1
|
Kostereva NV, Wang Y, Fletcher DR, Unadkat JV, Schnider JT, Komatsu C, Yang Y, Stolz DB, Davis MR, Plock JA, Gorantla VS. IGF-1 and Chondroitinase ABC Augment Nerve Regeneration after Vascularized Composite Limb Allotransplantation. PLoS One 2016; 11:e0156149. [PMID: 27272754 PMCID: PMC4896437 DOI: 10.1371/journal.pone.0156149] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/10/2016] [Indexed: 12/04/2022] Open
Abstract
Impaired nerve regeneration and inadequate recovery of motor and sensory function following peripheral nerve repair remain the most significant hurdles to optimal functional and quality of life outcomes in vascularized tissue allotransplantation (VCA). Neurotherapeutics such as Insulin-like Growth Factor-1 (IGF-1) and chondroitinase ABC (CH) have shown promise in augmenting or accelerating nerve regeneration in experimental models and may have potential in VCA. The aim of this study was to evaluate the efficacy of low dose IGF-1, CH or their combination (IGF-1+CH) on nerve regeneration following VCA. We used an allogeneic rat hind limb VCA model maintained on low-dose FK506 (tacrolimus) therapy to prevent rejection. Experimental animals received neurotherapeutics administered intra-operatively as multiple intraneural injections. The IGF-1 and IGF-1+CH groups received daily IGF-1 (intramuscular and intraneural injections). Histomorphometry and immunohistochemistry were used to evaluate outcomes at five weeks. Overall, compared to controls, all experimental groups showed improvements in nerve and muscle (gastrocnemius) histomorphometry. The IGF-1 group demonstrated superior distal regeneration as confirmed by Schwann cell (SC) immunohistochemistry as well as some degree of extrafascicular regeneration. IGF-1 and CH effectively promote nerve regeneration after VCA as confirmed by histomorphometric and immunohistochemical outcomes.
Collapse
Affiliation(s)
- Nataliya V. Kostereva
- Department of Plastic Surgery, Thomas E. Starzl Transplant Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Yong Wang
- Department of Plastic Surgery, Thomas E. Starzl Transplant Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Trauma Surgery, East Hospital of Shanghai, Shanghai, China
| | - Derek R. Fletcher
- Department of Plastic Surgery, Thomas E. Starzl Transplant Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jignesh V. Unadkat
- Department of Plastic Surgery, Thomas E. Starzl Transplant Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jonas T. Schnider
- Department of Plastic Surgery, Thomas E. Starzl Transplant Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Chiaki Komatsu
- Department of Plastic Surgery, Thomas E. Starzl Transplant Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Yang Yang
- Department of Plastic Surgery, Thomas E. Starzl Transplant Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Donna B. Stolz
- Center for Biological Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Michael R. Davis
- United States Army Institute for Surgical Research, San Antonio Military Medical Center, 3698 Chambers Road, San Antonio, Texas, United States of America
| | - Jan A. Plock
- Department of Plastic Surgery, Thomas E. Starzl Transplant Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Vijay S. Gorantla
- Department of Plastic Surgery, Thomas E. Starzl Transplant Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
2
|
|
3
|
Paez PM, García CI, Campagnoni AT, Soto EF, Pasquini JM. Overexpression of human transferrin in two oligodendroglial cell lines enhances their differentiation. Glia 2006; 52:1-15. [PMID: 15892129 DOI: 10.1002/glia.20214] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We have previously demonstrated that the addition of apotransferrin (aTf) to oligodendroglial cell (OLGc) primary cultures accelerates their maturation. Cells treated with aTf developed a multipolar morphology and displayed increased expression of mature OLGc markers. In this work, we studied the effect of Tf overexpression in two OLGc lines, N19 and N20.1. The former cells exhibit characteristics of OLGc precursors (O2A), while N20.1 cells express markers of more mature OLGcs. Using the complete cDNA of the human Tf gene, we obtained clones overexpressing Tf in both cell lines. These clones were evaluated for the expression of OLGc differentiation markers. In agreement with our previous results, we found that in the cells overexpressing Tf, there was an increased O(4), GC, and MBP immunoreactivity. To study the myelinogenic potential of these cells, we co-cultured N19 and N20.1 Tf-transfected cells together with cortical neurons. There was a dramatic increase in the morphological differentiation of the OLGcs accompanied by enhanced GC and MBP expression. The OLGcs appeared to establish contact with neurites and extend their processes along them. Only two MBP isoforms were detected in Tf-overexpressing clones, while all the isoforms were present in the co-cultures, suggesting that there was a modulation of MBP expression by neurons. Concomitantly, we found an increase in several proteins involved in axon-glia interaction, such as MAG, N-CAM, and F3/Contactin. This co-culture system represents a potentially powerful tool to study neuron-glia interactions that occur during myelinogenesis and the role of Tf in this process.
Collapse
Affiliation(s)
- Pablo M Paez
- Instituto de Química y Fisicoquímica Biológica (IQUIFIB), UBA-CONICET, and Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
4
|
Ibanez C, Guennoun R, Liere P, Eychenne B, Pianos A, El-Etr M, Baulieu EE, Schumacher M. Developmental expression of genes involved in neurosteroidogenesis: 3beta-hydroxysteroid dehydrogenase/delta5-delta4 isomerase in the rat brain. Endocrinology 2003; 144:2902-11. [PMID: 12810545 DOI: 10.1210/en.2002-0073] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In the central nervous system, neurosteroids, in particular progesterone, have neurotrophic and neuroprotective effects. We thus decided to study the developmental expression of 3beta-hydroxysteroid-dehydrogenase/Delta(5)-Delta(4) isomerase (3betaHSD), an enzyme that converts pregnenolone to progesterone, in the male rat brain at 0, 7, 14, and 70 d after birth. 3betaHSD mRNA was widely distributed throughout the brain, as shown by in situ hybridization. At all ages, the same cerebral structures were labeled, but the intensity of the hybridization signal constantly decreased during postnatal development. As the hippocampus is of particular interest because of its neuronal plasticity, we chose to quantify the changes in 3betaHSD mRNA levels as well as progesterone and pregnenolone concentrations in this structure. Quantitative in situ hybridization confirmed a decrease in the expression of 3betaHSD mRNA with progressing age, as revealed by a significant reduction in the density of silver grains per cell in the CA1 layer. This decrease was confirmed by semiquantitative RT-PCR on hippocampal samples. Concentrations of hippocampal pregnenolone and progesterone measured by gas chromatography/mass spectrometry were highest on the day of birth and lower at the other ages. Plasma concentrations of these steroids were lower than those in the hippocampus, suggesting that they may have been mostly synthesized in situ since the day of birth. These results demonstrate variations in the expression of a gene coding for an enzyme critically involved in progesterone synthesis in the hippocampus throughout postnatal development.
Collapse
Affiliation(s)
- Chrystelle Ibanez
- Institut National de la Santé et de la Recherche Médicale, Unité 488, Stéroïdes et Système Nerveux, 80 rue du Général Leclerc, 94276 Bicêtre, France.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Myelin proteolipid protein forms a complex with integrins and may participate in integrin receptor signaling in oligodendrocytes. J Neurosci 2002. [PMID: 12196561 DOI: 10.1523/jneurosci.22-17-07398.2002] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Myelination of axons in the CNS by oligodendrocytes is a process critical to rapid and efficient impulse conduction. A new role for the myelin proteolipid protein (PLP), the most abundant protein of CNS myelin, has been identified, in studies showing PLP interaction with signaling proteins in oligodendrocytes. In particular, these studies suggest that the PLP protein may be involved in signaling through integrins in oligodendrocytes. Stimulation of muscarinic acetylcholine receptors on oligodendrocytes induced formation of a tripartite complex containing PLP, calreticulin, and alpha(v)-integrin. PLP interacted directly with the cytoplasmic domain of the alpha(v)-integrin. Complex formation was mediated by phospholipase C and Ca2+ binding to the high affinity binding site on calreticulin. This complex appears important for binding of fibronectin to oligodendrocytes. These data establish a novel function for PLP as a part of the integrin signaling complex in oligodendrocytes and suggest that neurotransmitter-mediated integrin receptor signaling may be involved in myelinogenesis.
Collapse
|
6
|
Cervera P, Tirard M, Barron S, Allard J, Trottier S, Lacombe J, Daumas-Duport C, Sokoloff P. Immunohistological localization of the myelinating cell-specific receptor LP(A1). Glia 2002; 38:126-36. [PMID: 11948806 DOI: 10.1002/glia.10054] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
LP(A1) (also termed Edg-2 or VZG-1) is a G-protein-coupled receptor for lysophosphatidic acid and its gene transcripts have been found selectively expressed by mature myelin-producing cells. We have raised in rabbit a polyclonal antibody against a sequence unique to LP(A1) and common to rat, mouse, and human orthologues. In Western blots, LP(A1) immunoreactivity appeared as 44-53 kDa bands in extracts from recombinant RH7777 cells expressing LP(A1), mouse purified oligodendrocytes, or human white matter, but not from wild-type RH7777 cells or purified astrocytes. In glial cultures, LP(A1) immunoreactivity was restricted to oligodendrocytes, appeared at cell membrane and processes, colocalized with myelin basic protein, and appeared before myelin/oligodendrocyte glycoprotein. In slices of rat and human brains, LP(A1) immunoreactivity was found in myelinated tracts, as well as in oligodendrocyte somata and their myelinating fibers. Immunoreactivities of LP(A1) and myelin basic protein colocalized in the brain, but oligodendrocyte soma showed stronger signals for LP(A1) than myelinated fibers, whereas the reverse was true for myelin basic protein. These results strengthen the view that LP(A1) is involved in myelin formation or maintenance.
Collapse
Affiliation(s)
- Pascale Cervera
- Laboratoire d'Anatomie Pathologique, Hôpital Sainte Anne, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Among the most critical actions of thyroid hormone in man and other mammals are those exerted on brain development. Severe hypothyroidism during the neonatal period leads to structural alterations, including hypomyelination and defects of cell migration and differentiation, with long-lasting, irreversible effects on behavior and performance. A complex regulatory mechanism operates in brain involving regulation of the concentration of the active hormone, T3, and the control of gene expression. Most brain T3 is formed locally from its precursor, T4, by the action of type II deiodinase which is expressed in glial cells, tanycytes, and astrocytes. Type III deiodinase (DIII) is also involved in the regulation of T3 concentrations, especially during the embryonic and early post-natal periods. DIII is expressed in neurons and degrades T4 and T3 to inactive metabolites. The action of T3 is mediated through nuclear receptors, which are expressed mainly in neurons. The receptors are ligand-modulated transcription factors, and a number of genes have been identified as regulated by thyroid hormone in brain. The regulated genes encode proteins of myelin, mitochondria, neurotrophins and their receptors, cytoskeleton, transcription factors, splicing regulators, cell matrix proteins, adhesion molecules, and proteins involved in intracellular signaling pathways. The role of thyroid hormone is to accelerate changes of gene expression that take place during development. Surprisingly, null-mutant mice for the T3 receptors show almost no signs of central nervous system involvement, in contrast with the severe effects of hypothyroidism. The resolution of this paradox is essential to understand the role of thyroid hormone and its receptors in brain development and function.
Collapse
Affiliation(s)
- J Bernal
- Instituto de Investigaciones Biomedicas Alberto Sols, Consejo Superior de Investigaciones Cientfficas, Universidad Autónoma de Madrid, Spain.
| |
Collapse
|
8
|
Schnädelbach O, Ozen I, Blaschuk OW, Meyer RL, Fawcett JW. N-cadherin is involved in axon-oligodendrocyte contact and myelination. Mol Cell Neurosci 2001; 17:1084-93. [PMID: 11414796 DOI: 10.1006/mcne.2001.0961] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have analyzed the influence of the calcium-dependent cell adhesion molecule, N-cadherin, on events leading to CNS myelination. Interactions between axons and oligodendrocyte progenitor (OP) cells and the CG4 OP cell line were examined by video-microscopy. OPs cocultured with dorsal root ganglia explants migrated around the culture and formed numerous contacts with axons. The duration of these contacts depended on the morphology of the OP, with OPs containing four or more processes forming long-lasting contacts and OPs with three or fewer processes forming short-termed contacts. Treatment with N-cadherin function blocking peptides approximately halved the duration of contacts made by cells with four or more processes but contact times for cells with three or less processes were unaffected. The L7 cadherin-blocking antibody and calcium withdrawal had similar effects. Contacts with axons regenerating from explants of adult retina, which do not have N-cadherin on their surface was examined. The contact duration of OPs to adult retina axons was short and similar in length to those formed between OPs and dorsal root ganglion axons in the presence of cadherin blocking reagents. Oligodendrocyte myelination was examined in organotypic rat cerebellar slice cultures, taken before myelination at postnatal day 10 and then allowed to myelinate in vitro over 7 days. When incubated with an N-cadherin function-blocking peptide, myelination of Purkinje cell axons was reduced to about half of control levels, while control peptides were without effect. Cadherin-blockade did not prevent maturation of OPs, since oligodendrocytes showing myelin basic protein immunostaining were still found in these cultures. However, many of the cell processes did not colocalize with calbindin-positive axons. From these data we conclude that N-cadherin is important for the initial contact between a myelinating oligodendrocyte and axons and significantly contributes to the success of myelination.
Collapse
Affiliation(s)
- O Schnädelbach
- Physiological Laboratory, Downing Street, Cambridge, CB2 3EG
| | | | | | | | | |
Collapse
|
9
|
Abstract
Myelinating Schwann cells control the number of neurofilaments and elevate the phosphorylation state of neurofilaments in the axon, eventually leading to the typical large axon caliber. Conversely, absence of myelin leads to lower amounts of neurofilaments, reduced phosphorylation levels, and smaller axon diameters. In addition, myelinating Schwann cells mediate the spacing of Na(+) channel clusters during development of the node of Ranvier. When axons are associated with mutant Schwann cells in inherited neuropathies, their calibers are reduced and their neurofilaments are less phosphorylated and more closely spaced. Also, axonal transport is reduced and axons degenerate at the distal ends of long nerves. Myelin-associated glycoprotein may mediate some aspects of Schwann cell-axon communication, but much remains to be learned about the molecular bases of Schwann cell-axon communication.
Collapse
Affiliation(s)
- R Martini
- Department of Neurology, Section of Developmental Neurobiology, University of Würzburg, Josef-Schneider-Strasse 11, D-97080 Würzburg, Germany.
| |
Collapse
|
10
|
Krämer EM, Klein C, Koch T, Boytinck M, Trotter J. Compartmentation of Fyn kinase with glycosylphosphatidylinositol-anchored molecules in oligodendrocytes facilitates kinase activation during myelination. J Biol Chem 1999; 274:29042-9. [PMID: 10506155 DOI: 10.1074/jbc.274.41.29042] [Citation(s) in RCA: 185] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In many cell types, glycosylphosphatidylinositol (GPI)-anchored proteins are sequestered in detergent-resistant membrane rafts. These are plasma membrane microdomains enriched in glycosphingolipids and cholesterol and are suggested to be platforms for cell signaling. Concomitant with the synthesis of myelin glycosphingolipids, maturing oligodendrocytes progressively associate GPI-anchored proteins, including the adhesion molecules NCAM 120 and F3, in rafts. Here we show that these microdomains include Fyn and Lyn kinases. Both kinases are maximally active in myelin prepared from young animals, correlating with early stages of myelination. In the rafts, Fyn kinase is tightly associated with NCAM 120 and F3. In contrast, in oligodendrocyte progenitor cells lacking rafts or in raft-free membrane domains of more mature cells, F3 does not associate with Fyn. The addition of anti-F3 antibodies to oligodendrocytes results in stimulation of Fyn kinase specifically in rafts. Compartmentation of oligodendrocyte GPI-anchored proteins in rafts is thus a prerequisite for association with Fyn, permitting kinase activation. Interaction of oligodendrocyte F3 with axonal ligands such as L1 and ensuing kinase activation may play a crucial role in initiating myelination.
Collapse
Affiliation(s)
- E M Krämer
- Department of Neurobiology, University of Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
11
|
Raval-Fernandes S, Kickhoefer VA, Rome LH. Cloning of a cDNA encoding a sequence-specific single-stranded-DNA-binding protein from Rattus norvegicus. Gene 1999; 237:201-7. [PMID: 10524251 DOI: 10.1016/s0378-1119(99)00289-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this paper, we report the isolation of a cDNA clone encoding a sequence-specific single-stranded-DNA-binding protein (SSDP) from rat (Rattus norvegicus). The full-length nucleotide sequence was determined and encodes a 361 amino acid protein with a predicted molecular mass of 37.7 kDa. This clone has approximately 80% homology to a previously isolated partial cDNA clone for SSDP from chicken (Gallus gallus). Northern blot analysis revealed two transcripts of 2.0 and 3.0 kb. The protein appears to be evolutionarily highly conserved with > 97% identity between chicken, rat, mouse and human. Chicken SSDP has been proposed to be involved in the transcriptional regulation of the alpha 2(I) collagen gene.
Collapse
Affiliation(s)
- S Raval-Fernandes
- Department of Biological Chemistry, University of California School of Medicine, Los Angeles 90095, USA
| | | | | |
Collapse
|
12
|
Baslow MH. Molecular water pumps and the aetiology of Canavan disease: a case of the sorcerer's apprentice. J Inherit Metab Dis 1999; 22:99-101. [PMID: 10234603 DOI: 10.1023/a:1005437915117] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- M H Baslow
- Nathan S. Kline Institute for Psychiatric Research, Center for Neurochemistry, Orangeburg, NY 10962, USA
| |
Collapse
|
13
|
Abstract
Myelination is a multistep ordered process whereby Schwann cells in the peripheral nervous system (PNS) and oligodendrocytes in the central nervous system (CNS), produce and extend membranous processes that envelop axons. Mechanisms that regulate this complex process are not well understood. Advances in deciphering the regulatory components of myelination have been carried out primarily in the PNS and although the mechanisms for triggering and directing myelination are not known, it is well established that myelination does not occur in the absence of axons or axon/neuron-derived factors. This appears to be true both in PNS and CNS. Progress in understanding CNS myelinogenesis has been relatively slow because of the unavailability of a suitable culture system, which, in turn, is partly due to complexity in the cellular organization of the CNS. Though the myelin composition differs between PNS and CNS, the regulation of myelination seems to parallel rather than differ between these two systems. This article reviews the regulatory role of axonal components during myelination. The first half consists of an overview of in vitro and in vivo studies carried out in the nervous system. The second half discusses the use of a cerebellar slice culture system and generation of anti-axolemma monoclonal antibodies to investigate the role of axonal membrane components that participate in myelination. It also describes the characterization of an axonal protein involved in myelination.
Collapse
Affiliation(s)
- S Raval-Fernandes
- Department of Biological Chemistry and Mental Retardation Research Center, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | |
Collapse
|
14
|
Jensen NA, Pedersen KM, Celis JE, West MJ. Neurological disturbances, premature lethality, and central myelination deficiency in transgenic mice overexpressing the homeo domain transcription factor Oct-6. J Clin Invest 1998; 101:1292-9. [PMID: 9502770 PMCID: PMC508683 DOI: 10.1172/jci1807] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pit, Oct, Unc (POU) homeo domain transcription factors have been implicated in various developmental processes, including cell division, differentiation, specification, and survival of specific cell types. Although expression of the transcription factor Oct-6 in oligodendroglia is confined to the promyelin stage and is downregulated at the myelin stage of development, the effect of Oct-6 overexpression on oligodendrocyte development has not been established. Here we show that transgenic animals overexpressing Oct-6 at late oligodendrocyte development develop a severe neurologic syndrome characterized by action tremors, recurrent seizures, and premature death. Axons in the central nervous system of Oct-6 transgenics were hypomyelinated, hypermyelinated, or dysmyelinated, and ultrastructural analyses suggested that myelin formation was premature. The vulnerability of developing oligodendroglia to Oct-6 deregulation provides evidence that the POU factor may play a direct role in myelin disease pathogenesis in the mammalian CNS.
Collapse
Affiliation(s)
- N A Jensen
- Department of Medical Biochemistry, University of Aarhus, 8000 Aarhus C, Denmark.
| | | | | | | |
Collapse
|
15
|
Allard J, Barrón S, Diaz J, Lubetzki C, Zalc B, Schwartz JC, Sokoloff P. A rat G protein-coupled receptor selectively expressed in myelin-forming cells. Eur J Neurosci 1998; 10:1045-53. [PMID: 9753172 DOI: 10.1046/j.1460-9568.1998.00117.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
By screening an olfactory bulb cDNA library using dopamine receptor probes, we isolated the cDNA coding for the rat counterpart of an orphan receptor known as Edg-2, homologous to G protein-coupled receptors. In situ hybridization analysis showed that Edg-2 mRNA expression is restricted to myelinated structures, e.g. corpus callosum or peripheral nerves. A weaker expression in various peripheral organs was also detected in newborns. A 3.8-kb transcript was found at high levels in highly myelinated brain structures and sciatic nerve, and, at lower levels, in poorly myelinated peripheral organs, consistent with its occurrence in Schwann cells in the peripheral nervous system. One hundred percent of Edg-2 mRNA-containing cells in the brain also expressed mRNA encoding myelin-basic-protein, a marker of oligodendrocytes. This restricted olygodendrocytes localization was confirmed by the absence of cellular colocalization of Edg-2 and glial fibrillary acidic protein, an astrocytic marker. During prenatal development, Edg-2 mRNA expression was high in the cortical neuroepithelium and meningeal layer at E16, extended later to other neuroepithelia, and disappeared shortly after birth. During brain postnatal development, Edg-2 mRNA expression in myelinated structures followed a caudo-rostral gradient, similar to that of myelination. Thus, Edg-2 is the first G protein-coupled receptor found to be selectively expressed in myelin-forming cells in the nervous system and its temporal expression pattern is consistent with a dual role (i) in neurogenesis, during embryonic development, and (ii) in myelination and myelin maintenance, during postnatal life.
Collapse
Affiliation(s)
- J Allard
- Unité de Neurobiologie et Pharmacologie, INSERM U109, Centre Paul Broca, Paris, France
| | | | | | | | | | | | | |
Collapse
|
16
|
Colello RJ, Pott U. Signals that initiate myelination in the developing mammalian nervous system. Mol Neurobiol 1997; 15:83-100. [PMID: 9396006 DOI: 10.1007/bf02740617] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The myelination of axons by oligodendrocytes in the central nervous system and Schwann cells in the peripheral nervous system is essential for the establishment of saltatory conduction. In the absence or destruction of the myelin sheath, as seen in demyelinating diseases, impulse conduction is impeded resulting in severe sensory and motor deficits. Axon myelination is the culmination of a sequence of events that begins with the differentiation of glial cells and proceeds to the transcription and translation of myelin genes, the elaboration of a myelin sheath, and the recognition and ensheathment of axons. This review examines the regulatory mechanisms for each of these steps and compares and contrasts the role of the axon in initiating myelination in the central and peripheral nervous system.
Collapse
Affiliation(s)
- R J Colello
- Department of Anatomy, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298-0709, USA
| | | |
Collapse
|
17
|
Martini R, Schachner M. Molecular bases of myelin formation as revealed by investigations on mice deficient in glial cell surface molecules. Glia 1997. [DOI: 10.1002/(sici)1098-1136(199704)19:4<298::aid-glia3>3.0.co;2-u] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Cohen RI, Molina-Holgado E, Almazan G. Carbachol stimulates c-fos expression and proliferation in oligodendrocyte progenitors. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1996; 43:193-201. [PMID: 9037533 DOI: 10.1016/s0169-328x(96)00176-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
To determine if muscarinic receptor-activation plays a role in oligodendrocyte development, the effect of carbachol a stable acetylcholine analog, on gene expression and proliferation was investigated. Using Northern blot analysis we showed that carbachol caused a time and concentration-dependent increase in c-fos mRNA. This effect was blocked by atropine, a non-selective muscarinic antagonist. In addition, the muscarinic-stimulated c-fos increase was inhibited by 1-(5-isoquinoline-sulfonyl)-2-methylpiperazine (H-7), a potent inhibitor of protein kinase C (PKC), but not by N-2-(p-bromocinnamylamino)-ethyl-5-isoquinoline-sulfonamide (H-89), a potent inhibitor of protein kinase A, suggesting the involvement of PKC in mediating the response. Down-regulation of PKC by overnight pre-treatment with 12-O-tetradecanoylphorbol 13-acetate (TPA) blocked only the phorbol ester-stimulated c-fos accumulation while no effect was observed in the carbachol-induced response. These results suggested that carbachol stimulated an H-7 sensitive PKC pathway which may be different than that activated by TPA. Further evidence for two separate mechanisms of proto-oncogene induction was provided by the additive effect of carbachol and TPA. Induction of c-fos mRNA by carbachol was dependent on both influx of extracellular Ca2+ and release from intracellular stores, as both EDTA and BAPTA blocked the response. Since activation of muscarinic receptors can affect cell division in other cellular systems, the effect of carbachol on [3H]thymidine and bromodeoxyuridine incorporation into oligodendrocyte DNA was measured. Carbachol stimulated DNA synthesis in oligodendrocyte progenitors. This effect was mediated by muscarinic receptors as [3H]thymidine incorporation was prevented or significantly reduced by the addition of atropine. In conclusion, the present findings suggest that, the neurotransmitter, acetylcholine may act as a trophic factor in developing oligodendrocytes, regulating their growth and development in the central nervous system.
Collapse
Affiliation(s)
- R I Cohen
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Que., Canada
| | | | | |
Collapse
|
19
|
Oligodendroglia regulate the regional expansion of axon caliber and local accumulation of neurofilaments during development independently of myelin formation. J Neurosci 1996. [PMID: 8756439 DOI: 10.1523/jneurosci.16-16-05095.1996] [Citation(s) in RCA: 157] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Axon caliber may be influenced by intrinsic neuronal factors and extrinsic factors related to myelination. To understand these extrinsic influences, we studied how axon-caliber expansion is related to changes in neurofilament and microtubule organization as axons of retinal ganglion cells interact with oligodendroglia and become myelinated during normal mouse brain development. Caliber expanded and neurofilaments accumulated only along regions of the axon invested with oligodendroglia. Very proximal portions of axons within a region of the optic nerve from which oligodendrocytes are excluded remained unchanged. More distally, these axons rapidly expanded an average of fourfold as soon as they were recruited to become myelinated between postnatal days 9 and 120. Unmyelinated axons remained unchanged. Axons ensheathed by oligodendroglial processes, but not yet myelinated, were intermediate in caliber and neurofilament number. That oligodendrocytes can trigger regional caliber expansion in the absence of myelin was confirmed using three strains of mice with different mutations that prevent myelin formation but allow wrapping of some axons by oligodendroglial processes. Unmyelinated axons persistently wrapped by oligodendrocytes showed full axon caliber expansion, neurofilament accumulation, and appropriately increased lateral spacing between neurofilaments. Thus, signals from oligodendrocytes, independent of myelin formation, are sufficient to induce full axon radial growth primarily by triggering local accumulation and reorganization of the neurofilament network.
Collapse
|
20
|
Gard AL, Maughon RH, Schachner M. In vitro oligodendrogliotrophic properties of cell adhesion molecules in the immunoglobulin superfamily: myelin-associated glycoprotein and N-CAM. J Neurosci Res 1996; 46:415-26. [PMID: 8950701 DOI: 10.1002/(sici)1097-4547(19961115)46:4<415::aid-jnr3>3.0.co;2-j] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
To determine if cell recognition molecules interact trophically with oligodendrocytes (OCs), their effect as growth substrates for differentiating oligodendroblasts was studied in primary culture. Oligodendroblasts purified from postnatal rat cerebrum by immunopanning were plated on substratum-bound cell adhesion molecules or extracellular matrix glycoproteins in chemically defined medium in which OCs terminally differentiate but survive poorly. Growth on myelin-associated glycoprotein (MAG) and neural cell adhesion molecule (N-CAM) selectively increased the number of viable cells per culture 2 weeks after plating as much as tenfold and sixfold, respectively, over background survival on an albumin substrate, whereas L1, tenascin-R, tenascin-C, fibronectin, and laminin were ineffective. Neither MAG nor N-CAM stimulated bromodeoxyuridine incorporation into cultures, indicating that enhanced proliferation did not contribute to better survival. Compared to growth on polyornithine alone, oligodendroblast differentiation in the added presence of MAG or N-CAM was qualitatively unchanged; > 90% of surviving cells developed into OCs that matured further by immunocytochemical and morphological criteria. A striking difference, however, was the quantitative effect of MAG and N-CAM substrates on oligodendrite outgrowth, increasing myelin-like membrane formation two- to threefold (> 8 x 10(3) microns2/cell). These findings support the concept that autotypic or heterotypic cell contact-mediated signaling by recognition molecules at the OC surface contributes trophic support of myelinogenesis.
Collapse
Affiliation(s)
- A L Gard
- Department of Structural and Cellular Biology, College of Medicine, University of South Alabama, Mobile 36688, USA
| | | | | |
Collapse
|
21
|
Demerens C, Stankoff B, Logak M, Anglade P, Allinquant B, Couraud F, Zalc B, Lubetzki C. Induction of myelination in the central nervous system by electrical activity. Proc Natl Acad Sci U S A 1996; 93:9887-92. [PMID: 8790426 PMCID: PMC38524 DOI: 10.1073/pnas.93.18.9887] [Citation(s) in RCA: 507] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The oligodendrocyte is the myelin-forming cell in the central nervous system. Despite the close interaction between axons and oligodendrocytes, there is little evidence that neurons influence myelinogenesis. On the contrary, newly differentiated oligodendrocytes, which mature in culture in the total absence of neurons, synthesize the myelin-specific constituents of oligodendrocytes differentiated in vivo and even form myelin-like figures. Neuronal electrical activity may be required, however, for the appropriate formation of the myelin sheath. To investigate the role of electrical activity on myelin formation, we have used highly specific neurotoxins, which can either block (tetrodotoxin) or increase (alpha-scorpion toxin) the firing of neurons. We show that myelination can be inhibited by blocking the action potential of neighboring axons or enhanced by increasing their electrical activity, clearly linking neuronal electrical activity to myelinogenesis.
Collapse
Affiliation(s)
- C Demerens
- Laboratoire de Neurobiologie Cellulaire, Moléculaire et Clinique, Institut National de la Santé et de la Recherche Médicale, Unité 134, Hôpital de la Salpêtrière, Université Pierre et Marie Curie, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Weruaga-Prieto E, Eggli P, Celio MR. Rat brain oligodendrocytes do not interact selectively with axons expressing different calcium-binding proteins. Glia 1996; 16:117-28. [PMID: 8929899 DOI: 10.1002/(sici)1098-1136(199602)16:2<117::aid-glia4>3.0.co;2-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A single oligodendrocyte may endow ten to twenty vicinal axons with internodal segments, but its radial domain is neither exclusive of processes from other like cells nor are all nerve fibres within this zone myelinated. Whether oligodendrocytes are able to discriminate between axons on the basis of chemical or electrophysiological differences, or whether the tactic response is random, has yet to be established. In order to shed some light on this process, we investigated the ensheathment, by single oligodendrocytes, of axons distinguished on the basis of their calcium-binding protein complexion. Rat brain oligodendrocytes were visualized either with the Rip-antibody or by intracellular injection of Lucifer Yellow; subclasses of axons were immunolabelled with antibodies against one of the two calcium-binding proteins parvalbumin or calretinin. Individual oligodendrocytes did not exhibit exclusivity with respect to their preferment for axons containing calcium-binding proteins, associations with both non-immunoreactive, as well as with parvalbumin- or calretinin-positive ones, being encountered.
Collapse
Affiliation(s)
- E Weruaga-Prieto
- Institute of Histology and General Embryology, University of Fribourg, Switzerland
| | | | | |
Collapse
|
23
|
Liu HN, Almazan G. Glutamate induces c-fos proto-oncogene expression and inhibits proliferation in oligodendrocyte progenitors: receptor characterization. Eur J Neurosci 1995; 7:2355-63. [PMID: 8845939 DOI: 10.1111/j.1460-9568.1995.tb01032.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The effect of glutamate on c-fos expression in oligodendrocyte progenitors was investigated by Northern blot analysis. Glutamate caused rapid and transient induction. Both 6-cyano-7-nitro-quinoxaline-2,3-dione (CNQX) and 6,7-dinitroquinoxaline-2,3-dione (DNQX), two competitive non-NMDA ionotropic receptor antagonists, reduced glutamate-induced c-fos expression, whereas the NMDA antagonist MK-801 was ineffective. In addition, the glutamate receptor agonists (+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid hydrobromide (AMPA) and kainate strongly induced c-fos. However, the metabotropic receptor agonist trans-(+/-)-1-amino-(1S,3R)-cyclopentanedicarboxylic acid (trans-(+/-)-ACPD) did not increase c-fos mRNA level and the antagonist L-(+)-2-amino-3-phosphonopropionic acid did not block glutamate-induced c-fos mRNA. These findings indicate that c-fos induction in oligodendrocyte progenitors is mediated through the AMPA/kainate receptors, while NMDA and metabotropic receptor subtypes are not involved. Chelation of extracellular calcium by EDTA prevented glutamate-induced c-fos expression. Similarly, the protein kinase C inhibitor 1-(5-isoquinoline-sulphonyl)-2-methylpiperazine dihydrochloride (H7) and down-regulation of protein kinase C by prolonged exposure to phorbol-12-myristate 13-acetate blocked c-fos induction. These results suggest that induction of c-fos through AMPA/kainate receptors is dependent on extracellular calcium influx and involves downstream activation of phorbol ester-sensitive protein kinase C. The effect of glutamate on oligodendrocyte progenitor proliferation was assessed by [3H]thymidine incorporation. Glutamate and the agonists kainate and AMPA, but not trans-(+/-)-ACPD, caused a dose-dependent decrease in [3H]thymidine incorporation. All these pharmacological agents were not toxic to oligodendrocyte progenitors. CNQX reversed the inhibitory effects produced by glutamate and the various agonists. These results suggest that glutamate may modulate the growth and differentiation of oligodendrocytes in the central nervous system.
Collapse
Affiliation(s)
- H N Liu
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|