1
|
Atkinson-Leadbeater K, Bertolesi GE, McFarlane S. Visual input regulates melanophore differentiation. Front Cell Dev Biol 2024; 12:1437613. [PMID: 39228400 PMCID: PMC11368843 DOI: 10.3389/fcell.2024.1437613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/26/2024] [Indexed: 09/05/2024] Open
Abstract
Introduction Developmental processes continue in organisms in which sensory systems have reached functional maturity, however, little research has focused on the influence of sensory input on cell and tissue development. Here, we explored the influence of visual system activity on the development of skin melanophores in Xenopus laevis. Methods Melanophore number was measured in X. laevis larvae after the manipulation of visual input through eye removal (enucleation) and/or incubation on a white or black substrate at the time when the visual system becomes functional (stage 40). To determine the developmental process impacted by visual input, migration, proliferation and differentiation of melanophores was assessed. Finally, the role of melatonin in driving melanophore differentiation was explored. Results Enucleating, or maintaining stage 40 larvae on a black background, results in a pronounced increase in melanophore number in the perioptic region within 24 h. Time lapse analysis revealed that in enucleated larvae new melanophores appear through gradual increase in pigmentation, suggesting unpigmented cells in the perioptic region differentiate into mature melanophores upon reduced visual input. In support, we observed increased expression of melanization genes tyr, tyrp1, and pmel in the perioptic region of enucleated or black background-reared larvae. Conversely, maintaining larvae in full light suppresses melanophore differentiation. Interestingly, an extra-pineal melatonin signal was found to be sufficient and necessary to promote the transition to differentiated melanophores. Discussion In this study, we found that at the time when the visual system becomes functional, X. laevis larvae possess a population of undifferentiated melanophores that can respond rapidly to changes in the external light environment by undergoing differentiation. Thus, we propose a novel mechanism of environmental influence where external sensory signals influence cell differentiation in a manner that would favor survival.
Collapse
Affiliation(s)
| | - Gabriel E. Bertolesi
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Sarah McFarlane
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
2
|
Basakis P, Khaderi A, Lom B. Xenopus retinal ganglion cell axon extension is unaffected by 5-HT 1B/D receptor activation during visual system development. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.001076. [PMID: 38116474 PMCID: PMC10728752 DOI: 10.17912/micropub.biology.001076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023]
Abstract
Activating 5-HT 1B/D receptors with the agonist Zolmitriptan was previously shown to facilitate Xenopus retinal ganglion cell (RGC) axon extension from ectopic eye primordia transplanted to the ventral fin. To determine if 5-HT 1B/D receptor activation influenced entopic RGC axonal outgrowth toward the optic tectum during typical visual system development, we reared embryos in 50 μΜ Zolmitriptan then visualized optic tracts with anterograde HRP labeling. Zolmitriptan did not significantly alter entopic RGC extension in the contralateral brain. Consequently, RGC axon extension in ectopic but not entopic locations is influenced by altering serotonergic signaling .
Collapse
Affiliation(s)
- Petros Basakis
- Biology & Neuroscience, Davidson College, Davidson, North Carolina, United States
| | - Aalim Khaderi
- Biology & Neuroscience, Davidson College, Davidson, North Carolina, United States
- Systems Biology, Harvard Medical School, Harvard University, Cambridge, Massachusetts, United States
| | - Barbara Lom
- Biology & Neuroscience, Davidson College, Davidson, North Carolina, United States
| |
Collapse
|
3
|
Mahomed A, Girn D, Pattani A, Wells BK, King CC, Patel S, Kaur H, Noravian CM, Sieminski J, Pham C, Dante H, Ezin M, Elul T. Cannabinoid receptor type 1 regulates sequential stages of migration and morphogenesis of neural crest cells and derivatives in chicken and frog embryos. J Morphol 2023; 284:e21606. [PMID: 37313768 DOI: 10.1002/jmor.21606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/04/2023] [Accepted: 05/24/2023] [Indexed: 06/15/2023]
Abstract
The main cannabinoid receptor CB1R first shows expression during early neurula stage in chicken (Gallus gallus) embryos, and at early tailbud stage in the frog (Xenopus laevis) embryos. This raises the question of whether CB1R regulates similar or distinct processes during the embryonic development of these two species. Here, we examined whether CB1R influences the migration and morphogenesis of neural crest cells and derivatives in both chicken and frog embryos. Early neurula stage chicken embryos were exposed to arachidonyl-2'-chloroethylamide (ACEA; a CB1R agonist), N-(Piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251; a CB1R inverse agonist) or Blebbistatin (nonmuscle Myosin II inhibitor) in ovo and examined during migration of neural crest cells and at condensing cranial ganglia stage. Early tailbud stage frog embryos were bathed in ACEA, AM251 or Blebbistatin, and analyzed at late tailbud stage for changes in craniofacial and eye morphogenesis, and in patterning and morphology of melanophores (neural crest-derived pigment cells). In chicken embryos exposed to ACEA and Myosin II inhibitor, cranial neural crest cells migrated erratically from the neural tube, and the right, but not the left, ophthalmic nerve of the trigeminal ganglia was affected in ACEA- and AM251-treated embryos. In frog embryos with inactivation or activation of CB1R, or inhibition of Myosin II, the craniofacial and eye regions were smaller and/or less developed, and the melanophores overlying the posterior midbrain were more dense, and stellate in morphology, than the same tissues and cells in control embryos. This data suggests that despite differences in the time of onset of expression, normal activity of CB1R is required for sequential steps in migration and morphogenesis of neural crest cells and derivatives in both chicken and frog embryos. In addition, CB1R may signal through Myosin II to regulate migration and morphogenesis of neural crest cells and derivatives in chicken and frog embryos.
Collapse
Affiliation(s)
- Amira Mahomed
- Department of Biology, Loyola Marymount University, Los Angeles, California, USA
| | - Daljit Girn
- Foundational Biomedical Sciences Department, College of Osteopathic Medicine, Touro University California, Vallejo, California, USA
| | - Afrin Pattani
- Foundational Biomedical Sciences Department, College of Osteopathic Medicine, Touro University California, Vallejo, California, USA
| | - Brian K Wells
- Department of Biology, Loyola Marymount University, Los Angeles, California, USA
| | - Chloe C King
- Department of Biology, Loyola Marymount University, Los Angeles, California, USA
| | - Sonya Patel
- Foundational Biomedical Sciences Department, College of Osteopathic Medicine, Touro University California, Vallejo, California, USA
| | - Harsimran Kaur
- Foundational Biomedical Sciences Department, College of Osteopathic Medicine, Touro University California, Vallejo, California, USA
| | - Christina M Noravian
- Department of Biology, Loyola Marymount University, Los Angeles, California, USA
| | - Jessica Sieminski
- Foundational Biomedical Sciences Department, College of Osteopathic Medicine, Touro University California, Vallejo, California, USA
| | - Chi Pham
- Foundational Biomedical Sciences Department, College of Osteopathic Medicine, Touro University California, Vallejo, California, USA
| | - Halley Dante
- Department of Biology, Loyola Marymount University, Los Angeles, California, USA
| | - Max Ezin
- Department of Biology, Loyola Marymount University, Los Angeles, California, USA
| | - Tamira Elul
- Foundational Biomedical Sciences Department, College of Osteopathic Medicine, Touro University California, Vallejo, California, USA
| |
Collapse
|
4
|
Wit CB, Hiesinger PR. Neuronal filopodia: From stochastic dynamics to robustness of brain morphogenesis. Semin Cell Dev Biol 2023; 133:10-19. [PMID: 35397971 DOI: 10.1016/j.semcdb.2022.03.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 12/30/2022]
Abstract
Brain development relies on dynamic morphogenesis and interactions of neurons. Filopodia are thin and highly dynamic membrane protrusions that are critically required for neuronal development and neuronal interactions with the environment. Filopodial interactions are typically characterized by non-deterministic dynamics, yet their involvement in developmental processes leads to stereotypic and robust outcomes. Here, we discuss recent advances in our understanding of how filopodial dynamics contribute to neuronal differentiation, migration, axonal and dendritic growth and synapse formation. Many of these advances are brought about by improved methods of live observation in intact developing brains. Recent findings integrate known and novel roles ranging from exploratory sensors and decision-making agents to pools for selection and mechanical functions. Different types of filopodial dynamics thereby reveal non-deterministic subcellular decision-making processes as part of genetically encoded brain development.
Collapse
Affiliation(s)
- Charlotte B Wit
- Devision of Neurobiology, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - P Robin Hiesinger
- Devision of Neurobiology, Institute of Biology, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
5
|
Dumoulin A, Stoeckli ET. Looking for Guidance - Models and Methods to Study Axonal Navigation. Neuroscience 2023; 508:30-39. [PMID: 35940454 DOI: 10.1016/j.neuroscience.2022.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 01/17/2023]
Abstract
The molecular mechanisms of neural circuit formation have been of interest to Santiago Ramón y Cajal and thousands of neuroscientists sharing his passion for neural circuits ever since. Cajal was a brilliant observer and taught us about the connections and the morphology of neurons in the adult and developing nervous system. Clearly, we will not learn about molecular mechanisms by just looking at brain sections or cells in culture. Technically, we had to come a long way to today's possibilities that allow us to perturb target gene expression and watch the consequences of our manipulations on navigating axons in situ. In this review, we summarize landmark steps towards modern live-imaging approaches used to study the molecular basis of axon guidance.
Collapse
Affiliation(s)
- Alexandre Dumoulin
- Department of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Esther T Stoeckli
- Department of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
6
|
Elul T, Lim J, Hanton K, Lui A, Jones K, Chen G, Chong C, Dao S, Rawat R. Cannabinoid 1 Receptor CBIR regulates growth cone filopodia and axon dispersion in the optic tract of
Xenopus laevis
tadpoles. Eur J Neurosci 2022; 55:989-1001. [DOI: 10.1111/ejn.15603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/10/2021] [Accepted: 01/05/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Tamira Elul
- Touro University California Vallejo California US
| | - John Lim
- Touro University California Vallejo California US
| | | | - Austin Lui
- Touro University California Vallejo California US
| | - Kenton Jones
- Touro University California Vallejo California US
| | - George Chen
- Touro University California Vallejo California US
| | | | - Sophia Dao
- Touro University California Vallejo California US
| | | |
Collapse
|
7
|
Van Bergen NJ, Ahmed SM, Collins F, Cowley M, Vetro A, Dale RC, Hock DH, de Caestecker C, Menezes M, Massey S, Ho G, Pisano T, Glover S, Gusman J, Stroud DA, Dinger M, Guerrini R, Macara IG, Christodoulou J. Mutations in the exocyst component EXOC2 cause severe defects in human brain development. J Exp Med 2021; 217:151928. [PMID: 32639540 PMCID: PMC7537385 DOI: 10.1084/jem.20192040] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/03/2020] [Accepted: 04/03/2020] [Indexed: 12/30/2022] Open
Abstract
The exocyst, an octameric protein complex, is an essential component of the membrane transport machinery required for tethering and fusion of vesicles at the plasma membrane. We report pathogenic variants in an exocyst subunit, EXOC2 (Sec5). Affected individuals have severe developmental delay, dysmorphism, and brain abnormalities; variability associated with epilepsy; and poor motor skills. Family 1 had two offspring with a homozygous truncating variant in EXOC2 that leads to nonsense-mediated decay of EXOC2 transcript, a severe reduction in exocytosis and vesicle fusion, and undetectable levels of EXOC2 protein. The patient from Family 2 had a milder clinical phenotype and reduced exocytosis. Cells from both patients showed defective Arl13b localization to the primary cilium. The discovery of mutations that partially disable exocyst function provides valuable insight into this essential protein complex in neural development. Since EXOC2 and other exocyst complex subunits are critical to neuronal function, our findings suggest that EXOC2 variants are the cause of the patients’ neurological disorders.
Collapse
Affiliation(s)
- Nicole J Van Bergen
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Syed Mukhtar Ahmed
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Felicity Collins
- Western Sydney Genetics Program, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Medical Genomics Department, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Mark Cowley
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,St Vincent's Clinical School, University of New South Wales Sydney, Sydney, New South Wales, Australia.,Children's Cancer Institute, Kensington, New South Wales, Australia
| | - Annalisa Vetro
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Russell C Dale
- Department of Paediatric Neurology, The Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Kids Neuroscience Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Daniella H Hock
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Christian de Caestecker
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Minal Menezes
- Kids Research, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Sean Massey
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Gladys Ho
- Western Sydney Genetics Program, Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Tiziana Pisano
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Seana Glover
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Jovanka Gusman
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - David A Stroud
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Marcel Dinger
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington Campus, Sydney, New South Wales, Australia
| | - Renzo Guerrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Ian G Macara
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia.,Victorian Clinical Genetics Services, Royal Children's Hospital, Parkville, Victoria, Australia
| |
Collapse
|
8
|
Abstract
The brain is our most complex organ. During development, neurons extend axons, which may grow over long distances along well-defined pathways to connect to distant targets. Our current understanding of axon pathfinding is largely based on chemical signaling by attractive and repulsive guidance cues. These cues instruct motile growth cones, the leading tips of growing axons, where to turn and where to stop. However, it is not chemical signals that cause motion-motion is driven by forces. Yet our current understanding of the mechanical regulation of axon growth is very limited. In this review, I discuss the origin of the cellular forces controlling axon growth and pathfinding, and how mechanical signals encountered by growing axons may be integrated with chemical signals. This mechanochemical cross talk is an important but often overlooked aspect of cell motility that has major implications for many physiological and pathological processes involving neuronal growth.
Collapse
Affiliation(s)
- Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom;
| |
Collapse
|
9
|
Özel MN, Kulkarni A, Hasan A, Brummer J, Moldenhauer M, Daumann IM, Wolfenberg H, Dercksen VJ, Kiral FR, Weiser M, Prohaska S, von Kleist M, Hiesinger PR. Serial Synapse Formation through Filopodial Competition for Synaptic Seeding Factors. Dev Cell 2019; 50:447-461.e8. [PMID: 31353313 DOI: 10.1016/j.devcel.2019.06.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/15/2019] [Accepted: 06/21/2019] [Indexed: 11/15/2022]
Abstract
Following axon pathfinding, growth cones transition from stochastic filopodial exploration to the formation of a limited number of synapses. How the interplay of filopodia and synapse assembly ensures robust connectivity in the brain has remained a challenging problem. Here, we developed a new 4D analysis method for filopodial dynamics and a data-driven computational model of synapse formation for R7 photoreceptor axons in developing Drosophila brains. Our live data support a "serial synapse formation" model, where at any time point only 1-2 "synaptogenic" filopodia suppress the synaptic competence of other filopodia through competition for synaptic seeding factors. Loss of the synaptic seeding factors Syd-1 and Liprin-α leads to a loss of this suppression, filopodial destabilization, and reduced synapse formation. The failure to form synapses can cause the destabilization and secondary retraction of axon terminals. Our model provides a filopodial "winner-takes-all" mechanism that ensures the formation of an appropriate number of synapses.
Collapse
Affiliation(s)
- M Neset Özel
- Division of Neurobiology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany; Neuroscience Graduate Program, UT Southwestern Medical Center Dallas, Dallas, TX 75390, USA
| | - Abhishek Kulkarni
- Division of Neurobiology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Amr Hasan
- Division of Neurobiology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Josephine Brummer
- Department of Visual Data Analysis, Zuse Institute Berlin, 14195 Berlin, Germany
| | - Marian Moldenhauer
- Computational Medicine and Numerical Mathematics, Zuse Institute Berlin, 14195 Berlin, Germany; Department of Mathematics and Informatics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Ilsa-Maria Daumann
- Division of Neurobiology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Heike Wolfenberg
- Division of Neurobiology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Vincent J Dercksen
- Department of Visual Data Analysis, Zuse Institute Berlin, 14195 Berlin, Germany
| | - F Ridvan Kiral
- Division of Neurobiology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Martin Weiser
- Computational Medicine and Numerical Mathematics, Zuse Institute Berlin, 14195 Berlin, Germany
| | - Steffen Prohaska
- Department of Visual Data Analysis, Zuse Institute Berlin, 14195 Berlin, Germany
| | - Max von Kleist
- Department of Mathematics and Informatics, Freie Universität Berlin, 14195 Berlin, Germany.
| | - P Robin Hiesinger
- Division of Neurobiology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany.
| |
Collapse
|
10
|
Cioni JM, Wong HHW, Bressan D, Kodama L, Harris WA, Holt CE. Axon-Axon Interactions Regulate Topographic Optic Tract Sorting via CYFIP2-Dependent WAVE Complex Function. Neuron 2019. [PMID: 29518358 PMCID: PMC5855093 DOI: 10.1016/j.neuron.2018.01.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The axons of retinal ganglion cells (RGCs) are topographically sorted before they arrive at the optic tectum. This pre-target sorting, typical of axon tracts throughout the brain, is poorly understood. Here, we show that cytoplasmic FMR1-interacting proteins (CYFIPs) fulfill non-redundant functions in RGCs, with CYFIP1 mediating axon growth and CYFIP2 specifically involved in axon sorting. We find that CYFIP2 mediates homotypic and heterotypic contact-triggered fasciculation and repulsion responses between dorsal and ventral axons. CYFIP2 associates with transporting ribonucleoprotein particles in axons and regulates translation. Axon-axon contact stimulates CYFIP2 to move into growth cones where it joins the actin nucleating WAVE regulatory complex (WRC) in the periphery and regulates actin remodeling and filopodial dynamics. CYFIP2’s function in axon sorting is mediated by its binding to the WRC but not its translational regulation. Together, these findings uncover CYFIP2 as a key regulatory link between axon-axon interactions, filopodial dynamics, and optic tract sorting. CYFIP1 and CYFIP2 serve non-redundant functions in retinal axon growth and guidance CYFIP2 regulates growth cone filopodial dynamics and axon-axon responses CYFIP2 interacts with RNPs and the WRC in distinct cellular compartments Axon sorting is mediated by CYFIP2’s interaction with the WRC
Collapse
Affiliation(s)
- Jean-Michel Cioni
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - Hovy Ho-Wai Wong
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - Dario Bressan
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Lay Kodama
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - William A Harris
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - Christine E Holt
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK.
| |
Collapse
|
11
|
STIM1 Is Required for Remodeling of the Endoplasmic Reticulum and Microtubule Cytoskeleton in Steering Growth Cones. J Neurosci 2019; 39:5095-5114. [PMID: 31023836 DOI: 10.1523/jneurosci.2496-18.2019] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 11/21/2022] Open
Abstract
The spatial and temporal regulation of calcium signaling in neuronal growth cones is essential for axon guidance. In growth cones, the endoplasmic reticulum (ER) is a significant source of calcium signals. However, it is not clear whether the ER is remodeled during motile events to localize calcium signals in steering growth cones. The expression of the ER-calcium sensor, stromal interacting molecule 1 (STIM1) is necessary for growth cone steering toward the calcium-dependent guidance cue BDNF, with STIM1 functioning to sustain calcium signals through store-operated calcium entry. However, STIM1 is also required for growth cone steering away from semaphorin-3a, a guidance cue that does not activate ER-calcium release, suggesting multiple functions of STIM1 within growth cones (Mitchell et al., 2012). STIM1 also interacts with microtubule plus-end binding proteins EB1/EB3 (Grigoriev et al., 2008). Here, we show that STIM1 associates with EB1/EB3 in growth cones and that STIM1 expression is critical for microtubule recruitment and subsequent ER remodeling to the motile side of steering growth cones. Furthermore, we extend our data in vivo, demonstrating that zSTIM1 is required for axon guidance in actively navigating zebrafish motor neurons, regulating calcium signaling and filopodial formation. These data demonstrate that, in response to multiple guidance cues, STIM1 couples microtubule organization and ER-derived calcium signals, thereby providing a mechanism where STIM1-mediated ER remodeling, particularly in filopodia, regulates spatiotemporal calcium signals during axon guidance.SIGNIFICANCE STATEMENT Defects in both axon guidance and endoplasmic reticulum (ER) function are implicated in a range of developmental disorders. During neuronal circuit development, the spatial localization of calcium signals controls the growth cone cytoskeleton to direct motility. We demonstrate a novel role for stromal interacting molecule 1 (STIM1) in regulating microtubule and subsequent ER remodeling in navigating growth cones. We show that STIM1, an activator of store-operated calcium entry, regulates the dynamics of microtubule-binding proteins EB1/EB3, coupling ER to microtubules, within filopodia, thereby steering growth cones. The STIM1-microtubule-ER interaction provides a new model for spatial localization of calcium signals in navigating growth cones in the nascent nervous system.
Collapse
|
12
|
The Expression of Key Guidance Genes at a Forebrain Axon Turning Point Is Maintained by Distinct Fgfr Isoforms but a Common Downstream Signal Transduction Mechanism. eNeuro 2019; 6:eN-NWR-0086-19. [PMID: 30993182 PMCID: PMC6464512 DOI: 10.1523/eneuro.0086-19.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 12/24/2022] Open
Abstract
During development the axons of neurons grow toward and locate their synaptic partners to form functional neural circuits. Axons do so by reading a map of guidance cues expressed by surrounding tissues. Guidance cues are expressed at a precise space and time, but how guidance cue expression is regulated, and in a coordinated manner, is poorly understood. Semaphorins (Semas) and Slits are families of molecular ligands that guide axons. We showed previously that fibroblast growth factor (Fgf) signaling maintains sema3a and slit1 forebrain expression in Xenopus laevis, and these two repellents cooperate to guide retinal ganglion cell (RGC) axons away from the mid-diencephalon and on towards the optic tectum. Here, we investigate whether there are common features of the regulatory pathways that control the expression of these two guidance cues at this single axon guidance decision point. We isolated the sema3a proximal promoter and confirmed its responsiveness to Fgf signaling. Through misexpression of truncated Fgf receptors (Fgfrs), we found that sema3a forebrain expression is dependent on Fgfr2-4 but not Fgfr1. This is in contrast to slit1, whose expression we showed previously depends on Fgfr1 but not Fgfr2-4. Using pharmacological inhibitors and misexpression of constitutively active (CA) and dominant negative (DN) signaling intermediates, we find that while distinct Fgfrs regulate these two guidance genes, intracellular signaling downstream of Fgfrs appears to converge along the phosphoinositol 3-kinase (PI3K)-Akt signaling pathway. A common PI3K-Akt signaling pathway may allow for the coordinated expression of guidance cues that cooperate to direct axons at a guidance choice point.
Collapse
|
13
|
Thompson AJ, Pillai EK, Dimov IB, Foster SK, Holt CE, Franze K. Rapid changes in tissue mechanics regulate cell behaviour in the developing embryonic brain. eLife 2019; 8:e39356. [PMID: 30642430 PMCID: PMC6333438 DOI: 10.7554/elife.39356] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 12/10/2018] [Indexed: 12/17/2022] Open
Abstract
Tissue mechanics is important for development; however, the spatio-temporal dynamics of in vivo tissue stiffness is still poorly understood. We here developed tiv-AFM, combining time-lapse in vivo atomic force microscopy with upright fluorescence imaging of embryonic tissue, to show that during development local tissue stiffness changes significantly within tens of minutes. Within this time frame, a stiffness gradient arose in the developing Xenopus brain, and retinal ganglion cell axons turned to follow this gradient. Changes in local tissue stiffness were largely governed by cell proliferation, as perturbation of mitosis diminished both the stiffness gradient and the caudal turn of axons found in control brains. Hence, we identified a close relationship between the dynamics of tissue mechanics and developmental processes, underpinning the importance of time-resolved stiffness measurements.
Collapse
Affiliation(s)
- Amelia J Thompson
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | - Eva K Pillai
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | - Ivan B Dimov
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | - Sarah K Foster
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | - Christine E Holt
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | - Kristian Franze
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
14
|
Gouveia Roque C, Holt CE. Growth Cone Tctp Is Dynamically Regulated by Guidance Cues. Front Mol Neurosci 2018; 11:399. [PMID: 30459552 PMCID: PMC6232380 DOI: 10.3389/fnmol.2018.00399] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 10/12/2018] [Indexed: 12/19/2022] Open
Abstract
Translationally controlled tumor protein (Tctp) contributes to retinal circuitry formation by promoting axon growth and guidance, but it remains unknown to what extent axonal Tctp specifically influences axon development programs. Various genome-wide profiling studies have ranked tctp transcripts among the most enriched in the axonal compartment of distinct neuronal populations, including embryonic retinal ganglion cells (RGCs), suggesting its expression can be regulated locally and that this may be important during development. Here, we report that growth cone Tctp levels change rapidly in response to Netrin-1 and Ephrin-A1, two guidance cues encountered by navigating RGC growth cones. This regulation is opposite in effect, as we observed protein synthesis- and mTORC1-dependent increases in growth cone Tctp levels after acute treatment with Netrin-1, but a decline upon exposure to Ephrin-A1, an inhibitor of mTORC1. Live imaging with translation reporters further showed that Netrin-1-induced synthesis of Tctp in growth cones is driven by a short 3'untranslated region (3'UTR) tctp mRNA isoform. However, acute inhibition of de novo Tctp synthesis in axons did not perturb the advance of retinal projections through the optic tract in vivo, indicating that locally produced Tctp is not necessary for normal axon growth and guidance.
Collapse
Affiliation(s)
- Cláudio Gouveia Roque
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.,Doctoral Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Christine E Holt
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
15
|
Liu TL, Upadhyayula S, Milkie DE, Singh V, Wang K, Swinburne IA, Mosaliganti KR, Collins ZM, Hiscock TW, Shea J, Kohrman AQ, Medwig TN, Dambournet D, Forster R, Cunniff B, Ruan Y, Yashiro H, Scholpp S, Meyerowitz EM, Hockemeyer D, Drubin DG, Martin BL, Matus DQ, Koyama M, Megason SG, Kirchhausen T, Betzig E. Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms. Science 2018; 360:eaaq1392. [PMID: 29674564 PMCID: PMC6040645 DOI: 10.1126/science.aaq1392] [Citation(s) in RCA: 326] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 02/19/2018] [Indexed: 01/10/2023]
Abstract
True physiological imaging of subcellular dynamics requires studying cells within their parent organisms, where all the environmental cues that drive gene expression, and hence the phenotypes that we actually observe, are present. A complete understanding also requires volumetric imaging of the cell and its surroundings at high spatiotemporal resolution, without inducing undue stress on either. We combined lattice light-sheet microscopy with adaptive optics to achieve, across large multicellular volumes, noninvasive aberration-free imaging of subcellular processes, including endocytosis, organelle remodeling during mitosis, and the migration of axons, immune cells, and metastatic cancer cells in vivo. The technology reveals the phenotypic diversity within cells across different organisms and developmental stages and may offer insights into how cells harness their intrinsic variability to adapt to different physiological environments.
Collapse
Affiliation(s)
- Tsung-Li Liu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Srigokul Upadhyayula
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
- Department of Cell Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, 200 Longwood Avenue, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Daniel E Milkie
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Ved Singh
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Kai Wang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Ian A Swinburne
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Kishore R Mosaliganti
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Zach M Collins
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Tom W Hiscock
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Jamien Shea
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Abraham Q Kohrman
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Taylor N Medwig
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Daphne Dambournet
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ryan Forster
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Brian Cunniff
- Department of Cell Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Yuan Ruan
- Howard Hughes Medical Institute and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Hanako Yashiro
- Howard Hughes Medical Institute and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Steffen Scholpp
- Living Systems Institute, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Elliot M Meyerowitz
- Howard Hughes Medical Institute and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Dirk Hockemeyer
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - David G Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Benjamin L Martin
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Minoru Koyama
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Sean G Megason
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Tom Kirchhausen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
- Department of Cell Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, 200 Longwood Avenue, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Eric Betzig
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| |
Collapse
|
16
|
Urbančič V, Butler R, Richier B, Peter M, Mason J, Livesey FJ, Holt CE, Gallop JL. Filopodyan: An open-source pipeline for the analysis of filopodia. J Cell Biol 2017; 216:3405-3422. [PMID: 28760769 PMCID: PMC5626553 DOI: 10.1083/jcb.201705113] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/28/2017] [Accepted: 07/06/2017] [Indexed: 02/07/2023] Open
Abstract
Filopodia have important sensory and mechanical roles in motile cells. The recruitment of actin regulators, such as ENA/VASP proteins, to sites of protrusion underlies diverse molecular mechanisms of filopodia formation and extension. We developed Filopodyan (filopodia dynamics analysis) in Fiji and R to measure fluorescence in filopodia and at their tips and bases concurrently with their morphological and dynamic properties. Filopodyan supports high-throughput phenotype characterization as well as detailed interactive editing of filopodia reconstructions through an intuitive graphical user interface. Our highly customizable pipeline is widely applicable, capable of detecting filopodia in four different cell types in vitro and in vivo. We use Filopodyan to quantify the recruitment of ENA and VASP preceding filopodia formation in neuronal growth cones, and uncover a molecular heterogeneity whereby different filopodia display markedly different responses to changes in the accumulation of ENA and VASP fluorescence in their tips over time.
Collapse
Affiliation(s)
- Vasja Urbančič
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, England, UK
- Department of Biochemistry, University of Cambridge, Cambridge, England, UK
| | - Richard Butler
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, England, UK
| | - Benjamin Richier
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, England, UK
- Department of Biochemistry, University of Cambridge, Cambridge, England, UK
| | - Manuel Peter
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, England, UK
- Department of Biochemistry, University of Cambridge, Cambridge, England, UK
| | - Julia Mason
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, England, UK
- Department of Biochemistry, University of Cambridge, Cambridge, England, UK
| | - Frederick J Livesey
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, England, UK
- Department of Biochemistry, University of Cambridge, Cambridge, England, UK
| | - Christine E Holt
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, England, UK
| | - Jennifer L Gallop
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, England, UK
- Department of Biochemistry, University of Cambridge, Cambridge, England, UK
| |
Collapse
|
17
|
Wong HHW, Lin JQ, Ströhl F, Roque CG, Cioni JM, Cagnetta R, Turner-Bridger B, Laine RF, Harris WA, Kaminski CF, Holt CE. RNA Docking and Local Translation Regulate Site-Specific Axon Remodeling In Vivo. Neuron 2017; 95:852-868.e8. [PMID: 28781168 PMCID: PMC5563073 DOI: 10.1016/j.neuron.2017.07.016] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 06/09/2017] [Accepted: 07/14/2017] [Indexed: 12/03/2022]
Abstract
Nascent proteins can be positioned rapidly at precise subcellular locations by local protein synthesis (LPS) to facilitate localized growth responses. Axon arbor architecture, a major determinant of synaptic connectivity, is shaped by localized growth responses, but it is unknown whether LPS influences these responses in vivo. Using high-resolution live imaging, we examined the spatiotemporal dynamics of RNA and LPS in retinal axons during arborization in vivo. Endogenous RNA tracking reveals that RNA granules dock at sites of branch emergence and invade stabilized branches. Live translation reporter analysis reveals that de novo β-actin hotspots colocalize with docked RNA granules at the bases and tips of new branches. Inhibition of axonal β-actin mRNA translation disrupts arbor dynamics primarily by reducing new branch emergence and leads to impoverished terminal arbors. The results demonstrate a requirement for LPS in building arbor complexity and suggest a key role for pre-synaptic LPS in assembling neural circuits. Tracking endogenous RNA shows that RNA docking predicts axon branch emergence in vivo Axon arbor complexity in vivo depends on local protein synthesis Axonal β-actin synthesis regulates branching by increased branch initiation Live imaging reveals de novo synthesis of β-actin hotspots during branch formation
Collapse
Affiliation(s)
- Hovy Ho-Wai Wong
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Julie Qiaojin Lin
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Florian Ströhl
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Cláudio Gouveia Roque
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Jean-Michel Cioni
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Roberta Cagnetta
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Benita Turner-Bridger
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Romain F Laine
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - William A Harris
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Clemens F Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Christine E Holt
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK.
| |
Collapse
|
18
|
DSCAM promotes axon fasciculation and growth in the developing optic pathway. Proc Natl Acad Sci U S A 2017; 114:1702-1707. [PMID: 28137836 DOI: 10.1073/pnas.1618606114] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although many aspects of optic pathway development are beginning to be understood, the mechanisms promoting the growth of retinal ganglion cell (RGC) axons toward visual targets remain largely unknown. Down syndrome cell adhesion molecule (Dscam) is expressed by mouse RGCs shortly after they differentiate at embryonic day 12 and is essential for multiple aspects of postnatal visual system development. Here we show that Dscam is also required during embryonic development for the fasciculation and growth of RGC axons. Dscam is expressed along the developing optic pathway in a pattern consistent with a role in regulating RGC axon outgrowth. In mice carrying spontaneous mutations in Dscam (Dscamdel17 ; Dscam2J), RGC axons pathfind normally, but growth from the chiasm toward their targets is impaired, resulting in a delay in RGC axons reaching the dorsal thalamus compared with that seen in wild-type littermates. Conversely, Dscam gain of function results in exuberant growth into the dorsal thalamus. The growth of ipsilaterally projecting axons is particularly affected. Axon organization in the optic chiasm and tract and RGC growth cone morphologies are also altered in Dscam mutants. In vitro DSCAM promotes RGC axon growth and fasciculation, and can act independently of cell contact. In vitro and in situ DSCAM is required both in the RGC axons and in their environment for the promotion of axon outgrowth, consistent with a homotypic mode of action. These findings identify DSCAM as a permissive signal that promotes the growth and fasciculation of RGC axons, controlling the timing of when RGC axons reach their targets.
Collapse
|
19
|
Mechanosensing is critical for axon growth in the developing brain. Nat Neurosci 2016; 19:1592-1598. [PMID: 27643431 PMCID: PMC5531257 DOI: 10.1038/nn.4394] [Citation(s) in RCA: 386] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/25/2016] [Indexed: 02/07/2023]
Abstract
During nervous system development, neurons extend axons along well-defined pathways. The current understanding of axon pathfinding is based mainly on chemical signaling. However, growing neurons interact not only chemically but also mechanically with their environment. Here we identify mechanical signals as important regulators of axon pathfinding. In vitro, substrate stiffness determined growth patterns of Xenopus retinal ganglion cell axons. In vivo atomic force microscopy revealed a noticeable pattern of stiffness gradients in the embryonic brain. Retinal ganglion cell axons grew toward softer tissue, which was reproduced in vitro in the absence of chemical gradients. To test the importance of mechanical signals for axon growth in vivo, we altered brain stiffness, blocked mechanotransduction pharmacologically and knocked down the mechanosensitive ion channel piezo1. All treatments resulted in aberrant axonal growth and pathfinding errors, suggesting that local tissue stiffness, read out by mechanosensitive ion channels, is critically involved in instructing neuronal growth in vivo.
Collapse
|
20
|
Rappaz B, Lai Wing Sun K, Correia JP, Wiseman PW, Kennedy TE. FLIM FRET Visualization of Cdc42 Activation by Netrin-1 in Embryonic Spinal Commissural Neuron Growth Cones. PLoS One 2016; 11:e0159405. [PMID: 27482713 PMCID: PMC4970703 DOI: 10.1371/journal.pone.0159405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 07/02/2016] [Indexed: 12/29/2022] Open
Abstract
Netrin-1 is an essential extracellular chemoattractant that signals through its receptor DCC to guide commissural axon extension in the embryonic spinal cord. DCC directs the organization of F-actin in growth cones by activating an intracellular protein complex that includes the Rho GTPase Cdc42, a critical regulator of cell polarity and directional migration. To address the spatial distribution of signaling events downstream of netrin-1, we expressed the FRET biosensor Raichu-Cdc42 in cultured embryonic rat spinal commissural neurons. Using FLIM-FRET imaging we detected rapid activation of Cdc42 in neuronal growth cones following application of netrin-1. Investigating the signaling mechanisms that control Cdc42 activation by netrin-1, we demonstrate that netrin-1 rapidly enriches DCC at the leading edge of commissural neuron growth cones and that netrin-1 induced activation of Cdc42 in the growth cone is blocked by inhibiting src family kinase signaling. These findings reveal the activation of Cdc42 in embryonic spinal commissural axon growth cones and support the conclusion that src family kinase activation downstream of DCC is required for Cdc42 activation by netrin-1.
Collapse
Affiliation(s)
- Benjamin Rappaz
- Program in NeuroEngineering, McGill University, Montreal, QC, H3A 2B4, Canada
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
- Department of Physics, McGill University, Montreal, QC, H3A 2T8, Canada
| | - Karen Lai Wing Sun
- Program in NeuroEngineering, McGill University, Montreal, QC, H3A 2B4, Canada
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| | - James P. Correia
- Program in NeuroEngineering, McGill University, Montreal, QC, H3A 2B4, Canada
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Paul W. Wiseman
- Program in NeuroEngineering, McGill University, Montreal, QC, H3A 2B4, Canada
- Department of Physics, McGill University, Montreal, QC, H3A 2T8, Canada
- Department of Chemistry, McGill University, Montreal, QC, H3A 0B8, Canada
| | - Timothy E. Kennedy
- Program in NeuroEngineering, McGill University, Montreal, QC, H3A 2B4, Canada
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| |
Collapse
|
21
|
Abstract
The growth and migration of neurons require continuous remodelling of the neuronal cytoskeleton, providing a versatile cellular framework for force generation and guided movement, in addition to structural support. Actin filaments and microtubules are central to the dynamic action of the cytoskeleton and rapid advances in imaging technologies are enabling ever more detailed visualisation of the dynamic intracellular networks that they form. However, these filaments do not act individually and an expanding body of evidence emphasises the importance of actin-microtubule crosstalk in orchestrating cytoskeletal dynamics. Here, we summarise our current understanding of the structure and dynamics of actin and microtubules in isolation, before reviewing both the mechanisms and the molecular players involved in mediating actin-microtubule crosstalk in neurons.
Collapse
Affiliation(s)
- Charlotte H Coles
- Laboratory for Axon Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Ludwig-Erhard-Allee 2, 53175, Bonn, Germany.
| | - Frank Bradke
- Laboratory for Axon Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Ludwig-Erhard-Allee 2, 53175, Bonn, Germany.
| |
Collapse
|
22
|
McConnell RE, Edward van Veen J, Vidaki M, Kwiatkowski AV, Meyer AS, Gertler FB. A requirement for filopodia extension toward Slit during Robo-mediated axon repulsion. J Cell Biol 2016; 213:261-74. [PMID: 27091449 PMCID: PMC5084274 DOI: 10.1083/jcb.201509062] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 03/04/2016] [Indexed: 12/11/2022] Open
Abstract
Axons navigate long distances through complex 3D environments to interconnect the nervous system during development. Although the precise spatiotemporal effects of most axon guidance cues remain poorly characterized, a prevailing model posits that attractive guidance cues stimulate actin polymerization in neuronal growth cones whereas repulsive cues induce actin disassembly. Contrary to this model, we find that the repulsive guidance cue Slit stimulates the formation and elongation of actin-based filopodia from mouse dorsal root ganglion growth cones. Surprisingly, filopodia form and elongate toward sources of Slit, a response that we find is required for subsequent axonal repulsion away from Slit. Mechanistically, Slit evokes changes in filopodium dynamics by increasing direct binding of its receptor, Robo, to members of the actin-regulatory Ena/VASP family. Perturbing filopodium dynamics pharmacologically or genetically disrupts Slit-mediated repulsion and produces severe axon guidance defects in vivo. Thus, Slit locally stimulates directional filopodial extension, a process that is required for subsequent axonal repulsion downstream of the Robo receptor.
Collapse
Affiliation(s)
- Russell E McConnell
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 01239
| | - J Edward van Veen
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 01239 Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 01239
| | - Marina Vidaki
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 01239
| | - Adam V Kwiatkowski
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 01239
| | - Aaron S Meyer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 01239 Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 01239
| | - Frank B Gertler
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 01239 Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 01239
| |
Collapse
|
23
|
Atkinson-Leadbeater K, Hehr CL, Johnston J, Bertolesi G, McFarlane S. EGCG stabilizes growth cone filopodia and impairs retinal ganglion cell axon guidance. Dev Dyn 2016; 245:667-77. [DOI: 10.1002/dvdy.24406] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 03/05/2016] [Accepted: 03/12/2016] [Indexed: 12/14/2022] Open
Affiliation(s)
| | - Carrie L. Hehr
- Hotchkiss Brain Institute; Department of Cell Biology and Anatomy; University of Calgary; Calgary Alberta
| | - Jill Johnston
- Hotchkiss Brain Institute; Department of Cell Biology and Anatomy; University of Calgary; Calgary Alberta
| | - Gabriel Bertolesi
- Hotchkiss Brain Institute; Department of Cell Biology and Anatomy; University of Calgary; Calgary Alberta
| | - Sarah McFarlane
- Hotchkiss Brain Institute; Department of Cell Biology and Anatomy; University of Calgary; Calgary Alberta
| |
Collapse
|
24
|
Davey CF, Mathewson AW, Moens CB. PCP Signaling between Migrating Neurons and their Planar-Polarized Neuroepithelial Environment Controls Filopodial Dynamics and Directional Migration. PLoS Genet 2016; 12:e1005934. [PMID: 26990447 PMCID: PMC4798406 DOI: 10.1371/journal.pgen.1005934] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 02/24/2016] [Indexed: 11/18/2022] Open
Abstract
The planar cell polarity (PCP) pathway is a cell-contact mediated mechanism for transmitting polarity information between neighboring cells. PCP “core components” (Vangl, Fz, Pk, Dsh, and Celsr) are essential for a number of cell migratory events including the posterior migration of facial branchiomotor neurons (FBMNs) in the plane of the hindbrain neuroepithelium in zebrafish and mice. While the mechanism by which PCP signaling polarizes static epithelial cells is well understood, how PCP signaling controls highly dynamic processes like neuronal migration remains an important outstanding question given that PCP components have been implicated in a range of directed cell movements, particularly during vertebrate development. Here, by systematically disrupting PCP signaling in a rhombomere-restricted manner we show that PCP signaling is required both within FBMNs and the hindbrain rhombomere 4 environment at the time when they initiate their migration. Correspondingly, we demonstrate planar polarized localization of PCP core components Vangl2 and Fzd3a in the hindbrain neuroepithelium, and transient localization of Vangl2 at the tips of retracting FBMN filopodia. Using high-resolution timelapse imaging of FBMNs in genetic chimeras we uncover opposing cell-autonomous and non-cell-autonomous functions for Fzd3a and Vangl2 in regulating FBMN protrusive activity. Within FBMNs, Fzd3a is required to stabilize filopodia while Vangl2 has an antagonistic, destabilizing role. However, in the migratory environment Fzd3a acts to destabilize FBMN filopodia while Vangl2 has a stabilizing role. Together, our findings suggest a model in which PCP signaling between the planar polarized neuroepithelial environment and FBMNs directs migration by the selective stabilization of FBMN filopodia. Planar cell polarity (PCP) is a common feature of many animal tissues. This type of polarity is most obvious in cells that are organized into epithelial sheets, where PCP signaling components act to orient cells in the plane of the tissue. Although, PCP is best understood for its function in polarizing stable epithelia, PCP is also required for the dynamic process of cell migration in animal development and disease. The goal of this study was to determine how PCP functions to control cell migration. We used the migration of facial branchiomotor neurons in the zebrafish hindbrain, which requires almost the entire suite of PCP core components, to address this question. We present evidence that PCP signaling within migrating neurons, and between migrating neurons and cells of their migratory environment promote migration by regulating filopodial dynamics. Our results suggest that broadly conserved interactions between PCP components control the cytoskeleton in motile cells and non-motile epithelia alike.
Collapse
Affiliation(s)
- Crystal F. Davey
- Division of Basic Science, Fred Hutchinson Cancer Research Center, and University of Washington Molecular and Cellular Biology Graduate Program, Seattle, Washington, United States of America
| | - Andrew W. Mathewson
- Division of Basic Science, Fred Hutchinson Cancer Research Center, and University of Washington Molecular and Cellular Biology Graduate Program, Seattle, Washington, United States of America
| | - Cecilia B. Moens
- Division of Basic Science, Fred Hutchinson Cancer Research Center, and University of Washington Molecular and Cellular Biology Graduate Program, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
25
|
Erdogan B, Ebbert PT, Lowery LA. Using Xenopus laevis retinal and spinal neurons to study mechanisms of axon guidance in vivo and in vitro. Semin Cell Dev Biol 2016; 51:64-72. [PMID: 26853934 DOI: 10.1016/j.semcdb.2016.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/01/2016] [Indexed: 11/26/2022]
Abstract
The intricate and precise establishment of neuronal connections in the developing nervous system relies on accurate navigation of growing axons. Since Ramón y Cajal's discovery of the growth cone, the phenomenon of axon guidance has been revealed as a coordinated operation of guidance molecules, receptors, secondary messengers, and responses driven by the dynamic cytoskeleton within the growth cone. With the advent of new and accelerating techniques, Xenopus laevis emerged as a robust model to investigate neuronal circuit formation during development. We present here the advantages of the Xenopus nervous system to our growing understanding of axon guidance.
Collapse
Affiliation(s)
- Burcu Erdogan
- Department of Biology, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA.
| | - Patrick T Ebbert
- Department of Biology, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA.
| | - Laura Anne Lowery
- Department of Biology, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA.
| |
Collapse
|
26
|
Huang YB, Hu CR, Zhang L, Yin W, Hu B. In Vivo Study of Dynamics and Stability of Dendritic Spines on Olfactory Bulb Interneurons in Xenopus laevis Tadpoles. PLoS One 2015; 10:e0140752. [PMID: 26485435 PMCID: PMC4617280 DOI: 10.1371/journal.pone.0140752] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 09/30/2015] [Indexed: 01/27/2023] Open
Abstract
Dendritic spines undergo continuous remodeling during development of the nervous system. Their stability is essential for maintaining a functional neuronal circuit. Spine dynamics and stability of cortical excitatory pyramidal neurons have been explored extensively in mammalian animal models. However, little is known about spiny interneurons in non-mammalian vertebrate models. In the present study, neuronal morphology was visualized by single-cell electroporation. Spiny neurons were surveyed in the Xenopus tadpole brain and observed to be widely distributed in the olfactory bulb and telencephalon. DsRed- or PSD95-GFP-expressing spiny interneurons in the olfactory bulb were selected for in vivo time-lapse imaging. Dendritic protrusions were classified as filopodia, thin, stubby, or mushroom spines based on morphology. Dendritic spines on the interneurons were highly dynamic, especially the filopodia and thin spines. The stubby and mushroom spines were relatively more stable, although their stability significantly decreased with longer observation intervals. The 4 spine types exhibited diverse preferences during morphological transitions from one spine type to others. Sensory deprivation induced by severing the olfactory nerve to block the input of mitral/tufted cells had no significant effects on interneuron spine stability. Hence, a new model was established in Xenopus laevis tadpoles to explore dendritic spine dynamics in vivo.
Collapse
Affiliation(s)
- Yu-Bin Huang
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, P. R. China
| | - Chun-Rui Hu
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, P. R. China
| | - Li Zhang
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, P. R. China
| | - Wu Yin
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, P. R. China
| | - Bing Hu
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, P. R. China
- * E-mail:
| |
Collapse
|
27
|
Cechmanek PB, Hehr CL, McFarlane S. Rho kinase is required to prevent retinal axons from entering the contralateral optic nerve. Mol Cell Neurosci 2015; 69:30-40. [PMID: 26455469 DOI: 10.1016/j.mcn.2015.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 09/16/2015] [Accepted: 10/08/2015] [Indexed: 01/21/2023] Open
Abstract
To grow out to contact target neurons an axon uses its distal tip, the growth cone, as a sensor of molecular cues that help the axon make appropriate guidance decisions at a series of choice points along the journey. In the developing visual system, the axons of the output cells of the retina, the retinal ganglion cells (RGCs), cross the brain midline at the optic chiasm. Shortly after, they grow past the brain entry point of the optic nerve arising from the contralateral eye, and extend dorso-caudally through the diencephalon towards their optic tectum target. Using the developing visual system of the experimentally amenable model Xenopus laevis, we find that RGC axons are normally prevented from entering the contralateral optic nerve. This mechanism requires the activity of a Rho-associated kinase, Rock, known to function downstream of a number of receptors that recognize cues that guide axons. Pharmacological inhibition of Rock in an in vivo brain preparation causes mis-entry of many RGC axons into the contralateral optic nerve, and this defect is partially phenocopied by selective disruption of Rock signaling in RGC axons. These data implicate Rock downstream of a molecular mechanism that is critical for RGC axons to be able to ignore a domain, the optic nerve, which they previously found attractive.
Collapse
Affiliation(s)
- Paula B Cechmanek
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Dr., NW, Calgary, AB, Canada
| | - Carrie L Hehr
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Dr., NW, Calgary, AB, Canada
| | - Sarah McFarlane
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Dr., NW, Calgary, AB, Canada.
| |
Collapse
|
28
|
Alexandrova AY. Plasticity of tumor cell migration: acquisition of new properties or return to the past? BIOCHEMISTRY (MOSCOW) 2015; 79:947-63. [PMID: 25385021 DOI: 10.1134/s0006297914090107] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
During tumor development cancer cells pass through several stages when cell morphology and migration abilities change remarkably. These stages are named epithelial-mesenchymal and mesenchymal-amoeboid transitions. The molecular mechanisms underlying cell motility are changing during these transitions. As result of transitions the cells acquire new characteristics and modes of motility. Cell migration becomes more independent from the environmental conditions, and thus cell dissemination becomes more aggressive, which leads to formation of distant metastases. In this review we discuss the characteristics of each of the transitions, cell morphology, and the specificity of cellular structures responsible for different modes of cell motility as well as molecular mechanisms regulating each transition.
Collapse
Affiliation(s)
- A Y Alexandrova
- Institute of Carcinogenesis, Blokhin Cancer Research Center, Russian Academy of Medical Sciences, Moscow, 115478, Russia.
| |
Collapse
|
29
|
Yang H, Fang L, Zhan R, Hegarty JM, Ren J, Hsiai TK, Gleeson JG, Miller YI, Trejo J, Chi NC. Polo-like kinase 2 regulates angiogenic sprouting and blood vessel development. Dev Biol 2015; 404:49-60. [PMID: 26004360 DOI: 10.1016/j.ydbio.2015.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 04/11/2015] [Accepted: 05/12/2015] [Indexed: 02/07/2023]
Abstract
Angiogenesis relies on specialized endothelial tip cells to extend toward guidance cues in order to direct growing blood vessels. Although many of the signaling pathways that control this directional endothelial sprouting are well known, the specific cellular mechanisms that mediate this process remain to be fully elucidated. Here, we show that Polo-like kinase 2 (PLK2) regulates Rap1 activity to guide endothelial tip cell lamellipodia formation and subsequent angiogenic sprouting. Using a combination of high-resolution in vivo imaging of zebrafish vascular development and a human umbilical vein endothelial cell (HUVEC) in vitro cell culture system, we observed that loss of PLK2 function resulted in a reduction in endothelial cell sprouting and migration, whereas overexpression of PLK2 promoted angiogenesis. Furthermore, we discovered that PLK2 may control angiogenic sprouting by binding to PDZ-GEF to regulate RAP1 activity during endothelial cell lamellipodia formation and extracellular matrix attachment. Consistent with these findings, constitutively active RAP1 could rescue the endothelial cell sprouting defects observed in zebrafish and HUVEC PLK2 knockdowns. Overall, these findings reveal a conserved PLK2-RAP1 pathway that is crucial to regulate endothelial tip cell behavior in order to ensure proper vascular development and patterning in vertebrates.
Collapse
Affiliation(s)
- Hongbo Yang
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0613J, USA
| | - Longhou Fang
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0613J, USA
| | - Rui Zhan
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0613J, USA
| | - Jeffrey M Hegarty
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0613J, USA
| | - Jie Ren
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0613J, USA
| | - Tzung K Hsiai
- Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, CA, USA; Department of Bioengineering, School of Engineering & Applied Science, University of California, Los Angeles, CA, USA
| | - Joseph G Gleeson
- Neurogenetics Laboratory, Howard Hughes Medical Institute, Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yury I Miller
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0613J, USA
| | - JoAnn Trejo
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Neil C Chi
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0613J, USA; Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
30
|
Piper M, Lee AC, van Horck FPG, McNeilly H, Lu TB, Harris WA, Holt CE. Differential requirement of F-actin and microtubule cytoskeleton in cue-induced local protein synthesis in axonal growth cones. Neural Dev 2015; 10:3. [PMID: 25886013 PMCID: PMC4350973 DOI: 10.1186/s13064-015-0031-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 02/04/2015] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Local protein synthesis (LPS) via receptor-mediated signaling plays a role in the directional responses of axons to extrinsic cues. An intact cytoskeleton is critical to enact these responses, but it is not known whether the two major cytoskeletal elements, F-actin and microtubules, have any roles in regulating axonal protein synthesis. RESULTS Here, we show that pharmacological disruption of either microtubules or actin filaments in growth cones blocks netrin-1-induced de novo synthesis of proteins, as measured by metabolic incorporation of labeled amino acids, implicating both elements in axonal synthesis. However, comparative analysis of the activated translation initiation regulator, eIF4E-BP1, revealed a striking difference in the point of action of the two elements: actin disruption completely inhibited netrin-1-induced eIF4E-BP1 phosphorylation while microtubule disruption had no effect. An intact F-actin, but not microtubule, cytoskeleton was also required for netrin-1-induced activation of the PI3K/Akt/mTOR pathway, upstream of translation initiation. Downstream of translation initiation, microtubules were required for netrin-1-induced activation of eukaryotic elongation factor 2 kinase (eEF2K) and eEF2. CONCLUSIONS Taken together, our results show that while actin and microtubules are both crucial for cue-induced axonal protein synthesis, they serve distinct roles with F-actin being required for the initiation of translation and microtubules acting later at the elongation step.
Collapse
Affiliation(s)
- Michael Piper
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing street, Cambridge, CB2 3DY, UK.
- Current address: The School of Biomedical Sciences and the Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Aih Cheun Lee
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing street, Cambridge, CB2 3DY, UK.
- Current address: Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Francisca P G van Horck
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing street, Cambridge, CB2 3DY, UK.
| | - Heather McNeilly
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing street, Cambridge, CB2 3DY, UK.
| | - Trina Bo Lu
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing street, Cambridge, CB2 3DY, UK.
| | - William A Harris
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing street, Cambridge, CB2 3DY, UK.
| | - Christine E Holt
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing street, Cambridge, CB2 3DY, UK.
| |
Collapse
|
31
|
Wessel L, Olbrich L, Brand-Saberi B, Theiss C. New aspects of progesterone interactions with the actin cytoskeleton and neurosteroidogenesis in the cerebellum and the neuronal growth cone. J Histochem Cytochem 2014; 62:835-45. [PMID: 25141866 DOI: 10.1369/0022155414550691] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The impact of progesterone on neuronal tissues in the central (CNS) and peripheral (PNS) nervous system is of significant scientific and therapeutic interest. Glial and neuronal cells of vertebrates express steroidogenic enzymes, and are able to synthesize progesterone de novo from cholesterol. Progesterone is described to have neuroprotective, neuroreparative, anti-degenerative, and anti-apoptotic effects in the CNS and the PNS. Thus, the first clinical studies promise new therapeutic options using progesterone in the treatment of patients with traumatic brain injury. Additionally, experimental data from different animal models suggest further positive effects of progesterone on neurological diseases such as cerebral ischemia, peripheral nerve injury and amyothropic lateral sclerosis. In regard to this future clinical use of progesterone, we discuss in this review the underlying physiological principles of progesterone effects in neuronal tissues. Mechanisms leading to morphological reorganizations of neurons in the CNS and PNS affected by progesterone are addressed, with special focus on the actin cytoskeleton. Furthermore, new aspects of a progesterone-dependent regulation of neurosteroidogenesis mediated by the recently described progesterone binding protein PGRMC1 in the nervous system are discussed.
Collapse
Affiliation(s)
- Lisa Wessel
- Institute of Anatomy & Molecular Embryology (LW, LO, BBS, CT), Ruhr-University Bochum, Bochum, GermanyInstitute of Anatomy, Department of Cytology (CT), Ruhr-University Bochum, Bochum, Germany
| | - Laura Olbrich
- Institute of Anatomy & Molecular Embryology (LW, LO, BBS, CT), Ruhr-University Bochum, Bochum, GermanyInstitute of Anatomy, Department of Cytology (CT), Ruhr-University Bochum, Bochum, Germany
| | - Beate Brand-Saberi
- Institute of Anatomy & Molecular Embryology (LW, LO, BBS, CT), Ruhr-University Bochum, Bochum, GermanyInstitute of Anatomy, Department of Cytology (CT), Ruhr-University Bochum, Bochum, Germany
| | - Carsten Theiss
- Institute of Anatomy & Molecular Embryology (LW, LO, BBS, CT), Ruhr-University Bochum, Bochum, GermanyInstitute of Anatomy, Department of Cytology (CT), Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
32
|
Wacker A, Gerhardt H, Phng LK. Tissue guidance without filopodia. Commun Integr Biol 2014; 7:e28820. [PMID: 25346793 PMCID: PMC4203535 DOI: 10.4161/cib.28820] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 04/08/2014] [Indexed: 02/05/2023] Open
Abstract
Filopodia are highly dynamic, rod-like protrusions that are found in abundance at the leading edge of migrating cells such as endothelial tip cells and at axonal growth cones of developing neurons. One proposed function of filopodia is that of an environmental probe, which serves to sense guidance cues during neuronal pathfinding and blood vessel patterning. However, recent studies show that tissue guidance occurs unhindered in the absence of filopodia, suggesting a dispensability of filopodia in this process. Here, we discuss evidence that support as well as dispute the role of filopodia in guiding the formation of stereotypic neuronal and blood vessel patterns.
Collapse
Affiliation(s)
- Andrin Wacker
- Department of Oncology; Vascular Patterning Laboratory; VRC; Leuven, Belgium ; VIB; Vascular Patterning Laboratory; VRC; Leuven, Belgium
| | - Holger Gerhardt
- Department of Oncology; Vascular Patterning Laboratory; VRC; Leuven, Belgium ; VIB; Vascular Patterning Laboratory; VRC; Leuven, Belgium ; Vascular Biology Laboratory; London Research Institute; Cancer Research UK; London, UK
| | - Li-Kun Phng
- Department of Oncology; Vascular Patterning Laboratory; VRC; Leuven, Belgium ; VIB; Vascular Patterning Laboratory; VRC; Leuven, Belgium
| |
Collapse
|
33
|
Abstract
The elongation rate of axons is tightly regulated during development. Recycling of the plasma membrane is known to regulate axon extension; however, the specific molecules involved in recycling within the growth cone have not been fully characterized. Here, we investigated whether the small GTPases Rab4 and Rab5 involved in short-loop recycling regulate the extension of Xenopus retinal axons. We report that, in growth cones, Rab5 and Rab4 proteins localize to endosomes, which accumulate markers that are constitutively recycled. Fluorescence recovery after photo-bleaching experiments showed that Rab5 and Rab4 are recruited to endosomes in the growth cone, suggesting that they control recycling locally. Dynamic image analysis revealed that Rab4-positive carriers can bud off from Rab5 endosomes and move to the periphery of the growth cone, suggesting that both Rab5 and Rab4 contribute to recycling within the growth cone. Inhibition of Rab4 function with dominant-negative Rab4 or Rab4 morpholino and constitutive activation of Rab5 decreases the elongation of retinal axons in vitro and in vivo, but, unexpectedly, does not disrupt axon pathfinding. Thus, Rab5- and Rab4-mediated control of endosome trafficking appears to be crucial for axon growth. Collectively, our results suggest that recycling from Rab5-positive endosomes via Rab4 occurs within the growth cone and thereby supports axon elongation.
Collapse
|
34
|
The role of filopodia in the recognition of nanotopographies. Sci Rep 2013; 3:1658. [PMID: 23584574 PMCID: PMC3625890 DOI: 10.1038/srep01658] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 03/21/2013] [Indexed: 01/09/2023] Open
Abstract
Substrate-exploring functions of filopodia were previously suggested based on cell studies on flat surfaces, but their role in topography sensing especially within nanofibrillar environments remained elusive. Here we have grown highly flexible hairy silicon nanowires on micropatterned islands on otherwise flat glass surfaces and coated them both with the extracellular matrix (ECM) protein fibronectin. This allowed us to visualize how filopodia steer fundamental cell functions such as cell adhesion, spreading, migration and division in the absence of lamellipodia. Shortly after seeding, transient filopodia protrude from the still spherical cells. Once filopodia contact nanowires, they bend and align them, while most filopodia peel off from flat surfaces. A zipping mechanism regulated by traction forces is proposed to explain how force-induced changes in filopodia-substrate contact angles enable topography sensing, including the still elusive phenomenon of contact guidance. Filopodia thus play a central role in steering transient topographic preferences.
Collapse
|
35
|
Schwabe T, Neuert H, Clandinin TR. A network of cadherin-mediated interactions polarizes growth cones to determine targeting specificity. Cell 2013; 154:351-64. [PMID: 23870124 DOI: 10.1016/j.cell.2013.06.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 04/02/2013] [Accepted: 06/07/2013] [Indexed: 01/17/2023]
Abstract
Neuronal growth cones select synaptic partners through interactions with multiple cell surfaces in their environment. Many of these interactions are adhesive, yet it is unclear how growth cones integrate adhesive cues to direct their movements. Here, we examine the mechanisms that enable photoreceptors in the Drosophila visual system to choose synaptic partners. We demonstrate that the classical cadherin, N-cadherin, and an atypical cadherin, Flamingo, act redundantly to instruct the targeting choices made by every photoreceptor axon. These molecules gradually bias the spatial distribution of growth cone filopodia, polarizing each growth cone toward its future synaptic target before direct contact with the target occurs. We demonstrate that these molecules are localized to distinct subcellular domains and create a network of adhesive interactions distributed across many growth cones. Because this network comprises multiple redundant interactions, a complex wiring diagram can be constructed with extraordinary fidelity, suggesting a general principle.
Collapse
Affiliation(s)
- Tina Schwabe
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | | | | |
Collapse
|
36
|
Phng LK, Stanchi F, Gerhardt H. Filopodia are dispensable for endothelial tip cell guidance. Development 2013; 140:4031-40. [DOI: 10.1242/dev.097352] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Actin filaments are instrumental in driving processes such as migration, cytokinesis and endocytosis and provide cells with mechanical support. During angiogenesis, actin-rich filopodia protrusions have been proposed to drive endothelial tip cell functions by translating guidance cues into directional migration and mediating new contacts during anastomosis. To investigate the structural organisation, dynamics and functional importance of F-actin in endothelial cells (ECs) during angiogenesis in vivo, we generated a transgenic zebrafish line expressing Lifeact-EGFP in ECs. Live imaging identifies dynamic and transient F-actin-based structures, such as filopodia, contractile ring and cell cortex, and more persistent F-actin-based structures, such as cell junctions. For functional analysis, we used low concentrations of Latrunculin B that preferentially inhibited F-actin polymerisation in filopodia. In the absence of filopodia, ECs continued to migrate, albeit at reduced velocity. Detailed morphological analysis reveals that ECs generate lamellipodia that are sufficient to drive EC migration when filopodia formation is inhibited. Vessel guidance continues unperturbed during intersegmental vessel development in the absence of filopodia. Additionally, hypersprouting induced by loss of Dll4 and attraction of aberrant vessels towards ectopic sources of Vegfa165 can occur in the absence of endothelial filopodia protrusion. These results reveal that the induction of tip cells and the integration of endothelial guidance cues do not require filopodia. Anastomosis, however, shows regional variations in filopodia requirement, suggesting that ECs might rely on different protrusive structures depending on the nature of the environment or of angiogenic cues.
Collapse
Affiliation(s)
- Li-Kun Phng
- KU Leuven, Department of Oncology, Vesalius Research Centre, Vascular Patterning Lab, Herestraat 49, 3000 Leuven, Belgium
- VIB, Vesalius Research Centre, Vascular Patterning Lab, Herestraat 49, 3000 Leuven, Belgium
| | - Fabio Stanchi
- KU Leuven, Department of Oncology, Vesalius Research Centre, Vascular Patterning Lab, Herestraat 49, 3000 Leuven, Belgium
- VIB, Vesalius Research Centre, Vascular Patterning Lab, Herestraat 49, 3000 Leuven, Belgium
| | - Holger Gerhardt
- KU Leuven, Department of Oncology, Vesalius Research Centre, Vascular Patterning Lab, Herestraat 49, 3000 Leuven, Belgium
- VIB, Vesalius Research Centre, Vascular Patterning Lab, Herestraat 49, 3000 Leuven, Belgium
- Vascular Biology Laboratory, London Research Institute, Cancer Research UK, 44 Lincoln’s Inn Fields, London WC2A 3LY, UK
| |
Collapse
|
37
|
Olbrich L, Wessel L, Balakrishnan-Renuka A, Böing M, Brand-Saberi B, Theiss C. Rapid impact of progesterone on the neuronal growth cone. Endocrinology 2013; 154:3784-95. [PMID: 23913445 DOI: 10.1210/en.2013-1175] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the last two decades, sensory neurons and Schwann cells in the dorsal root ganglia (DRG) were shown to express the rate-limiting enzyme of the steroid synthesis, cytochrome P450 side-chain cleavage enzyme (P450scc), as well as the key enzyme of progesterone synthesis, 3β-hydroxysteroid dehydrogenase (3β-HSD). Thus, it was well justified to consider that DRG neurons similarly are able to synthesize progesterone de novo from cholesterol. Because direct progesterone effects on axonal outgrowth in peripheral neurons have not been investigated up to now, the present study provides the first insights into the impact of exogenous progesterone on axonal outgrowth in DRG neurons. Our studies including microinjection and laser scanning microscopy demonstrate morphological changes especially in the neuronal growth cones after progesterone treatment. Furthermore, we were able to detect a distinctly enhanced motility only a few minutes after the start of progesterone treatment using time-lapse imaging. Investigation of the cytoskeletal distribution in the neuronal growth cone before, during, and after progesterone incubation revealed a rapid reorganization of actin filaments. To get a closer idea of the underlying receptor mechanisms, we further studied the expression of progesterone receptors in DRG neurons using RT-PCR and immunohistochemistry. Thus, we could demonstrate for the first time that classical progesterone receptor (PR) A and B and the recently described progesterone receptor membrane component 1 (PGRMC1) are expressed in DRG neurons. Antagonism of the classical progesterone receptors by mifepristone revealed that the observed progesterone effects are transmitted through PR-A and PR-B.
Collapse
Affiliation(s)
- Laura Olbrich
- Faculty of Medicine, Institute of Anatomy and Molecular Embryology, Ruhr-University Bochum, 44780 Bochum, Germany.
| | | | | | | | | | | |
Collapse
|
38
|
Blackiston DJ, Levin M. Ectopic eyes outside the head in Xenopus tadpoles provide sensory data for light-mediated learning. ACTA ACUST UNITED AC 2013; 216:1031-40. [PMID: 23447666 DOI: 10.1242/jeb.074963] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A major roadblock in the biomedical treatment of human sensory disorders, including blindness, has been an incomplete understanding of the nervous system and its ability to adapt to changes in sensory modality. Likewise, fundamental insight into the evolvability of complex functional anatomies requires understanding brain plasticity and the interaction between the nervous system and body architecture. While advances have been made in the generation of artificial and biological replacement components, the brain's ability to interpret sensory information arising from ectopic locations is not well understood. We report the use of eye primordia grafts to create ectopic eyes along the body axis of Xenopus tadpoles. These eyes are morphologically identical to native eyes and can be induced at caudal locations. Cell labeling studies reveal that eyes created in the tail send projections to the stomach and trunk. To assess function we performed light-mediated learning assays using an automated machine vision and environmental control system. The results demonstrate that ectopic eyes in the tail of Xenopus tadpoles could confer vision to the host. Thus ectopic visual organs were functional even when present at posterior locations. These data and protocols demonstrate the ability of vertebrate brains to interpret sensory input from ectopic structures and incorporate them into adaptive behavioral programs. This tractable new model for understanding the robust plasticity of the central nervous system has significant implications for regenerative medicine and sensory augmentation technology.
Collapse
Affiliation(s)
- Douglas J Blackiston
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA
| | | |
Collapse
|
39
|
Prokop A, Beaven R, Qu Y, Sánchez-Soriano N. Using fly genetics to dissect the cytoskeletal machinery of neurons during axonal growth and maintenance. J Cell Sci 2013; 126:2331-41. [PMID: 23729743 DOI: 10.1242/jcs.126912] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The extension of long slender axons is a key process of neuronal circuit formation, both during brain development and regeneration. For this, growth cones at the tips of axons are guided towards their correct target cells by signals. Growth cone behaviour downstream of these signals is implemented by their actin and microtubule cytoskeleton. In the first part of this Commentary, we discuss the fundamental roles of the cytoskeleton during axon growth. We present the various classes of actin- and microtubule-binding proteins that regulate the cytoskeleton, and highlight the important gaps in our understanding of how these proteins functionally integrate into the complex machinery that implements growth cone behaviour. Deciphering such machinery requires multidisciplinary approaches, including genetics and the use of simple model organisms. In the second part of this Commentary, we discuss how the application of combinatorial genetics in the versatile genetic model organism Drosophila melanogaster has started to contribute to the understanding of actin and microtubule regulation during axon growth. Using the example of dystonin-linked neuron degeneration, we explain how knowledge acquired by studying axonal growth in flies can also deliver new understanding in other aspects of neuron biology, such as axon maintenance in higher animals and humans.
Collapse
Affiliation(s)
- Andreas Prokop
- Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.
| | | | | | | |
Collapse
|
40
|
Karlsson T, Bolshakova A, Magalhães MAO, Loitto VM, Magnusson KE. Fluxes of water through aquaporin 9 weaken membrane-cytoskeleton anchorage and promote formation of membrane protrusions. PLoS One 2013; 8:e59901. [PMID: 23573219 PMCID: PMC3616121 DOI: 10.1371/journal.pone.0059901] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 02/20/2013] [Indexed: 11/19/2022] Open
Abstract
All modes of cell migration require rapid rearrangements of cell shape, allowing the cell to navigate within narrow spaces in an extracellular matrix. Thus, a highly flexible membrane and a dynamic cytoskeleton are crucial for rapid cell migration. Cytoskeleton dynamics and tension also play instrumental roles in the formation of different specialized cell membrane protrusions, viz. lamellipodia, filopodia, and membrane blebs. The flux of water through membrane-anchored water channels, known as aquaporins (AQPs) has recently been implicated in the regulation of cell motility, and here we provide novel evidence for the role of AQP9 in the development of various forms of membrane protrusion. Using multiple imaging techniques and cellular models we show that: (i) AQP9 induced and accumulated in filopodia, (ii) AQP9-associated filopodial extensions preceded actin polymerization, which was in turn crucial for their stability and dynamics, and (iii) minute, local reductions in osmolarity immediately initiated small dynamic bleb-like protrusions, the size of which correlated with the reduction in osmotic pressure. Based on this, we present a model for AQP9-induced membrane protrusion, where the interplay of water fluxes through AQP9 and actin dynamics regulate the cellular protrusive and motile activity of cells.
Collapse
Affiliation(s)
- Thommie Karlsson
- Division of Medical Microbiology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linkoping University, Linkoping, Sweden
| | - Anastasia Bolshakova
- Division of Medical Microbiology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linkoping University, Linkoping, Sweden
| | | | - Vesa M. Loitto
- Division of Medical Microbiology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linkoping University, Linkoping, Sweden
| | - Karl-Eric Magnusson
- Division of Medical Microbiology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linkoping University, Linkoping, Sweden
- * E-mail:
| |
Collapse
|
41
|
Doublecortin (Dcx) family proteins regulate filamentous actin structure in developing neurons. J Neurosci 2013; 33:709-21. [PMID: 23303949 DOI: 10.1523/jneurosci.4603-12.2013] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Doublecortin (Dcx) is the causative gene for X-linked lissencephaly, which encodes a microtubule-binding protein. Axon tracts are abnormal in both affected individuals and in animal models. To determine the reason for the axon tract defect, we performed a semiquantitative proteomic analysis of the corpus callosum in mice mutant for Dcx. In axons from mice mutant for Dcx, widespread differences are found in actin-associated proteins as compared with wild-type axons. Decreases in actin-binding proteins α-actinin-1 and α-actinin-4 and actin-related protein 2/3 complex subunit 3 (Arp3), are correlated with dysregulation in the distribution of filamentous actin (F-actin) in the mutant neurons with increased F-actin around the cell body and decreased F-actin in the neurites and growth cones. The actin distribution defect can be rescued by full-length Dcx and further enhanced by Dcx S297A, the unphosphorylatable mutant, but not with the truncation mutant of Dcx missing the C-terminal S/P-rich domain. Thus, the C-terminal region of Dcx dynamically regulates formation of F-actin features in developing neurons, likely through interaction with spinophilin, but not through α-actinin-4 or Arp3. We show with that the phenotype of Dcx/Doublecortin-like kinase 1 deficiency is consistent with actin defect, as these axons are selectively deficient in axon guidance, but not elongation.
Collapse
|
42
|
Roy J, Kennedy TE, Costantino S. Engineered cell culture substrates for axon guidance studies: moving beyond proof of concept. LAB ON A CHIP 2013; 13:498-508. [PMID: 23288417 DOI: 10.1039/c2lc41002h] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Promoting axon regeneration following injury is one of the ultimate challenges of neuroscience, and understanding the mechanisms that regulate axon growth and guidance is essential to achieve this goal. During development axons are directed over relatively long distances by a precise extracellular distribution of chemical signals in the embryonic nervous system. Multiple guidance proteins, including netrins, slits, semaphorins, ephrins and neurotrophins have been identified as key players in this process. During the last decade, engineered cell culture substrates have been developed to investigate the cellular and molecular mechanisms underlying axon guidance. This review is focused on the biological insights that have been achieved using new techniques that attempt to mimic in vitro the spatial patterns of proteins that growth cones encounter in vivo.
Collapse
Affiliation(s)
- Joannie Roy
- Maisonneuve-Rosemont Hospital, University of Montreal, Montreal, Canada
| | | | | |
Collapse
|
43
|
Simpson HD, Kita EM, Scott EK, Goodhill GJ. A quantitative analysis of branching, growth cone turning, and directed growth in zebrafish retinotectal axon guidance. J Comp Neurol 2013; 521:1409-29. [DOI: 10.1002/cne.23248] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 08/27/2012] [Accepted: 10/25/2012] [Indexed: 01/22/2023]
|
44
|
Leung LC, Urbančič V, Baudet ML, Dwivedy A, Bayley TG, Lee AC, Harris WA, Holt CE. Coupling of NF-protocadherin signaling to axon guidance by cue-induced translation. Nat Neurosci 2013; 16:166-73. [PMID: 23292679 PMCID: PMC3701881 DOI: 10.1038/nn.3290] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 11/26/2012] [Indexed: 02/07/2023]
Abstract
Cell adhesion molecules and diffusible cues both regulate axon pathfinding, yet how these two modes of signaling interact is poorly understood. The homophilic cell adhesion molecule NF-protocadherin (NFPC) is expressed in the mid-dorsal optic tract neuroepithelium and in the axons of developing retinal ganglion cells (RGC) in Xenopus laevis. Here we report that targeted disruption of NFPC function in RGC axons or the optic tract neuroepithelium results in unexpectedly localized pathfinding defects at the caudal turn in the mid-optic tract. Semaphorin 3A (Sema3A), which lies adjacent to this turn, stimulates rapid, protein synthesis-dependent increases in growth cone NFPC and its cofactor, TAF1, in vitro. In vivo, growth cones exhibit marked increases in NFPC translation reporter activity in this mid-optic tract region that are attenuated by blocking neuropilin-1 function. Our results suggest that translation-linked coupling between regionally localized diffusible cues and cell adhesion can help axons navigate discrete segments of the pathway.
Collapse
Affiliation(s)
| | | | | | - Asha Dwivedy
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, United Kingdom
| | | | - Aih Cheun Lee
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, United Kingdom
| | - William A. Harris
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, United Kingdom
| | - Christine E. Holt
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, United Kingdom
| |
Collapse
|
45
|
Santiago-Medina M, Gregus KA, Gomez TM. PAK-PIX interactions regulate adhesion dynamics and membrane protrusion to control neurite outgrowth. J Cell Sci 2013; 126:1122-33. [PMID: 23321640 DOI: 10.1242/jcs.112607] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The roles of P21-activated kinase (PAK) in the regulation of axon outgrowth downstream of extracellular matrix (ECM) proteins are poorly understood. Here we show that PAK1-3 and PIX are expressed in the developing spinal cord and differentially localize to point contacts and filopodial tips within motile growth cones. Using a specific interfering peptide called PAK18, we found that axon outgrowth is robustly stimulated on laminin by partial inhibition of PAK-PIX interactions and PAK function, whereas complete inhibition of PAK function stalls axon outgrowth. Furthermore, modest inhibition of PAK-PIX stimulates the assembly and turnover of growth cone point contacts, whereas strong inhibition over-stabilizes adhesions. Point mutations within PAK confirm the importance of PIX binding. Together our data suggest that regulation of PAK-PIX interactions in growth cones controls neurite outgrowth by influencing the activity of several important mediators of actin filament polymerization and retrograde flow, as well as integrin-dependent adhesion to laminin.
Collapse
Affiliation(s)
- Miguel Santiago-Medina
- Department of Neuroscience, Neuroscience Training Program, University of Wisconsin, Madison, WI 53706, USA
| | | | | |
Collapse
|
46
|
McFarlane S, Lom B. The Xenopus retinal ganglion cell as a model neuron to study the establishment of neuronal connectivity. Dev Neurobiol 2012; 72:520-36. [PMID: 21634016 DOI: 10.1002/dneu.20928] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Neurons receive inputs through their multiple branched dendrites and pass this information on to the next neuron via long axons, which branch within the target. The shape the neuron acquires is thus the key to its proper functioning in the neural circuit in which it participates. Both axons and dendrites grow in a directed fashion to their target partner neurons by responding to a large number of molecular cues in the milieu through which they extend. They then go through the process of synaptogenesis, first choosing a neuron on which to synapse, and then the appropriate subcellular location. How a neuron acquires its unique shape, establishes and modifies appropriate synaptic connectivity, and the molecular signals involved, are key questions in developmental neurobiology. Such questions of nervous system wiring are being pursued actively with a variety of different animal models and neuron types, each with its own unique advantages. Among these, the developing retinal ganglion cell (RGC) of the South African clawed frog, Xenopus laevis, has proven particularly fruitful for revealing the secrets of how axons and dendrites acquire their final morphology and connectivity. In this review, we describe how this system can be used to understand the multiple molecular events that instruct the incorporation of RGCs into the neural circuit that controls vision.
Collapse
Affiliation(s)
- Sarah McFarlane
- Department of Cell Biology and Anatomy, University of Calgary, Hotchkiss Brain Institute, Calgary, Alberta, Canada.
| | | |
Collapse
|
47
|
Yoon BC, Zivraj KH, Strochlic L, Holt CE. 14-3-3 proteins regulate retinal axon growth by modulating ADF/cofilin activity. Dev Neurobiol 2012; 72:600-14. [PMID: 21780304 DOI: 10.1002/dneu.20955] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Precise navigation of axons to their targets is critical for establishing proper neuronal networks during development. Axon elongation, whereby axons extend far beyond the site of initiation to reach their target cells, is an essential step in this process, but the precise molecular pathways that regulate axon growth remain uncharacterized. Here we show that 14-3-3/14-3-3ς proteins-adaptor proteins that modulate diverse cellular processes including cytoskeletal dynamics-play a critical role in Xenopus retinal ganglion cell (RGC) axon elongation in vivo and in vitro. We have identified the expression of 14-3-3/14-3-3ς transcripts and proteins in retinal growth cones, with higher levels of expression occurring during the phase of rapid pathway extension. Competitive inhibition of 14-3-3/14-3-3ς by expression of a genetically encoded peptide, R18, in RGCs resulted in a marked decrease in the length of the initial retinotectal projection in vivo and a corresponding decrease in axon elongation rate in vitro (30-40%). Furthermore, 14-3-3/14-3-3ς (R1) co-localized with Xenopus actin depolymerizing factor (ADF)/cofilin (XAC) in RGC growth cones. Inhibition of 14-3-3/14-3-3ς function with either R18 or morpholinos reduced the level of inactive pXAC and increased the sensitivity to collapse by the repulsive cue, Slit2. Collectively, these results demonstrate that14-3-3/14-3-3ς participates in the regulation of retinal axon elongation, in part by modulating XAC activity.
Collapse
Affiliation(s)
- Byung C Yoon
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
48
|
Olbrich L, Foehring D, Happel P, Brand-Saberi B, Theiss C. Fast rearrangement of the neuronal growth cone's actin cytoskeleton following VEGF stimulation. Histochem Cell Biol 2012; 139:431-45. [PMID: 23052841 DOI: 10.1007/s00418-012-1036-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2012] [Indexed: 12/12/2022]
Abstract
The neuronal growth cone plays a crucial role in the development of the nervous system. This highly motile structure leads the axon to its final destination by translating guidance cues into cytoskeletal rearrangements. Recently, vascular endothelial growth factor (VEGF), which is essential for angiogenesis and vascular sprouting, has been found to exert a trophic activity also on neurons, leading to an increased axonal outgrowth, similar to the well-known nerve growth factor (NGF). The neurotrophic properties of VEGF are likely to be promoted via the VEGF receptor 2 (VEGFR-2) and neuropilin-1 (NRP-1). In the long term, VEGF attracts and influences the growth cone velocity and leads to growth cone enlargement. The present study focuses on immediate VEGF effects using RFP-actin and GFP-NF-M microinjected chicken dorsal root ganglia for live cell imaging of the neuronal growth cone. We analyzed actin and neurofilament dynamics following VEGF and NGF treatment and compared the effects. Furthermore, key signaling pathways of VEGF were investigated by specific blocking of VEGFR-2 or NRP-1. With the aid of confocal laser scanning microscopy and stimulated emission depletion microscopy, we show for the first time that VEGF has a quick effect on the actin-cytoskeleton, since actin rearrangements were identifiable within a few minutes, leading to a dramatically increased motion. Moreover, these effects were strongly enhanced by adding both VEGF and NGF. Most notably, the effects were inhibited by blocking VEGFR-2, therefore we propose that the immediate effects of VEGF on the actin-cytoskeleton are mediated through VEGFR-2.
Collapse
Affiliation(s)
- Laura Olbrich
- Institute of Anatomy and Molecular Embryology, Faculty of Medicine, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | | | | | | | | |
Collapse
|
49
|
Abstract
Axon pathfinding in the developing animal involves a highly dynamic process in which the axonal growth cone makes continuous decisions as it navigates toward its target. Changes occurring in the growth cone with respect to retracting from or extending into complex new territories can occur in minutes. Thus, the advent of strategies to visualize axon path-finding in vivo in a live intact animal is crucial for a better understanding of how the growth cone makes such rapid decisions in response to multiple cues. Combining these strategies with loss-of-function and/or gain-of-function techniques, one can gain some insight as to which molecules are crucial to particular growth cone behaviors at specific choice points during navigation. The major advantage of using zebrafish lies in the accessibility of major axon tracts for live microscopy, as their embryonic development occurs ex utero. Furthermore, the robust embryos remain healthy during immobilization and allow for good imaging for long periods. This protocol describes the method for stabilizing and preparing live zebrafish embryos for imaging labeled axonal tracts at high spatial and temporal resolution for up to 72 h. It has been used for retinotectal axon pathfinding, but can be adapted to visualize other axon tracts of interest.
Collapse
|
50
|
Abstract
Axon pathfinding in the developing animal involves a highly dynamic process in which the axonal growth cone makes continuous decisions as it navigates toward its target. Changes occurring in the growth cone with respect to retracting from or extending into complex new territories can occur in minutes. Thus, the advent of strategies to visualize axon path-finding in vivo in a live intact animal is crucial for a better understanding of how the growth cone makes such rapid decisions in response to multiple cues. Combining these strategies with loss-of-function and/or gain-of-function techniques allows one to gain some insight as to which molecules are crucial to particular growth cone behaviors at specific choice points during navigation. The main advantage of using Xenopus lies in the accessibility of major axon tracts for live microscopy, as their embryonic development occurs ex utero. Furthermore, the robust embryos remain healthy during immobilization and allow for good imaging for long periods. This protocol describes the methods for stabilizing and preparing live Xenopus embryos for imaging labeled axonal tracts at high spatial and temporal resolution for up to 72 h. This approach can been used to investigate how the knockdown of certain gene functions can affect the speed of navigation through the well-studied Xenopus retinotectal pathway. It can be adapted to visualize other axon tracts of interest.
Collapse
|