1
|
Kumar H, Katyal J, Kumar Gupta Y. Effect of U50488, a selective kappa opioid receptor agonist and levetiracetam against lithium-pilocarpine-induced status epilepticus, spontaneous convulsive seizures and related cognitive impairment. Neurosci Lett 2023; 815:137477. [PMID: 37714287 DOI: 10.1016/j.neulet.2023.137477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/16/2023] [Accepted: 08/29/2023] [Indexed: 09/17/2023]
Abstract
PURPOSE Kappa opioid receptor (KOR) agonists have anticonvulsant effect but their antiepileptogenic effect is unknown. U50488, a selective KOR agonist is used to determine its effect on status epilepticus (SE), spontaneous convulsive seizures (SS) and cognitive impairment in rat lithium-pilocarpine SE model. Effect of an antiepileptic drug levetiracetam is also studied. METHOD Male Wistar rats with SE were divided into three groups namely, LiP, LiP + U50488 (10 mg/kg, i.p.) and LiP + levetiracetam (400 mg/kg, i.p.) group. SE was terminated after 90 min of its onset with diazepam (15 mg/kg, i.p.) and phenobarbitone (25 mg/kg, i.p.). Drug treatment was started after 15 min of onset of SE and repeated once after 4 h. Rats were video monitored 12 h daily (9 AM to 9 PM) to determine severity of SE using modified Racine scale and onset and frequency of SS from day 0 to day 21. Morris water maze (MWM) test was done at baseline i.e. day -1 (before lithium administration) and day 22, to assess cognitive impairment. RESULTS As compared to LiP, U50488 decreased the severity of SE (1.98 ± 0.13 vs 2.95 ± 0.12; p-value < 0.0001) but not levetiracetam (2.62 ± 0.09; p-value = 0.3112). Survival increased with both U50488 (90%, n = 10) and levetiracetam (81.8%, n = 11) as compared to NS (56.2%, n = 16). No effect on onset and frequency of SS was found in U50488/levetiracetam group. U50488 improved seizures-induced cognitive impairment. Levetiracetam group showed thigmotactic (wall hugging) behaviour in MWM in 8 out of 9 rats. CONCLUSION Acute treatment with U50488, a kappa opioid receptor agonist has a beneficial effect on SE, SE-related mortality and memory impairment. The dual protective effect of U50488 on seizures and related cognitive impairment is advantageous over currently used antiseizure drugs which are known to cause cognitive impairment.
Collapse
Affiliation(s)
- Hemant Kumar
- Department of Pharmacology, Faculty of Medicine and Health Sciences, SGT University, Gurgaon, Haryana, India.
| | - Jatinder Katyal
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | | |
Collapse
|
2
|
Shan G, Lu H, Dai F, Liu Y, Yin D, Cao H. Low-dose nalmefene pretreatment reduces etomidate-induced myoclonus: A randomized, double-blind controlled trial. Medicine (Baltimore) 2023; 102:e35138. [PMID: 37682124 PMCID: PMC10489433 DOI: 10.1097/md.0000000000035138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND This study compared the effectiveness of nalmefene and fentanyl in reducing the incidence and severity of etomidate-induced myoclonus. METHODS One hundred fifty patients were randomized to receive 0.25ug/kg of nalmefene, 1ug/kg of fentanyl, or the same volume of normal saline 3 minutes prior to etomidate-induced anesthesia. The primary observational indexes were the severity level and incidence of etomidate-induced myoclonus, and the secondary observational index included blood pressure, heart rate, and the incidence of adverse effects from anesthesia induction to resuscitation, such as cough, chest wall rigidity, dizziness, nausea, pain after awakening, and intraoperative awareness. RESULTS The incidence of myoclonus was significantly lower in the nalmefene group (8.0%) than in the fentanyl group (32.0%) (P = .003) and in the normal saline group (72.0%) (P = .000). The severity level of myoclonus in the nalmefene group was significantly lower than the fentanyl group (P = .001) and normal saline group (P = .000). Meanwhile, the incidences of cough and chest wall rigidity during anesthesia induction were significantly lower in the nalmefene group compared with the fentanyl group (P = .003, P = .027). There were no statistically significant differences in heart rate and mean arterial pressure among the 3 gruops (P > .05). There was no difference in the incidence of adverse effects among the 3 groups during recovery from anesthesia (P > .05). CONCLUSION Intravenous injection of 0.25ug/kg of nalmefene 3 minutes prior to etomidate is more effective in preventing etomidate-induced myoclonus during general anesthesia than 1ug/kg of fentanyl.
Collapse
Affiliation(s)
- Guofa Shan
- Department of Anesthesiology, Funing People’s Hospital of Jiangsu, Yancheng, Jiangsu province, China
| | - Haixia Lu
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
- Department of Anesthesiology, Haian Chinese Medicine Hospital of Jiangsu, Nantong, Jiangsu Province, China
| | - Fang Dai
- Department of Anesthesiology, Funing People’s Hospital of Jiangsu, Yancheng, Jiangsu province, China
| | - Yan Liu
- Department of Anesthesiology, Funing People’s Hospital of Jiangsu, Yancheng, Jiangsu province, China
| | - Dekun Yin
- Department of Anesthesiology, Funing People’s Hospital of Jiangsu, Yancheng, Jiangsu province, China
| | - Hanzhong Cao
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
- Department of Anesthesiology, Nantong Tumor Hospital, Nantong University, Jiangsu Province, China
| |
Collapse
|
3
|
Socała K, Doboszewska U, Wlaź P. Salvinorin A Does Not Affect Seizure Threshold in Mice. Molecules 2020; 25:molecules25051204. [PMID: 32155979 PMCID: PMC7179429 DOI: 10.3390/molecules25051204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 11/16/2022] Open
Abstract
The κ-opioid receptor has recently gained attention as a new molecular target in the treatment of many psychiatric and neurological disorders including epilepsy. Salvinorin A is a potent plant-derived hallucinogen that acts as a highly selective κ-opioid receptor agonist. It has unique structure and pharmacological properties, but its influence on seizure susceptibility has not been studied so far. Therefore, the aim of the present study was to investigate the effect of salvinorin A on seizure thresholds in three acute seizure tests in mice. We also examined its effect on muscular strength and motor coordination. The obtained results showed that salvinorin A (0.1-10 mg/kg, i.p.) did not significantly affect the thresholds for the first myoclonic twitch, generalized clonic seizure, or forelimb tonus in the intravenous pentylenetetrazole seizure threshold test in mice. Likewise, it failed to affect the thresholds for tonic hindlimb extension and psychomotor seizures in the maximal electroshock- and 6 Hz-induced seizure threshold tests, respectively. Moreover, no changes in motor coordination (assessed in the chimney test) or muscular strength (assessed in the grip-strength test) were observed. This is a preliminary report only, and further studies are warranted to better characterize the effects of salvinorin A on seizure and epilepsy.
Collapse
|
4
|
Queenan BN, Dunn RL, Santos VR, Feng Y, Huizenga MN, Hammack RJ, Vicini S, Forcelli PA, Pak DTS. Kappa opioid receptors regulate hippocampal synaptic homeostasis and epileptogenesis. Epilepsia 2017; 59:106-122. [PMID: 29114861 DOI: 10.1111/epi.13941] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Homeostatic synaptic plasticity (HSP) serves as a gain control mechanism at central nervous system (CNS) synapses, including those between the dentate gyrus (DG) and CA3. Improper circuit control of DG-CA3 synapses is hypothesized to underlie epileptogenesis. Here, we sought to (1) identify compounds that preferentially modulate DG-CA3 synapses in primary neuronal culture and (2) determine if these compounds would delay or prevent epileptogenesis in vivo. METHODS We previously developed and validated an in vitro assay to visualize the behavior of DG-CA3 synapses and predict functional changes. We used this "synapse-on-chip" assay (quantification of synapse size, number, and type using immunocytochemical markers) to dissect the mechanisms of HSP at DG-CA3 synapses. Using chemogenetic constructs and pharmacological agents we determined the signaling cascades necessary for gain control at DG-CA3 synapses. Finally, we tested the implicated cascades (using kappa opioid receptor (OR) agonists and antagonists) in two models of epileptogenesis: electrical amygdala kindling in the mouse and chemical (pentylenetetrazole) kindling in the rat. RESULTS In vitro, synapses between DG mossy fibers (MFs) and CA3 neurons are the primary homeostatic responders during sustained periods of activity change. Kappa OR signaling is both necessary and sufficient for the homeostatic elaboration of DG-CA3 synapses, induced by presynaptic DG activity levels. Blocking kappa OR signaling in vivo attenuates the development of seizures in both mouse and rat models of epilepsy. SIGNIFICANCE This study elucidates mechanisms by which synapses between DG granule cells and CA3 pyramidal neurons undergo activity-dependent homeostatic compensation, via OR signaling in vitro. Modulation of kappa OR signaling in vivo alters seizure progression, suggesting that breakdown of homeostatic closed-loop control at DG-CA3 synapses contributes to seizures, and that targeting endogenous homeostatic mechanisms at DG-CA3 synapses may prove useful in combating epileptogenesis.
Collapse
Affiliation(s)
- Bridget N Queenan
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, DC, USA.,Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC, USA.,Department of Mechanical Engineering, Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Raymond L Dunn
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, DC, USA.,Georgetown Hughes Scholars Program, Department of Biology, Georgetown University, Washington, DC, USA
| | - Victor R Santos
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, DC, USA
| | - Yang Feng
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, DC, USA
| | - Megan N Huizenga
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, DC, USA
| | - Robert J Hammack
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, DC, USA
| | - Stefano Vicini
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, DC, USA.,Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| | - Patrick A Forcelli
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, DC, USA.,Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| | - Daniel T S Pak
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, DC, USA.,Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
5
|
McDermott CM, Schrader LA. Activation of κ opioid receptors increases intrinsic excitability of dentate gyrus granule cells. J Physiol 2011; 589:3517-32. [PMID: 21606111 DOI: 10.1113/jphysiol.2011.211623] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The dentate gyrus of the hippocampus is thought to control information flow into the rest of the hippocampus. Under pathological conditions, such as epilepsy, this protective feature is circumvented and uninhibited activity flows throughout the hippocampus. Many factors can modulate excitability of the dentate gyrus and ultimately, the hippocampus. It is therefore of critical importance to understand the mechanisms involved in regulating excitability in the dentate gyrus. Dynorphin, the endogenous ligand for the kappa (κ) opioid receptor (KOR), is thought to be involved in neuromodulation in the dentate gyrus. Both dynorphin and its receptor are widely expressed in the dentate gyrus and have been implicated in epilepsy and other complex behaviours such as stress-induced deficits in learning and stress-induced depression-like behaviours. Administration of KOR agonists can prevent both the behavioural and electroencephalographic measures of seizures in several different models of epilepsy. Antagonism of the KORs also prevents stress-induced behaviours. This evidence suggests the KORs as possible therapeutic targets for various pathological conditions. In addition, KOR agonists prevent the induction of LTP. Although there are several mechanisms through which dynorphin could mediate these effects, no studies to date investigated the effects of KOR activation on intrinsic membrane properties and cell excitability. We used whole-cell, patch-clamp recordings from acute mouse hippocampus slices to investigate the effect of KOR activation on dentate gyrus granule cell excitability. The agonist U69,593 (U6, 1 μM) resulted in a lower spike threshold, a decreased latency to first spike, an increased spike half-width, and an overall increase in spike number with current injections ranging from 15 to 45 pA. There was also a reduction in the interspike interval (ISI) both early and late in the spike train, with no change in membrane potential or input resistance. Preincubation of the slice with the selective KOR antagonist, nor-binalthorphimine (BNI, 1 μM) inhibited the effect of U6 on the latency to first spike and spike half-width suggesting that these effects are mediated through KORs. The inclusion of GDP-βS (1 mM) in the recording pipette prevented all of the U6 effects, suggesting that all effects are mediated via a G-protein-dependent mechanism. Inclusion of the A-type K+ current blocker, 4-aminopyridine (4-AP, 5 mM) in the pipette also antagonised the effects of U6. Kv4.2 is one of the channel α subunits thought to be responsible for carrying the A-type K+ current. Incubation of hippocampus slices with U6 resulted in a decrease in the Kv4.2 subunit protein at the cell surface. These results are consistent with an increase in cell excitability in response to KOR activation and may reflect new possibilities for additional opioid functions.
Collapse
Affiliation(s)
- Carmel M McDermott
- Department of Cell and Molecular Biology, Tulane University, 6400 Freret St, New Orleans, LA 70118, USA
| | | |
Collapse
|
6
|
Bortolato M, Solbrig MV. The price of seizure control: dynorphins in interictal and postictal psychosis. Psychiatry Res 2007; 151:139-43. [PMID: 17395273 DOI: 10.1016/j.psychres.2006.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 09/12/2006] [Accepted: 11/02/2006] [Indexed: 11/19/2022]
Abstract
Postictal and interictal psychoses are relatively common complicating factors in the clinical course of epilepsy, yet their neurobiological substrates are poorly understood. Recent evidence shows that kappa opioid receptor (KOR) activation elicits anticonvulsant and psychotomimetic effects. In view of this background, here we introduce the hypothesis that epilepsy-related psychoses may partially result from excessive hippocampal dynorphin release and kappa opioid receptor overstimulation aimed at seizure control.
Collapse
Affiliation(s)
- Marco Bortolato
- Department of Pharmacology, University of California, Irvine, Irvine, CA 92697-4292, USA.
| | | |
Collapse
|
7
|
Kaminski RM, Witkin JM, Shippenberg TS. Pharmacological and genetic manipulation of kappa opioid receptors: Effects on cocaine- and pentylenetetrazol-induced convulsions and seizure kindling. Neuropharmacology 2007; 52:895-903. [PMID: 17126860 DOI: 10.1016/j.neuropharm.2006.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 10/11/2006] [Accepted: 10/12/2006] [Indexed: 11/15/2022]
Abstract
The present study used pharmacological and gene ablation techniques to examine the involvement of kappa opioid receptors (KOPr) in modulating the convulsant effects of two mechanistically different drugs: cocaine and pentylenetetrazol (PTZ; GABA-A receptor antagonist) in mice. Systemic administration of the selective KOPr-1 agonist, U69593 (0.16-0.6mg/kg; s.c.), failed to modify cocaine-evoked convulsions or cocaine kindling. Similarly, no alteration in responsiveness to cocaine was observed in wild-type mice that received the selective KOPr-1 antagonist, nor-binaltorphimine (nor-BNI; 5mg/kg) or in mice lacking the gene encoding KOPr-1. In contrast to cocaine, U69593 attenuated the seizures induced by acute or repeated PTZ administration. Nor-BNI decreased the threshold for PTZ-evoked seizures and increased seizure incidence during the initial induction of kindling relative to controls. Decreased thresholds for PTZ-induced seizures were also observed in KOPr-1 knock out mice. Together, these data demonstrate an involvement of endogenous KOPr systems in modulating vulnerability to the convulsant effects of PTZ but not cocaine. Furthermore, they demonstrate that KOPr-1 activation protects against acute and kindled seizures induced by this convulsant. Finally, the results of our study suggest that KOPr-1 antagonists will not have therapeutic utility against cocaine-induced seizures, while they may prove beneficial in attenuating several actions of cocaine that have been linked to its abuse.
Collapse
Affiliation(s)
- Rafal M Kaminski
- Integrative Neuroscience Section, Behavioral Neuroscience Branch, NIH/NIDA Intramural Research Program, 5500 Nathan Shock Drive, Baltimore, MD 21224, USA.
| | | | | |
Collapse
|
8
|
Kögel B, Christoph T, Friderichs E, Hennies HH, Matthiesen T, Schneider J, Holzgrabe U. HZ2, a Selective Kappa-Opioid Agonist. CNS DRUG REVIEWS 2006. [DOI: 10.1111/j.1527-3458.1998.tb00041.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Beadles-Bohling AS, Wiren KM. Alteration of kappa-opioid receptor system expression in distinct brain regions of a genetic model of enhanced ethanol withdrawal severity. Brain Res 2005; 1046:77-89. [PMID: 15869750 DOI: 10.1016/j.brainres.2005.03.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Revised: 03/15/2005] [Accepted: 03/16/2005] [Indexed: 11/17/2022]
Abstract
Abrupt withdrawal from chronic alcohol exposure can produce convulsions that are likely due to ethanol (EtOH) neuroadaptations. While significant efforts have focused on elucidating dependence mechanisms, the alterations contributing to EtOH withdrawal severity are less well characterized. The present studies examined the kappa-opioid receptor (KOP-R) system in Withdrawal Seizure-Prone (WSP) and Withdrawal Seizure-Resistant (WSR) mice, selected lines that display severe and mild convulsions upon removal from chronic EtOH exposure. Previous data demonstrated significant increases in whole brain prodynorphin (Pdyn) mRNA in WSP mice only during EtOH withdrawal. No significant effects of EtOH exposure or withdrawal were observed in WSR mice. The present study characterized Pdyn mRNA and the KOP-R in WSP and WSR mice during EtOH withdrawal using in situ hybridization (ISH) and KOP-R autoradiography. Analyses were performed in brain regions that express Pdyn mRNA and/or KOP-R and that might participate in seizure circuitry: the piriform cortex, olfactory tubercle, nucleus accumbens, caudate-putamen, claustrum, dorsal endopiriform nucleus, and cingulate cortex. ISH analyses confirmed previous findings; EtOH withdrawal increased Pdyn mRNA in multiple brain regions of WSP mice, but not WSR. Basal KOP-R binding was higher in WSR mice than in WSP mice, suggesting an anti-convulsant role for receptor activation. Finally, increased KOP-R density was present during EtOH withdrawal in WSP mice. These data suggest that differences in the KOP-R system among the lines might contribute to their selected difference in EtOH withdrawal severity.
Collapse
Affiliation(s)
- Amy S Beadles-Bohling
- Neuroscience Graduate Program, Oregon Health & Science University, Portland, 97239, USA.
| | | |
Collapse
|
10
|
Hauser KF, Aldrich JV, Anderson KJ, Bakalkin G, Christie MJ, Hall ED, Knapp PE, Scheff SW, Singh IN, Vissel B, Woods AS, Yakovleva T, Shippenberg TS. Pathobiology of dynorphins in trauma and disease. FRONTIERS IN BIOSCIENCE : A JOURNAL AND VIRTUAL LIBRARY 2005; 10:216-35. [PMID: 15574363 PMCID: PMC4304872 DOI: 10.2741/1522] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dynorphins, endogenous opioid neuropeptides derived from the prodynorphin gene, are involved in a variety of normative physiologic functions including antinociception and neuroendocrine signaling, and may be protective to neurons and oligodendroglia via their opioid receptor-mediated effects. However, under experimental or pathophysiological conditions in which dynorphin levels are substantially elevated, these peptides are excitotoxic largely through actions at glutamate receptors. Because the excitotoxic actions of dynorphins require supraphysiological concentrations or prolonged tissue exposure, there has likely been little evolutionary pressure to ameliorate the maladaptive, non-opioid receptor mediated consequences of dynorphins. Thus, dynorphins can have protective and/or proapoptotic actions in neurons and glia, and the net effect may depend upon the distribution of receptors in a particular region and the amount of dynorphin released. Increased prodynorphin gene expression is observed in several disease states and disruptions in dynorphin processing can accompany pathophysiological situations. Aberrant processing may contribute to the net negative effects of dysregulated dynorphin production by tilting the balance towards dynorphin derivatives that are toxic to neurons and/or oligodendroglia. Evidence outlined in this review suggests that a variety of CNS pathologies alter dynorphin biogenesis. Such alterations are likely maladaptive and contribute to secondary injury and the pathogenesis of disease.
Collapse
Affiliation(s)
- Kurt F Hauser
- Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, Lexington, Kentucky 40536-0298, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Knapp PE, Itkis OS, Zhang L, Spruce BA, Bakalkin G, Hauser KF. Endogenous opioids and oligodendroglial function: possible autocrine/paracrine effects on cell survival and development. Glia 2001; 35:156-65. [PMID: 11460271 DOI: 10.1002/glia.1080] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Previous work has shown that oligodendrocytes (OLs) express both micro- and kappa-opioid receptors. In developing OLs, micro receptor activation increases OL proliferation, while the kappa-antagonist nor-binaltorphimine (NorBNI) affects OL differentiation. Because exogenous opioids were not present in our defined culture medium, we hypothesized that NorBNI blocked endogenous opioids produced by the OLs themselves. To test this, intact and partially processed proenkephalin and prodynorphin-derived peptides were assessed in OLs using immunocytochemistry or Western blot analysis, or both. Immature OLs possessed large amounts of intact and partially processed proenkephalin precursors, as well as posttranslational products of prodynorphin including dynorphin A (1-17). With maturation, however, intact or partially processed proenkephalin was expressed by only about 50% of OLs, while dynorphin A (1-17) was undetectable. To assess the function of OL-derived opioids, the effect of kappa-agonists/antagonists on OL differentiation and death was explored. kappa-Agonists alone had no effect. In contrast, NorBNI significantly increased OL death. Additive OL losses were evident when NorBNI was paired with toxic levels of glutamate, suggesting that kappa-receptor blockade alone is sufficient to induce OL death. Thus, the results indicate that OLs express proenkephalin and prodynorphin peptides in a developmentally regulated manner, and further suggest that opioids produced by OLs modulate OL maturation and survival through local (i.e., autocrine and/or paracrine) mechanisms.
Collapse
Affiliation(s)
- P E Knapp
- Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, Lexington, Kentucky 40536-0298, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Chavkin C. Dynorphins are endogenous opioid peptides released from granule cells to act neurohumorly and inhibit excitatory neurotransmission in the hippocampus. PROGRESS IN BRAIN RESEARCH 2001; 125:363-7. [PMID: 11098672 DOI: 10.1016/s0079-6123(00)25025-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- C Chavkin
- Department of Pharmacology, University of Washington, Seattle 98195-7280, USA.
| |
Collapse
|
13
|
Beadles-Bohling AS, Crabbe JC, Wiren KM. Elevated prodynorphin expression associated with ethanol withdrawal convulsions. Neurochem Int 2000; 37:463-72. [PMID: 10871698 DOI: 10.1016/s0197-0186(00)00056-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The hypothesis that kappa-opioid system activity may in part mediate convulsions exhibited during ethanol withdrawal was tested by exposing Withdrawal Seizure-Prone (WSP) and Withdrawal Seizure-Resistant (WSR) mice to chronic ethanol. Whole brain was harvested for RNA isolation and prodynorphin mRNA steady-state levels in whole brain were examined using Northern blot analysis. The data revealed significantly increased levels of prodynorphin mRNA expression in mice susceptible to ethanol withdrawal convulsions after withdrawal, with no corresponding increase in prodynorphin steady-state levels in mice resistant to ethanol withdrawal convulsions. These findings were not due to basal differences in prodynorphin expression between the WSP and WSR mice. To verify that the differences observed were not due to an ethanol-induced global alteration in gene transcription, mRNA levels of the housekeeping gene glyceraldehyde-3-phosphate dehydrogenase were measured. Glyceraldehyde-3-phosphate dehydrogenase expression was unchanged following both chronic exposure to ethanol and chronic exposure followed by withdrawal. These results extend our understanding of prodynorphin's role in generalized seizure activity to include ethanol withdrawal-induced convulsions. Our findings suggest that prodynorphin expression is modulated during ethanol withdrawal convulsions, or alternatively, prodynorphin may mediate the severity of ethanol withdrawal convulsions.
Collapse
Affiliation(s)
- A S Beadles-Bohling
- Portland Alcohol Research Center, Research Service, Oregan Health Sciences University, Portland, OR 97201, USA.
| | | | | |
Collapse
|
14
|
Ragazzo PC, Galanopoulou AS. Alfentanil-induced activation: a promising tool in the presurgical evaluation of temporal lobe epilepsy patients. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2000; 32:316-27. [PMID: 10751680 DOI: 10.1016/s0165-0173(99)00098-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Pharmacologic activation of epileptic foci has been used experimentally with the hope that it may accelerate the presurgical evaluation of patients with medically intractable epilepsy. In this article, we will review the existing literature on these activating tests giving emphasis on the opioid analogs, and particularly alfentanil. Alfentanil is an opioid analog with rapid anesthetic effect, which has been known to trigger epileptiform discharges in epilepsy patients. 58 temporal lobe epilepsy (TLE) patients were studied with alfentanil activation during electrocorticography, at the Epilepsy Surgery Unit (ING, Brazil). An increase of the interictal epileptiform discharges was observed originating from hippocampal and parahippocampal regions (96.5%). To a lesser extent, alfentanil activated the basal and lateral temporal regions. Electrographic seizures were observed in 38%. In addition, we performed continuous video-EEG (VT/EEG) monitoring, with scalp and bilateral foramen ovale electrodes, in 12 TLE patients. The results of spontaneously observed seizures were compared with the electrographic changes following alfentanil activation (50-75 microg/kg, i.v.). In seven cases, alfentanil triggered focal electrographic seizures, ipsilaterally to the side generating the spontaneous seizures and in two patients it produced bilateral sequential activation of the temporal lobes. Ictal SPECTs during the alfentanil test showed hyperperfusion at the lateral temporal regions, ipsilaterally to the activated area or bilaterally. In summary, our study confirms the activating effect of alfentanil, and provides a strong evidence for its selective activating effect on the temporal lobes of TLE patients. The ictal SPECT during alfentanil activation did not offer any additional advantage for the localization of the ictal onset.
Collapse
Affiliation(s)
- P C Ragazzo
- Epilepsy Surgery Unit, Instituto de Neurologia de Goiania, Goias, 74, 000, Brazil.
| | | |
Collapse
|
15
|
Hauser KF, Foldes JK, Turbek CS. Dynorphin A (1-13) neurotoxicity in vitro: opioid and non-opioid mechanisms in mouse spinal cord neurons. Exp Neurol 1999; 160:361-75. [PMID: 10619553 PMCID: PMC4868554 DOI: 10.1006/exnr.1999.7235] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Dynorphin A is an endogenous opioid peptide that preferentially activates kappa-opioid receptors and is antinociceptive at physiological concentrations. Levels of dynorphin A and a major metabolite, dynorphin A (1-13), increase significantly following spinal cord trauma and reportedly contribute to neurodegeneration associated with secondary injury. Interestingly, both kappa-opioid and N-methyl-D-aspartate (NMDA) receptor antagonists can modulate dynorphin toxicity, suggesting that dynorphin is acting (directly or indirectly) through kappa-opioid and/or NMDA receptor types. Despite these findings, few studies have systematically explored dynorphin toxicity at the cellular level in defined populations of neurons coexpressing kappa-opioid and NMDA receptors. To address this question, we isolated populations of neurons enriched in both kappa-opioid and NMDA receptors from embryonic mouse spinal cord and examined the effects of dynorphin A (1-13) on intracellular calcium concentration ([Ca2+]i) and neuronal survival in vitro. Time-lapse photography was used to repeatedly follow the same neurons before and during experimental treatments. At micromolar concentrations, dynorphin A (1-13) elevated [Ca2+]i and caused a significant loss of neurons. The excitotoxic effects were prevented by MK-801 (Dizocilpine) (10 microM), 2-amino-5-phosphopentanoic acid (100 microM), or 7-chlorokynurenic acid (100 microM)--suggesting that dynorphin A (1-13) was acting (directly or indirectly) through NMDA receptors. In contrast, cotreatment with (-)-naloxone (3 microM), or the more selective kappa-opioid receptor antagonist nor-binaltorphimine (3 microM), exacerbated dynorphin A (1-13)-induced neuronal loss; however, cell losses were not enhanced by the inactive stereoisomer (+)-naloxone (3 microM). Neuronal losses were not seen with exposure to the opioid antagonists alone (10 microM). Thus, opioid receptor blockade significantly increased toxicity, but only in the presence of excitotoxic levels of dynorphin. This provided indirect evidence that dynorphin also stimulates kappa-opioid receptors and suggests that kappa receptor activation may be moderately neuroprotective in the presence of an excitotoxic insult. Our findings suggest that dynorphin A (1-13) can have paradoxical effects on neuronal viability through both opioid and non-opioid (glutamatergic) receptor-mediated actions. Therefore, dynorphin A potentially modulates secondary neurodegeneration in the spinal cord through complex interactions involving multiple receptors and signaling pathways.
Collapse
Affiliation(s)
- Kurt F. Hauser
- Department of Anatomy and Neurobiology, University of Kentucky, College of Medicine, Lexington, KY 40536-0084
- Markey Cancer Center, University of Kentucky, College of Medicine, Lexington, KY 40536-0084
| | - Jane K. Foldes
- Department of Anatomy and Neurobiology, University of Kentucky, College of Medicine, Lexington, KY 40536-0084
| | - Carol S. Turbek
- Department of Anatomy and Neurobiology, University of Kentucky, College of Medicine, Lexington, KY 40536-0084
| |
Collapse
|
16
|
Becker A, Braun H, Schröder H, Grecksch G, Höllt V. Effects of enadoline on the development of pentylenetetrazol kindling, learning performance, and hippocampal morphology. Brain Res 1999; 823:191-7. [PMID: 10095026 DOI: 10.1016/s0006-8993(99)01189-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Opioids are involved in the development of epileptic seizures. Recently, interest has been focused on the role of the kappa-opioid receptor agonists as novel approaches to the treatment of epilepsy. In the present study we investigated the effects of the kappa-opioid receptor agonist enadoline (Ena) on pentylenetetrazol (PTZ) induced seizures, PTZ kindling, shuttle-box performance and hippocampal neuromorphology. Ena injected i.c.v. in doses of 1 and 10 nmol did not affect acute PTZ seizures. In the course of PTZ kindling development, co-treatment (1 nmol) with the kappa-opioid receptor agonist suppressed seizure strength. Eight days after kindling completion the animals received a challenge dose of PTZ. In reaction to challenge, kindled animals which were pretreated with Ena reached significantly lower seizure scores. Kindling resulted in diminished shuttle-box performance. Learning performance in kindled animals pretreated with Ena was not normalised. Kindling resulted in increased glutamate binding. Interestingly, in comparison with the saline/saline group, neither in the Ena/saline nor in the Ena/PTZ treated groups changes in glutamate binding were found. That means that Ena prevented the increase in glutamate binding in the kindled group. In kindled animals significant cell loss in CA1 of the dorsal hippocampus was found and this was efficaciously counteracted by Ena. However, Ena alone did induce similar cell loss compared to kindled animals. It is hypothesised that the effects of enadoline are mainly due to interferences with glutamatergic systems.
Collapse
Affiliation(s)
- A Becker
- O.-v.-Guericke University, Faculty of Medicine, Institute of Pharmacology and Toxicology, Leipzigerstr. 44, D-39120, Magdeburg, Germany.
| | | | | | | | | |
Collapse
|
17
|
Przewłocka B, Lasoń W, Machelska H, van Luijtelaar G, Coenen A, Przewłocki R. Kappa opioid receptor agonists suppress absence seizures in WAG/Rij rats. Neurosci Lett 1995; 186:131-4. [PMID: 7777181 DOI: 10.1016/0304-3940(95)11303-e] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Involvement of the kappa opioid receptor in the regulation of epileptic activity was studied in WAG/Rij rats, a genetic model of absence epilepsy. I.c.v. administration of the kappa agonists U50,488H (trans-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl]- benzeneacetamide), U69,593 (5 alpha, 7 alpha, 8 beta)-(-)-N-methyl-(1-pyrrolidinyl)-1- oxaspiro(4,5)dec-8-yl)benzeneacetamide) or PD117,302 ((+/-)-trans-N-methyl-N-[2-(1-pyrrolidinyl)- cyclohexyl]benzo[b]thiophene-4-acetamide), 50 and 150 micrograms/5 microliter each, dose-dependently decreased the number and mean duration of spike wave discharges (SWD). Peripheral administration of U50,488H (10 and 30 mg/kg s.c.) also attenuated the seizure activity in this model. The specific kappa opioid receptor antagonist nor-binaltorphimine (Nor-BNI, 10 micrograms/5 microliters i.c.v., 18 h before EEG registration) moderately increased the number of SWD, which suggests that endogenous opioids acting through kappa receptors may tonically inhibit the seizure activity in these rats. In addition, the enhancement of an absence-like seizure activity induced by the specific mu opioid receptor agonist D-Ala2-N-methyl-Phe4-Gly5-ol-enkephalin (DAMGO, 0.7 microgram/5 microliters i.c.v.) was also attenuated in rats pretreated with U50,488H, U69,593 or PD117,302. These data indicate that activation of the kappa opioid receptor exerts an inhibitory effect on absence-like seizure activity in WAG/Rij rats.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer
- Amino Acid Sequence
- Animals
- Anticonvulsants/pharmacology
- Dose-Response Relationship, Drug
- Electroencephalography/drug effects
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-
- Enkephalins/pharmacology
- Epilepsy, Absence/drug therapy
- Epilepsy, Absence/genetics
- Epilepsy, Absence/physiopathology
- Injections, Intraventricular
- Injections, Subcutaneous
- Male
- Molecular Sequence Data
- Naltrexone/administration & dosage
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Pyrroles/pharmacology
- Pyrrolidines/administration & dosage
- Pyrrolidines/pharmacology
- Rats
- Rats, Inbred Strains
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, mu/agonists
- Thiophenes/pharmacology
Collapse
Affiliation(s)
- B Przewłocka
- Neuropeptide Research Department, Institute of Pharmacology, Polish Academy of Sciences, Kraków
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
This article is the 17th installment of our annual review of research concerning the opiate system. It includes papers published during 1994 involving the behavioral, nonanalgesic, effects of the endogenous opiate peptides. The specific topics covered this year include stress; tolerance and dependence; eating; drinking; gastrointestinal, renal, and hepatic function; mental illness and mood; learning, memory, and reward; cardiovascular responses; respiration and thermoregulation; seizures and other neurological disorders; electrical-related activity; general activity and locomotion; sex, pregnancy, and development; immunological responses; and other behaviors.
Collapse
Affiliation(s)
- G A Olson
- Department of Psychology, University of New Orleans, LA 70148, USA
| | | | | |
Collapse
|