1
|
Chatterjee O, Gopalakrishnan L, Mol P, Advani J, Nair B, Shankar SK, Mahadevan A, Prasad TSK. The Normal Human Adult Hypothalamus Proteomic Landscape: Rise of Neuroproteomics in Biological Psychiatry and Systems Biology. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:693-710. [PMID: 34714154 DOI: 10.1089/omi.2021.0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The human hypothalamus is central to the regulation of neuroendocrine and neurovegetative systems, as well as modulation of chronobiology and behavioral aspects in human health and disease. Surprisingly, a deep proteomic analysis of the normal human hypothalamic proteome has been missing for such an important organ so far. In this study, we delineated the human hypothalamus proteome using a high-resolution mass spectrometry approach which resulted in the identification of 5349 proteins, while a multiple post-translational modification (PTM) search identified 191 additional proteins, which were missed in the first search. A proteogenomic analysis resulted in the discovery of multiple novel protein-coding regions as we identified proteins from noncoding regions (pseudogenes) and proteins translated from short open reading frames that can be missed using the traditional pipeline of prediction of protein-coding genes as a part of genome annotation. We also identified several PTMs of hypothalamic proteins that may be required for normal hypothalamic functions. Moreover, we observed an enrichment of proteins pertaining to autophagy and adult neurogenesis in the proteome data. We believe that the hypothalamic proteome reported herein would help to decipher the molecular basis for the diverse range of physiological functions attributed to it, as well as its role in neurological and psychiatric diseases. Extensive proteomic profiling of the hypothalamic nuclei would further elaborate on the role and functional characterization of several hypothalamus-specific proteins and pathways to inform future research and clinical discoveries in biological psychiatry, neurology, and system biology.
Collapse
Affiliation(s)
- Oishi Chatterjee
- Institute of Bioinformatics, Bangalore India.,Amrita School of Biotechnology, Amrita University, Kollam, India.,Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore, India
| | - Lathika Gopalakrishnan
- Institute of Bioinformatics, Bangalore India.,Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore, India.,Manipal Academy of Higher Education, Manipal, India
| | - Praseeda Mol
- Institute of Bioinformatics, Bangalore India.,Amrita School of Biotechnology, Amrita University, Kollam, India
| | | | - Bipin Nair
- Amrita School of Biotechnology, Amrita University, Kollam, India
| | - Susarla Krishna Shankar
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, India.,Human Brain Tissue Repository, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, India.,Human Brain Tissue Repository, National Institute of Mental Health and Neurosciences, Bangalore, India
| | | |
Collapse
|
2
|
Mandadi S, Armati PJ, Roufogalis BD. Real-Time Translocation and Function of PKCβII Isoform in Response to Nociceptive Signaling via the TRPV1 Pain Receptor. Pharmaceuticals (Basel) 2011; 4:1503-1517. [PMID: 27721335 PMCID: PMC4060137 DOI: 10.3390/ph4111503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 10/26/2011] [Accepted: 11/07/2011] [Indexed: 01/23/2023] Open
Abstract
Serine/threonine protein kinase C βII isoform (PKCβII) or the pain receptor transient receptor potential vanilloid 1 (TRPV1) have been separately implicated in mediating heat hyperalgesia during inflammation or diabetic neuropathy. However, detailed information on the role of PKC βII in nociceptive signaling mediated by TRPV1 is lacking. This study presents evidence for activation and translocation of the PKC βII isoform as a signaling event in nociception mediated by activation of TRPV1 by capsaicin. We show that capsaicin induces translocation of cytosolic PKCβII isoform fused with enhanced green fluorescence protein (PKCβII-EGFP) in dorsal root ganglion (DRG) neurons. We also show capsaicin-induced translocation in Chinese Hamster Ovarian (CHO) cells co-transfected with TRPV1 and PKCβII-EGFP, but not in CHO cells expressing PKCβII-EGFP alone. By contrast, the PKC activator phorbol-12-myristate-13-acetate (PMA) induced translocation of PKCβII-EGFP which was sustained and independent of calcium or TRPV1. In addition PMA-induced sensitization of TRPV1 to capsaicin response in DRG neurons was attenuated by PKCβII blocker CGP 53353. Capsaicin response via TRPV1 in the DRG neurons was confirmed by TRPV1 antagonist AMG 9810. These results suggested a novel and potential signaling link between PKCβII and TRPV1. These cell culture models provide a platform for investigating mechanisms of painful neuropathies mediated by nociceptors expressing the pain sensing gene TRPV1, and its regulation by the PKC isoform PKCβII.
Collapse
Affiliation(s)
- Sravan Mandadi
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N4N1, Canada.
- Faculty of Pharmacy, University of Sydney, Room 341, Pharmacy and Bank Building A15, Sydney, NSW 2006, Australia.
| | - Patricia J Armati
- Brain Mind Research Institute and the Nerve Research Foundation, University of Sydney, Sydney, NSW 2006, Australia
| | - Basil D Roufogalis
- Faculty of Pharmacy, University of Sydney, Room 341, Pharmacy and Bank Building A15, Sydney, NSW 2006, Australia.
| |
Collapse
|
3
|
Selvatici R, Falzarano S, Franceschetti L, Cavallini S, Marino S, Siniscalchi A. Differential activation of protein kinase C isoforms following chemical ischemia in rat cerebral cortex slices. Neurochem Int 2006; 49:729-36. [PMID: 16963162 DOI: 10.1016/j.neuint.2006.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Accepted: 06/13/2006] [Indexed: 11/23/2022]
Abstract
The aim of the current study was to characterize the effects of chemical ischemia and reperfusion at the transductional level in the brain. Protein kinase C isoforms (alpha, beta(1), beta(2), gamma, delta and epsilon) total levels and their distribution in the particulate and cytosolic compartments were investigated in superfused rat cerebral cortex slices: (i) under control conditions; (ii) immediately after a 5-min treatment with 10mM NaN(3), combined with 2mM 2-deoxyglucose (chemical ischemia); (iii) 1h after chemical ischemia (reperfusion). In control samples, all the PKC isoforms were detected; immediately after chemical ischemia, PKC beta(1), delta and epsilon isoforms total levels (cytosol+particulate) were increased by 2.9, 2.7 and 9.9 times, respectively, while alpha isoform was slightly reduced and gamma isoform was no longer detectable. After reperfusion, the changes displayed by alpha, beta(1), gamma, delta and epsilon were maintained and even potentiated, moreover, an increase in beta(2) (by 41+/-12%) total levels became significant. Chemical ischemia-induced a significant translocation to the particulate compartment of PKC alpha isoform, which following reperfusion was found only in the cytosol. PKC beta(1) and delta isoforms particulate levels were significantly higher both in ischemic and in reperfused samples than in the controls. Conversely, following reperfusion, PKC beta(2) and epsilon isoforms displayed a reduction in their particulate to total level ratios. The intracellular calcium chelator, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, 1mM, but not the N-methyl-d-asparate receptor antagonist, MK-801, 1muM, prevented the translocation of beta(1) isoform observed during ischemia. Both drugs were effective in counteracting reperfusion-induced changes in beta(2) and epsilon isoforms, suggesting the involvement of glutamate-induced calcium overload. These findings demonstrate that: (i) PKC isoforms participate differently in neurotoxicity/neuroprotection events; (ii) the changes observed following chemical ischemia are pharmacologically modulable; (iii) the protocol of in vitro chemical ischemia is suitable for drug screening.
Collapse
Affiliation(s)
- Rita Selvatici
- Department of Experimental and Diagnostic Medicine, Medical Genetics Section, University of Ferrara, Via Fossato di Mortara 74, 44100 Ferrara, Italy.
| | | | | | | | | | | |
Collapse
|
4
|
Igwe OJ. Agents that act by different mechanisms modulate the activity of protein kinase CβII isozyme in the rat spinal cord during peripheral inflammation. Neuroscience 2006; 138:313-28. [PMID: 16360284 DOI: 10.1016/j.neuroscience.2005.10.061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 10/25/2005] [Accepted: 10/26/2005] [Indexed: 10/25/2022]
Abstract
Hyperalgesia following unilateral complete Freund's adjuvant-induced inflammation was characterized by paw withdrawal latency to thermal stimulus. Paw withdrawal latencies were significantly shorter on the complete Freund's adjuvant-treated paw than on the contralateral paw of the complete Freund's adjuvant- and the sham-treated rats. Total cytosolic protein kinase C activity in the lumbar enlargement was unchanged on the sides of the spinal cord ipsi- and contra-lateral to the inflamed paw. Membrane-associated activities of protein kinase Calpha, protein kinase CbetaI and protein kinase Cgamma did not change significantly on the sides of the cord ipsi- and contra-lateral to the inflammation. However, membrane-associated activity of protein kinase CbetaII was increased in the cord section ipsilateral to the inflammation, suggesting that increased translocation/activation of protein kinase CbetaII is related to thermal hyperalgesia. Dextrorphan (an N-methyl-D-aspartate receptor antagonist), L-703,606 (an NK-1 receptor antagonist) and an antisense oligodeoxynucleotide for a selective knockdown of protein kinase Cbeta, reduced complete Freund's adjuvant-induced hyperalgesia, and reversed significant changes in the membrane activity of protein kinase CbetaII on the spinal cord section ipsilateral to the inflamed paw. Dextrorphan and protein kinase Cbeta antisense oligodeoxynucleotide were effective in reversing complete Freund's adjuvant-induced increase in the activity of protein kinase CbetaII ipsilateral to the inflammation at all the doses tested, but L-703,606 was effective only at the highest dose. Furthermore, in the presence of inflammatory stimulus, dextrorphan and L-703,606 did not alter the activities of membrane-associated protein kinase Calpha, protein kinase CbetaI, and protein kinase Cgamma in the section of the spinal cord ipsi- and contra-lateral to the inflammation. Protein kinase Cbeta antisense oligodeoxynucleotide had no significant effect on the membrane-associated activities of protein kinase Calpha and protein kinase Cgamma, but decreased the activities of both protein kinase CbetaI and protein kinase CbetaII and the expression of protein kinase Cbeta isozyme in the spinal cord. The data provide evidence that a common molecular event that converges to initiate and maintain hyperalgesia may include the translocation and activation of protein kinase CbetaII in the spinal dorsal horn.
Collapse
Affiliation(s)
- O J Igwe
- Division of Pharmacology, University of Missouri-Kansas City, Kansas City, MO 64108-2784, USA.
| |
Collapse
|
5
|
Yagi K, Shirai Y, Hirai M, Sakai N, Saito N. Phospholipase A2 products retain a neuron specific gamma isoform of PKC on the plasma membrane through the C1 domain--a molecular mechanism for sustained enzyme activity. Neurochem Int 2004; 45:39-47. [PMID: 15082220 DOI: 10.1016/j.neuint.2003.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2003] [Revised: 08/28/2003] [Accepted: 12/22/2003] [Indexed: 11/24/2022]
Abstract
To clarify molecular mechanism for sustained activation of gamma protein kinase C (gammaPKC), a neuron-specific subtype, we investigated the involvement of phospholipase A2 (PLA2) products in the membrane association of gammaPKC upon activation of G protein coupled purinoceptors in CHO-K1 and NG 108-15 cells. In addition, the functional domain responsible for PLA2-product mediated retention of gammaPKC on the plasma membrane was determined by simultaneously monitoring two different fluorescence-tagged gammaPKCs and mutants in the same living CHO-K1 cells. Purinoceptor activation by UTP induced a transient translocation of gammaPKC from the cytoplasm to the plasma membrane. Interestingly, PLA2 inhibitors, bromoenol lactone (BEL) and arachidonyl-trifluoromethyl ketone (AACOF3), shortened the retention time of gammaPKC on the plasma membrane in cells treated with UTP, while a DAG kinase inhibitor did not affect it. The C1 domain deficient mutant (DeltaC1-gammaPKC) also showed short membrane association compared with wild type gammaPKC, when cells are treated with UTP or arachidonic acid (AA) plus a Ca(2+) ionophore. However, deletion of C1A or C1B subdomains (DeltaC1A-gammaPKC or DeltaC1B-gammaPKC) did not alter the retention time on the plasma membrane, whereas PLA2 inhibitor shortened the retention times of both mutants. These results indicate that PLA2 products prolong the retention of gammaPKC on the plasma membrane through the C1A and/or C1B subdomain in purinoceptor-stimulated CHO-K1 cells. The importance of PLA2 product and C1 domain for the retention of gammaPKC on the membrane was also confirmed using neuronal cell line, suggesting that these are part of molecular machinery for sustaining enzyme activity in neurons.
Collapse
Affiliation(s)
- Keiko Yagi
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Rokko-dai Nada, Kobe 657-8501, Japan
| | | | | | | | | |
Collapse
|
6
|
Kotaleski JH, Lester D, Blackwell KT. Subcellular interactions between parallel fibre and climbing fibre signals in Purkinje cells predict sensitivity of classical conditioning to interstimulus interval. Integr Psychol Behav Sci 2002; 37:265-92. [PMID: 12645844 DOI: 10.1007/bf02734249] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Classical conditioning of the nictitating membrane response requires a specific temporal interval between conditioned stimulus and unconditioned stimulus, and produces an increase in Protein Kinase C (PKC) activation in Purkinje cells. To evaluate whether biochemical interactions within the Purkinje cell may explain the temporal sensitivity, a model of PKC activation by Ca2+, diacylglycerol (DAG), and arachidonic acid (AA) is developed. Ca2+ elevation is due to CF stimulation and IP3 induced Ca2+ release (IICR). DAG and IP3 result from PF stimulation, while AA results from phospholipase A2 (PLA2). Simulations predict increased PKC activation when PF stimulation precedes CF stimulation by 0.1 to 3 s. The sensitivity of IICR to the temporal relation between PF and CF stimulation, together with the buffering system of Purkinje cells, significantly contribute to the temporal sensitivity.
Collapse
|
7
|
Chen J, Dohi S, Tan Z, Banno Y, Nozawa Y. The inhibitory effect of local anesthetics on bradykinin-induced phospholipase D activation in rat pheochromocytoma PC12 cells. Anesth Analg 2002; 95:88-97, table of contents. [PMID: 12088949 DOI: 10.1097/00000539-200207000-00016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
UNLABELLED Bradykinin induces activation of phospholipase D (PLD) via B(2) receptors in neuronal cells. To demonstrate molecular mechanism(s) of local anesthetics, we examined whether and how local anesthetics affect bradykinin-induced PLD activation in PC12 cells. Using [(3)H]Palmitic acid-labeled PC12 cells stimulated with bradykinin, formation of [(3)H]phosphatidylbutanol was measured as a variable of PLD activity. Bradykinin-stimulated PLD activity seemed to peak at 2 min. Procaine, lidocaine, ropivacaine, bupivacaine, and tetracaine suppressed the bradykinin-induced PLD activation. We chose tetracaine, the most potent drug among the local anesthetics tested, to examine how local anesthetics affect phospholipase C, protein tyrosine kinase, and extracellular signal-regulated kinase, which are the molecules upstream of PLD. Tetracaine at clinically relevant concentrations (1 approximately 10 x 10(-4) M) inhibited the bradykinin-induced PLD activation in a dose- and time-dependent manner, but neither tetrodotoxin nor nifedipine affected the PLD activation. Tetracaine (5 x 10(-4) M) slightly potentiated brady-kinin-induced phospholipase C activation. Bradykinin-stimulated protein tyrosine-phosphorylation and extracellular signal-regulated kinase activation were not affected by tetracaine. Tetracaine significantly decreased PLD activity of membrane fraction in PC12 cells. These results indicate that local anesthetics depress bradykinin-induced lipid signaling pathway(s) and may provide some clues to understanding the molecular mechanisms of these drugs for anesthesia or analgesia. IMPLICATIONS Local anesthetics depressed the bradykinin-induced activation of phospholipase D (PLD) in PC12 cells. The effects of tetracaine, the most potent among the anesthetics tested, on the bradykinin-induced intracellular signaling molecules were examined. The bradykinin-induced PLD activation could be one of the potential intracellular signaling molecular sites of local anesthetic action.
Collapse
Affiliation(s)
- Jinen Chen
- Department of Anesthesiology, Gifu University School of Medicine, Tsukusamachi-40, Gifu City, Gifu 400-8705, Japan
| | | | | | | | | |
Collapse
|
8
|
Igwe OJ, Chronwall BM. Hyperalgesia induced by peripheral inflammation is mediated by protein kinase C betaII isozyme in the rat spinal cord. Neuroscience 2001; 104:875-90. [PMID: 11440817 DOI: 10.1016/s0306-4522(01)00107-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We have addressed the molecular mechanism(s) of hyperalgesia, which depends on increased excitability of dorsal horn neurons and on sensitization of primary afferent nociceptors, during peripheral inflammation. Following unilateral adjuvant-induced inflammation in the rat hind paw, time-course changes in behavioral hyperalgesia and functional activities of Ca2+/phospholipid-dependent protein kinase C isozymes were examined. Inflammation was characterized by increase in paw diameter, and behavioral hyperalgesia was quantified as paw withdrawal latency from a radiant heat source. Behavioral hyperalgesia on the injected paw was significantly increased. This was accompanied by a significant increase in total functional membrane-associated protein kinase C activity, whereas total cytosolic protein kinase C activity was unchanged on the sides of the lumbar spinal cord both contralateral and ipsilateral to the inflammation. Importantly, on the side of lumbar cord ipsilateral to the inflamed paw, the activity of membrane-associated protein kinase CbetaII was increased following the same time-course as the paw withdrawal latency decrease, suggesting an increased translocation of protein kinase Cbetall to the membrane related to behavioral hyperalgesia. A defined mixture of purified gangliosides, which inhibits intracellular protein kinase C translocation and activation, decreased inflammation-induced paw withdrawal latency, and specifically decreased the activity of membrane-associated protein kinase Cbetall on the side of the spinal cord ipsilateral to the inflammation. Quantitative immunohistochemical analyses demonstrated intensified protein kinase CbetaII-like immunoreactivity on the side of the spinal cord ipsilateral to the inflammation. Time-course for increases in the activity of membrane-associated protein kinase CbetaII, and in intensity of protein kinase CbetaII-immunoreactivity, paralleled inflammation-mediated changes in paw withdrawal latency and paw diameter. Our findings indicate an apparent involvement of protein kinase CbetaII isozyme specifically in the molecular mechanism(s) of thermal hyperalgesia.
Collapse
Affiliation(s)
- O J Igwe
- University of Missouri-Kansas City, School of Pharmacy, Division of Pharmacology, MO 64110, USA.
| | | |
Collapse
|
9
|
Yang KH, Hellgren Kotaleski J, Blackwell KT. The role of protein kinase C in the biochemical pathways of classical conditioning. Neurocomputing 2001. [DOI: 10.1016/s0925-2312(01)00488-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Sistiaga A, Sánchez-Prieto J. Protein phosphatase 2B inhibitors mimic the action of arachidonic acid and prolong the facilitation of glutamate release by group I mGlu receptors. Neuropharmacology 2000; 39:1544-53. [PMID: 10854899 DOI: 10.1016/s0028-3908(00)00034-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We have addressed the role of arachidonic acid in the facilitation of glutamate release by group I metabotropic glutamate (mGlu) receptors. The activation of these receptors with the specific agonist 3,5-dihydroxyphenylglycine (DHPG) failed to enhance the cumulative Ca(2+)-dependent release of glutamate evoked by a 5 min depolarization with 4-aminopyridine, in the absence but not in the presence of arachidonic acid. However, DHPG, in the absence of arachidonic acid, transiently enhanced diacylglycerol levels, transiently potentiated 4AP-evoked depolarization, and significantly enhanced the fast but not the slow component of glutamate release observed after prolonged stimulations of nerve terminals. Further evidence that DHPG was able to initiate release facilitation in the absence of arachidonic acid was obtained in experiments where the protein phosphatase 2B (cyclosporine A and cypermethrine) but not protein phosphatase 1 or 2A inhibitors (okadaic acid and calyculin A) facilited glutamate release to a maximal extent comparable to that induced by arachidonic acid. We conclude that an active protein phosphatase 2B (calcineurin) dephosphorylates the presynaptic target/s responsible for facilitation of glutamate release.
Collapse
Affiliation(s)
- A Sistiaga
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, 28040, Madrid, Spain
| | | |
Collapse
|
11
|
Strasser RH, Simonis G, Schön SP, Braun MU, Ihl-Vahl R, Weinbrenner C, Marquetant R, Kübler W. Two distinct mechanisms mediate a differential regulation of protein kinase C isozymes in acute and prolonged myocardial ischemia. Circ Res 1999; 85:77-87. [PMID: 10400913 DOI: 10.1161/01.res.85.1.77] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An activation of protein kinase C (PKC) in acute myocardial ischemia has been shown previously using its translocation to the plasma membrane as an indirect parameter. However, whether PKC remains activated or whether other mechanisms such as altered gene expression may mediate an isozyme-specific regulation in prolonged ischemia have not been investigated. In isolated perfused rat hearts, PKC activity and the expression of PKC cardiac isozymes were determined on the protein level using enzyme activities and Western blot analyses and on the mRNA level using reverse transcriptase-polymerase chain reaction after various periods of global ischemia (1 to 60 minutes). As early as 1 minute after the onset of ischemia, PKC activity is translocated from the cytosol to the particulate fraction without change in total cardiac enzyme activity. This translocation involves all major cardiac isozymes of PKC (ie, PKCalpha, PKCdelta, PKCepsilon, and PKCzeta). This rapid, nonselective activation of PKCs is only transient. In contrast, prolonged ischemia (>/=15 minutes) leads to an increased cardiac PKC activity (119+/-7 versus 190+/-8 pmol/min per mg protein) residing in the cytosol. This is associated with an augmented, subtype-selective isozyme expression of PKCdelta and PKCvarepsilon (163% and 199%, respectively). The specific mRNAs for PKCdelta (948+/-83 versus 1501+/-138 ag/ng total RNA, 30 minutes of ischemia) and PKCepsilon (1597+/-166 versus 2611+/-252 ag/ng total RNA) are selectively increased. PKCalpha and PKCzeta remain unaltered. In conclusion, two distinct activation and regulation processes of PKC are characterized in acute myocardial ischemia. The early, but transient, translocation involves all constitutively expressed cardiac isozymes of PKC, whereas in prolonged ischemia an increased total PKC activity is associated with an isozyme-selective induction of PKCepsilon and PKCdelta. Whether these fundamentally different activation processes interact remains to be elucidated.
Collapse
Affiliation(s)
- R H Strasser
- Department of Cardiology, Angiology, and Pulmology, University of Heidelberg, Medical Center, Heidelberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Blackwell KT, Alkon DL. Ryanodine receptor modulation of in vitro associative learning in Hermissenda crassicornis. Brain Res 1999; 822:114-25. [PMID: 10082889 DOI: 10.1016/s0006-8993(99)01105-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Classical conditioning of the mollusc, Hermissenda crassicornis, is a model system used to study cellular correlates of associative learning. Paired presentation of light and turbulence, but not unpaired presentations, causes Hermissenda to contract its foot in response to light alone. Intracellular recordings from the type B photoreceptors of the Hermissenda eye reveal a learning specific increase of input resistance, and a reduction of voltage-dependent potassium currents, both of which depend on an elevation of intracellular calcium. Two previously demonstrated sources of calcium are influx through voltage-dependent channels, and release of calcium from intracellular stores through the IP3 receptor channel. Both modeling studies and identification of memory-related genes using RNA fingerprinting suggest that a third source of calcium, release from intracellular stores through the ryanodine receptor, may be involved in classical conditioning. We describe here an experiment suggesting that this third source of calcium is necessary for the cellular changes underlying associative memory storage. Paired presentations of a light stimulus with a turbulence stimulus resulted in a significant increase in input resistance. Unpaired presentations of light and turbulence did not produce a significant increase in input resistance. A third group of nervous systems first was incubated in dantrolene to block release of calcium through the ryanodine receptor, and then received paired training. There was no change in input resistance for this group. The effect of dantrolene on light adaptation of the photoreceptor was assessed by measuring the generator potential of a second light pulse presented some number of seconds after a first light pulse. The results show that at interpulse intervals of 5 s, 10 s and 20 s, the generator potential of the dantrolene group is significantly greater than that of the control group. These results suggest a role for the ryanodine receptor in both a cellular correlate of classical conditioning and light adaptation.
Collapse
Affiliation(s)
- K T Blackwell
- Institute for Computational Sciences and Informatics, George Mason University, Krasnow Institute, MS 2A1, Fairfax, VA 22030, USA.
| | | |
Collapse
|
13
|
Affiliation(s)
- D G Nicholls
- Department of Pharmacology, University of Dundee, Scotland, UK
| |
Collapse
|
14
|
Granulocyte-Macrophage Colony-Stimulating Factor Rescues TF-1 Leukemia Cells From Ionizing Radiation-Induced Apoptosis Through a Pathway Mediated by Protein Kinase Cα. Blood 1998. [DOI: 10.1182/blood.v92.2.416.414k01_416_424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein kinase C (PKC) activity has a recognized role in mediating apoptosis. However, the role of individual PKC isoforms in apoptosis is poorly defined. Therefore, we investigated the translocation of individual PKC isoforms during radiation-induced apoptosis with and without rescue from apoptosis by granulocyte-macrophage colony-stimulating factor (GM-CSF) in the human erythroleukemia cell line TF-1. PKCα was translocated from the particulate to cytosolic fraction of TF-1 cells within 5 minutes of treatment with apoptosis-inducing levels of ionizing radiation. However, this postirradiation translocation did not occur when cells were rescued from apoptosis by GM-CSF. Furthermore, treatment of cells with Gö6976, an inhibitor of classical PKC isoforms, abrogated the rescue effect of GM-CSF. The calcium-independent novel PKC isoform, PKCδ appeared to be degraded in both the particulate and cytosolic fractions of TF-1 cells after treatment with apoptosis-inducing levels of ionizing radiation in either the presence or absence of GM-CSF rescue. Levels of ceramide, a lipid mediator of apoptosis, were measured at 2, 4, 8, 10, and 60 minutes after treatment with ionizing radiation and were substantially reduced in TF-1 cells rescued from apoptosis by GM-CSF compared with apoptotic TF-1 cells. The largest decrease in ceramide production seen was at 4 minutes postirradiation, with a 46% reduction in ceramide levels in TF-1 cells rescued from apoptosis by GM-CSF compared with those in apoptotic TF-1 cells. Because ceramide has been shown to affect PKCα subcellular distribution, these data implicate a role for ceramide in mediating the rapid postirradiation translocation and inhibition of PKCα in TF-1 cells not rescued from apoptosis by GM-CSF. Expression of the antiapoptotic protein Bcl-2 doubled in TF-1 cells rescued from apoptosis by GM-CSF, but did not increase in unrescued cells. Our findings suggest that activated PKCα and increased expression of Bcl-2 after γ irradiation determine survival in TF-1 cells rescued from apoptosis with GM-CSF and that PKCδ plays a role in mediating signals involved in sensing cellular damage and/or regulation of cell damage repair.
Collapse
|
15
|
Granulocyte-Macrophage Colony-Stimulating Factor Rescues TF-1 Leukemia Cells From Ionizing Radiation-Induced Apoptosis Through a Pathway Mediated by Protein Kinase Cα. Blood 1998. [DOI: 10.1182/blood.v92.2.416] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractProtein kinase C (PKC) activity has a recognized role in mediating apoptosis. However, the role of individual PKC isoforms in apoptosis is poorly defined. Therefore, we investigated the translocation of individual PKC isoforms during radiation-induced apoptosis with and without rescue from apoptosis by granulocyte-macrophage colony-stimulating factor (GM-CSF) in the human erythroleukemia cell line TF-1. PKCα was translocated from the particulate to cytosolic fraction of TF-1 cells within 5 minutes of treatment with apoptosis-inducing levels of ionizing radiation. However, this postirradiation translocation did not occur when cells were rescued from apoptosis by GM-CSF. Furthermore, treatment of cells with Gö6976, an inhibitor of classical PKC isoforms, abrogated the rescue effect of GM-CSF. The calcium-independent novel PKC isoform, PKCδ appeared to be degraded in both the particulate and cytosolic fractions of TF-1 cells after treatment with apoptosis-inducing levels of ionizing radiation in either the presence or absence of GM-CSF rescue. Levels of ceramide, a lipid mediator of apoptosis, were measured at 2, 4, 8, 10, and 60 minutes after treatment with ionizing radiation and were substantially reduced in TF-1 cells rescued from apoptosis by GM-CSF compared with apoptotic TF-1 cells. The largest decrease in ceramide production seen was at 4 minutes postirradiation, with a 46% reduction in ceramide levels in TF-1 cells rescued from apoptosis by GM-CSF compared with those in apoptotic TF-1 cells. Because ceramide has been shown to affect PKCα subcellular distribution, these data implicate a role for ceramide in mediating the rapid postirradiation translocation and inhibition of PKCα in TF-1 cells not rescued from apoptosis by GM-CSF. Expression of the antiapoptotic protein Bcl-2 doubled in TF-1 cells rescued from apoptosis by GM-CSF, but did not increase in unrescued cells. Our findings suggest that activated PKCα and increased expression of Bcl-2 after γ irradiation determine survival in TF-1 cells rescued from apoptosis with GM-CSF and that PKCδ plays a role in mediating signals involved in sensing cellular damage and/or regulation of cell damage repair.
Collapse
|
16
|
Matzel LD, Talk AC, Muzzio IA, Rogers RF. Ubiquitous molecular substrates for associative learning and activity-dependent neuronal facilitation. Rev Neurosci 1998; 9:129-67. [PMID: 9833649 DOI: 10.1515/revneuro.1998.9.3.129] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Recent evidence suggests that many of the molecular cascades and substrates that contribute to learning-related forms of neuronal plasticity may be conserved across ostensibly disparate model systems. Notably, the facilitation of neuronal excitability and synaptic transmission that contribute to associative learning in Aplysia and Hermissenda, as well as associative LTP in hippocampal CA1 cells, all require (or are enhanced by) the convergence of a transient elevation in intracellular Ca2+ with transmitter binding to metabotropic cell-surface receptors. This temporal convergence of Ca2+ and G-protein-stimulated second-messenger cascades synergistically stimulates several classes of serine/threonine protein kinases, which in turn modulate receptor function or cell excitability through the phosphorylation of ion channels. We present a summary of the biophysical and molecular constituents of neuronal and synaptic facilitation in each of these three model systems. Although specific components of the underlying molecular cascades differ across these three systems, fundamental aspects of these cascades are widely conserved, leading to the conclusion that the conceptual semblance of these superficially disparate systems is far greater than is generally acknowledged. We suggest that the elucidation of mechanistic similarities between different systems will ultimately fulfill the goal of the model systems approach, that is, the description of critical and ubiquitous features of neuronal and synaptic events that contribute to memory induction.
Collapse
Affiliation(s)
- L D Matzel
- Department of Psychology, Program in Biopsychology and Behavioral Neuroscience, Rutgers University, New Brunswick, NJ 08854-8020, USA
| | | | | | | |
Collapse
|
17
|
Budd DC, Nicholls DG. Arachidonic acid potentiates the duration of the metabotropic, protein kinase C-mediated, suppression of the inhibitory adenosine A1 receptor pathway in glutamatergic nerve terminals from rat cerebral cortex. Neurosci Lett 1998; 244:133-6. [PMID: 9593507 DOI: 10.1016/s0304-3940(98)00157-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The KCl-evoked exocytotic release of glutamate from rat cerebrocortical synaptosomes is inhibited by a presynaptic adenosine A1 receptor decreasing voltage-activated Ca2+ entry. This inhibition was transiently suppressed by (1S,3R)-1-aminocyclopenthyl-1,3-dicarboxylate (ACPD) but was restored within 1 min in the continued presence of the metabotropic agonist. In the presence of 2 microM arachidonic acid ACPD initiated a prolonged suppression of the adenosine-mediated inhibition persisting for at least 10 min. Arachidonic acid (20-40 pmol) was bound per mg synaptosomal protein. Prolonged ACPD-mediated phosphorylation of the protein kinase C (PKC) substrate myristoylated alanine-rich C-kinase substrate (MARCKS) was detected in the presence but not the absence of arachidonic acid, but arachidonic acid added 2 min after ACPD was ineffective. It is concluded that arachidonic acid synergistically prolongs the metabotropic glutamate receptor-mediated activation of presynaptic PKC, suppressing inhibitory receptor pathways.
Collapse
Affiliation(s)
- D C Budd
- The Neurosciences Institute, Department of Pharmacology, Ninewells Medical School, University of Dundee, UK
| | | |
Collapse
|
18
|
Gerendasy DD, Sutcliffe JG. RC3/neurogranin, a postsynaptic calpacitin for setting the response threshold to calcium influxes. Mol Neurobiol 1997; 15:131-63. [PMID: 9396008 DOI: 10.1007/bf02740632] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this review, we attempt to cover the descriptive, biochemical and molecular biological work that has contributed to our current knowledge about RC3/neurogranin function and its role in dendritic spine development, long-term potentiation, long-term depression, learning, and memory. Based on the data reviewed here, we propose that RC3, GAP-43, and the small cerebellum-enriched peptide, PEP-19, belong to a protein family that we have named the calpacitins. Membership in this family is based on sequence homology and, we believe, a common biochemical function. We propose a model wherein RC3 and GAP-43 regulate calmodulin availability in dendritic spines and axons, respectively, and calmodulin regulates their ability to amplify the mobilization of Ca2+ in response to metabotropic glutamate receptor stimulation. PEP-19 may serve a similar function in the cerebellum, although biochemical characterization of this molecule has lagged behind that of RC3 and GAP-43. We suggest that these molecules release CaM rapidly in response to large influxes of Ca2+ and slowly in response to small increases. This nonlinear response is analogous to the behavior of a capacitor, hence the name calpacitin. Since CaM regulates the ability of RC3 to amplify the effects of metabotropic glutamate receptor agonists, this activity must, necessarily, exhibit nonlinear kinetics as well. The capacitance of the system is regulated by phosphorylation by protein kinase C, which abrogates interactions between calmodulin and RC3 or GAP-43. We further propose that the ratio of phosphorylated to unphosphorylated RC3 determines the sliding LTP/LTD threshold in concept with Ca2+/ calmodulin-dependent kinase II. Finally, we suggest that the close association between RC3 and a subset of mitochondria serves to couple energy production with the synthetic events that accompany dendritic spine development and remodeling.
Collapse
Affiliation(s)
- D D Gerendasy
- Department of Molecular Biology, Scripps Research Institute
| | | |
Collapse
|
19
|
Ruehr ML, Zhang L, Dorman RV. Lipid-dependent modulation of Ca2+ availability in isolated mossy fiber nerve endings. Neurochem Res 1997; 22:1215-22. [PMID: 9342725 DOI: 10.1023/a:1021976828513] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
An enhancement of glutamate release from hippocampal neurons has been implicated in long-term potentiation, which is thought to be a cellular correlate of learning and memory. This phenomenom appears to be involved the activation of protein kinase C and lipid second messengers have been implicated in this process. The purpose of this study was to examine how lipid-derived second messengers, which are known to potentiate glutamate release, influence the accumulation of intraterminal free Ca2+, since exocytosis requires Ca2+ and a potentiation of Ca2+ accumulation may provide a molecular mechanism for enhancing glutamate release. The activation of protein kinase C with phorbol esters potentiates the depolarization-evoked release of glutamate from mossy fiber and other hippocampal nerve terminals. Here we show that the activation of protein kinase C also enhances evoked presynaptic Ca2+ accumulation and this effect is attenuated by the protein kinase C inhibitor staurosporine. In addition, the protein kinase C-dependent increase in evoked Ca2+ accumulation was reduced by inhibitors of phospholipase A2 and voltage-sensitive Ca2+ channels, as well as by a lipoxygenase product of arachidonic acid metabolism. That some of the effects of protein kinase C activation were mediated through phospholipase A2 was also indicated by the ability of staurosporine to reduce the Ca2+ accumulation induced by arachidonic acid or the phospholipase A2 activator melittin. Similarly, the synergistic facilitation of evoked Ca2+ accumulation induced by a combination of arachidonic acid and diacylglycerol analogs was attenuated by staurosporine. We suggest, therefore, that the protein kinase C-dependent potentiation of evoked glutamate release is reflected by increases in presynaptic Ca2+ and that the lipid second messengers play a central role in this enhancement of chemical transmission processes.
Collapse
Affiliation(s)
- M L Ruehr
- Department of Biological Sciences, Kent State University, Ohio 44242, USA
| | | | | |
Collapse
|
20
|
Shors TJ, Elkabes S, Selcher JC, Black IB. Stress persistently increases NMDA receptor-mediated binding of [3H]PDBu (a marker for protein kinase C) in the amygdala, and re-exposure to the stressful context reactivates the increase. Brain Res 1997; 750:293-300. [PMID: 9098555 DOI: 10.1016/s0006-8993(96)01369-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The long-term consequences of acute stress on [3H]phorbol 12,13-dibutyrate ([3H]PDBu) binding, a marker for protein kinase C (PKC) activity, were investigated. In the first experiment, exposure to acute restraint and intermittent tail-shock increased [3H]PDBu binding in the amygdala but not in the hippocampus or cerebral cortex. The increase was persistent, lasting at least 24 h after stressor cessation. In the second experiment, it was determined that the stress-induced increase in binding in the amygdala was dependent on NMDA receptor activation; rats injected with a competitive NMDA receptor antagonist prior to the stressor did not exhibit the increased binding in the amygdala 24 h later. In the third experiment, re-exposure to the stressful context 96 h after stressor cessation reactivated the stress-induced increase the binding of [3H]PDBu in the amygdala. Re-exposure to the context also increased binding in the thalamus and area CA1 of the hippocampus. [3H]PDBu binds preferentially to PKC in the membrane and, therefore, these results suggest that stress induces the translocation of PKC from its resting compartments in the cytosol to the membrane. Its dependence on NMDA receptor activation implicates isoforms of PKC that are sensitive to intracellular calcium, such as PKC gamma. The results further suggest that a "psychological' manipulation, viz. context re-exposure, can reactivate the persistent increase in [3H]PDBu binding in the amygdala.
Collapse
Affiliation(s)
- T J Shors
- Department of Psychology, Princepton University, NJ 08544, USA.
| | | | | | | |
Collapse
|
21
|
Schachter JB, Lester DS, Alkon DL. Synergistic activation of protein kinase C by arachidonic acid and diacylglycerols in vitro: generation of a stable membrane-bound, cofactor-independent state of protein kinase C activity. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1291:167-76. [PMID: 8898879 DOI: 10.1016/0304-4165(96)00063-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The present study examines the synergistic activation of PKC by arachidonic acid and diacylglycerols in phospholipid vesicles and demonstrates that this combination of activators leads to the formation of a constitutively active, phospholipid-bound form of the enzyme. Activation of PKC was almost entirely calcium-dependent with vesicles containing dioleoylglycerol alone. In contrast, considerable calcium-independent activity was observed when vesicles contained both a diacylglycerol and free arachidonic acid. High-affinity association of enzyme activity with diacylglycerol-containing vesicles was calcium dependent and reversible. However, addition of arachidonic acid to diacylglycerol-containing vesicles resulted in irreversible PKC binding in the absence of calcium. Immunoblot analysis indicated that the calcium-independent binding was not isozyme-specific. The activity of the vesicle-associated PKC, bound to vesicles in the absence of calcium, was predominantly calcium-dependent. On the other hand, when the binding and isolation of vesicle-bound enzyme was conducted in the presence of calcium, the subsequent activity was almost entirely resistant to calcium chelation. This vesicle-associated form of the enzyme, when detergent extracted and recombined with phospholipid vesicles, maintained significant 'constitutive' activity (activity in the absence of both diacylglycerol and calcium). The data from this in vitro system provide the basis for a model of the physiological regulation of PKC in which the combined actions of arachidonate and diacylglycerol facilitate the stable formation of a tightly membrane-associated, intrinsically active form of PKC.
Collapse
Affiliation(s)
- J B Schachter
- Laboratory of Adaptive Systems, National Institute for Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
22
|
Matzel LD, Rogers RF, Talk AC. Bidirectional regulation of neuronal potassium currents by the G-protein activator aluminum fluoride as a function of intracellular calcium concentration. Neuroscience 1996; 74:1175-85. [PMID: 8895884 DOI: 10.1016/0306-4522(96)00188-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Hydrolysis-resistant activation of G-proteins by extracellular perfusion of fluoride ions was examined in Type B cells isolated from the cerebral ganglion of the marine mollusc Hermissenda. Under single-electrode voltage-clamp, modulation by aluminum fluoride ions of several classes of outward K+ currents as well as an inward Ca2+ current was observed. Following injection of the Ca2+ chelator EGTA, aluminum fluoride ions selectively increased a slow, voltage-dependent K+ current (IK) within 5 min of application, while in the absence of EGTA, aluminum fluoride ions induced a small, transient reduction of IK. Neither the magnitude nor steady-state inactivation of a fast, voltage-dependent K+ current (IA), nor a slow, Ca2+-dependent K+ current (IK-Ca), were affected by aluminum fluoride ions. In contrast, when perfusion of aluminum fluoride ions was accompanied by a repetitive depolarization and a concomitant increase in intracellular Ca2+, both IA and the combined late currents (IK and IK-Ca) were markedly reduced, a reduction which was not observed following depolarization alone or if the pairing of aluminum fluoride ions and depolarization was preceded by an injection of EGTA. The reduction of membrane conductance by the pairing of aluminum fluoride ions with depolarization could not be accounted for by an increased Ca2+ conductance, as aluminum fluoride ions produced only a small decrease in the voltage-dependent Ca2+ current. In total, these results indicate that regulatory G-proteins may bidirectionally modulate neuronal K+ currents, the direction of which is dependent on intracellular Ca2+ concentration. Such a dual regulatory mechanism may contribute to the modulation of membrane excitability observed when presynaptic activity is paired with postsynaptic depolarization, and thus may contribute to some forms of activity-dependent plasticity involving metabatropic receptors.
Collapse
Affiliation(s)
- L D Matzel
- Department of Psychology, Rutgers University, New Brunswick, NJ 08903, USA
| | | | | |
Collapse
|
23
|
Caputi A, Rurale S, Pastorino L, Cimino M, Cattabeni FN, Di Luca M. Differential translocation of protein kinase C isozymes in rats characterized by a chronic lack of LTP induction and cognitive impairment. FEBS Lett 1996; 393:121-3. [PMID: 8804439 DOI: 10.1016/0014-5793(96)00846-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The translocation of protein kinase C isozymes was investigated in an animal model of cognitive deficit and lack of induction of long-term potentiation (LTP). In MAM rats, presynaptic alpha, beta, epsilon PKC showed enhanced translocation, while postsynaptic gamma PKC displayed decreased translocation when compared to control levels. This imbalance of PKC isozyme translocation between the pre- and post-synaptic compartment might therefore represent a possible molecular cause for the lack of synaptic plasticity observed in these animals.
Collapse
Affiliation(s)
- A Caputi
- Inst. Pharmacological Sciences, University of Milan, Italy.
| | | | | | | | | | | |
Collapse
|
24
|
Sánchez-Prieto J, Budd DC, Herrero I, Vázquez E, Nicholls DG. Presynaptic receptors and the control of glutamate exocytosis. Trends Neurosci 1996; 19:235-9. [PMID: 8761959 DOI: 10.1016/0166-2236(96)10031-x] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
When a typical glutamate-containing neurone fires, an action potential is propagated down the branching axon through more than a thousand varicosities. At each of these release sites the probability that a synaptic vesicle will be exocytosed into the synaptic cleft is individually controlled by means of presynaptic receptors: autoreceptors responding by positive or negative feedback to previously released transmitter, or heteroreceptors under the influence of other neurotransmitters or modulators. The simplest system in which to investigate presynaptic modulation is the isolated nerve terminal or synaptosome; studies with this preparation have revealed a complex interplay of signal-transduction pathways.
Collapse
Affiliation(s)
- J Sánchez-Prieto
- Dept of Biochemistry, Veterinary Faculty, Complutense University, Madrid, Spain
| | | | | | | | | |
Collapse
|
25
|
Igwe OJ, Filla MB. Regulation of phosphatidylinositide transduction system in the rat spinal cord during aging. Neuroscience 1995; 69:1239-51. [PMID: 8848110 DOI: 10.1016/0306-4522(95)00298-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Age-related functional alterations in a variety of neurotransmitter systems result in modulation of interneuronal communications which has some relevance in neurological deficits observed in the aging process. The synergistic interactions between protein kinase and inositol 1,4,5-trisphosphate (insP3)/Ca2+ pathways underlie a variety of cellular responses to external stimuli. To determine whether age-dependent changes occur in the regulation of protein kinase C and inositol 1,4,5-trisphosphate/Ca2+ pathways, insP3 contents as a marker for the release of intracellular calcium, saturation binding analysis of Ins P3 receptor using [3H]inositol 1,4,5-trisphosphate, slot/northern blot analysis of Ins P3 receptor-encoding mRNA transcripts, and the activities of Ca2+/phospholipid-dependent protein kinase C isozymes were investigated in the rat spinal cord. Inositol 1,4,5-trisphosphate content and [3H]inositol 1,4,5-trisphosphate binding site density (Bmax) were quantified in the spinal cords of young (three months old), adult (12 months old) and senescent (25 months old) male Fischer 344 rats. Spinal cord content of inositol 1,4,5-trisphosphate was increased (P < 0.01) in the 25-month old compared to the three- and 12-month old animals. The density of Ins P3 receptor in particulate membranes derived from the 25-month old rats was reduced (P < or = 0.01), but the binding affinity (Kd) was increased (P < or = 0.04) by a factor of 2.2 and 3.2 at 25 months of age when compared with three- and 12-month old animals, respectively. Young and middle-aged animals showed no differences in both inositol 1,4,5-trisphosphate contents and [3H]inositol 1,4,5-trisphosphate binding site density. The quantity of Ins P3 receptor mRNA was significantly increased with age in the order 25 >> 12 > 3 months of age. Total functional cytosolic and membrane-associated PKC activities were decreased (P < or = 0.05) in the 25-month compared to the three- and 12-month old rats in which activity remained unchanged. Total membrane/cytosolic activity ratios were unchanged by the aging process. In all cases, the activities of membrane-associated conventional protein kinase C isozymes (alpha, beta and gamma), determined by immunoprecipitation followed by in situ quantification of protein kinase C activities in the immunoprecipitates, showed age-dependent decline. The activities of protein kinase C-alpha and beta were significantly decreased in age-related manner. However, the activity of the gamma-isozyme was not significantly changed at 12- and 25-months of age, although it was higher (P < or = 0.03) in young rats. Western blot analyses using affinity purified polyclonal antibodies specific for each isozyme indicated a single protein with an apparent molecular mass of approximately 80 x 10(3) molec. weight for all isozymes except for the beta isozyme that also had an appreciable immunoreactive band at approximately 36 x 10(3) molec. weight. Overall, the aging process did not affect the electropheretic mobility of each isozyme. With decreased protein kinase C activity, the present data suggest that the aging process would decrease protein kinase C-induced phosphorylation of membrane proteins including Ins P3 receptor. A significant change in Ins P3 receptor affinity combined with increased levels of Ins P3 receptor mRNA-encoding transcripts in senescent rats suggests not only a modification (possibly by phosphorylation) of Ins P3 receptor protein but also the existence of multiple (spliced) variants of Ins P3 receptor in spinal neurons with increasing age. The present data indicate that the spinal contents of inositol 1,4,5-trisphosphate increased with age, but with decreased efficacy and number of inositol 1,4,5-trisphosphate-activatable Ca2+ channels in the spinal cord of senescent rats. These age-related changes may contribute to the attenuated responsiveness of spinal cord neurons by phosphoinositide-coupled receptors during the aging process.
Collapse
Affiliation(s)
- O J Igwe
- Division of Pharmacology, University of Missouri-Kansas City 64108-2792, USA
| | | |
Collapse
|
26
|
Di Luca M, Caputi A, Cinquanta M, Cimino M, Marini P, Princivalle A, De Graan PN, Gispen WH, Cattabeni F. Changes in protein kinase C and its presynaptic substrate B-50/GAP-43 after intrauterine exposure to methylazoxy-methanol, a treatment inducing cortical and hippocampal damage and cognitive deficit in rats. Eur J Neurosci 1995; 7:899-906. [PMID: 7613626 DOI: 10.1111/j.1460-9568.1995.tb01077.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The involvement of protein kinase C (PKC)-dependent processes in adaptive and plastic changes underlying neuronal plasticity was tested in an in vivo animal model characterized by targeted cellular ablation of cortical and hippocampal neurons, cognitive impairment and lack of induction of long-term potentiation. [3H]Phorbol ester binding performed on brain slices revealed a 67.4 and 35.0% increase in membrane-bound protein kinase C in the cortex and hippocampus respectively of rats treated with methylazoxy-methanol acetate compared with saline-treated control rats, and there was no modification in the expression of mRNAs of different protein kinase C isozymes. In situ phosphorylation experiments performed with 32Pi-labelled synaptosomes from the affected areas demonstrated that the phosphorylation of the nervous tissue-specific presynaptic membrane-associated protein kinase C substrate B-50/GAP-43 was increased by 51.4 and 44.8% in cortex and hippocampus respectively. Western blot analysis of protein kinase C in synaptosomal cytosol and membrane fractions prepared from cortex and hippocampus showed an increased proportion of protein kinase C in the membrane compartment in treated animals, but no change in the total synaptosomal protein kinase C activity. Our data are consistent with increased activity of presynaptic protein kinase C and predict a sustained increase in glutamate release in methylazoxy-methanol-treated rats.
Collapse
Affiliation(s)
- M Di Luca
- Institute of Pharmacological Sciences, University of Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Bramham CR, Alkon DL, Lester DS. Arachidonic acid and diacylglycerol ACT synergistically through protein kinase C to persistently enhance synaptic transmission in the hippocampus. Neuroscience 1994; 60:737-43. [PMID: 7936199 DOI: 10.1016/0306-4522(94)90501-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In model membranes, arachidonic acid and diacylglycerol have been proposed to synergistically induce a membrane-inserted, constitutively active form of protein kinase C. We have investigated the effects of these lipid protein kinase C activators on synaptic efficacy in the Schaffer collateral input to CA1 hippocampal pyramidal cells. Arachidonic acid (5 microM) perfusion combined with repetitive afferent stimulation had no consistent effect on field excitatory postsynaptic potentials recorded in stratum radiatum, while treatment with a cell-permeable diglyceride, oleoyl-acetylglycerol (5 micrograms/ml), followed by stimulation, led to a short-term potentiation. By contrast, the combination of oleoyl-acetylglycerol and arachidonic acid gave rise to a long-lasting non-decremental potentiation of field excitatory postsynaptic potentials. The induction of potentiation was "activity dependent", as there was either no significant effect or there was a measurable depression when repetitive synaptic stimulation was omitted. Furthermore, consistent with a protein kinase C-dependent process, the potentiation was blocked by the kinase inhibitors H-7 and staurosporine. The results suggest that relatively low concentrations of arachidonic acid and diacylglycerol work synergistically through protein kinase C to persistently enhance synaptic transmission. This synergy has the makings of an associative (Hebbian) device for long-term potentiation induction operating at the second messenger level.
Collapse
Affiliation(s)
- C R Bramham
- Laboratory of Adaptive Systems, NINDS, National Institutes of Health, Bethesda, MD 20892
| | | | | |
Collapse
|
28
|
Bramham CR, Maho C, Laroche S. Suppression of long-term potentiation induction during alert wakefulness but not during 'enhanced' REM sleep after avoidance learning. Neuroscience 1994; 59:501-9. [PMID: 8008204 DOI: 10.1016/0306-4522(94)90172-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Major learning events are typically followed by a period during which the number and/or duration of rapid-eye movement sleep episodes is increased. Processes critical to memory formation are thought to take place during this interval of 'enhanced' rapid-eye movement sleep. We therefore compared the capacity for long-term potentiation during rapid-eye movement sleep and alert wakefulness after learning. Rats were chronically implanted with electrodes for stimulation of the perforant path and recording of evoked potentials and EEG in the dentate gyrus. After obtaining baseline recordings, rats were trained on a 40-trial two-way active avoidance task. Conditioned rats exhibited a two-fold increase in the mean duration of rapid-eye movement sleep episodes, as reflected by a prolongation of the hippocampal theta rhythm. There was no change in the sleep pattern of pseudoconditioned controls, which received explicitly unpaired tones and foot shocks in a yoked design. High-frequency stimulation was applied during the second, third, and fourth major rapid-eye movement sleep episodes after active avoidance training. Another group was tetanized at matching time points during alert wakefulness. After pseudoconditioning, tetanus applied during wakefulness or rapid-eye movement sleep readily induced long-term potentiation, and there was no difference between groups in the magnitude of increase for the population excitatory postsynaptic potential slope or the population spike height as measured 1 h, 24 h, and 5 days post-tetanus.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- C R Bramham
- Department of Physiology, University of Bergen, Norway
| | | | | |
Collapse
|