1
|
Seo H, Nicely PN, Trinh CT. Endogenous carbohydrate esterases of Clostridium thermocellum are identified and disrupted for enhanced isobutyl acetate production from cellulose. Biotechnol Bioeng 2020; 117:2223-2236. [PMID: 32333614 DOI: 10.1002/bit.27360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/12/2020] [Accepted: 04/22/2020] [Indexed: 12/18/2022]
Abstract
Medium-chain esters are versatile chemicals with broad applications as flavors, fragrances, solvents, and potential drop-in biofuels. Currently, these esters are largely produced by the conventional chemical process that uses harsh operating conditions and requires high energy input. Alternatively, the microbial conversion route has recently emerged as a promising platform for sustainable and renewable ester production. The ester biosynthesis pathways can utilize either lipases or alcohol acyltransferase (AAT), but the AAT-dependent pathway is more thermodynamically favorable in an aqueous fermentation environment. Even though a cellulolytic thermophile Clostridium thermocellum harboring an AAT-dependent pathway has recently been engineered for direct conversion of lignocellulosic biomass into esters, the production is not efficient. One potential bottleneck is the ester degradation caused by the endogenous carbohydrate esterases (CEs) whose functional roles are poorly understood. The challenge is to identify and disrupt CEs that can alleviate ester degradation while not negatively affecting the efficient and robust capability of C. thermocellum for lignocellulosic biomass deconstruction. In this study, by using bioinformatics, comparative genomics, and enzymatic analysis to screen a library of CEs, we identified and disrupted the two most critical CEs, Clo1313_0613 and Clo1313_0693, that significantly contribute to isobutyl acetate degradation in C. thermocellum. We demonstrated that an engineered esterase-deficient C. thermocellum strain not only reduced ester hydrolysis but also improved isobutyl acetate production while maintaining effective cellulose assimilation.
Collapse
Affiliation(s)
- Hyeongmin Seo
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, Tennessee.,Center of Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Preston N Nicely
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, Tennessee
| | - Cong T Trinh
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, Tennessee.,Center of Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| |
Collapse
|
2
|
Parapouli M, Vasileiadis A, Afendra AS, Hatziloukas E. Saccharomyces cerevisiae and its industrial applications. AIMS Microbiol 2020; 6:1-31. [PMID: 32226912 PMCID: PMC7099199 DOI: 10.3934/microbiol.2020001] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/19/2020] [Indexed: 11/18/2022] Open
Abstract
Saccharomyces cerevisiae is the best studied eukaryote and a valuable tool for most aspects of basic research on eukaryotic organisms. This is due to its unicellular nature, which often simplifies matters, offering the combination of the facts that nearly all biological functions found in eukaryotes are also present and well conserved in S. cerevisiae. In addition, it is also easily amenable to genetic manipulation. Moreover, unlike other model organisms, S. cerevisiae is concomitantly of great importance for various biotechnological applications, some of which date back to several thousands of years. S. cerevisiae's biotechnological usefulness resides in its unique biological characteristics, i.e., its fermentation capacity, accompanied by the production of alcohol and CO2 and its resilience to adverse conditions of osmolarity and low pH. Among the most prominent applications involving the use of S. cerevisiae are the ones in food, beverage -especially wine- and biofuel production industries. This review focuses exactly on the function of S. cerevisiae in these applications, alone or in conjunction with other useful microorganisms involved in these processes. Furthermore, various aspects of the potential of the reservoir of wild, environmental, S. cerevisiae isolates are examined under the perspective of their use for such applications.
Collapse
Affiliation(s)
- Maria Parapouli
- Molecular Biology Laboratory, Department of Biological applications and Technology, University of Ioannina, Ioannina, Greece
| | - Anastasios Vasileiadis
- Molecular Biology Laboratory, Department of Biological applications and Technology, University of Ioannina, Ioannina, Greece
| | - Amalia-Sofia Afendra
- Genetics Laboratory, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Efstathios Hatziloukas
- Molecular Biology Laboratory, Department of Biological applications and Technology, University of Ioannina, Ioannina, Greece
| |
Collapse
|
3
|
Holt S, Miks MH, de Carvalho BT, Foulquié-Moreno MR, Thevelein JM. The molecular biology of fruity and floral aromas in beer and other alcoholic beverages. FEMS Microbiol Rev 2019; 43:193-222. [PMID: 30445501 PMCID: PMC6524682 DOI: 10.1093/femsre/fuy041] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 11/13/2018] [Indexed: 12/03/2022] Open
Abstract
Aroma compounds provide attractiveness and variety to alcoholic beverages. We discuss the molecular biology of a major subset of beer aroma volatiles, fruity and floral compounds, originating from raw materials (malt and hops), or formed by yeast during fermentation. We introduce aroma perception, describe the most aroma-active, fruity and floral compounds in fruits and their presence and origin in beer. They are classified into categories based on their functional groups and biosynthesis pathways: (1) higher alcohols and esters, (2) polyfunctional thiols, (3) lactones and furanones, and (4) terpenoids. Yeast and hops are the main sources of fruity and flowery aroma compounds in beer. For yeast, the focus is on higher alcohols and esters, and particularly the complex regulation of the alcohol acetyl transferase ATF1 gene. We discuss the release of polyfunctional thiols and monoterpenoids from cysteine- and glutathione-S-conjugated compounds and glucosides, respectively, the primary biological functions of the yeast enzymes involved, their mode of action and mechanisms of regulation that control aroma compound production. Furthermore, we discuss biochemistry and genetics of terpenoid production and formation of non-volatile precursors in Humulus lupulus (hops). Insight in these pathways provides a toolbox for creating innovative products with a diversity of pleasant aromas.
Collapse
Affiliation(s)
- Sylvester Holt
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, B-3001 Leuven-Heverlee, Flanders, Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Marta H Miks
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, 1799 Copenhagen V, Denmark
- Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10–726 Olsztyn, Poland
| | - Bruna Trindade de Carvalho
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, B-3001 Leuven-Heverlee, Flanders, Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Maria R Foulquié-Moreno
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, B-3001 Leuven-Heverlee, Flanders, Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, B-3001 Leuven-Heverlee, Flanders, Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| |
Collapse
|
4
|
Dank A, Smid EJ, Notebaart RA. CRISPR-Cas genome engineering of esterase activity in Saccharomyces cerevisiae steers aroma formation. BMC Res Notes 2018; 11:682. [PMID: 30261908 PMCID: PMC6161353 DOI: 10.1186/s13104-018-3788-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 09/20/2018] [Indexed: 11/19/2022] Open
Abstract
Objective Saccharomyces cerevisiae is used worldwide for the production of ale-type beers. This yeast is responsible for the production of the characteristic fruity aroma compounds. Esters constitute an important group of aroma active secondary metabolites produced by S. cerevisiae. Previous work suggests that esterase activity, which results in ester degradation, may be the key factor determining the abundance of fruity aroma compounds. Here, we test this hypothesis by deletion of two S. cerevisiae esterases, IAH1 and TIP1, using CRISPR-Cas9 genome editing and by studying the effect of these deletions on esterase activity and extracellular ester pools. Results Saccharomyces cerevisiae mutants were constructed lacking esterase IAH1 and/or TIP1 using CRISPR-Cas9 genome editing. Esterase activity using 5-(6)-carboxyfluorescein diacetate (cFDA) as substrate was found to be significantly lower for ΔIAH1 and ΔIAH1ΔTIP1 mutants compared to wild type (WT) activity (P < 0.05 and P < 0.001, respectively). As expected, we observed an increase in relative abundance of acetate and ethyl esters and an increase in ethyl esters in ΔIAH1 and ΔTIP1, respectively. Interestingly, the double gene disruption mutant ΔIAH1ΔTIP1 showed an aroma profile comparable to WT levels, suggesting the existence and activation of a complex regulatory mechanism to compensate multiple genomic alterations in aroma metabolism. Electronic supplementary material The online version of this article (10.1186/s13104-018-3788-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexander Dank
- Food Microbiology, Wageningen University & Research, P.O. Box 17, 6700 AA, Wageningen, The Netherlands
| | - Eddy J Smid
- Food Microbiology, Wageningen University & Research, P.O. Box 17, 6700 AA, Wageningen, The Netherlands
| | - Richard A Notebaart
- Food Microbiology, Wageningen University & Research, P.O. Box 17, 6700 AA, Wageningen, The Netherlands.
| |
Collapse
|
5
|
Bilverstone TW, White R, Boulton CA. Manipulation of Conditions during Wort Collection in Production-Scale Fermentations to Regulate Volatile Ester Synthesis as an Aid to Product Matching for Multisite Brewing. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2015-0730-01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Terry W. Bilverstone
- Bioenergy and Brewing Science, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, UK
| | - Rod White
- Bioenergy and Brewing Science, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, UK
| | - Chris A. Boulton
- Bioenergy and Brewing Science, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, UK
| |
Collapse
|
6
|
Regulation of Saccharomyces cerevisiae genetic engineering on the production of acetate esters and higher alcohols during Chinese Baijiu fermentation. J Ind Microbiol Biotechnol 2017; 44:949-960. [PMID: 28176138 DOI: 10.1007/s10295-017-1907-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/09/2017] [Indexed: 10/20/2022]
Abstract
Acetate esters and higher alcohols greatly influence the quality and flavor profiles of Chinese Baijiu (Chinese liquor). Various mutants have been constructed to investigate the interactions of ATF1 overexpression, IAH1 deletion, and BAT2 deletion on the production of acetate esters and higher alcohols. The results showed that the overexpression of ATF1 under the control of the PGK1 promoter with BAT2 and IAH1 double-gene deletion led to a higher production of acetate esters and a lower production of higher alcohols than the overexpression of ATF1 with IAH1 deletion or overexpression of ATF1 with BAT2 deletion. Moreover, deletion of IAH1 in ATF1 overexpression strains effectively increased the production of isobutyl acetate and isoamyl acetate by reducing the hydrolysis of acetate esters. The decline in the production of higher alcohol by the ATF1 overexpression strains with BAT2 deletion is due to the interaction of ATF1 overexpression and BAT2 deletion. Mutants with varying abilities of producing acetate esters and higher alcohols were developed by genetic engineering. These strains have great potential for industrial application.
Collapse
|
7
|
Pires EJ, Teixeira JA, Brányik T, Vicente AA. Yeast: the soul of beer's aroma--a review of flavour-active esters and higher alcohols produced by the brewing yeast. Appl Microbiol Biotechnol 2014; 98:1937-49. [PMID: 24384752 DOI: 10.1007/s00253-013-5470-0] [Citation(s) in RCA: 337] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 12/11/2013] [Accepted: 12/11/2013] [Indexed: 11/26/2022]
Abstract
Among the most important factors influencing beer quality is the presence of well-adjusted amounts of higher alcohols and esters. Thus, a heavy body of literature focuses on these substances and on the parameters influencing their production by the brewing yeast. Additionally, the complex metabolic pathways involved in their synthesis require special attention. More than a century of data, mainly in genetic and proteomic fields, has built up enough information to describe in detail each step in the pathway for the synthesis of higher alcohols and their esters, but there is still place for more. Higher alcohols are formed either by anabolism or catabolism (Ehrlich pathway) of amino acids. Esters are formed by enzymatic condensation of organic acids and alcohols. The current paper reviews the up-to-date knowledge in the pathways involving the synthesis of higher alcohols and esters by brewing yeasts. Fermentation parameters affecting yeast response during biosynthesis of these aromatic substances are also fully reviewed.
Collapse
Affiliation(s)
- Eduardo J Pires
- IBB - Institute for Biotechnology and Bioengineering, Centre for Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal,
| | | | | | | |
Collapse
|
8
|
Mgbeahuruike AC, Kohler A, Asiegbu FO. Expression analysis of the impact of culture filtrates from the biocontrol agent, Phlebiopsis gigantea on the conifer pathogen, Heterobasidion annosum s.s. Transcriptome. MICROBIAL ECOLOGY 2013; 66:669-681. [PMID: 23812104 DOI: 10.1007/s00248-013-0255-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 06/06/2013] [Indexed: 06/02/2023]
Abstract
Phlebiopsis gigantea has been routinely used as the biological control agent for the conifer pathogen Heterobasidion annosum sensu lato, but the actual mechanism for the biocontrol process is not known. To investigate the effect of secreted molecules from culture filtrate produced by P. gigantea on the gene expression profile of H. annosum s.s., microarray analysis was used. Analysis of the differentially expressed genes led to the identification of genes with diverse functions. A major proportion of the up- and downregulated genes were either uncharacterized or genes whose functions were not known. A number of genes coding for proteins involved in metabolism, transport, and signal transduction were differentially downregulated; comparatively lower number of such genes were upregulated. Some genes involved in transport (polyamine transporters, 2573-fold, P = 0.002) and metabolism (endoglucanase, 622.5-fold, P = 0.002, cytochrome P450, 133.2-fold, P = 0.05) showed high transcript fold changes and were statistically significantly upregulated. Genes encoding defense-related proteins such as hydrophobins were either downregulated or expressed at relatively low levels. Further analysis of the effect of the culture filtrate on glucose metabolism showed downregulation of some key enzymes at the early stage of the glycolytic pathway while some genes were upregulated at the later stage of the pathway. A subset of the genes were selected and used to validate the micro-array result by quantitative real time polymerase chain reaction (qPCR) method. Generally, the high transcript levels of genes encoding several biochemically important genes (protein kinases, major facilitator superfamily polyamine transporters, endoglucanase, cytochrome P450, endoglucanase) suggests their potential functional relevance in signal perception, stress tolerance, cell defenses, and detoxification of toxic molecules during competitive interaction. These results have provided further insights into possible molecular and genetic factors underlying the response of H. annosum to metabolites from P. gigantea during interspecific interaction.
Collapse
Affiliation(s)
- Anthony C Mgbeahuruike
- Department of Forest Sciences, University of Helsinki, P.O. Box 27, 00014, Helsinki, Finland,
| | | | | |
Collapse
|
9
|
Younis OS, Stewart GG. SUGAR UPTAKE AND SUBSEQUENT ESTER AND HIGHER ALCOHOL PRODUCTION BYSACCHAROMYCES CEREVISIAE. JOURNAL OF THE INSTITUTE OF BREWING 2013. [DOI: 10.1002/j.2050-0416.1998.tb00998.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Hao X, Chen C, Chen G, Cao B, Chen Q, Lei J. Isolation and characterization of CaMF3, an anther-specific gene in Capsicum annuum L. Genet Mol Biol 2012; 35:810-7. [PMID: 23271943 PMCID: PMC3526090 DOI: 10.1590/s1415-47572012005000057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 05/21/2012] [Indexed: 11/25/2022] Open
Abstract
Previous work on gene expression analysis based on RNA sequencing identified a variety of differentially expressed cDNA fragments in the genic male sterile-fertile line 114AB of Capsicum annuum L. In this work, we examined the accumulation of one of the transcript-derived fragments (TDFs), CaMF3 (male fertile 3), in the flower buds of a fertile line. The full genomic DNA sequence of CaMF3 was 1,951 bp long and contained 6 exons and 5 introns, with the complete sequence encoding a putative 25.89 kDa protein of 234 amino acids. The predicted protein of CaMF3 shared sequence similarity with members of the isoamyl acetate-hydrolyzing esterase (IAH1) protein family. CaMF3 expression was detected only in flower buds at stages 7 and 8 and in open flowers of a male fertile line; no expression was observed in any organs of a male sterile line. Fine expression analysis revealed that CaMF3 was expressed specifically in anthers of the fertile line. These results suggest that CaMF3 is an anther-specific gene that may be essential for anther or pollen development in C. annuum.
Collapse
Affiliation(s)
- Xuefeng Hao
- Department of Biology, Taiyuan Normal University, Taiyuan, Shanxi Province, China. ; College of Horticulture, South China Agricultural University, Guangzhou, Guangdong Province, China
| | | | | | | | | | | |
Collapse
|
11
|
Rizzi C, Lomolino G, Lante A, Crapisi A, Spettoli P, Curioni A. Solubilization and Activity Detection in Polyacrylamide Gels of a Membrane-Bound Esterase from an Oenological Strain of Saccharomyces cerevisiae. JOURNAL OF THE INSTITUTE OF BREWING 2012. [DOI: 10.1002/j.2050-0416.2003.tb00158.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
12
|
Ma J, Lu Q, Yuan Y, Ge H, Li K, Zhao W, Gao Y, Niu L, Teng M. Crystal structure of isoamyl acetate-hydrolyzing esterase from Saccharomyces cerevisiae reveals a novel active site architecture and the basis of substrate specificity. Proteins 2010; 79:662-8. [PMID: 21069734 DOI: 10.1002/prot.22865] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jinming Ma
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Sumby KM, Grbin PR, Jiranek V. Microbial modulation of aromatic esters in wine: Current knowledge and future prospects. Food Chem 2010. [DOI: 10.1016/j.foodchem.2009.12.004] [Citation(s) in RCA: 304] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Kurita O. Increase of acetate ester-hydrolysing esterase activity in mixed cultures of Saccharomyces cerevisiae and Pichia anomala. J Appl Microbiol 2008; 104:1051-8. [DOI: 10.1111/j.1365-2672.2007.03625.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Lilly M, Bauer FF, Lambrechts MG, Swiegers JH, Cozzolino D, Pretorius IS. The effect of increased yeast alcohol acetyltransferase and esterase activity on the flavour profiles of wine and distillates. Yeast 2006; 23:641-59. [PMID: 16845703 DOI: 10.1002/yea.1382] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The fruity odours of wine are largely derived from the synthesis of esters and higher alcohols during yeast fermentation. The ATF1- and ATF2-encoded alcohol acetyltransferases of S. cerevisiae are responsible for the synthesis of ethyl acetate and isoamyl acetate esters, while the EHT1-encoded ethanol hexanoyl transferase is responsible for synthesizing ethyl caproate. However, esters such as these might be degraded by the IAH1-encoded esterase. The objectives of this study were: (a) to overexpress the genes encoding ester-synthesizing and ester-degrading enzymes in wine yeast; (b) to prepare Colombard table wines and base wines for distillation using these modified strains; and (c) to analyse and compare the ester concentrations and aroma profiles of these wines and distillates. The overexpression of ATF1 significantly increased the concentrations of ethyl acetate, isoamyl acetate, 2-phenylethyl acetate and ethyl caproate, while the overexpression of ATF2 affected the concentrations of ethyl acetate and isoamyl acetate to a lesser degree. The overexpression of IAH1 resulted in a significant decrease in ethyl acetate, isoamyl acetate, hexyl acetate and 2-phenylethyl acetate. The overexpression of EHT1 resulted in a marked increase in ethyl caproate, ethyl caprylate and ethyl caprate. The flavour profile of the wines and distillates prepared using the modified strains were also significantly altered as indicated by formal sensory analysis. This study offers prospects for the development of wine yeast starter strains with optimized ester-producing capability that could assist winemakers in their effort to consistently produce wine and distillates such as brandy to definable flavour specifications and styles.
Collapse
Affiliation(s)
- Mariska Lilly
- Institute for Wine Biotechnology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7600, South Africa
| | | | | | | | | | | |
Collapse
|
16
|
Influence of glucose and oxygen on the production of ethyl acetate and isoamyl acetate by a Saccharomyces cerevisiae strain during alcoholic fermentation. World J Microbiol Biotechnol 2005. [DOI: 10.1007/s11274-004-2780-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Hirooka K, Yamamoto Y, Tsutsui N, Tanaka T. Improved production of isoamyl acetate by a sake yeast mutant resistant to an isoprenoid analog and its dependence on alcohol acetyltransferase activity, but not on isoamyl alcohol production. J Biosci Bioeng 2005; 99:125-9. [PMID: 16233768 DOI: 10.1263/jbb.99.125] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2004] [Accepted: 11/15/2004] [Indexed: 11/17/2022]
Abstract
1-Farnesylpyridinium (FPy), an analog of isoprenoid farnesol, strongly inhibited the growth of sake yeast at 120 microM in YPD medium, whereas at 30 microM it reduced cellular production of isoamyl acetate to 20% of the control level despite the absence of inhibitory effect on CO2 evolution. The FPy-resistant mutant A1 was characterized by the high production of flavor compounds represented by a nearly threefold increase in the level of isoamyl acetate in YPD medium in which the level of isoamyl alcohol as its precursor remained almost unchanged. The FPy resistance phenotype of strain A1 was not accompanied by cellular resistance to either the L-leucine analog or L-canavanine, which alters yeast amino acid metabolism in favor of isoamyl alcohol production. Alcohol acetyltransferase (AATase) activity was high in strain A1, which further increased in response to isoamyl alcohol accumulation in medium. Flavor compound production in sake brewing could be improved using strain A1, resulting in a 1.4-fold increase in isoamyl acetate production in spite of a limited production of isoamyl alcohol.
Collapse
Affiliation(s)
- Kiyoo Hirooka
- Industrial Technology Center, Kyoto Municipal Industrial Research Institute, 134 Chudoji Minami-machi, Shimogyo-ku, Kyoto 600-8813, Japan.
| | | | | | | |
Collapse
|
18
|
|
19
|
Verstrepen KJ, Van Laere SDM, Vanderhaegen BMP, Derdelinckx G, Dufour JP, Pretorius IS, Winderickx J, Thevelein JM, Delvaux FR. Expression levels of the yeast alcohol acetyltransferase genes ATF1, Lg-ATF1, and ATF2 control the formation of a broad range of volatile esters. Appl Environ Microbiol 2003; 69:5228-37. [PMID: 12957907 PMCID: PMC194970 DOI: 10.1128/aem.69.9.5228-5237.2003] [Citation(s) in RCA: 276] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Volatile aroma-active esters are responsible for the fruity character of fermented alcoholic beverages such as beer and wine. Esters are produced by fermenting yeast cells in an enzyme-catalyzed intracellular reaction. In order to investigate and compare the roles of the known Saccharomyces cerevisiae alcohol acetyltransferases, Atf1p, Atf2p and Lg-Atf1p, in volatile ester production, the respective genes were either deleted or overexpressed in a laboratory strain and a commercial brewing strain. Subsequently, the ester formation of the transformants was monitored by headspace gas chromatography and gas chromatography combined with mass spectroscopy (GC-MS). Analysis of the fermentation products confirmed that the expression levels of ATF1 and ATF2 greatly affect the production of ethyl acetate and isoamyl acetate. GC-MS analysis revealed that Atf1p and Atf2p are also responsible for the formation of a broad range of less volatile esters, such as propyl acetate, isobutyl acetate, pentyl acetate, hexyl acetate, heptyl acetate, octyl acetate, and phenyl ethyl acetate. With respect to the esters analyzed in this study, Atf2p seemed to play only a minor role compared to Atf1p. The atf1Delta atf2Delta double deletion strain did not form any isoamyl acetate, showing that together, Atf1p and Atf2p are responsible for the total cellular isoamyl alcohol acetyltransferase activity. However, the double deletion strain still produced considerable amounts of certain other esters, such as ethyl acetate (50% of the wild-type strain), propyl acetate (50%), and isobutyl acetate (40%), which provides evidence for the existence of additional, as-yet-unknown ester synthases in the yeast proteome. Interestingly, overexpression of different alleles of ATF1 and ATF2 led to different ester production rates, indicating that differences in the aroma profiles of yeast strains may be partially due to mutations in their ATF genes.
Collapse
Affiliation(s)
- Kevin J Verstrepen
- Centre for Malting and Brewing Science, Department of Food and Microbial Technology, Katholieke Universiteit Leuven, B-3001 Louvain (Heverlee), Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Rojas V, Gil JV, Manzanares P, Gavara R, Piñaga F, Flors A. Measurement of alcohol acetyltransferase and ester hydrolase activities in yeast extracts. Enzyme Microb Technol 2002. [DOI: 10.1016/s0141-0229(01)00483-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Lomolino G, Lante A, Crapisi A, Spettoli P, Curioni A. Detection ofSaccharomyces cerevisiae carboxylesterase activity after native and sodium dodecyl sulfate electrophoresis by using fluorescein diacetate as substrate. Electrophoresis 2001; 22:1021-3. [PMID: 11358123 DOI: 10.1002/1522-2683()22:6<1021::aid-elps1021>3.0.co;2-b] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A simple method for the visualisation of wine yeast esterase (carboxylesterase EC 3.1.1.1) activity on electrophoretic gels was developed, using the fluorescent substrate fluorescein diacetate. The zymogram system allows a sensitive detection of esterase bands in only 5 min of incubation of both native and sodium dodecyl sulfate gels.
Collapse
Affiliation(s)
- G Lomolino
- Dipartimento di Biotecnologie Agrarie, Facoltà di Agraria, Università di Padova, Italy.
| | | | | | | | | |
Collapse
|
22
|
Fukuda K, Yamamoto N, Kiyokawa Y, Yanagiuchi T, Wakai Y, Kitamoto K, Inoue Y, Kimura A. Balance of activities of alcohol acetyltransferase and esterase in Saccharomyces cerevisiae is important for production of isoamyl acetate. Appl Environ Microbiol 1998; 64:4076-8. [PMID: 9758847 PMCID: PMC106606 DOI: 10.1128/aem.64.10.4076-4078.1998] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Isoamyl acetate is synthesized from isoamyl alcohol and acetyl coenzyme A by alcohol acetyltransferase (AATFase) in Saccharomyces cerevisiae and is hydrolyzed by esterases at the same time. We hypothesized that the balance of both enzyme activities was important for optimum production of isoamyl acetate in sake brewing. To test this hypothesis, we constructed yeast strains with different numbers of copies of the AATFase gene (ATF1) and the isoamyl acetate-hydrolyzing esterase gene (IAH1) and used these strains in small-scale sake brewing. Fermentation profiles as well as components of the resulting sake were largely alike; however, the amount of isoamyl acetate in the sake increased with an increasing ratio of AATFase/Iah1p esterase activity. Therefore, we conclude that the balance of these two enzyme activities is important for isoamyl acetate accumulation in sake mash.
Collapse
Affiliation(s)
- K Fukuda
- Kizakura Sake Brewing Co., Ltd., Fushimi-ku, Kyoto 612-8046, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Horsted MW, Dey ES, Holmberg S, Kielland-Brandt MC. A novel esterase from Saccharomyces carlsbergensis, a possible function for the yeast TIP1 gene. Yeast 1998; 14:793-803. [PMID: 9818717 DOI: 10.1002/(sici)1097-0061(19980630)14:9<793::aid-yea277>3.0.co;2-e] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
An extracellular esterase was isolated from the brewer's yeast, Saccharomyces carlsbergensis. Inhibition by diisopropyl fluorophosphate shows that the enzyme has a serine active site. By mass spectrometry, the molecular weight of the enzyme was 16.9 kDa. The optimal pH for activity was in the range of four to five. Esterase activity was found in beer before pasteurization, and a low level of activity was still present after pasteurization. Caprylic acid, which is present in beer, competitively inhibited the esterase. The substrate preference towards esters of p-nitrophenol indicated that the enzyme prefers esters of fatty acids from four to 16 carbon atoms. The esterase has lipolytical activity; olive oil (C-18:1), which is a classical substrate for lipase, was hydrolysed. N-terminal sequence analysis of the esterase yielded a sequence which was identical to the deduced amino acid sequence of the S. cerevisiae TIP1 gene. The esterase preparation did not appear to contain significant amounts of other proteins than Tip1p, indicating that the TIP1 gene is the structural gene for the esterase.
Collapse
Affiliation(s)
- M W Horsted
- Department of Yeast Genetics, Carlsberg Laboratory, Copenhagen Valby, Denmark
| | | | | | | |
Collapse
|
24
|
Brewing properties of sake yeast whose EST2 gene encoding isoamyl acetate-hydrolyzing esterase was disrupted. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s0922-338x(97)80362-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Dalrymple BP, Cybinski DH, Layton I, McSweeney CS, Xue GP, Swadling YJ, Lowry JB. Three Neocallimastix patriciarum esterases associated with the degradation of complex polysaccharides are members of a new family of hydrolases. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 8):2605-2614. [PMID: 9274014 DOI: 10.1099/00221287-143-8-2605] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Acetylesterase and cinnamoyl ester hydrolase activities were demonstrated in culture supernatant of the anaerobic ruminal fungus Neocallimastix patriciarum. A cDNA expression library from N. patriciarum was screened for esterases using beta-naphthyl acetate and a model cinnamoyl ester compound. cDNA clones representing four different esterase genes (bnaA-D) were isolated. None of the enzymes had cinnamoyl ester hydrolase activity, but two of the enzymes (BnaA and BnaC) had acetylxylan esterase activity, bnaA, bnaB and bnaC encode proteins with several distinct domains. Carboxy-terminal repeats in BnaA and BnaC are homologous to protein-docking domains in other enzymes from Neocallimastix species and another anaerobic fungus, a Piromyces sp. The catalytic domains of BnaB and BnaC are members of a recently described family of Ser/His active site hydrolases [Upton, C. & Buckley, J.T. (1995). Trends Biochem Sci 20, 178-179]. BnaB exhibits 40% amino acid identity to a domain of unknown function in the CelE cellulase from Clostridium thermocellum and BnaC exhibits 52% amino acid identity to a domain of unknown function in the XynB xylanase from Ruminococcus flavefaciens. BnaA, whilst exhibiting less than 10% overall amino acid identity to BnaB or BnaC, or to any other known protein, appears to be a member of the same family of hydrolases, having the three universally conserved amino acid sequence motifs. Several other previously described esterases are also shown to be members of this family, including a rhamnogalacturonan acetylesterase from Aspergillus aculeatus. However, none of the other previously described enzymes with acetylxylan esterase activity are members of this family of hydrolases.
Collapse
Affiliation(s)
- Brian P Dalrymple
- Commonwealth Scientific and Industrial Research Organisation, Division of Tropical Animal Production, Private Bag No. 3, PO Indooroopilly, QLD 4068, Australia
| | - Daisy H Cybinski
- Commonwealth Scientific and Industrial Research Organisation, Division of Tropical Animal Production, Private Bag No. 3, PO Indooroopilly, QLD 4068, Australia
| | - Ingrid Layton
- Commonwealth Scientific and Industrial Research Organisation, Division of Tropical Animal Production, Private Bag No. 3, PO Indooroopilly, QLD 4068, Australia
| | - Christopher S McSweeney
- Commonwealth Scientific and Industrial Research Organisation, Division of Tropical Animal Production, Private Bag No. 3, PO Indooroopilly, QLD 4068, Australia
| | - Gang-Ping Xue
- Commonwealth Scientific and Industrial Research Organisation, Division of Tropical Crops and Pastures, 306 Carmody Road, St Lucia, QLD 4067, Australia
| | - Yolande J Swadling
- Commonwealth Scientific and Industrial Research Organisation, Division of Tropical Animal Production, Private Bag No. 3, PO Indooroopilly, QLD 4068, Australia
| | - J Brian Lowry
- Commonwealth Scientific and Industrial Research Organisation, Division of Tropical Animal Production, Private Bag No. 3, PO Indooroopilly, QLD 4068, Australia
| |
Collapse
|