1
|
Cryo-EM structures of PI3Kα reveal conformational changes during inhibition and activation. Proc Natl Acad Sci U S A 2021; 118:2109327118. [PMID: 34725156 PMCID: PMC8609346 DOI: 10.1073/pnas.2109327118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2021] [Indexed: 02/07/2023] Open
Abstract
Phosphoinositide 3-kinases (PI3Ks) are of critical importance in cell signaling and can function as drivers of disease. Information on the PI3K structure is essential for an understanding of the function of these proteins and for the identification of specific and effective small-molecule inhibitors. Here we present a single-particle cryo-electron microscopy (cryo-EM) analysis of PI3Kα, the dimer consisting of the p110α catalytic subunit bound to the p85α regulatory subunit. We investigated three conformational states of PI3Kα: the unbound dimer, the dimer bound to the isoform-specific inhibitor BYL-719, and the dimer associated with an activating phosphopeptide. Each of these conformations reveals specific structural features that provide insights into conformation-associated functions. Phosphoinositide 3-kinases (PI3Ks) are lipid kinases essential for growth and metabolism. Their aberrant activation is associated with many types of cancers. Here we used single-particle cryoelectron microscopy (cryo-EM) to determine three distinct conformations of full-length PI3Kα (p110α–p85α): the unliganded heterodimer PI3Kα, PI3Kα bound to the p110α-specific inhibitor BYL-719, and PI3Kα exposed to an activating phosphopeptide. The cryo-EM structures of unbound and of BYL-719–bound PI3Kα are in general accord with published crystal structures. Local deviations are presented and discussed. BYL-719 stabilizes the structure of PI3Kα, but three regions of low-resolution extra density remain and are provisionally assigned to the cSH2, BH, and SH3 domains of p85. One of the extra density regions is in contact with the kinase domain blocking access to the catalytic site. This conformational change indicates that the effects of BYL-719 on PI3Kα activity extend beyond competition with adenosine triphosphate (ATP). In unliganded PI3Kα, the DFG motif occurs in the “in” and “out” positions. In BYL-719–bound PI3Kα, only the DFG-in position, corresponding to the active conformation of the kinase, was observed. The phosphopeptide-bound structure of PI3Kα is composed of a stable core resolved at 3.8 Å. It contains all p110α domains except the adaptor-binding domain (ABD). The p85α domains, linked to the core through the ABD, are no longer resolved, implying that the phosphopeptide activates PI3Kα by fully releasing the niSH2 domain from binding to p110α. The structures presented here show the basal form of the full-length PI3Kα dimer and document conformational changes related to the activated and inhibited states.
Collapse
|
2
|
Liang C, Hui N, Liu Y, Qiao G, Li J, Tian L, Ju X, Jia M, Liu H, Cao W, Yu P, Li H, Ren X. Insights into forsythia honeysuckle (Lianhuaqingwen) capsules: A Chinese herbal medicine repurposed for COVID-19 pandemic. PHYTOMEDICINE PLUS : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 1:100027. [PMID: 35399819 PMCID: PMC7833308 DOI: 10.1016/j.phyplu.2021.100027] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 04/17/2023]
Abstract
Background In December 2019, a novel coronavirus, SARS-CoV-2 caused a series of acute atypical respiratory diseases worldwide. However, there is still a lack of drugs with clear curative effects, and the clinical trial research of vaccines has not been completely finished. Purpose LH capsules are approved TCM patent medicine that are widely used for the treatment of respiratory tract infectious diseases caused by colds and flu. On April 12, 2020, LH capsules and granules were officially repurposed by the China Food and Drug Administration (CFDA) for patients with mild COVID-19 based on their safety and efficacy demonstrated through multicentre, randomized, controlled clinical trials. We hope to conduct a comprehensive review of it through modern pharmacy methods, and try to explain its possible mechanism. Methods Using the full names of LH capsules Lianhuaqingwen, Lianhua Qingwen andSARS-COV-2, COVID-19 as the keywords of the search terms, systemically search for existing related papers in various databases such as Web of Science and PubMed. And completed the collection of clinical data in ClinicalTrials.gov and Chinese Clinical Trial Registry. Last but not least, we have sorted out the anti-inflammatory and antiviral mechanisms of LH capsules through literature and Selleck. Results This review systematically sorted out the active ingredients in LH capsules. Furthermore, the related pharmacological and clinical trials of LH capsule on SARS-CoV-2, IAV and IBV were discussed in detail. Moreover, the present review provides the first summary of the potential molecular mechanism of specific substances in LH capsules involved in resistance to SARS-COV-2 infection and the inhibition of cytokine storm syndrome (CSS) caused by IL-6. Conclusion This review summarizes the available reports and evidence that support the use of LH capsules as potential drug candidates for the prevention and treatment of COVID-19. However, TCM exerts its effects through multiple targets and multiple pathways, and LH capsules are not an exception. Therefore, the relevant mechanisms need to be further improved and experimentally verified.
Collapse
Key Words
- 3C-like protease (3CLpro)
- 3CLpro, 3C-like protease
- ACE2, Angiotensin-converting enzyme 2
- AECOPD, Acute exacerbation of chronic obstructive pulmonary disease
- AIDS, Acquired immune deficiency syndrome
- AQP3, Aquaporins 3
- ARDS, Acute respiratory distress syndrome
- CAT, COPD assessment test
- CC50, 50% Cytotoxic concentration
- CCL-2/MCP-1, C—C motif ligand 2/monocyte chemoattractant protein-1
- CFDA, China Food and Drug Administration
- COPD, Chronic obstructive pulmonary disease
- COVID-19
- COVID-19, Coronavirus disease 2019
- CPE, Cytopathic effect
- CSS, Cytokine storm syndrome
- CT, Computed tomography
- CXCL-10/IP-10, C-X-C Motif Chemokine Ligand 10/ Interferon Gamma-induced Protein 10
- Cytokine storm syndrome (CSS)
- DMSO, Dimethyl sulfoxide
- E protein, Envelope protein
- ERK, Extracellular signal-regulated kinase
- FBS, Fatal bovine serum
- Forsythia honeysuckle (Lianhuaqingwen,LH) capsules
- Grb2, Growth factor receptor-bound protein 2
- HIV, Human immunodeficiency virus
- HPLC, High-performance liquid chromatography
- HSV-1, Herpes simplex virus type 1
- HVJ, Hemagglutinating virus of Japan
- Hep-2, Human epithelial type 2
- Huh-7, Human Hepatocellular Carcinoma-7
- IAV, Influenza A virus
- IBV, Influenza B virus
- IC50, 50% Inhibition concentration
- IFN-λ1, Interferon-λ1
- IL-6, Interleukin-6
- IL-6R, IL-6 Receptor
- IL-8, Interleukin-8
- IP-10, Interferon-inducible protein-10
- JAK/STAT, Janus kinase/signal transducers and activators of transcription
- JAK1/2, Janus kinase1/2
- LD50, 50% Lethal dose
- LH capsules, Forsythia honeysuckle (Lianhuaqingwen) capsules
- M protein, Membrane protein
- MAPK, Mitogen-activated protein kinase
- MCP-1, Monocyte chemotactic protein 1
- MDCK, Madin-darby canine kidney
- MEK, Mitogen-activated protein kinase kinase
- MERS, Middle east respiratory syndrome
- MIP-1β, Macrophage Inflammatory Protein-1β
- MLD50, 50% Minimum lethal dose
- MOF, Multifunctional organ damage
- MOI, Multiplicity of infection
- MTT, Methyl Thiazolyl Tetrazolium
- NF-kB, Nuclear transcription factor kappa-B
- NHC, National Health Commission
- ORFs, Open reading frames
- PBS, Phosphate buffered saline
- PHN, Phillyrin
- PI3K, Phosphoinositide 3-kinases
- PKA/p-CREB, Protein kinase A /phosphorylated cAMP response element-binding protein
- PKB, Akt, Protein kinase B
- PLpro, Papain-like proteases
- PRC, People's Republic of China
- QC, Quality control
- RANTES, Regulated on activation normal T cell expressed and secreted
- RSV, Respiratory syncytial virus
- RT-PCR, Reverse transcription PCR
- Ras, Ras GTPase
- SARS-CoV-2
- TCID50, 50% Tissue culture infective dose
- TD0, Non-toxic Dose
- TD50, Half-toxic dose
- Vero E6, African Green Monkey Kidney Epithelial-6
- gp-130, Glycoprotein 130
- mIL-6R, Membrane-bound form IL-6 Receptor
- mTOR, Mammalian target of rapamycin
- nsps, Non-structural proteins
- qPCR, Quantitative PCR
Collapse
Affiliation(s)
- Chengyuan Liang
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Nan Hui
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Yuzhi Liu
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Guaiping Qiao
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Juan Li
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Lei Tian
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Xingke Ju
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Minyi Jia
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Hong Liu
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Hengqin New Area, Zhuhai 519030, PR China
| | - Wenqiang Cao
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Hengqin New Area, Zhuhai 519030, PR China
| | - Pengcheng Yu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Han Li
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Xiaodong Ren
- Medical College, Guizhou University, Guiyang 550025, PR China
| |
Collapse
|
3
|
Agbo E, Liu D, Li M, Saahene RO, Chen L, Zhao L, Wang Y, Tian G. Modulation of PTEN by hexarelin attenuates coronary artery ligation-induced heart failure in rats. Turk J Med Sci 2019; 49:945-958. [PMID: 31091855 PMCID: PMC7018219 DOI: 10.3906/sag-1812-49] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background/aim Hexarelin is a synthetic growth hormone-releasing peptide that exerts cardioprotective effects. However, its cardioprotective effect against heart failure (HF) is yet to be explained. This study investigated the therapeutic role of hexarelin and the mechanisms underlying its cardioprotective effects against coronary artery ligation (CAL)-induced HF in rats. Materials and methods Rats with four weeks of permanent CAL, induced myocardial infarction, and HF were randomly separated into four groups: the control group (Ctrl), sham group (Sham), hexarelin treatment group (HF + Hx), and heart failure group (HF). The rats were treated with subcutaneous injection of hexarelin (100 µg/kg) in the treatment group or saline in the other groups twice a day for 30 days. Left ventricular (LV) function, oxidative stress, apoptosis, molecular analyses, and cardiac structural and pathological changes in rats were assessed. Results The treatment of HF rats with hexarelin significantly induced the upregulation of phosphatase and tensin homologue (PTEN) expression and inhibited the phosphorylation of protein kinase B (Akt) and mammalian target of rapamycin (mTOR) to significantly improve LV function, ameliorate myocardial remodeling, and reduce oxidative stress. Conclusion These findings indicate that hexarelin attenuates CAL-induced HF in rats by ameliorating myocardial remodeling, LV dysfunction, and oxidative stress via the upmodulation of PTEN signaling and downregulation of the Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Elvis Agbo
- Department of Human Anatomy, Histology, and Embryology, College of Basic Medicine, Jiamusi University, Jiamusi, P.R. China
| | - Donhai Liu
- College of Basic Medicine, Jiamusi University, Jiamusi, P.R. China
| | - Meixiu Li
- Department of Human Anatomy, Histology, and Embryology, College of Basic Medicine, Jiamusi University, Jiamusi, P.R. China
| | - Roland Osei Saahene
- Department of Immunology, College of Basic Medicine, Jiamusi University, Jiamusi, P.R. China
| | - Liqiang Chen
- Department of Human Anatomy, Histology, and Embryology, College of Basic Medicine, Jiamusi University, Jiamusi, P.R. China
| | - Lunpeng Zhao
- Department of Human Anatomy, Histology, and Embryology, College of Basic Medicine, Jiamusi University, Jiamusi, P.R. China
| | - Yiquan Wang
- Department of Human Anatomy, Histology, and Embryology, College of Basic Medicine, Jiamusi University, Jiamusi, P.R. China
| | - Guozhong Tian
- Department of Human Anatomy, Histology, and Embryology, College of Basic Medicine, Jiamusi University, Jiamusi, P.R. China
| |
Collapse
|
4
|
Ge Z, Wang C, Zhang J, Li X, Hu J. Tempol Protects Against Acetaminophen Induced Acute Hepatotoxicity by Inhibiting Oxidative Stress and Apoptosis. Front Physiol 2019; 10:660. [PMID: 31214044 PMCID: PMC6554449 DOI: 10.3389/fphys.2019.00660] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/09/2019] [Indexed: 12/12/2022] Open
Abstract
Acetaminophen (APAP)-induced acute hepatotoxicity is the leading cause of drug-induced acute liver failure. The aim of this study was to evaluate the effects of 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (tempol) on the protection of APAP-induced hepatotoxicity in mice. Mice were pretreated with a single dose of tempol (20 mg/kg per day) orally for 7 days. On the seventh day, mice were injected with a single dose of APAP (300 mg/kg) to induce acute hepatotoxicity. Our results showed that tempol treatment markedly improved liver functions with alleviations of histopathological damage induced by APAP. Tempol treatment upregulated levels of antioxidant proteins, including superoxide dismutase, catalase, and glutathione. Also, phosphorylation of phosphoinositide 3-kinase (PI3K) and protein kinase B (Akt) and protein expression of nuclear factor erythroid 2-related factor (Nrf 2) and heme oxygense-1 (HO-1) were all increased by tempol, which indicated tempol protected against APAP-induced hepatotoxicity via the PI3K/Akt/Nrf2 pathway. Moreover, tempol treatment decreased pro-apoptotic protein expressions (cleaved caspase-3 and Bax) and increased anti-apoptotic Bcl-2 in liver, as well as reducing apoptotic cells of TUNEL staining, which suggested apoptotic effects of tempol treatment. Overall, we found that tempol normalizes liver function in APAP-induced acute hepatotoxicity mice via activating PI3K/Akt/Nrf2 pathway, thus enhancing antioxidant response and inhibiting hepatic apoptosis.
Collapse
Affiliation(s)
- Zheng Ge
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Chenyu Wang
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Junjie Zhang
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Xiwang Li
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Junhong Hu
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| |
Collapse
|
5
|
Myers KV, Amend SR, Pienta KJ. Targeting Tyro3, Axl and MerTK (TAM receptors): implications for macrophages in the tumor microenvironment. Mol Cancer 2019; 18:94. [PMID: 31088471 PMCID: PMC6515593 DOI: 10.1186/s12943-019-1022-2] [Citation(s) in RCA: 255] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/02/2019] [Indexed: 12/14/2022] Open
Abstract
Tumor-associated macrophages are an abundant cell type in the tumor microenvironment. These macrophages serve as a promising target for treatment of cancer due to their roles in promoting cancer progression and simultaneous immunosuppression. The TAM receptors (Tyro3, Axl and MerTK) are promising therapeutic targets on tumor-associated macrophages. The TAM receptors are a family of receptor tyrosine kinases with shared ligands Gas6 and Protein S that skew macrophage polarization towards a pro-tumor M2-like phenotype. In macrophages, the TAM receptors also promote apoptotic cell clearance, a tumor-promoting process called efferocytosis. The TAM receptors bind the "eat-me" signal phosphatidylserine on apoptotic cell membranes using Gas6 and Protein S as bridging ligands. Post-efferocytosis, macrophages are further polarized to a pro-tumor M2-like phenotype and secrete increased levels of immunosuppressive cytokines. Since M2 polarization and efferocytosis are tumor-promoting processes, the TAM receptors on macrophages serve as exciting targets for cancer therapy. Current TAM receptor-directed therapies in preclinical development and clinical trials may have anti-cancer effects though impacting macrophage phenotype and function in addition to the cancer cells.
Collapse
Affiliation(s)
- Kayla V. Myers
- 0000 0001 2171 9311grid.21107.35Department of Pharmacology and Molecular Sciences, The Johns Hopkins School of Medicine, Baltimore, MD USA ,0000 0001 2171 9311grid.21107.35The James Buchanan Brady Urological Institute, Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD USA
| | - Sarah R. Amend
- 0000 0001 2171 9311grid.21107.35The James Buchanan Brady Urological Institute, Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD USA
| | - Kenneth J. Pienta
- 0000 0001 2171 9311grid.21107.35Department of Pharmacology and Molecular Sciences, The Johns Hopkins School of Medicine, Baltimore, MD USA ,0000 0001 2171 9311grid.21107.35The James Buchanan Brady Urological Institute, Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD USA ,0000 0001 2171 9311grid.21107.35Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD USA ,0000 0001 2171 9311grid.21107.35Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD USA
| |
Collapse
|
6
|
Wang H, Zhang J, You G. The mechanistic links between insulin and human organic anion transporter 4. Int J Pharm 2019; 555:165-174. [PMID: 30453017 DOI: 10.1016/j.ijpharm.2018.11.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/10/2018] [Accepted: 11/15/2018] [Indexed: 11/18/2022]
Abstract
Human organic anion transporter 4 (hOAT4) belongs to a class of organic anion transporters that exert critical function in the secretion, absorption, and distribution of numerous drugs in the body, such as anti-viral drugs, anti-cancer therapeutics, antibiotics, antihypertensive medicine, and anti-inflammatory drugs. hOAT4 is richly existent in the kidney and placenta. We previously established that serum- and glucocorticoid-inducible kinases (sgk) stimulate hOAT4 expression and transport activity by abrogating the inhibitory effect of a ubiquitin ligase Nedd4-2. Insulin is one of the upstream signaling molecules for sgk. We therefore investigated the effect of insulin on hOAT4 function. We showed that insulin stimulated hOAT4 expression and transport activity, and the action of insulin was abolished in cells overexpressing Nedd4-2-specific siRNA to knockdown the endogenous Nedd4-2. We further showed that insulin phosphorylated serine 327 on Nedd4-2 and weakened the interaction between hOAT4 and Nedd4-2. Interestingly, in cells overexpressing sgk2, the stimulatory effect of insulin on hOAT4 was diminished. In addition, the stimulatory effect of insulin on hOAT4 was blocked by wortmannin and buparlisib, two PI3K inhibitors. In conclusion, our study demonstrated that insulin stimulates hOAT4 expression and transport activity by abrogating the inhibition effect of Nedd4-2 on the transporter. Moreover, insulin regulates hOAT4 by competing with sgk2 rather than through sgk2.
Collapse
Affiliation(s)
- Haoxun Wang
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Jinghui Zhang
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Guofeng You
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| |
Collapse
|
7
|
Zhu B, Wang X, Teng J. Retracted Article: Salvianolic acid B inhibits inflammatory response and cell apoptosis via the PI3K/Akt signaling pathway in IL-1β-induced osteoarthritis chondrocytes. RSC Adv 2018; 8:36422-36429. [PMID: 35558917 PMCID: PMC9088849 DOI: 10.1039/c8ra02418a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/12/2018] [Indexed: 11/24/2022] Open
Abstract
Osteoarthritis (OA) is the most common joint disease among late middle-aged or elderly people. The pathological process of OA mainly involves the degeneration of cartilage tissue and deficiency of joint function. Salvianolic acid B (Sal B) is the main active ingredient of Salvia miltiorrhiza Bge, which possesses anti-inflammatory, anti apoptotic and other pharmacological activities. In this study, primary chondrocytes were cultured to investigate the effects of Sal B on the inflammatory response and apoptosis of OA induced by IL-1β, and to explore the possible mechanism. First, we determined the cytotoxicity of Sal B; the results showed that the cell activity of chondrocytes was not influenced by Sal B when the concentration was below 150 μM. Moreover, Sal B (40 and 80 μM) suppressed the expression of iNOS in OA chondrocytes induced by IL-1β, and restrained the secretion of NO, IL-6, IL-17 and TNF-α in chondrocytes obviously. Sal B (40, 80 μM) significantly alleviated the inhibitory effect of cell activity stimulated by IL-1β and up-regulated the expression of Col II and reduced the expression of Col X. Besides, Sal B down-regulated the expression level of Bax and promoted the expression of Bcl-2, showed a significant effect on promoting proliferation and inhibiting cell apoptosis. In addition, we found that IL-1β significantly reduced the ratio of p-PI3K/PI3K, p-Akt/Akt induced the nuclear translocation of AKT and inhibited the activation of the PI3K/Akt signaling pathway. Finally, the PI3K inhibitor, LY-294002, was added in IL-1β-induced chondrocytes. The results suggest that Sal B ameliorates IL-1β induced inflammation and suppresses apoptosis in OA by activating the PI3K/Akt signaling pathway. Our study reveals the mechanism of Sal B acts on OA and may provide a basis for the treatment of OA with Sal B. Osteoarthritis (OA) is the most common joint disease among late middle-aged or elderly people.![]()
Collapse
Affiliation(s)
- Bin Zhu
- Department of Orthopedics
- Baodi Clinical College of Tianjin Medical University
- Tianjin
- China
| | - Xuejian Wang
- Department of Orthopedics
- Baodi Clinical College of Tianjin Medical University
- Tianjin
- China
| | - Jiawen Teng
- Department of Orthopedics
- Affiliated Hospital of Shandong Traditional Chinese Medicine University
- Jinan
- PR China
| |
Collapse
|
8
|
de la Peña JB, Dela Peña IJ, Custodio RJ, Botanas CJ, Kim HJ, Cheong JH. Exploring the Validity of Proposed Transgenic Animal Models of Attention-Deficit Hyperactivity Disorder (ADHD). Mol Neurobiol 2017; 55:3739-3754. [PMID: 28534274 DOI: 10.1007/s12035-017-0608-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 05/09/2017] [Indexed: 12/31/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common, behavioral, and heterogeneous neurodevelopmental condition characterized by hyperactivity, impulsivity, and inattention. Symptoms of this disorder are managed by treatment with methylphenidate, amphetamine, and/or atomoxetine. The cause of ADHD is unknown, but substantial evidence indicates that this disorder has a significant genetic component. Transgenic animals have become an essential tool in uncovering the genetic factors underlying ADHD. Although they cannot accurately reflect the human condition, they can provide insights into the disorder that cannot be obtained from human studies due to various limitations. An ideal animal model of ADHD must have face (similarity in symptoms), predictive (similarity in response to treatment or medications), and construct (similarity in etiology or underlying pathophysiological mechanism) validity. As the exact etiology of ADHD remains unclear, the construct validity of animal models of ADHD would always be limited. The proposed transgenic animal models of ADHD have substantially increased and diversified over the years. In this paper, we compiled and explored the validity of proposed transgenic animal models of ADHD. Each of the reviewed transgenic animal models has strengths and limitations. Some fulfill most of the validity criteria of an animal model of ADHD and have been extensively used, while there are others that require further validation. Nevertheless, these transgenic animal models of ADHD have provided and will continue to provide valuable insights into the genetic underpinnings of this complex disorder.
Collapse
Affiliation(s)
- June Bryan de la Peña
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Irene Joy Dela Peña
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Raly James Custodio
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Chrislean Jun Botanas
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Jae Hoon Cheong
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul, 01795, Republic of Korea.
| |
Collapse
|
9
|
The 1-Tosylpentan-3-one Protects against 6-Hydroxydopamine-Induced Neurotoxicity. Int J Mol Sci 2017; 18:ijms18051096. [PMID: 28534853 PMCID: PMC5455005 DOI: 10.3390/ijms18051096] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/12/2017] [Accepted: 05/13/2017] [Indexed: 02/06/2023] Open
Abstract
Previous studies have demonstrated that the marine compound austrasulfone, isolated from the soft coral Cladiella australis, exerts a neuroprotective effect. The intermediate product in the synthesis of austrasulfone, dihydroaustrasulfone alcohol, attenuates several inflammatory responses. The present study uses in vitro and in vivo methods to investigate the neuroprotective effect of dihydroaustrasulfone alcohol-modified 1-tosylpentan-3-one (1T3O). Results from in vitro experiments show that 1T3O effectively inhibits 6-hydroxydopamine-induced (6-OHDA-induced) activation of both p38 mitogen-activated protein kinase (MAPK) and caspase-3 in SH-SY5Y cells; and enhances nuclear factor erythroid 2–related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) expression via phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling. Hoechst staining and Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining results reveal that 1T3O significantly inhibits 6-OHDA-induced apoptosis. In addition, the addition of an Akt or HO-1 inhibitor decreases the protective effect of 1T3O. Thus, we hypothesize that the anti-apoptotic activity of 1T3O in neuronal cells is mediated through the regulation of the Akt and HO-1 signaling pathways. In vivo experiments show that 1T3O can reverse 6-OHDA-induced reduction in locomotor behavior ability in zebrafish larvae, and inhibit 6-OHDA-induced tumor necrosis factor-alpha (TNF-α) increase at the same time. According to our in vitro and in vivo results, we consider that 1T3O exerts its anti-apoptotic activities at SH-SY5Y cells after 6-OHDA challenges, probably via the regulation of anti-oxidative signaling pathways. Therefore, this compound may be a promising therapeutic agent for neurodegenerations.
Collapse
|
10
|
Iezzi A, Caiola E, Broggini M. Activity of Pan-Class I Isoform PI3K/mTOR Inhibitor PF-05212384 in Combination with Crizotinib in Ovarian Cancer Xenografts and PDX. Transl Oncol 2016; 9:458-465. [PMID: 27751351 PMCID: PMC5067927 DOI: 10.1016/j.tranon.2016.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/30/2016] [Indexed: 11/18/2022] Open
Abstract
The Phosphatidyl inositol-3 kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) and c-Met signaling pathways are often deregulated in cancer. The two pathways are interconnected and at least c-Met has been implicated in drug resistance. The aim of the study was to assess in ovarian cancer preclinical models, the efficacy and tolerability of a dual PI3K mTOR inhibitor (PF-05212384 or gedatolisib) and a c-Met inhibitor (crizotinib) either as single agents or in combination. In vitro, both PF-05212384 and crizotinib showed a concentration dependent activity in the two ovarian cancer cell lines. The combination of the two did not result in synergistic activity. A subline resistant to gedatolisib was obtained and showed an increased expression of MDR-1 gene. In vivo results show that crizotinib alone did not display any activity in all the tumors investigated, while PF-05212384 alone had some marginal activity. The combination of the two resulted in all the experiments superior to single agents with a good tolerability. Considering that crizotinib did not show activity in the models used, the results indicate that crizotinib is able to potentiate the activity of PF-05212384. Although the activity of the combination was not striking in these three models of ovarian cancer, due to the good tolerability of the combination, the results would suggest the possibility to combine the two drugs in settings in which gedatolisib or crizotinib alone have already some significant activity.
Collapse
Affiliation(s)
- Alice Iezzi
- Laboratory of Molecular Pharmacology, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy.
| | - Elisa Caiola
- Laboratory of Molecular Pharmacology, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy.
| | - Massimo Broggini
- Laboratory of Molecular Pharmacology, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy.
| |
Collapse
|
11
|
Inaguma Y, Matsumoto A, Noda M, Tabata H, Maeda A, Goto M, Usui D, Jimbo EF, Kikkawa K, Ohtsuki M, Momoi MY, Osaka H, Yamagata T, Nagata KI. Role of Class III phosphoinositide 3-kinase in the brain development: possible involvement in specific learning disorders. J Neurochem 2016; 139:245-255. [PMID: 27607605 DOI: 10.1111/jnc.13832] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/19/2016] [Accepted: 08/17/2016] [Indexed: 01/04/2023]
Abstract
Class III phosphoinositide 3-kinase (PIK3C3 or mammalian vacuolar protein sorting 34 homolog, Vps34) regulates vesicular trafficking, autophagy, and nutrient sensing. Recently, we reported that PIK3C3 is expressed in mouse cerebral cortex throughout the developmental process, especially at early embryonic stage. We thus examined the role of PIK3C3 in the development of the mouse cerebral cortex. Acute silencing of PIK3C3 with in utero electroporation method caused positional defects of excitatory neurons during corticogenesis. Time-lapse imaging revealed that the abnormal positioning was at least partially because of the reduced migration velocity. When PIK3C3 was silenced in cortical neurons in one hemisphere, axon extension to the contralateral hemisphere was also delayed. These aberrant phenotypes were rescued by RNAi-resistant PIK3C3. Notably, knockdown of PIK3C3 did not affect the cell cycle of neuronal progenitors and stem cells at the ventricular zone. Taken together, PIK3C3 was thought to play a crucial role in corticogenesis through the regulation of excitatory neuron migration and axon extension. Meanwhile, when we performed comparative genomic hybridization on a patient with specific learning disorders, a 107 Kb-deletion was identified on 18q12.3 (nt. 39554147-39661206) that encompasses exons 5-23 of PIK3C3. Notably, the above aberrant migration and axon growth phenotypes were not rescued by the disease-related truncation mutant (172 amino acids) lacking the C-terminal kinase domain. Thus, functional defects of PIK3C3 might impair corticogenesis and relate to the pathophysiology of specific learning disorders and other neurodevelopmental disorders. Acute knockdown of Class III phosphoinositide 3-kinase (PIK3C3) evokes migration defects of excitatory neurons during corticogenesis. PIK3C3-knockdown also disrupts axon outgrowth, but not progenitor proliferation in vivo. Involvement of PIK3C3 in neurodevelopmental disorders might be an interesting future subject since a deletion mutation in PIK3C3 was detected in a patient with specific learning disorders (SLD).
Collapse
Affiliation(s)
- Yutaka Inaguma
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | - Ayumi Matsumoto
- Department of Pediatrics, Jichi medical university, Tochigi, Japan
| | - Mariko Noda
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | - Hidenori Tabata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | | | - Masahide Goto
- Department of Pediatrics, Jichi medical university, Tochigi, Japan
| | | | - Eriko F Jimbo
- Department of Pediatrics, Jichi medical university, Tochigi, Japan
| | - Kiyoshi Kikkawa
- Department of Pediatrics, Kochi Health Science Center, Kochi, Japan
| | - Mamitaro Ohtsuki
- Department of Dermatology, Jichi Medical University, Tochigi, Japan
| | - Mariko Y Momoi
- Department of Pediatrics, Jichi medical university, Tochigi, Japan
| | - Hitoshi Osaka
- Department of Pediatrics, Jichi medical university, Tochigi, Japan
| | | | - Koh-Ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan. .,Department of Neurochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
12
|
Shemi A, Ben-Dor S, Vardi A. Elucidating the composition and conservation of the autophagy pathway in photosynthetic eukaryotes. Autophagy 2016; 11:701-15. [PMID: 25915714 DOI: 10.1080/15548627.2015.1034407] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Aquatic photosynthetic eukaryotes represent highly diverse groups (green, red, and chromalveolate algae) derived from multiple endosymbiosis events, covering a wide spectrum of the tree of life. They are responsible for about 50% of the global photosynthesis and serve as the foundation for oceanic and fresh water food webs. Although the ecophysiology and molecular ecology of some algal species are extensively studied, some basic aspects of algal cell biology are still underexplored. The recent wealth of genomic resources from algae has opened new frontiers to decipher the role of cell signaling pathways and their function in an ecological and biotechnological context. Here, we took a bioinformatic approach to explore the distribution and conservation of TOR and autophagy-related (ATG) proteins (Atg in yeast) in diverse algal groups. Our genomic analysis demonstrates conservation of TOR and ATG proteins in green algae. In contrast, in all 5 available red algal genomes, we could not detect the sequences that encode for any of the 17 core ATG proteins examined, albeit TOR and its interacting proteins are conserved. This intriguing data suggests that the autophagy pathway is not conserved in red algae as it is in the entire eukaryote domain. In contrast, chromalveolates, despite being derived from the red-plastid lineage, retain and express ATG genes, which raises a fundamental question regarding the acquisition of ATG genes during algal evolution. Among chromalveolates, Emiliania huxleyi (Haptophyta), a bloom-forming coccolithophore, possesses the most complete set of ATG genes, and may serve as a model organism to study autophagy in marine protists with great ecological significance.
Collapse
Key Words
- ATG, autophagy related
- ATG8
- ATG9
- DUF, domain of unknown function
- EST, expressed sequence tag
- EhV, Emiliania huxleyi virus
- GABARAP, GABA(A) receptor-associated protein
- PtdIns3K, phosphatidylinositol 3-kinase
- RPTOR, regulatory associated protein of MTOR, complex 1
- TOR, target of rapamycin
- TORC, target of rapamycin complex
- Ubl, ubiquitin-like
- Vps, vacuolar protein sorting
- algae
- autophagy
- blooms
- chromalveolata
- phylogenetics
- phytoplankton
- rhodophyta
- stress
Collapse
Affiliation(s)
- Adva Shemi
- a Department of Plant Sciences ; Weizmann Institute of Science ; Rehovot , Israel
| | | | | |
Collapse
|
13
|
Zhang G, Wang Q, Zhou Q, Wang R, Xu M, Wang H, Wang L, Wilcox CS, Liu R, Lai EY. Protective Effect of Tempol on Acute Kidney Injury Through PI3K/Akt/Nrf2 Signaling Pathway. Kidney Blood Press Res 2016; 41:129-138. [PMID: 26894882 PMCID: PMC4841277 DOI: 10.1159/000443414] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND/AIMS Tempol is a protective antioxidant against ischemic injury in many animal models. The molecular mechanisms are not well understood. Nuclear factor erythroid 2-related factor (Nrf2) is a master transcription factor during oxidative stress, which is enhanced by activation of protein kinase C (PKC) pathway. Another factor, tubular epithelial apoptosis, is mediated by activation of phosphoinositide 3-kinase (PI3K)/protein kinase B (PKB, Akt) signaling pathway during renal ischemic injury. We tested the hypothesis that tempol activates PKC or PI3K/Akt/Nrf2 pathways to transcribe many genes that coordinate endogenous antioxidant defense. METHODS The right renal pedicle was clamped for 45 minutes and the left kidney was removed to study renal ischemia/reperfusion (I/R) injury in C57BL/6 mice. The response was assessed from serum parameters, renal morphology and renal expression of PKC, phosphorylated-PKC (p-PKC), Nrf2, heme oxygenase-1 (HO-1), Akt, phosphorylated-Akt (p-Akt), pro-caspase-3 and cleaved caspase-3 in groups of sham and I/R mice given vehicle, or tempol (50 or 100 mg/kg, intraperitoneal injection). RESULTS The serum malondialdehyde (MDA, marker of reactive oxygen species) doubled and the BUN and creatinine increased 5- to 10-fold after I/R injury. Tempol (50 or 100 mg/kg) prevented the increases in MDA but only tempol (50 mg/kg) lessened the increases in BUN and creatinine and moderated the acute tubular necrosis. I/R did not change expression of PKC or p-PKC but reduced renal expression of Nrf2, p-Akt, HO-1 and pro-caspase-3 and increased cleaved caspase-3. Tempol (50 mg/kg) prevented these changes produced by I/R whereas tempol (100 mg/kg) had lesser or inconsistent effects. CONCLUSION Tempol (50 mg/kg) prevents lipid peroxidation and attenuates renal damage after I/R injury. The beneficial pathway apparently is not dependent on upregulation or phosphorylation of PKC, at lower tempol doses, does implicate upregulation of Akt with expression of Nrf2 that could account for the increase in the antioxidant gene HO-1 and a reduction in the cleavage of the cellular damage marker pro-caspase-3.
Collapse
Affiliation(s)
- Gensheng Zhang
- Department of Physiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Zhang J, Wang C, Yu S, Luo Z, Chen Y, Liu Q, Hua F, Xu G, Yu P. Sevoflurane postconditioning protects rat hearts against ischemia-reperfusion injury via the activation of PI3K/AKT/mTOR signaling. Sci Rep 2014; 4:7317. [PMID: 25471136 PMCID: PMC4255182 DOI: 10.1038/srep07317] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 11/17/2014] [Indexed: 12/28/2022] Open
Abstract
Phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway plays a key role in myocardial ischemia-reperfusion (I/R) injury. Mammalian target of rapamycin (mTOR), a downstream target of PI3K/AKT signaling, is necessary and sufficient to protect the heart from I/R injury. Inhaled anesthetic sevoflurane is widely used in cardiac surgeries because its induction and recovery are faster and smoother than other inhaled anesthetics. Sevoflurane proved capable of inducing postconditioning effects in the myocardium. However, the underlying molecular mechanisms for sevoflurane-induced postconditioning (SPC) were largely unclear. In the present study, we demonstrated that SPC protects myocardium from I/R injury with narrowed cardiac infarct focus, increased ATP content, and decreased cardiomyocyte apoptosis, which are mainly due to the activation of PI3K/AKT/mTOR signaling and the protection of mitochondrial energy metabolism. Application of dactolisib (BEZ235), a PI3K/mTOR dual inhibitor, abolishes the up-regulation of pho-AKT, pho-GSK, pho-mTOR, and pho-p70s6k induced by SPC, hence abrogating the anti-apoptotic effect of sevoflurane and reducing SPC-mediated protection of heart from I/R injury. As such, this study proved that PI3K/AKT/mTOR pathway plays an important role in SPC induced cardiac protection against I/R injury.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Anesthesiology, the Second Affiliate Hospital of Nanchang University, Nanchang, 330000, China
| | - Chen Wang
- Department of Anesthesiology, the Second Affiliate Hospital of Soochow University, Suzhou, 215000, China
| | - Shuchun Yu
- Department of Anesthesiology, the Second Affiliate Hospital of Nanchang University, Nanchang, 330000, China
| | - Zhenzhong Luo
- Department of Anesthesiology, the Second Affiliate Hospital of Nanchang University, Nanchang, 330000, China
| | - Yong Chen
- Department of Anesthesiology, the Second Affiliate Hospital of Nanchang University, Nanchang, 330000, China
| | - Qin Liu
- Department of Anesthesiology, the Second Affiliate Hospital of Nanchang University, Nanchang, 330000, China
| | - Fuzhou Hua
- Department of Anesthesiology, the Second Affiliate Hospital of Nanchang University, Nanchang, 330000, China
| | - Guohai Xu
- Department of Anesthesiology, the Second Affiliate Hospital of Nanchang University, Nanchang, 330000, China
| | - Peng Yu
- Department of Cardiology, the Second Affiliate Hospital of Nanchang University, Nanchang, 330000, China
| |
Collapse
|
15
|
Exploring the role of two interacting phosphoinositide 3-kinases of Haemonchus contortus. Parasit Vectors 2014; 7:498. [PMID: 25388625 PMCID: PMC4233088 DOI: 10.1186/s13071-014-0498-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/21/2014] [Indexed: 12/04/2022] Open
Abstract
Background Phosphoinositide 3-kinases (PI3Ks) are relatively conserved and important intracellular lipid kinases involved in signalling and other biological pathways. In the free-living nematode Caenorhabditis elegans, the heterodimeric form of PI3K consists of catalytic (AGE-1) and regulatory (AAP-1) subunits. These subunits are key components of the insulin-like signalling pathway and play roles in the regulation of the entry into and exit from dauer. Although, in parasitic nematodes, similar components are proposed to regulate the transition from free-living or arrested stages to parasitic larvae, nothing is known about PI3Ks in relation to the transition of third-stage larvae (L3s) to parasitism in Haemonchus contortus. Methods An integrated molecular approach was used to investigate age-1 and aap-1 of H. contortus (Hc-age-1 and Hc-aap-1) in C. elegans. Results The two genes Hc-age-1 and Hc-aap-1 were transcribed in all life stages, with the highest levels in the egg, infective L3 and adult female of H. contortus. The expression of these genes was localized to the intestine, contrasting the pattern of their orthologues in C. elegans (where they are expressed in both head neurons and the intestine). The yeast two-hybrid analysis demonstrated that the adaptor-binding domain of Hc-AGE-1 interacted strongly with the Hc-AAP-1; however, this complex did not rescue the function of its orthologue in age-1-deficient C. elegans. Conclusions This is the first time that the PI3K-encoding genes have been characterized from a strongylid parasitic nematode. The findings provide insights into the role of the PI3K heterodimer represented by Hc-age-1 and Hc-aap-1 in the developmental biology of H. contortus. Electronic supplementary material The online version of this article (doi:10.1186/s13071-014-0498-2) contains supplementary material, which is available to authorized users.
Collapse
|
16
|
Choi JH, Park P, Baek GC, Sim SE, Kang SJ, Lee Y, Ahn SH, Lim CS, Lee YS, Collingridge GL, Kaang BK. Effects of PI3Kγ overexpression in the hippocampus on synaptic plasticity and spatial learning. Mol Brain 2014; 7:78. [PMID: 25373491 PMCID: PMC4226891 DOI: 10.1186/s13041-014-0078-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 10/23/2014] [Indexed: 11/16/2022] Open
Abstract
Previous studies have shown that a family of phosphoinositide 3-kinases (PI3Ks) plays pivotal roles in the brain; in particular, we previously reported that knockout of the γ isoform of PI3K (PI3Kγ) in mice impaired synaptic plasticity and reduced behavioral flexibility. To further examine the role of PI3Kγ in synaptic plasticity and hippocampus-dependent behavioral tasks we overexpressed p110γ, the catalytic subunit of PI3Kγ, in the hippocampal CA1 region. We found that the overexpression of p110γ impairs NMDA receptor-dependent long-term depression (LTD) and hippocampus-dependent spatial learning in the Morris water maze (MWM) task. In contrast, long-term potentiation (LTP) and contextual fear memory were not affected by p110γ overexpression. These results, together with the previous knockout study, suggest that a critical level of PI3Kγ in the hippocampus is required for successful induction of LTD and normal learning.
Collapse
|
17
|
Edros R, McDonnell S, Al-Rubeai M. The relationship between mTOR signalling pathway and recombinant antibody productivity in CHO cell lines. BMC Biotechnol 2014; 14:15. [PMID: 24533650 PMCID: PMC3937030 DOI: 10.1186/1472-6750-14-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 02/05/2014] [Indexed: 11/20/2022] Open
Abstract
Background High recombinant protein productivity in mammalian cell lines is often associated with phenotypic changes in protein content, energy metabolism, and cell growth, but the key determinants that regulate productivity are still not clearly understood. The mammalian target of rapamycin (mTOR) signalling pathway has emerged as a central regulator for many cellular processes including cell growth, apoptosis, metabolism, and protein synthesis. This role of this pathway changes in response to diverse environmental cues and allows the upstream proteins that respond directly to extracellular signals (such as nutrient availability, energy status, and physical stresses) to communicate with downstream effectors which, in turn, regulate various essential cellular processes. Results In this study, we have performed a transcriptomic analysis using a pathway-focused polymerase chain reaction (PCR) array to compare the expression of 84 target genes related to the mTOR signalling in two recombinant CHO cell lines with a 17.4-fold difference in specific monoclonal antibody productivity (qp). Eight differentially expressed genes that exhibited more than a 1.5-fold change were identified. Pik3cd (encoding the Class 1A catalytic subunit of phosphatidylinositol 3-kinase [PI3K]) was the most differentially expressed gene having a 71.3-fold higher level of expression in the high producer cell line than in the low producer. The difference in the gene’s transcription levels was confirmed at the protein level by examining expression of p110δ. Conclusion Expression of p110δ correlated with specific productivity (qp) across six different CHO cell lines, with a range of expression levels from 3 to 51 pg/cell/day, suggesting that p110δ may be a key factor in regulating productivity in recombinant cell lines.
Collapse
Affiliation(s)
| | | | - Mohamed Al-Rubeai
- School of Chemical and Bioprocess Engineering and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.
| |
Collapse
|
18
|
Cheng CC, Hsueh CM, Chen CY, Chen TH, Hsu SL. Interleukin-6 upregulates paraoxonase 1 gene expression via an AKT/NF-κB-dependent pathway. Biochem Biophys Res Commun 2013; 437:55-61. [PMID: 23791833 DOI: 10.1016/j.bbrc.2013.06.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 06/11/2013] [Indexed: 01/01/2023]
Abstract
The aim of this study is to investigate the relationship between paraoxonase 1 (PON1) and atherosclerosis-related inflammation. In this study, human hepatoma HepG2 cell line was used as a hepatocyte model to examine the effects of the pro-inflammatory cytokines on PON1 expression. The results showed that IL-6, but not TNF-α and IL-1β, significantly increased both the function and protein level of PON1; data from real-time RT-PCR analysis revealed that the IL-6-induced PON1 expression occurred at the transcriptional level. Increase of IκB kinase activity and IκB phosphorylation, and reduction of IκB protein level were also observed in IL-6-treated HepG2 cells compared with untreated culture. This event was accompanied by increase of NF-κB-p50 and -p65 nuclear translocation. Moreover, treatment with IL-6 augmented the DNA binding activity of NF-κB. Furthermore, pharmacological inhibition of NF-κB activation by PDTC and BAY 11-7082, markedly suppressed the IL-6-mediated PON1 expression. In addition, IL-6 increased the levels of phosphorylated protein kinase B (PKB, AKT). An AKT inhibitor LY294002 effectively suppressed IKK/IκB/NF-κB signaling and PON1 gene expression induced by IL-6. Our findings demonstrate that IL-6 upregulates PON1 gene expression through an AKT/NF-κB signaling axis in human hepatocyte-derived HepG2 cell line.
Collapse
Affiliation(s)
- Chi-Chih Cheng
- Department of Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | | | | | | | | |
Collapse
|
19
|
Cheng CC, Wu LC, Lai JM, Chen CT, Hsueh CM, Hsu SL. Ethanol Extract ofGraptopetalum paraguayenseUpregulates Paraoxonase 1 Gene Expression via an AKT/NF-κB-Dependent Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2012; 40:357-72. [DOI: 10.1142/s0192415x12500280] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Human serum paraoxonase 1 (PON1), a calcium-dependent ester hydrolase, protects against the oxidative modification of low-density lipoprotein (LDL) and is a major anti-atherosclerotic component of high-density lipoprotein (HDL). Graptopetalum paraguayense, a folk herbal medicine commonly used in Taiwan, has antioxidative, anti-inflammatory, anti-hypertensive, and anti-atherogenic properties. The effects of G. paraguayense on the activity and/or expression of PON1 were examined using various extracts of the plant; extracts were made in water (GPWE), 50% ethanol (GP50E), and 95% ethanol (GP95E). Of these extracts, GP50E was found to be the most effective at increasing the function and expression of PON1 in a human hepatoma HepG2 cell line. Data from electrophoretic mobility shift assays and promoter-reporter luciferase analyses demonstrated that the DNA binding activity and transactivation ability of NF-κB were enhanced by GP50E. Treatment with NF-κB inhibitors, pyrrolidine dithiocarbamate, and BAY 11-7082 significantly attenuated GP50E-induced PON1 production and NF-κB transactivation activity. In addition, GP50E increased the levels of phosphorylated protein kinase B (PKB/AKT). Pharmacological inhibition of AKT by LY294002 effectively suppressed NF-κB activation and PON1 gene expression, suggesting that AKT was an upstream regulator of GP50E-mediated biological events. Overall, the results show that GP50E up-regulated PON1 gene expression via an AKT/NF-κB-dependent signaling pathway in human hepatoma HepG2 cells. This observation led to the conclusion that the anti-atherogenic characteristics of G. paraguayense are modulated, at least in part, via the up-regulation of hepatocyte PON1 gene expression.
Collapse
Affiliation(s)
- Chi-Chih Cheng
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Li-Chen Wu
- Department of Applied Chemistry, National Chi Nan University, Puli, Nantou, Taiwan
| | - Jin-Mei Lai
- Department of Life Science, Fu Jen Catholic University, Taipei County, Taiwan
| | - Chen-Ting Chen
- Department of Laboratory Medicine, Kuang Tien General Hospital, Taichung, Taiwan
| | - Chi-Mei Hsueh
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Shih-Lan Hsu
- Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan
| |
Collapse
|
20
|
|
21
|
Yu J, Akishita M, Eto M, Ogawa S, Son BK, Kato S, Ouchi Y, Okabe T. Androgen receptor-dependent activation of endothelial nitric oxide synthase in vascular endothelial cells: role of phosphatidylinositol 3-kinase/akt pathway. Endocrinology 2010; 151:1822-8. [PMID: 20194727 DOI: 10.1210/en.2009-1048] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mechanisms of testosterone-induced vasodilatation are not fully understood. This study investigated the effect of testosterone on nitric oxide (NO) synthesis and its molecular mechanism using human aortic endothelial cells (HAEC). Testosterone at physiological concentrations (1-100 nm) induced a rapid (15-30 min) increase in NO production, which was associated with phosphorylation and activation of endothelial NO synthase (eNOS). Then, the involvement of the androgen receptor (AR), which is abundantly expressed in HAEC, was examined. The effect of testosterone on eNOS activation and NO production were abolished by pretreatment with an AR antagonist nilutamide and by transfection with AR small interference RNA. In contrast, testosterone-induced eNOS phosphorylation was unchanged by pretreatment with an aromatase inhibitor or by transfection with ERalpha small interference RNA. 5alpha-Dihydrotestosterone, a nonaromatizable androgen, also stimulated eNOS phosphorylation. Next, the signaling cascade that leads to eNOS phosphorylation was explored. Testosterone stimulated rapid phosphorylation of Akt in a time- and dose-dependent manner, with maximal response at 15-60 min. The rapid phosphorylation of eNOS or NO production induced by testosterone was inhibited by Akt inhibitor SH-5 or by phosphatidylinositol (PI) 3-kinase inhibitor wortmannin. Co-immunoprecipitation assays revealed a testosterone-dependent interaction between AR and the p85alpha subunit of PI3-kinase. In conclusion, testosterone rapidly induces NO production via AR-dependent activation of eNOS in HAEC. Activation of PI3-kinase/Akt signaling and the direct interaction of AR with p85alpha are involved, at least in part, in eNOS phosphorylation.
Collapse
Affiliation(s)
- Jing Yu
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Abstract
Diabetic neuropathy presents a major public health problem. It is defined by the symptoms and signs of peripheral nerve dysfunction in diabetic patients, in whom other causes of neuropathy have been excluded. Pathogenetic mechanisms that have been implicated in diabetic neuropathy are: a) increased flux through the polyol pathway, leading to accumulation of sorbitol, a reduction in myo-inositol, and an associated reduced Na+-K+-ATPase activity, and b) endoneurial microvascular damage and hypoxia due to nitric oxide inactivation by increased oxygen free radical activity. Alpha-lipoic acid seems to delay or reverse peripheral diabetic neuropathy through its multiple antioxidant properties. Treatment with alpha-lipoic acid increases reduced glutathione, an important endogenous antioxidant. In clinical trials, 600 mg alpha-lipoic acid has been shown to improve neuropathic deficits. This review focuses on the relationship of alpha-lipoic acid and auto-oxidative glycosylation. It discusses the impact of alpha-lipoic acid on hyperglycemia-induced oxidative stress, and examines the role of alpha-lipoic acid in preventing glycation process and nerve hypoxia.
Collapse
Affiliation(s)
- Natalia Vallianou
- Department of Internal Medicine, Polykliniki General Hospital, 3 Pireos Str., 10552 Athens, Greece
| | | | | |
Collapse
|
24
|
Pendyala S, Usatyuk PV, Gorshkova IA, Garcia JG, Natarajan V. Regulation of NADPH oxidase in vascular endothelium: the role of phospholipases, protein kinases, and cytoskeletal proteins. Antioxid Redox Signal 2009; 11:841-60. [PMID: 18828698 PMCID: PMC2850292 DOI: 10.1089/ars.2008.2231] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The generation of reactive oxygen species (ROS) in the vasculature plays a major role in the genesis of endothelial cell (EC) activation and barrier function. Of the several potential sources of ROS in the vasculature, the endothelial NADPH oxidase family of proteins is a major contributor of ROS associated with lung inflammation, ischemia/reperfusion injury, sepsis, hyperoxia, and ventilator-associated lung injury. The NADPH oxidase in lung ECs has most of the components found in phagocytic oxidase, and recent studies show the expression of several homologues of Nox proteins in vascular cells. Activation of NADPH oxidase of nonphagocytic vascular cells is complex and involves assembly of the cytosolic (p47(phox), p67(phox), and Rac1) and membrane-associated components (Noxes and p22(phox)). Signaling pathways leading to NADPH oxidase activation are not completely defined; however, they do appear to involve the cytoskeleton and posttranslation modification of the components regulated by protein kinases, protein phosphatases, and phospholipases. Furthermore, several key components regulating NADPH oxidase recruitment, assembly, and activation are enriched in lipid microdomains to form a functional signaling platform. Future studies on temporal and spatial localization of Nox isoforms will provide new insights into the role of NADPH oxidase-derived ROS in the pathobiology of lung diseases.
Collapse
|
25
|
Abstract
The regulation of phosphoinositide (PI) 3-kinase activities has been linked to many normal and disease-related processes, including cell survival, cell growth and proliferation, cell differentiation, cell motility, and intracellular vesicle trafficking. However, as the family of enzymes has now grown to include eight true members, in three functional classes, plus several related protein kinases that are also inhibited by the widely used PI 3-kinase selective inhibitors, wortmannin and LY294002, extended methodologies are required to identify which type of kinase is involved in a particular cellular process, or protein complex, under study. A robust in vitro PI 3-kinase assay, suitable for use with immunoprecipitates, or purified proteins, is described here together with a series of modifications of substrate and assay conditions that will aid researchers in the identification of the particular class and isoform of PI 3-kinase that is involved in a signaling process under investigation.
Collapse
Affiliation(s)
- Michael J Fry
- School of Biological Sciences, Division of Biomolecular Science, University of Reading, Whiteknights, Reading, Berkshire, UK.
| |
Collapse
|
26
|
Qiu W, Federico L, Naples M, Avramoglu RK, Meshkani R, Zhang J, Tsai J, Hussain M, Dai K, Iqbal J, Kontos CD, Horie Y, Suzuki A, Adeli K. Phosphatase and tensin homolog (PTEN) regulates hepatic lipogenesis, microsomal triglyceride transfer protein, and the secretion of apolipoprotein B-containing lipoproteins. Hepatology 2008; 48:1799-809. [PMID: 19026012 PMCID: PMC4544759 DOI: 10.1002/hep.22565] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Hepatic apolipoprotein B (apoB) lipoprotein production is metabolically regulated via the phosphoinositide 3-kinase cascade; however, the role of the key negative regulator of this pathway, the tumor suppressor phosphatase with tensin homology (PTEN), is unknown. Here, we demonstrate that hepatic protein levels of apoB100 and microsomal triglyceride transfer protein (MTP) are significantly down-regulated (73% and 36%, respectively) in the liver of PTEN liver-specific knockout (KO) mice, and this is accompanied by increased triglyceride (TG) accumulation and lipogenic gene expression, and reduced hepatic apoB secretion in freshly isolated hepatocytes. MTP protein mass and lipid transfer activity were also significantly reduced in liver of PTEN KO mice. Overexpression of the dominant negative mutant PTEN C/S124 (adenovirus expressing PTEN C/S mutant [AdPTENC/S]) possessing constitutive phospoinositide 3-kinase activity in HepG2 cells led to significant reductions in both secreted apoB100 and cellular MTP mass (76% and 34%, respectively), and increased messenger RNA (mRNA) levels of sterol regulatory element binding protein 1c (SREBP-1c), fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC). Reduced apoB100 secretion induced by AdPTENC/S was associated with increased degradation of newly-synthesized cellular apoB100, in a lactacystin-sensitive manner, suggesting enhanced proteasomal degradation. AdPTENC/S also reduced apoB-lipoprotein production in McA-RH7777 and primary hamster hepatocytes. Our findings suggest a link between PTEN expression and hepatic production of apoB-containing lipoproteins. We postulate that perturbations in PTEN not only may influence hepatic insulin signaling and hepatic lipogenesis, but also may alter hepatic apoB-lipoprotein production and the MTP stability. On loss of PTEN activity, increased lipid substrate availability in the face of reduced hepatic lipoprotein production capacity can rapidly lead to hepatosteatosis and fatty liver.
Collapse
Affiliation(s)
- Wei Qiu
- Division of Clinical Biochemistry, Department of Clinical Biochemistry and Pathobiology, Hospital for Sick Children, University of Toronto, Ontario, Canada
| | - Lisa Federico
- Division of Clinical Biochemistry, Department of Clinical Biochemistry and Pathobiology, Hospital for Sick Children, University of Toronto, Ontario, Canada
| | - Mark Naples
- Division of Clinical Biochemistry, Department of Clinical Biochemistry and Pathobiology, Hospital for Sick Children, University of Toronto, Ontario, Canada
| | - Rita Kohen Avramoglu
- Division of Clinical Biochemistry, Department of Clinical Biochemistry and Pathobiology, Hospital for Sick Children, University of Toronto, Ontario, Canada
| | - Reza Meshkani
- Division of Clinical Biochemistry, Department of Clinical Biochemistry and Pathobiology, Hospital for Sick Children, University of Toronto, Ontario, Canada
| | - Jing Zhang
- Division of Clinical Biochemistry, Department of Clinical Biochemistry and Pathobiology, Hospital for Sick Children, University of Toronto, Ontario, Canada
| | - Julie Tsai
- Division of Clinical Biochemistry, Department of Clinical Biochemistry and Pathobiology, Hospital for Sick Children, University of Toronto, Ontario, Canada
| | - Mahmood Hussain
- Department of Anatomy and Cell Biology, SUNY-Downstate, Brooklyn, NY
| | - Kezhi Dai
- Department of Anatomy and Cell Biology, SUNY-Downstate, Brooklyn, NY
| | - Jahangir Iqbal
- Department of Anatomy and Cell Biology, SUNY-Downstate, Brooklyn, NY
| | - Christopher D. Kontos
- Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, NC
| | - Yasuo Horie
- Department of Gastroenterology, Akita University School of Medicine, Akita, Japan
| | - Akira Suzuki
- Department of Molecular Biology, Akita University School of Medicine, Akita, Japan
| | - Khosrow Adeli
- Division of Clinical Biochemistry, Department of Clinical Biochemistry and Pathobiology, Hospital for Sick Children, University of Toronto, Ontario, Canada
| |
Collapse
|
27
|
Pri-Tal BM, Brown JM, Riehle MA. Identification and characterization of the catalytic subunit of phosphatidylinositol 3-kinase in the yellow fever mosquito Aedes aegypti. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 38:932-939. [PMID: 18718536 DOI: 10.1016/j.ibmb.2008.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 07/22/2008] [Accepted: 07/22/2008] [Indexed: 05/26/2023]
Abstract
We characterized the catalytic subunit of phosphatidylinositol 3-kinase in Aedes aegypti (Aaegp110). Aaegp110 is an essential component of the insulin/ insulin growth factor I signaling (IIS) cascade, which regulates aging, reproduction, and other physiological processes in diverse organisms. The Aaegp110 gene encodes five putative domains (adapter binding, ras binding, C2, helical, and PI3-kinase) identified by sequence homology with other p110 proteins. Aaegp110 transcript was expressed during all A. aegypti life stages except late pupae, with particularly high levels in embryos. In female tissues, Aaegp110 transcript and protein were strongly expressed in ovaries, and moderately expressed in midguts, fat bodies and heads. The importance of IIS in mosquito reproduction led us to examine Aaegp110 ovarian expression during reproduction. Aaegp110 was expressed in ovaries prior to and during the first 24h post-bloodmeal, but undetectable 36-48 h post-bloodmeal. Following oviposition Aaegp110 protein levels returned to pre-bloodmeal levels. In reproductively arrested ovaries, Aaegp110 was present predominantly in the cytoplasm of follicle cells surrounding the oocyte. In vitro stimulation of the ovaries with 17 microM bovine insulin resulted in translocation of Aaegp110 from the cytoplasm to cell membrane in 15s. Lower concentrations (0.17 microM) also recruited Aaegp110 to the cell membrane.
Collapse
|
28
|
Schoijet AC, Miranda K, Girard-Dias W, de Souza W, Flawiá MM, Torres HN, Docampo R, Alonso GD. A Trypanosoma cruzi phosphatidylinositol 3-kinase (TcVps34) is involved in osmoregulation and receptor-mediated endocytosis. J Biol Chem 2008; 283:31541-50. [PMID: 18801733 DOI: 10.1074/jbc.m801367200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Trypanosoma cruzi, the etiological agent of Chagas disease, has the ability to respond to a variety of environmental changes during its life cycle both in the insect vector and in the vertebrate host. Because regulation of transcription initiation seems to be nonfunctional in this parasite, it is important to investigate other regulatory mechanisms of adaptation. Regulatory mechanisms at the level of signal transduction pathways involving phosphoinositides are good candidates for this purpose. Here we report the identification of the first phosphatidylinositol 3-kinase (PI3K) in T. cruzi, with similarity with its yeast counterpart, Vps34p. TcVps34 specifically phosphorylates phosphatidylinositol to produce phosphatidylinositol 3-phosphate, thus confirming that it belongs to class III PI3K family. Overexpression of TcVps34 resulted in morphological and functional alterations related to vesicular trafficking. Although inhibition of TcVps34 with specific PI3K inhibitors, such as wortmannin and LY294,000, resulted in reduced regulatory volume decrease after hyposmotic stress, cells overexpressing this enzyme were resistant to these inhibitors. Furthermore, these cells were able to recover their original volume faster than wild type cells when they were submitted to severe hyposmotic stress. In addition, in TcVps34-overexpressing cells, the activities of vacuolar-H+-ATPase and vacuolar H+-pyrophosphatase were altered, suggesting defects in the acidification of intracellular compartments. Furthermore, receptor-mediated endocytosis was partially blocked although fluid phase endocytosis was not affected, confirming a function for TcVps34 in membrane trafficking. Taken together, these results strongly support that TcVps34 plays a prominent role in vital processes for T. cruzi survival such as osmoregulation, acidification, and vesicular trafficking.
Collapse
Affiliation(s)
- Alejandra C Schoijet
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas yTécnicas, Universidad de Buenos Aires, Vuelta de Obligado 2490 (1428), Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Fuhrman CB, Kilgore J, LaCoursiere YD, Lee CM, Milash BA, Soisson AP, Zempolich KA. Radiosensitization of cervical cancer cells via double-strand DNA break repair inhibition. Gynecol Oncol 2008; 110:93-8. [PMID: 18589211 DOI: 10.1016/j.ygyno.2007.08.073] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 08/17/2007] [Accepted: 08/20/2007] [Indexed: 02/01/2023]
Abstract
PURPOSE LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor, has been found to radiosensitize various human cancer cells. However, its potential to act as an effective therapeutic agent is diminished by its toxicity levels. The purposes of this study were to determine the mechanism by which LY294002 radiosensitizes. MATERIALS AND METHODS Cell growth curves and clonogenic assays were performed with increasing LY294002 exposure times proximate to the radiation dose. Protein levels of downstream PI3K effectors were analyzed. Detection of phosphorylated histone H2AX (gammaH2AX) was used to identify DNA double-strand breaks at various time points post-radiation. RESULTS LY294002 significantly radiosensitized HeLa cervical cancer cells when administered for just 12 h following radiation. Cell growth curves also decreased with brief LY294002 application. DNA double-strand breaks are typically repaired within 2-6 h following radiation. Interestingly, at 48, 72, and 96 h post-irradiation, gammaH2AX was still significantly elevated in cells radiated in combination with LY294002. Protein expressions of ATM and ATR downstream effectors showed no differences among the treated groups, however, DNA-PK activity was significantly inhibited by LY294002. CONCLUSIONS These results lead us to conclude that the central mechanism by which LY294002 radiosensitizes is via DNA-PK inhibition which induces DNA double-strand break repair inhibition. We are currently investigating radiosensitization induced by DNA-PK-specific inhibition in efforts to find a less toxic, yet equally effective, chemotherapeutic agent than LY294002.
Collapse
Affiliation(s)
- Christa B Fuhrman
- Department of Gynecologic Oncology, The University of Utah, 1950 Circle of Hope, Suite 6700, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Weinger JG, Gohari P, Yan Y, Backer JM, Varnum B, Shafit-Zagardo B. In brain, Axl recruits Grb2 and the p85 regulatory subunit of PI3 kinase; in vitro mutagenesis defines the requisite binding sites for downstream Akt activation. J Neurochem 2008; 106:134-46. [PMID: 18346204 DOI: 10.1111/j.1471-4159.2008.05343.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Axl is a receptor tyrosine kinase implicated in cell survival following growth factor withdrawal and other stressors. The binding of Axl's ligand, growth arrest-specific protein 6 (Gas6), results in Axl autophosphorylation, recruitment of signaling molecules, and activation of downstream survival pathways. Pull-down assays and immunoprecipitations using wildtype and mutant Axl transfected cells determined that Axl directly binds growth factor receptor-bound protein 2 (Grb2) at pYVN and the p85 subunit of phosphatidylinositol-3 kinase (PI3 kinase) at two pYXXM sites (pY779 and pY821). Also, p85 can indirectly bind to Axl via an interaction between p85's second proline-rich region and the N-terminal SH3 domain of Grb2. Further, Grb2 and p85 can compete for binding at the pY821VNM site. Gas6-stimulation of Axl-transfected COS7 cells recruited activated PI3 kinase and phosphorylated Akt. An interaction between Axl, p85 and Grb2 was confirmed in brain homogenates, enriched populations of O4+ oligodendrocytes, and O4- flow-through prepared from day 10 mouse brain, indicating that cells with active Gas6/Axl signal through Grb2 and the PI3 kinase/Akt pathways.
Collapse
Affiliation(s)
- Jason G Weinger
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
31
|
Dilly AK, Rajala RVS. Insulin growth factor 1 receptor/PI3K/AKT survival pathway in outer segment membranes of rod photoreceptors. Invest Ophthalmol Vis Sci 2008; 49:4765-73. [PMID: 18566464 DOI: 10.1167/iovs.08-2286] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
PURPOSE The authors previously reported that physiological light induces the tyrosine phosphorylation of insulin receptors (IRs), which leads to the activation of the phosphoinositide 3-kinase (PI3K) and Akt (serine/threonine protein kinase B) survival pathway in rod photoreceptor cells. Tissue-specific deletion of IRs from photoreceptors resulted in stress-induced photoreceptor degeneration. Insulin growth factor 1 receptor (IGF-1R) is highly related in sequence and structure to the IR and shares 70% sequence identity overall and 84% identity within the tyrosine kinase domain. The role of IGF-1R in photoreceptor function is unknown. In this study the authors examined IGF-1R signaling in rod outer segment (ROS) membranes. METHODS IGF-1R localization was examined in the plasma and disc membranes of ROS. Activation of the IGF-1R/PI3K/Akt pathway was analyzed using specific antibodies against phospho-tyrosine, IGF-1R, and phospho-Akt. PI3K activity was determined in the anti-phospho-tyrosine and anti-IGF-1R immunoprecipitates. Glutathione-S-transferase fusion proteins containing two Src homology 2 (SH2) domains of the p85 subunit of PI3K and their mutants were used to study the molecular interaction between IGF-1R and p85. In vivo IGF-1R signaling was studied in rats exposed to physiological light or to constant light. RESULTS IGF-1R is predominately localized to plasma membranes of ROS. These studies indicate that light stress results in an increase in tyrosine phosphorylation of IGF-1R and an increase in PI3K enzyme activity in anti-phosphotyrosine and anti-IGF-1R immunoprecipitates of ROS and retinal homogenates. The authors observed that light stress induces tyrosine phosphorylation of IGF-1R in ROS membranes, which leads to the binding of p85 through N-SH2 and C-SH2 domains. Finally, the authors observed a significant activation of Akt in light-stressed retinas, indicating activation of the Akt survival pathway downstream of IGF-1R activation. CONCLUSIONS Light stress induced the activation of PI3K through activation and binding of IGF-1R, which leads to activation of the Akt survival pathway in photoreceptors.
Collapse
Affiliation(s)
- Ashok K Dilly
- Department of Ophthalmology, Dean A McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | |
Collapse
|
32
|
Zhu Z, He X, Johnson C, Stoops J, Eaker AE, Stoffer DS, Bell A, Zarnegar R, DeFrances MC. PI3K is negatively regulated by PIK3IP1, a novel p110 interacting protein. Biochem Biophys Res Commun 2007; 358:66-72. [PMID: 17475214 DOI: 10.1016/j.bbrc.2007.04.096] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Revised: 04/09/2007] [Accepted: 04/09/2007] [Indexed: 11/27/2022]
Abstract
Signaling initiated by Class Ia phosphatidylinositol-3-kinases (PI3Ks) is essential for cell proliferation and survival. We discovered a novel protein we call PI3K interacting protein 1 (PIK3IP1) that shares homology with the p85 regulatory PI3K subunit. Using a variety of in vitro and cell based assays, we demonstrate that PIK3IP1 directly binds to the p110 catalytic subunit and down modulates PI3K activity. Our studies suggest that PIK3IP1 is a new type of PI3K regulator.
Collapse
Affiliation(s)
- Zhenqi Zhu
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Tong Q, Zheng L, Lin L, Li B, Wang D, Li D. Hypoxia-induced mitogenic factor promotes vascular adhesion molecule-1 expression via the PI-3K/Akt-NF-kappaB signaling pathway. Am J Respir Cell Mol Biol 2006; 35:444-56. [PMID: 16709959 PMCID: PMC2643264 DOI: 10.1165/rcmb.2005-0424oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Hypoxia-induced mitogenic factor (HIMF), also known as FIZZ1 (found in inflammatory zone 1), is an important player in lung inflammation. However, the effects of HIMF on cell adhesion molecules involved in lung inflammation remain largely unknown. In the present work, we tested whether HIMF modulates vascular adhesion molecule (VCAM)-1 expression, and dissected the possible signaling pathways that link HIMF to VCAM-1 upregulation. Recombinant HIMF protein, instilled intratracheally into adult mouse lungs, results in a significant increase of VCAM-1 production in vascular endothelial, alveolar type II, and airway epithelial cells. In cultured mouse endothelial SVEC 4-10 and lung epithelial MLE-12 cells, we demonstrated that HIMF induces VCAM-1 expression via the phosphatidylinositol-3 kinase (PI-3K)/Akt-nuclear factor (NF)-kappaB signaling pathway. Knockdown of HIMF expression by small interference RNA attenuated LPS-induced VCAM-1 expression in vitro. We showed that HIMF induced phosphorylation of the IkappaB kinase signalsome and, subsequently, IkappaBalpha, leading to activation of NF-kappaB. Meanwhile, VCAM-1 production was correspondingly upregulated. Blocking NF-kappaB signaling pathway by expression of dominant-negative mutants of IkappaB kinase and IkappaBalpha suppressed HIMF-induced VCAM-1 upregulation. HIMF also strongly induced phosphorylation of Akt. A dominant-negative mutant of PI-3K, Deltap85, as well as PI-3K inhibitor, LY294002, also blocked HIMF-induced NF-kappaB activation and attenuated VCAM-1 production. Furthermore, LY294002 pretreatment abolished HIMF-enhanced mononuclear cells adhesion to endothelial and epithelial cells. Our findings connect HIMF to signaling pathways that regulate inflammation, and thus reveal the critical roles that HIMF plays in lung inflammation.
Collapse
Affiliation(s)
- Qiangsong Tong
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Saint Louis University, 7th Floor, Desloge Towers, MO 63110-2539, USA
| | | | | | | | | | | |
Collapse
|
34
|
Tong Q, Zheng L, Lin L, Li B, Wang D, Huang C, Li D. VEGF is upregulated by hypoxia-induced mitogenic factor via the PI-3K/Akt-NF-kappaB signaling pathway. Respir Res 2006; 7:37. [PMID: 16512910 PMCID: PMC1434739 DOI: 10.1186/1465-9921-7-37] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Accepted: 03/02/2006] [Indexed: 01/16/2023] Open
Abstract
Background Hypoxia-induced mitogenic factor (HIMF) is developmentally regulated and plays an important role in lung pathogenesis. We initially found that HIMF promotes vascular tubule formation in a matrigel plug model. In this study, we investigated the mechanisms which HIMF enhances expression of vascular endothelial growth factor (VEGF) in lung tissues and epithelial cells. Methods Recombinant HIMF protein was intratracheally instilled into adult mouse lungs, VEGF expression was examined by immunohistochemical staining and Western blot. The promoter-luciferase reporter assay, RT-PCR, and Western blot were performed to examine the effects of HIMF on VEGF expression in mouse lung epithelial cell line MLE-12. The activation of NF-kappa B (NF-κB) and phosphorylation of Akt, IKK and IκBα were examined by luciferase assay and Western blot, respectively. Results Intratracheal instillation of HIMF protein resulted in significant increase of VEGF, mainly localized to airway epithelial and alveolar type II cells. Deletion of NF-κB binding sites within VEGF promoter abolished HIMF-induced VEGF expression in MLE-12 cells, suggesting that activation of NF-κB is essential for VEGF upregulation induced by HIMF. Stimulation of lung epithelial cells by HIMF resulted in phosphorylation of IKK and IκBα, leading to activation of NF-κB. In addition, HIMF strongly induced Akt phosphorylation, and suppression of Akt activation by specific inhibitors and dominant negative mutants for PI-3K, and IKK or IκBα blocked HIMF-induced NF-κB activation and attenuated HIMF-induced VEGF production. Conclusion These results suggest that HIMF enhances VEGF production in mouse lung epithelial cells in a PI-3K/Akt-NF-κB signaling pathway-dependent manner, and may play critical roles in pulmonary angiogenesis.
Collapse
Affiliation(s)
- Qiangsong Tong
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Liduan Zheng
- Department of Pathology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Li Lin
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Bo Li
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Danming Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Dechun Li
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
35
|
Avramoglu RK, Basciano H, Adeli K. Lipid and lipoprotein dysregulation in insulin resistant states. Clin Chim Acta 2006; 368:1-19. [PMID: 16480697 DOI: 10.1016/j.cca.2005.12.026] [Citation(s) in RCA: 190] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Revised: 12/15/2005] [Accepted: 12/20/2005] [Indexed: 12/30/2022]
Abstract
Insulin resistant states are commonly associated with an atherogenic dyslipidemia that contributes to significantly higher risk of atherosclerosis and cardiovascular disease. Indeed, disorders of carbohydrate and lipid metabolism co-exist in the majority of subjects with the "metabolic syndrome" and form the basis for the definition and diagnosis of this complex syndrome. The most fundamental defect in these patients is resistance to cellular actions of insulin, particularly resistance to insulin-stimulated glucose uptake. Insulin insensitivity appears to cause hyperinsulinemia, enhanced hepatic gluconeogenesis and glucose output, reduced suppression of lipolysis in adipose tissue leading to a high free fatty acid flux, and increased hepatic very low density lipoprotein (VLDL) secretion causing hypertriglyceridemia and reduced plasma levels of high density lipoprotein (HDL) cholesterol. Although the link between insulin resistance and dysregulation of lipoprotein metabolism is well established, a significant gap of knowledge exists regarding the underlying cellular and molecular mechanisms. Emerging evidence suggests that insulin resistance and its associated metabolic dyslipidemia result from perturbations in key molecules of the insulin signaling pathway, including overexpression of key phosphatases, downregulation and/or activation of key protein kinase cascades, leading to a state of mixed hepatic insulin resistance and sensitivity. These signaling changes in turn cause an increased expression of sterol regulatory element binding protein (SREBP) 1c, induction of de novo lipogensis and higher activity of microsomal triglyceride transfer protein (MTP), which together with high exogenous free fatty acid (FFA) flux collectively stimulate the hepatic production of apolipoprotein B (apoB)-containing VLDL particles. VLDL overproduction underlies the high triglyceride/low HDL-cholesterol lipid profile commonly observed in insulin resistant subjects.
Collapse
Affiliation(s)
- Rita Kohen Avramoglu
- Clinical Biochemistry Division, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada M5G 1X8
| | | | | |
Collapse
|
36
|
Noubir S, Lee JS, Reiner NE. Pleiotropic Effects of Phosphatidylinositol 3‐Kinase in Monocyte Cell Regulation. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2006; 81:51-95. [PMID: 16891169 DOI: 10.1016/s0079-6603(06)81002-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sanaâ Noubir
- Department of Medicine (Division of Infectious Diseases), University of British Columbia, Faculties of Medicine and Science, Vancouver, Coastal Health Research Institute (VCHRI), Vancouver, British Columbia, Canada V5Z 3J5
| | | | | |
Collapse
|
37
|
Asano T, Yao Y, Shin S, McCubrey J, Abbruzzese JL, Reddy SAG. Insulin receptor substrate is a mediator of phosphoinositide 3-kinase activation in quiescent pancreatic cancer cells. Cancer Res 2005; 65:9164-8. [PMID: 16230374 DOI: 10.1158/0008-5472.can-05-0779] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Phosphoinositide 3-kinase (PI3K) is activated in pancreatic cancer cells and plays a central role in their proliferation, survival, and drug resistance. Although the mechanism is unclear, PI3K activation in these cells could be due to physical interaction between its regulatory subunit (p85) and specific tyrosine kinases or their mediators. Consistent with this possibility, PI3K was precipitated with anti-phosphotyrosine antibodies and Akt phosphorylation was blocked by the tyrosine kinase inhibitors SU6656 and PD158780 in quiescent pancreatic cancer cells. Pull-down assays with a fusion protein (GST-p85NC-SH2), and coimmunoprecipitation studies, indicated that the insulin receptor substrate (IRS), and not the epidermal growth factor and insulin-like growth factor receptors or the Src tyrosine kinase, was physically associated with PI3K in these cells. Our data also indicated that SU6656 and PD158780 inhibited Akt activation in pancreatic cancer cells by interfering with the ability of IRS-1 to recruit PI3K. Furthermore, IRS-1 was phosphorylated on a p85-binding site (Y(612)), and IRS-specific small interfering RNA potently inhibited activation of PI3K and Akt in transfected cells. Taken together, these observations indicate that IRS is a mediator of PI3K activation in quiescent pancreatic cancer cells.
Collapse
Affiliation(s)
- Takayuki Asano
- Department of Gastrointestinal Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas and Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | | | | | | | | | | |
Collapse
|
38
|
Noubir S, Hmama Z, Reiner NE. Dual Receptors and Distinct Pathways Mediate Interleukin-1 Receptor-associated Kinase Degradation in Response to Lipopolysaccharide. J Biol Chem 2004; 279:25189-95. [PMID: 15069085 DOI: 10.1074/jbc.m312431200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipopolysaccharide (LPS) signaling leading to nuclear factor-kappaB activation in mononuclear phagocytes involves interleukin-1 receptor-associated kinase (IRAK), which is rapidly activated after exposure to agonist. Although it is known that IRAK also undergoes rapid inactivation/degradation in response to LPS, providing negative feedback leading to LPS tolerance, mechanisms governing IRAK degradation are not fully understood. In the present study, examination of LPS signaling showed that IRAK degradation was bimodal and involved dual receptors and distinct pathways. Rapid degradation of IRAK, occurring within 30 min of exposure to agonist, was shown to signal through CD14/TLR4 and was regulated by phosphatidylinositol 3-kinase. A second delayed wave of IRAK degradation occurred 2 h after exposure to LPS and was mediated by CR3 independently of phosphatidylinositol 3-kinase. Thus, multiple independent mechanisms have evolved to regulate IRAK degradation, likely reflecting the importance of limiting cellular responses to LPS. Recognition of a CR3-dependent, CD14/TLR4-independent pathway leading to IRAK degradation has implications for understanding modulation of LPS responses by cells with important immunoregulatory function such as dendritic cells that are CD14(-).
Collapse
Affiliation(s)
- Sanaâ Noubir
- Department of Medicine, Division of Infectious Diseases, University of British Columbia Faculties of Medicine and Science, British Columbia, Canada
| | | | | |
Collapse
|
39
|
Holleran JL, Fourcade J, Egorin MJ, Eiseman JL, Parise RA, Musser SM, White KD, Covey JM, Forrest GL, Pan SS. IN VITRO METABOLISM OF THE PHOSPHATIDYLINOSITOL 3-KINASE INHIBITOR, WORTMANNIN, BY CARBONYL REDUCTASE. Drug Metab Dispos 2004; 32:490-6. [PMID: 15100170 DOI: 10.1124/dmd.32.5.490] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The phosphatidylinositol 3-kinase inhibitor, wortmannin, is extensively used in molecular signaling studies and has been proposed as a potential antineoplastic agent. The failure to detect wortmannin in mouse plasma after i.v. administration prompted in vitro studies of wortmannin metabolism. Wortmannin was incubated with mouse tissue homogenates, homogenate fractions, or purified, recombinant human carbonyl reductase in the presence of specified cofactors and inhibitors. Reaction products were characterized and quantified with liquid chromatography (LC)/mass spectrometry. Reaction rates were characterized using Michaelis-Menten kinetics. Wortmannin was metabolized to a material 2 atomic mass units greater than wortmannin. Liver homogenate had the highest metabolic activity. Some metabolism occurred in kidney and lung homogenates. Very little metabolism occurred in brain or red blood cell homogenates. Liver S9 fraction and cytosol metabolized wortmannin in the presence of NADPH and, to a much lesser extent, in the presence of NADH. Microsomal metabolism of wortmannin was minimal. Purified, recombinant human carbonyl reductase metabolized wortmannin. Quercetin, a carbonyl reductase inhibitor, greatly decreased wortmannin metabolism by S9, cytosol, and carbonyl reductase. The K(M) for wortmannin metabolism by purified, recombinant human carbonyl reductase was 119 +/- 9 microM, and the V(max) was 58 +/- 9 nmol/min/mg of protein. LC-tandem mass spectrometry spectra indicated that carbonyl reductase metabolized wortmannin to 17-OH-wortmannin. Wortmannin reduction by carbonyl reductase may partly explain why wortmannin is not detected in plasma after being administered to mice. Metabolism of wortmannin to 17-OH-wortmannin has mechanistic, and possibly toxicologic, implications because 17-OH-wortmannin is 10-fold more potent an inhibitor of phosphatidylinositol 3-kinase than is wortmannin.
Collapse
Affiliation(s)
- Julianne L Holleran
- University of Pittsburgh Cancer Institute, Room G27E, Hillman Research Pavilion, 5117 Centre Avenue, Pittsburgh, PA 15213-1863
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
The interaction of particles with certain cell surface receptors initiates intracellular signalling pathways that ultimately lead to submembranous actin filament assembly, pseudopod extension, and the ingestion of the particles. Here, Steven Greenberg reviews recent evidence implicating various signalling events in phagocytosis--in particular, activation of tyrosine kinases and phosphatidylinositol 3-kinase--and speculates how they might regulate the actin cytoskeleton.
Collapse
Affiliation(s)
- S Greenberg
- Dept of Medicine, Pulmonary Division, Columbia University College of Physicians & Surgeons, 630 West 168th Street, New York, NY 10032, USA
| |
Collapse
|
41
|
Rajala RVS, Anderson RE. Light regulation of the insulin receptor in the retina. Mol Neurobiol 2004; 28:123-38. [PMID: 14576451 DOI: 10.1385/mn:28:2:123] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2003] [Accepted: 02/17/2003] [Indexed: 12/19/2022]
Abstract
The peptide hormone insulin binds its cognate cell-surface receptors to activate a coordinated biochemical-signaling network and to induce intracellular events. The retina is an integral part of the central nervous system and is known to contain insulin receptors, although their function is unknown. This article, describes recent studies that link the photobleaching of rhodopsin to tyrosine phosphorylation of the insulin receptor and subsequent activation of phosphoinositide 3- kinase (PI3K). We recently found a light-dependent increase in tyrosine phosphorylation of the insulin receptor-beta-subunit (IR beta) and an increase in PI3K enzyme activity in isolated rod outer segments (ROS) and in anti-phosphotyrosine (PY) and anti-IR beta immunoprecipitates of retinal homogenates. The light effect, which was localized to photoreceptor neurons, is independent of insulin secretion. Our results suggest that light induces tyrosine phosphorylation of IR beta in outer-segment membranes, which leads to the binding of p85 through its N-terminal SH2 domain and the generation of PI-3,4,5-P3. We suggest that the physiological role of this process may be to provide neuroprotection of the retina against light damage by activating proteins that protect against stress-induced apoptosis. The studies linking PI3K activation through tyrosine phosphorylation of IR beta now provide physiological relevance for the presence of these receptors in the retina.
Collapse
Affiliation(s)
- Raju V S Rajala
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, 73104, USA.
| | | |
Collapse
|
42
|
Tanaka Y, Kobayashi H, Suzuki M, Kanayama N, Terao T. Transforming growth factor-beta1-dependent urokinase up-regulation and promotion of invasion are involved in Src-MAPK-dependent signaling in human ovarian cancer cells. J Biol Chem 2003; 279:8567-76. [PMID: 14676209 DOI: 10.1074/jbc.m309131200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Urokinase-type plasminogen activator (uPA) has been implicated in tumor cell invasion and metastasis. We reported previously that transforming growth factor (TGF)-beta1 induces a dose- and time-dependent up-regulation of uPA mRNA and protein in highly invasive human ovarian cancer cell line HRA, leading to invasion. To further elucidate the mechanism of the invasive effect of TGF-beta1, we investigated which signaling pathway transduced by TGF-beta1 is responsible for this effect. Here, we show that 1) nontoxic concentrations of TGF-beta1 activated Src kinase; 2) TGF-beta1 rapidly phosphorylates ERK1/2 and Akt, but not p38; 3) pharmacological Src inhibitor PP2 or antisense (AS) c-Src oligodeoxynucleotide (ODN) treatment reduced TGF-beta1-induced phosphorylation of ERK1/2 and Akt by 85-90% compared with controls; 4) pharmacological inhibition of MAPK by PD98059 abrogated TGF-beta1-mediated Akt stimulation, whereas TGF-beta1-induced ERK1/2 stimulation was not inhibited by PI3K inhibitor LY294002 or AS-PI3K ODN transfection; 5) up-regulation of uPA mRNA in response to TGF-beta1 was almost totally blocked by PP2 and PD98059 and partially ( approximately 55%) by LY294002; 6) TGF-beta1-induced uPA mRNA up-regulation was inhibited by treatment with AS ODNs to c-Src or PI3K by 90 or 60%, respectively, compared with control ODN treatment; and 7) blockade of the release of the transcription factor NF-kappaB by pyrrolidinedithiocarbamate reduced the TGF-beta1-induced activation of the uPA gene by approximately 65%. In addition, curcumin, a blocker of the transcriptional factor AP-1, partially (35%) canceled this effect. Taken together, these data support a role for TGF-beta1 activation of two distinct pathways (Src-MAPK-PI3K-NF-kappaB-dependent and Src-MAPK-AP-1-dependent) for TGF-beta1-dependent uPA up-regulation and promotion of invasion.
Collapse
Affiliation(s)
- Yoshiko Tanaka
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Handayama 1-20-1, Hamamatsu, Shizuoka, 431-3192, Japan
| | | | | | | | | |
Collapse
|
43
|
Holleran JL, Egorin MJ, Zuhowski EG, Parise RA, Musser SM, Pan SS. Use of high-performance liquid chromatography to characterize the rapid decomposition of wortmannin in tissue culture media. Anal Biochem 2003; 323:19-25. [PMID: 14622954 DOI: 10.1016/j.ab.2003.08.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Although wortmannin is extensively used in molecular signaling studies, its stability in tissue culture medium has not been assessed precisely. Therefore, we used high-performance liquid chromatography (HPLC) and mass spectrometry (MS) to characterize the decomposition of wortmannin in five commonly used media. Wortmannin was added to medium alone or to medium supplemented with 10% unheated or heat-inactivated fetal bovine serum and incubated at 37 degrees C. After 0, 5, 10, 20, 35, and 60 min, wortmannin remaining in the medium was quantified, and its decay constant and half-life were calculated. In all media, wortmannin decomposed monoexponentially, with half-lives between 8 and 13 min. HPLC/MS indicated that wortmannin decomposed to materials with m/z 447, 433, 373, and 313. Acidification of material produced by incubation of wortmannin in tissue culture medium or 1 microM NaOH converted the material with m/z 447 back to one that cochromatographed with and had an m/z (429) identical to that of wortmannin. Therefore wortmannin is much less stable in tissue culture medium than previously thought although some apparent loss of wortmannin reflects reversible, pH-dependent opening of the lactone ring of wortmannin. This rapid and complex decomposition of wortmannin argues for care being taken in how it is used in in vitro studies.
Collapse
Affiliation(s)
- Julianne L Holleran
- Molecular Therapeutics/Drug Discovery Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | | | | | | | | | | |
Collapse
|
44
|
Kobayashi H, Suzuki M, Kanayama N, Terao T. Genetic down-regulation of phosphoinositide 3-kinase by bikunin correlates with suppression of invasion and metastasis in human ovarian cancer HRA cells. J Biol Chem 2003; 279:6371-9. [PMID: 14597629 DOI: 10.1074/jbc.m305749200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Using a cDNA microarray analysis, we previously found that exposure of a highly invasive ovarian cancer cell line HRA with bikunin, a Kunitz-type protease inhibitor, or bikunin gene overexpression markedly reduced phosphoinositide kinase (PI3K) p85 gene expression, demonstrating that PI3K may be a candidate bikunin target gene. To clarify how reduced levels of PI3K may confer repressed invasiveness, we transfected HRA cells with PI3K p85 antisense-oligodeoxynucleotide (AS-ODN) and compared the properties of the transfected cells with those of parental cells and sense (S)-ODN cells. We have also demonstrated previously that transforming growth factor-beta1 (TGF-beta1) stimulates urokinase-type plasminogen activator (uPA)-dependent invasion and metastasis of HRA cells. Here, we show that 1) TGF-beta1 induced a rapid increase of the PI3K activity that was accompanied by increased expression (5-fold) of the uPA mRNA; 2) pharmacological inhibition of PI3K or AS-PI3K ODN transfection inhibited TGF-beta1-stimulated Akt phosphorylation; 3) both PI3K pharmacological inhibitors and forced expression of AS-PI3K ODN reduced TGF-beta1-stimulated uPA mRNA and protein expression by approximately 70% compared with controls; 4) concentrations of PI3K inhibitors, sufficient to inhibit uPA up-regulation, inhibited TGF-beta1-dependent HRA cell invasion; 5) the AS-PI3K ODN cells had a decreased ability to invade the extracellular matrix layer as compared with controls; and 6) when the AS-PI3K ODN cells were injected intraperitoneally into nude mice, the mice developed smaller intraperitoneal tumors and showed longer survival. We conclude that PI3K plays an essential role in promoting uPA-mediated invasive phenotype in HRA cells. Our data identify a novel role for PI3K as a bikunin target gene on uPA up-regulation and invasion.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Handayama 1-20-1, Hamamatsu, Shizuoka, 431-3192, Japan.
| | | | | | | |
Collapse
|
45
|
Li X, Tupper JC, Bannerman DD, Winn RK, Rhodes CJ, Harlan JM. Phosphoinositide 3 kinase mediates Toll-like receptor 4-induced activation of NF-kappa B in endothelial cells. Infect Immun 2003; 71:4414-20. [PMID: 12874320 PMCID: PMC166052 DOI: 10.1128/iai.71.8.4414-4420.2003] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many of the proinflammatory effects of gram-negative bacteria are elicited by the interaction of bacterial lipopolysaccharide (LPS) with Toll-like receptor 4 (TLR4) expressed on host cells. TLR4 signaling leads to activation of NF-kappa B and transcription of many genes involved in the inflammatory response. In this study, we examined the signaling pathways involved in NF-kappa B activation by TLR4 signaling in human microvascular endothelial cells. Akt is a major downstream target of phosphoinositide 3 kinase (PI3-kinase), and PI3-kinase activation is necessary and sufficient for Akt phosphorylation. Consequently, Akt kinase activation was used as a measure of PI3-kinase activity. In a stable transfection system, dominant-negative mutants of myeloid differentiation factor 88 (MyD88) and interleukin-1 (IL-1) receptor-associated kinase 1 (IRAK-1) (MyD88-TIR and IRAK-DD, respectively) blocked Akt kinase activity in response to LPS and IL-1 beta. A dominant-negative mutant (Mal-P/H) of MyD88 adapter-like protein (Mal), a protein with homology to MyD88, failed to inhibit LPS- or IL-1 beta-induced Akt activity. Moreover, a dominant-negative mutant of p85 (p85-DN) inhibited the NF-kappa B luciferase activity, IL-6 production, and I kappa B alpha degradation elicited by LPS and IL-1 beta but not that stimulated by tumor necrosis factor alpha. The dominant-negative mutant of Akt partially inhibited the NF-kappa B luciferase activity evoked by LPS and IL-1 beta. However, expression of a constitutively activated Akt failed to induce NF-kappa B luciferase activity. These findings indicate that TLR4- and IL-1R-induced PI3-kinase activity is mediated by the adapter proteins MyD88 and IRAK-1 but not Mal. Further, these studies suggest that PI3-kinase is an important mediator of LPS and IL-1 beta signaling leading to NF-kappa B activation in endothelial cells and that Akt is necessary but not sufficient for NF-kappa B activation by TLR4.
Collapse
Affiliation(s)
- Xianwu Li
- Department of Medicine, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | |
Collapse
|
46
|
Foster FM, Traer CJ, Abraham SM, Fry MJ. The phosphoinositide (PI) 3-kinase family. J Cell Sci 2003; 116:3037-40. [PMID: 12829733 DOI: 10.1242/jcs.00609] [Citation(s) in RCA: 231] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Fiona M Foster
- School of Animal and Microbial Sciences, University of Reading, Whiteknights, PO Box 228, Reading RG6 6AJ, UK
| | | | | | | |
Collapse
|
47
|
Johansen C, Kragballe K, Henningsen J, Westergaard M, Kristiansen K, Iversen L. 1alpha,25-dihydroxyvitamin D3 stimulates activator protein 1 DNA-binding activity by a phosphatidylinositol 3-kinase/Ras/MEK/extracellular signal regulated kinase 1/2 and c-Jun N-terminal kinase 1-dependent increase in c-Fos, Fra1, and c-Jun expression in human keratinocytes. J Invest Dermatol 2003; 120:561-70. [PMID: 12648218 DOI: 10.1046/j.1523-1747.2003.12095.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1alpha,25-Dihydroxyvitamin D3 added to human keratinocytes increases differentiation through an activation of the transcription factor activator protein 1. We have previously reported that the 1alpha,25-dihydroxyvitamin D3-induced increase of activator protein 1 DNA binding activity is mediated by a protein kinase C-independent mechanism. The purpose of this study was to investigate further the mechanisms by which 1alpha,25-dihydroxyvitamin D3 modulates activator protein 1 DNA binding activity in cultured normal human keratinocytes. Western blotting experiments revealed that 1alpha,25-dihydroxyvitamin D3 caused a rapid and transient activation of the mitogen-activated protein kinases, extracellular signal regulated kinase 1/2 and c-Jun N-terminal kinase 1. 1alpha,25-Dihydroxyvitamin D3 also enhanced the expression of the activator protein 1 subunits, c-Fos, Fra1, and c-Jun as determined by northern and western blotting. The 1alpha,25-dihydroxyvitamin D3-induced activator protein 1 DNA binding activity was completely blocked by the MEK inhibitor PD 98059 indicating that the MEK/extracellular signal regulated kinase pathway is involved in the activation of activator protein 1. Transfection experiments showed that 1alpha,25-dihydroxyvitamin D3 also increased the activator protein 1-dependent transactivation, which was completely blocked by expression of a dominant negative Ras, suggesting that the 1alpha,25-dihydroxyvitamin D3-induced activator protein 1 activity involves Ras-dependent signaling. Furthermore, preincubation of the keratinocytes with the specific phosphatidylinositol 3-kinase inhibitors, Wortmannin and LY294002, demonstrated that the 1alpha,25-dihydroxyvitamin D3-induced activation of extracellular signal regulated kinase 1/2 and c-Jun N-terminal kinase 1 required phosphatidylinositol 3-kinase activity. Finally, preincubation of keratinocytes with a polyclonal antibody against the membrane receptor annexin II, blocked the 1alpha,25-dihydroxyvitamin D3-induced activation of extracellular signal regulated kinase 1/2 and c-Jun N-terminal kinase 1. Taken together, our results indicate that 1alpha,25-dihydroxyvitamin D3, via binding to the membrane receptor annexin II, induces activation of the phos-phatidylinositol 3-kinase/Ras/MEK/extracellular signal regulated kinase 1/2 and c-Jun N-terminal kinase 1 signal transduction pathway resulting in increased expression of c-Fos, Fra1, and c-Jun, and subsequently increased activator protein 1 DNA binding activity and gene transcription.
Collapse
Affiliation(s)
- Claus Johansen
- Department of Dermatology, Marselisborg Hospital, University of Aarhus, Denmark.
| | | | | | | | | | | |
Collapse
|
48
|
Rajala RVS, McClellan ME, Ash JD, Anderson RE. In vivo regulation of phosphoinositide 3-kinase in retina through light-induced tyrosine phosphorylation of the insulin receptor beta-subunit. J Biol Chem 2002; 277:43319-26. [PMID: 12213821 DOI: 10.1074/jbc.m206355200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recently, we have shown that phosphoinositide 3-kinase (PI3K) in bovine rod outer segment (ROS) is activated in vitro by tyrosine phosphorylation of the C-terminal tail of the insulin receptor (Rajala, R. V. S., and Anderson, R. E. (2001) Invest. Ophthal. Vis. Sci. 42, 3110-3117). In this study, we have investigated the in vivo mechanism of PI3K activation in the rodent retina and report the novel finding that light stimulates tyrosine phosphorylation of the beta-subunit of the insulin receptor (IRbeta) in ROS membranes, which leads to the association of PI3K enzyme activity with IRbeta. Retinas from light- or dark-adapted mice and rats were homogenized and immunoprecipitated with antibodies against phosphotyrosine, IRbeta, or the p85 regulatory subunit of PI3K, and PI3K activity was measured using PI-4,5-P(2) as substrate. We observed a light-dependent increase in tyrosine phosphorylation of IRbeta and an increase in PI3K enzyme activity in isolated ROS and in anti-phosphotyrosine and anti-IRbeta immunoprecipitates of retinal homogenates. The light effect was localized to photoreceptor neurons and is independent of insulin secretion. Our results suggest that light induces tyrosine phosphorylation of IRbeta in outer segment membranes, which leads to the binding of p85 through its N-terminal Src homology 2 domain and the generation of PI-3,4,5-P(3). We suggest that the physiological role of this process may be to provide neuroprotection of the retina against light damage by activating proteins that protect against stress-induced apoptosis.
Collapse
Affiliation(s)
- Raju V S Rajala
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA.
| | | | | | | |
Collapse
|
49
|
Morel JCM, Park CC, Zhu K, Kumar P, Ruth JH, Koch AE. Signal transduction pathways involved in rheumatoid arthritis synovial fibroblast interleukin-18-induced vascular cell adhesion molecule-1 expression. J Biol Chem 2002; 277:34679-91. [PMID: 12105209 DOI: 10.1074/jbc.m206337200] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vascular cell adhesion molecule (VCAM)-1 has been implicated in interactions between leukocytes and connective tissue, including rheumatoid arthritis (RA) synovial tissue fibroblasts. Such interactions within the synovium contribute to RA inflammation. Using phosphoinositide 3-kinase (PI3-kinase) inhibitor LY294002 and Src inhibitor PP2, we show that interleukin (IL)-18-induced ERK1/2 activation is Src kinase-dependent. Antisense (AS) c-Src oligonucleotide (ODN) treatment reduced IL-18-induced ERK1/2 expression by 32% compared with control, suggesting an upstream role of Src in ERK1/2 activation. AS c-Src ODN treatment also inhibited Akt expression by 74% compared with sense control. PI3-kinase inhibitor LY294002 or AS PI3-kinase ODN inhibited Akt expression. AS c-Src ODN inhibited Akt phosphorylation, confirming Src is upstream of PI3-kinase in IL-18-induced RA synovial fibroblast signaling. IL-18 induced a time-dependent activation of c-Src, Ras, and Raf-1, suggesting this signaling cascade plays a role in ERK activation. IL-18 directly activated Src kinase by more than 4-fold over basal levels by enzymatic assay. Electrophoretic mobility shift assay showed that activator protein-1 (AP-1) is activated by IL-18 through ERK and Src but not through PI3-kinase. In an alternate pathway, inhibition of IL-1 receptor-associated kinase-1 (IRAK) with AS ODN to IRAK reduced IL-18-induced expression of nuclear factor kappaB (NFkappaB). Finally, IL-18-induced cell surface VCAM-1 expression was inhibited by treatment with AS ODNs to c-Src, IRAK, PI3-kinase, and ERK1/2 by 57, 43, 41, and 32% compared with control sense ODN treatment, respectively. These data support a role for IL-18 activation of three distinct pathways during RA synovial fibroblast stimulation: two Src-dependent pathways and the IRAK/NFkappaB pathway. Targeting VCAM-1 signaling mechanisms may represent therapeutic approaches to inflammatory and angiogenic diseases characterized by adhesion molecule up-regulation.
Collapse
Affiliation(s)
- Jacques C M Morel
- Department of Medicine, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | | | | | |
Collapse
|
50
|
Moya de Juri MG, Magnarelli De Potas G, Pechen de D'Angelo AM. Alteration of thrombine-signaling mechanism by heptachlor in human platelets. J Biochem Mol Toxicol 2002; 16:189-96. [PMID: 12242688 DOI: 10.1002/jbt.10037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Heptachlor is a persistent organochlorine insecticide that has been detected in human tissues and fluids. The ability of heptachlor to interfere with platelet phosphoinositides metabolism and related signaling events stimulated by thrombin was evaluated. In vitro incubations with a concentration range of 1-100 microM heptachlor, prior to platelets activation, were performed. Experiments showed that 10 microM increased protein Kinase C (PKC) activity and phosphatidylinositolbiphosphate and phosphatidic acid phosphorylation. Simultaneously phosphatidylcholine and phosphatidylethanolamine breakdown were prevented. Similar effects were observed with HC 1 microM. However, heptachlor 100 microM increased phosphatidylinositolbiphosphate phosphorylation but reduced serine/threonine kinases activity. We propose that signal transduction steps downstream phospholipase C (PLC) are unphysiologically activated by heptachlor and facilitated by the increase in phosphatidylinositolbiphosphate, the substrate for PLC activity, thus producing an accumulation of phosphatidic acid. The elevated level of this compound itself or the transient increase in diacylglycerol produced may cause calcium mobilization and the activation of PKC. In contrast with the alterations observed in phospholipids and protein phosphorylation, no changes in aggregation properties were observed.
Collapse
Affiliation(s)
- María G Moya de Juri
- LIBIQUIMA, Universidad Nacional del Comahue, Buenos Aires 1400, 8300 Neuquén, Argentina
| | | | | |
Collapse
|