 neuro-tropism.
Collapse
Affiliation(s)
- Qingwen Jin
- Department of Microbiology and Immunology, Indiana University School of Medicine, 635 Barnhill Drive, Rm#420, Indianapolis, IN, USA
| | | | | | | |
Collapse
|
42
|
Structure-function analysis of VEGF receptor activation and the role of coreceptors in angiogenic signaling. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:567-80. [PMID: 19761875 DOI: 10.1016/j.bbapap.2009.09.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 08/22/2009] [Accepted: 09/04/2009] [Indexed: 12/11/2022]
Abstract
Vascular endothelial growth factors (VEGFs) constitute a family of six polypeptides, VEGF-A, -B, -C, -D, -E and PlGF, that regulate blood and lymphatic vessel development. VEGFs specifically bind to three type V receptor tyrosine kinases (RTKs), VEGFR-1, -2 and -3, and to coreceptors such as neuropilins and heparan sulfate proteoglycans (HSPG). VEGFRs are activated upon ligand-induced dimerization mediated by the extracellular domain (ECD). A study using receptor constructs carrying artificial dimerization-promoting transmembrane domains (TMDs) showed that receptor dimerization is necessary, but not sufficient, for receptor activation and demonstrates that distinct orientation of receptor monomers is required to instigate transmembrane signaling. Angiogenic signaling by VEGF receptors also depends on cooperation with specific coreceptors such as neuropilins and HSPG. A number of VEGF isoforms differ in binding to coreceptors, and ligand-specific signal output is apparently the result of the specific coreceptor complex assembled by a particular VEGF isoform. Here we discuss the structural features of VEGF family ligands and their receptors in relation to their distinct signal output and angiogenic potential.
Collapse
|
43
|
Matsunaga E, Okanoya K. Vocal control area-related expression of neuropilin-1, plexin-A4, and the ligand semaphorin-3A has implications for the evolution of the avian vocal system. Dev Growth Differ 2009; 51:45-54. [PMID: 19128404 DOI: 10.1111/j.1440-169x.2008.01080.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The avian vocal system is a good model for exploring the molecular basis of neural circuit evolution related to behavioral diversity. Previously, we conducted a comparative gene expression analysis among two different families of vocal learner, the Bengalese finch (Lonchura striata var. domestica), a songbird, and the budgerigar (Melopsittacus undulatus), a parrot; and a non-learner, the quail (Coturnix coturnix), to identify various axon guidance molecules such as cadherin and neuropilin-1 as vocal control area-related genes. Here, we continue with this study and examine the expression of neuropilin and related genes in these species in more detail. We found that neuropilin-1 and its coreceptor, plexin-A4, were expressed in several vocal control areas in both Bengalese finch and budgerigar brains. In addition, semaphorin-3A, the ligand of neuropilin-1, expression was not detected in vocal control areas in both species. Furthermore, there was some similar gene expression in the quail brain. These results suggest the possibility that a change in the expression of a combination of semaphorin/neuropilin/plexin was involved in the acquisition of vocal learning ability during evolution.
Collapse
Affiliation(s)
- Eiji Matsunaga
- Laboratory for Biolinguistics, RIKEN Brain Science Institute, Hirosawa 2-1, Wako, 351-0198, Japan.
| | | |
Collapse
|
44
|
Larrivée B, Freitas C, Suchting S, Brunet I, Eichmann A. Guidance of vascular development: lessons from the nervous system. Circ Res 2009; 104:428-41. [PMID: 19246687 DOI: 10.1161/circresaha.108.188144] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The vascular system of vertebrates consists of an organized, branched network of arteries, veins, and capillaries that penetrates all the tissues of the body. One of the most striking features of the vascular system is that its branching pattern is highly stereotyped, with major and secondary branches forming at specific sites and developing highly conserved organ-specific vascular patterns. The factors controlling vascular patterning are not yet completely understood. Recent studies have highlighted the anatomic and structural similarities between blood vessels and nerves. The 2 networks are often aligned, with nerve fibers and blood vessels following parallel routes. Furthermore, both systems require precise control over their guidance and growth. Several molecules with attractive and repulsive properties have been found to modulate the proper guidance of both nerves and blood vessels. These include the Semaphorins, the Slits, and the Netrins and their receptors. In this review, we describe the molecular mechanisms by which blood vessels and axons achieve proper path finding and the molecular cues that are involved in their guidance.
Collapse
Affiliation(s)
- Bruno Larrivée
- Institut National de la Santé et de la Recherche Médicale, U833 and Collège de France, Paris, France
| | | | | | | | | |
Collapse
|
45
|
Matsunaga E, Okanoya K. Evolution and diversity in avian vocal system: An Evo-Devo model from the morphological and behavioral perspectives. Dev Growth Differ 2009; 51:355-67. [DOI: 10.1111/j.1440-169x.2009.01091.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Abstract
The second EMBO workshop on ;Semaphorin function and mechanisms of action', held in the gorgeous surroundings of the 12th Century Abbaye des Vaulx de Cernay near Paris, France this May, brought together a wide range of scientists working in diverse systems with a common interest: the semaphorins. Emerging new themes discussed at the meeting included the recognition of an increasingly complex way in which different cells regulate responsiveness, and the significance of considering semaphorins in the pathology of various diseases.
Collapse
Affiliation(s)
- Britta J Eickholt
- MRC Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK.
| |
Collapse
|
47
|
Neufeld G, Kessler O. The semaphorins: versatile regulators of tumour progression and tumour angiogenesis. Nat Rev Cancer 2008; 8:632-45. [PMID: 18580951 DOI: 10.1038/nrc2404] [Citation(s) in RCA: 303] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The semaphorins and their receptors, the neuropilins and the plexins, were originally characterized as constituents of the complex regulatory system responsible for the guidance of axons during the development of the central nervous system. However, a growing body of evidence indicates that various semaphorins can either promote or inhibit tumour progression through the promotion or inhibition of processes such as tumour angiogenesis, tumour metastasis and tumour cell survival. This Review focuses on the emerging role of the semaphorins in cancer.
Collapse
Affiliation(s)
- Gera Neufeld
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, P.O. Box 9679, 1 Efron Street, Haifa, 31096, Israel.
| | | |
Collapse
|
48
|
Systematic identification of genes that regulate neuronal wiring in the Drosophila visual system. PLoS Genet 2008; 4:e1000085. [PMID: 18516287 PMCID: PMC2377342 DOI: 10.1371/journal.pgen.1000085] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Accepted: 04/30/2008] [Indexed: 11/19/2022] Open
Abstract
Forward genetic screens in model organisms are an attractive means to identify those genes involved in any complex biological process, including neural circuit assembly. Although mutagenesis screens are readily performed to saturation, gene identification rarely is, being limited by the considerable effort generally required for positional cloning. Here, we apply a systematic positional cloning strategy to identify many of the genes required for neuronal wiring in the Drosophila visual system. From a large-scale forward genetic screen selecting for visual system wiring defects with a normal retinal pattern, we recovered 122 mutations in 42 genetic loci. For 6 of these loci, the underlying genetic lesions were previously identified using traditional methods. Using SNP-based mapping approaches, we have now identified 30 additional genes. Neuronal phenotypes have not previously been reported for 20 of these genes, and no mutant phenotype has been previously described for 5 genes. The genes encode a variety of proteins implicated in cellular processes such as gene regulation, cytoskeletal dynamics, axonal transport, and cell signalling. We conducted a comprehensive phenotypic analysis of 35 genes, scoring wiring defects according to 33 criteria. This work demonstrates the feasibility of combining large-scale gene identification with large-scale mutagenesis in Drosophila, and provides a comprehensive overview of the molecular mechanisms that regulate visual system wiring.
Collapse
|
49
|
Narazaki M, Segarra M, Tosato G. Sulfated polysaccharides identified as inducers of neuropilin-1 internalization and functional inhibition of VEGF165 and semaphorin3A. Blood 2008; 111:4126-36. [PMID: 18272814 PMCID: PMC2288723 DOI: 10.1182/blood-2007-09-112474] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 02/10/2008] [Indexed: 12/13/2022] Open
Abstract
Neuropilin-1 (NRP1) and NRP2 are cell surface receptors shared by class 3 semaphorins and vascular endothelial growth factor (VEGF). Ligand interaction with NRPs selects the specific signal transducer, plexins for semaphorins or VEGF receptors for VEGF, and promotes NRP internalization, which effectively shuts down receptor-mediated signaling by a second ligand. Here, we show that the sulfated polysaccharides dextran sulfate and fucoidan, but not others, reduce endothelial cell-surface levels of NRP1, NRP2, and to a lesser extent VEGFR-1 and VEGFR-2, and block the binding and in vitro function of semaphorin3A and VEGF(165). Administration of fucoidan to mice reduces VEGF(165)-induced angiogenesis and tumor neovascularization in vivo. We find that dextran sulfate and fucoidan can bridge the extracellular domain of NRP1 to that of the scavenger receptor expressed by endothelial cells I (SREC-I), and induce NRP1 and SREC-I coordinate internalization and trafficking to the lysosomes. Overexpression of SREC-I in SREC-I-negative cells specifically reduces cell-surface levels of NRP1, indicating that SREC-I mediates NRP1 internalization. These results demonstrate that engineered receptor internalization is an effective strategy for reducing levels and function of cell-surface receptors, and identify certain sulfated polysaccharides as "internalization inducers."
Collapse
Affiliation(s)
- Masashi Narazaki
- The Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1907, USA
| | | | | |
Collapse
|
50
|
Tomasi T, Hakeda-Suzuki S, Ohler S, Schleiffer A, Suzuki T. The transmembrane protein Golden goal regulates R8 photoreceptor axon-axon and axon-target interactions. Neuron 2008; 57:691-704. [PMID: 18341990 DOI: 10.1016/j.neuron.2008.01.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 10/23/2007] [Accepted: 01/07/2008] [Indexed: 10/22/2022]
Abstract
During Drosophila visual system development, photoreceptor (R) axons choose their correct paths and targets in a step-wise fashion. R axons with different identities make specific pathfinding decisions at different stages during development. We show here that the transmembrane protein Golden goal (Gogo), which is dynamically expressed in all R neurons and localizes predominantly to growth cones, is required in two distinct steps of R8 photoreceptor axon pathfinding: Gogo regulates axon-axon interactions and axon-target interactions in R8 photoreceptor axons. gogo loss-of-function and gain-of-function phenotypes suggest that Gogo mediates repulsive axon-axon interaction between R8 axons to maintain their proper spacing, and it promotes axon-target recognition at the temporary layer to enable R8 axons to enter their correct target columns in the medulla. From detailed structure-function experiments, we propose that Gogo functions as a receptor that binds an unidentified ligand through its conserved extracellular domain.
Collapse
Affiliation(s)
- Tatiana Tomasi
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | | | | | | | | |
Collapse
|