1
|
Mansoor MA, Stea TH, Slettan A, Perera E, Maddumage R, Kottahachchi D, Ali DS, Cabo R, Blomhoff R. Impact of single nucleotide polymorphisms (SNPs) in antioxidant-enzyme genes on the concentrations of folate, homocysteine and glutathione in plasma from healthy subjects after folic acid supplementation - a randomized controlled crossover trial. GENES & NUTRITION 2025; 20:1. [PMID: 39838297 PMCID: PMC11752798 DOI: 10.1186/s12263-024-00761-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/19/2024] [Indexed: 01/23/2025]
Abstract
BACKGROUND One-carbon metabolism links folate and methionine metabolism and this is essential for nucleotide synthesis in the cells. Alterations in one-carbon metabolism are associated with cardiovascular disease (CVD), type 2 diabetes and cancer. Our aim was to investigate whether SNPs in antioxidant-enzyme genes impact the concentrations of folate in serum (s-folate), plasma total homocysteine (p-tHcy) and total glutathione in plasma (p-tGSH) in healthy subjects after supplementation with folic acid. METHODS In a randomized, double blind, crossover study, healthy subjects received 0.8 mg folic acid per day or a placebo for two weeks. Twenty-four male, and sixty-seven female subjects participated in this study. Participants were aged 36.4 ± 14.8 years (mean ± SD). We studied SNPs in six genes by PCR methods. The concentrations of s-folate, p-tHcy and p-tGSH were measured in fasting samples with Cobas and an HPLC-fluorescence method. Student T-tests and ANOVA were used for the statistical calculations. MAIN FINDINGS The subjects with SNP (rs4880) in superoxide dismutase (SOD2) gene (CC) allele had higher concentrations of s-folate and lower concentrations of p-tHcy than subjects with (CT + TT) alleles, (p = 0.014 and p = 0.012). Contrary to SOD2 (CC) allele, the subjects with SNP (rs1001179) catalase (CAT) CC allele had lower concentrations of s-folate (p = 0.029), higher concentrations of p-tGSH (0.017) and higher concentrations of p-tHcy before and after folic acid supplementations (p = 0.015, p = 0.017) than the subjects with (CT + TT) allele. Glutathione transferase (theta)1 (GST-T1) genotype was associated with higher concentrations of s-folate than GST-T0 before (p = 0.025) and after folic acid supplementation (p = 0.047). SNP (rs1050450) in glutathione peroxidase (GPX1) had also impact on the concentrations of p-tGSH (p = 0.011) in healthy subjects. CONCLUSION SNPs in SOD2 (rs4880), CAT (rs1001179), and GST1 impact the concentrations of s-folate, and p-tHcy in healthy subjects before and after folic acid supplementation. Our findings suggest that SNPs in antioxidant-genes have a role in health and disease by impacting the concentrations of s-folate, p-tHcy and p-tGSH.
Collapse
Affiliation(s)
- Mohammad Azam Mansoor
- Department of Natural Sciences, University of Agder (UiA), Kristiansand, 4604, Norway.
| | - Tonje Holte Stea
- Department of Health and Nursing Sciences, University of Agder (UiA), Kristiansand, Norway
| | - Audun Slettan
- Department of Natural Sciences, University of Agder (UiA), Kristiansand, 4604, Norway
| | - Erandie Perera
- Department of Medical Laboratory Sciences, General Sir John Kotelawala Defence University (KDU), Colombo, Sri Lanka
| | - Ridmi Maddumage
- Department of Medical Laboratory Sciences, General Sir John Kotelawala Defence University (KDU), Colombo, Sri Lanka
| | - Darshana Kottahachchi
- Department of Medical Laboratory Sciences, General Sir John Kotelawala Defence University (KDU), Colombo, Sri Lanka
| | - Dhikra Saleem Ali
- Department of Natural Sciences, University of Agder (UiA), Kristiansand, 4604, Norway
| | - Rona Cabo
- Department of Natural Sciences, University of Agder (UiA), Kristiansand, 4604, Norway
| | - Rune Blomhoff
- Department of Nutrition, University of Oslo (UiO), Oslo, Norway
- Department of Clinical Service, Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
2
|
Ramani A, Hazra T, Mudgil S, Mudgil D. Emerging potential of whey proteins in prevention of cancer. FOOD AND HUMANITY 2024; 2:100199. [DOI: 10.1016/j.foohum.2023.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Nguyen NB, Le TT, Kang SW, Cha KH, Choi S, Youn HY, Jung SH, Kim M. Cornflower Extract and Its Active Components Alleviate Dexamethasone-Induced Muscle Wasting by Targeting Cannabinoid Receptors and Modulating Gut Microbiota. Nutrients 2024; 16:1130. [PMID: 38674820 PMCID: PMC11054969 DOI: 10.3390/nu16081130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Sarcopenia, a decline in muscle mass and strength, can be triggered by aging or medications like glucocorticoids. This study investigated cornflower (Centaurea cyanus) water extract (CC) as a potential protective agent against DEX-induced muscle wasting in vitro and in vivo. CC and its isolated compounds mitigated oxidative stress, promoted myofiber growth, and boosted ATP production in C2C12 myotubes. Mechanistically, CC reduced protein degradation markers, increased mitochondrial content, and activated protein synthesis signaling. Docking analysis suggested cannabinoid receptors (CB) 1 and 2 as potential targets of CC compounds. Specifically, graveobioside A from CC inhibited CB1 and upregulated CB2, subsequently stimulating protein synthesis and suppressing degradation. In vivo, CC treatment attenuated DEX-induced muscle wasting, as evidenced by enhanced grip strength, exercise performance, and modulation of muscle gene expression related to differentiation, protein turnover, and exercise performance. Moreover, CC enriched gut microbial diversity, and the abundance of Clostridium sensu stricto 1 positively correlated with muscle mass. These findings suggest a multifaceted mode of action for CC: (1) direct modulation of the muscle cannabinoid receptor system favoring anabolic processes and (2) indirect modulation of muscle health through the gut microbiome. Overall, CC presents a promising therapeutic strategy for preventing and treating muscle atrophy.
Collapse
Affiliation(s)
- Ngoc Bao Nguyen
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea; (N.B.N.); (T.T.L.); (S.W.K.); (S.C.); (H.-Y.Y.)
- Department of Biochemistry and Molecular Biology, College of Dentistry, Gangneung Wonju National University, Gangneung 25451, Republic of Korea
| | - Tam Thi Le
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea; (N.B.N.); (T.T.L.); (S.W.K.); (S.C.); (H.-Y.Y.)
| | - Suk Woo Kang
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea; (N.B.N.); (T.T.L.); (S.W.K.); (S.C.); (H.-Y.Y.)
| | - Kwang Hyun Cha
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea;
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju 26426, Republic of Korea
| | - Sowoon Choi
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea; (N.B.N.); (T.T.L.); (S.W.K.); (S.C.); (H.-Y.Y.)
| | - Hye-Young Youn
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea; (N.B.N.); (T.T.L.); (S.W.K.); (S.C.); (H.-Y.Y.)
| | - Sang Hoon Jung
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea; (N.B.N.); (T.T.L.); (S.W.K.); (S.C.); (H.-Y.Y.)
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Myungsuk Kim
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea; (N.B.N.); (T.T.L.); (S.W.K.); (S.C.); (H.-Y.Y.)
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju 26426, Republic of Korea
| |
Collapse
|
4
|
Suzuki-Karasaki M, Ochiai Y, Innami S, Okajima H, Suzuki-Karasaki M, Nakayama H, Suzuki-Karasaki Y. Ozone mediates the anticancer effect of air plasma by triggering oxidative cell death caused by H 2O 2 and iron. Eur J Cell Biol 2023; 102:151346. [PMID: 37572557 DOI: 10.1016/j.ejcb.2023.151346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/01/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023] Open
Abstract
Cold atmospheric plasmas and plasma-treated solutions (PTSs) have emerged as promising approaches in cancer treatment because of their tumor-selective actions. While oxidative stress is critical for their effects, the precise mechanisms, including chemical mediators, remain obscure. Previously, we reported that air plasma-activated medium (APAM) exhibited tumor-selective anticancer activity. The fragmentation of mitochondria and their asymmetrical assembly around the peripheral regions of the damaged nucleus, namely, monopolar perinuclear mitochondrial clustering (MPMC), proceed to the effect. Subsequently, we found that APAM had a substantial amount of O3 in addition to hydrogen peroxide (H2O2), nitrile (NO2-), and nitrate (NO3-). In the present study, we investigated the possible role of O3 in the anticancer effect. For this purpose, we created a nitrogen oxide-free ozonated medium ODM. ODM exhibited potent cytotoxicity against various cancer but not nonmalignant cells. ODM also increased MPMC, hydroxyl radicals, lipid peroxides, and their shifts to perinuclear sites in cancer cells. Catalase and iron chelation prevented these events and cytotoxicity. ODM also decreases the intracellular labile irons while increasing those within mitochondria. ODM had substantial H2O2, but this oxidant failed to cause MPMC and cytotoxicity. These results show that ODM can mimic the effects of APAM, including MPMC and tumor-selective anticancer effects. The findings suggest that O3 is critical in mediating the anticancer effects of APAM by triggering oxidative cell death caused by H2O2 and iron.
Collapse
Affiliation(s)
- Manami Suzuki-Karasaki
- Department of Research and Development, Plasma ChemiBio Laboratory, Nasushiobara, Tochigi, Japan; Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yushi Ochiai
- Department of Research and Development, Plasma ChemiBio Laboratory, Nasushiobara, Tochigi, Japan
| | - Shizuka Innami
- Department of Research and Development, Plasma ChemiBio Laboratory, Nasushiobara, Tochigi, Japan
| | - Hiroshi Okajima
- Communication&Control Systems Company, Tokyo Keiki Incorporation, Tokyo, Japan
| | - Miki Suzuki-Karasaki
- Department of Research and Development, Plasma ChemiBio Laboratory, Nasushiobara, Tochigi, Japan
| | - Hideki Nakayama
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | | |
Collapse
|
5
|
Vázquez-Meza H, Vilchis-Landeros MM, Vázquez-Carrada M, Uribe-Ramírez D, Matuz-Mares D. Cellular Compartmentalization, Glutathione Transport and Its Relevance in Some Pathologies. Antioxidants (Basel) 2023; 12:antiox12040834. [PMID: 37107209 PMCID: PMC10135322 DOI: 10.3390/antiox12040834] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Reduced glutathione (GSH) is the most abundant non-protein endogenous thiol. It is a ubiquitous molecule produced in most organs, but its synthesis is predominantly in the liver, the tissue in charge of storing and distributing it. GSH is involved in the detoxification of free radicals, peroxides and xenobiotics (drugs, pollutants, carcinogens, etc.), protects biological membranes from lipid peroxidation, and is an important regulator of cell homeostasis, since it participates in signaling redox, regulation of the synthesis and degradation of proteins (S-glutathionylation), signal transduction, various apoptotic processes, gene expression, cell proliferation, DNA and RNA synthesis, etc. GSH transport is a vital step in cellular homeostasis supported by the liver through providing extrahepatic organs (such as the kidney, lung, intestine, and brain, among others) with the said antioxidant. The wide range of functions within the cell in which glutathione is involved shows that glutathione’s role in cellular homeostasis goes beyond being a simple antioxidant agent; therefore, the importance of this tripeptide needs to be reassessed from a broader metabolic perspective.
Collapse
|
6
|
Ren J, Wang B, Li L, Li S, Ma Y, Su L, Liu G, Liu Y, Dai Y. Glutathione ameliorates the meiotic defects of copper exposed ovine oocytes via inhibiting the mitochondrial dysfunctions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114530. [PMID: 36630773 DOI: 10.1016/j.ecoenv.2023.114530] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/13/2022] [Accepted: 01/07/2023] [Indexed: 05/28/2023]
Abstract
Regardless of the essential role of copper (Cu) in the physiological regulation process of mammalian reproduction, excessive exposure to Cu triggers the meiotic defects of porcine oocytes via compromising the mitochondrial functions. However, the connections between the excessive Cu exposure and meiotic defects of ovine oocytes have not been reported. In this study, the effect of copper sulfate (CuSO4) exposure on the meiotic potentials of ovine oocytes was analyzed. Subsequently, the ameliorative effect of glutathione (GSH) supplementation on the meiotic defects of CuSO4 exposed ovine oocytes was investigated. For these purposes, the in vitro maturation (IVM) of ovine cumulus oocyte complexes (COCs) was conducted in the presence of 5, 10, 20 and 40 μg/mL of CuSO4 supplementation. Subsequently, different concentrations of GSH (2, 4 and 8 mM) were added to the IVM medium containing CuSO4 solution. After IVM, the assay, including nuclear maturation, spindle organization, chromosome alignment, cytoskeleton assembly, cortical granule (CGs) dynamics, mitochondrial function, reactive oxygen species (ROS) generation, apoptosis, epigenetic modification and fertilization capacity of ovine oocytes were performed. The results showed that excessive Cu exposure triggered the meiotic defects of ovine oocytes via promoting the mitochondrial dysfunction related oxidative stress damage. Moreover, the GSH supplementation, not only ameliorated the decreased maturation potential and fertilization defect of CuSO4 exposed oocytes, but inhibited the mitochondrial dysfunction related oxidative stress damage, ROS generation, apoptosis and altered H3K27me3 expression in the CuSO4 exposed oocytes. Combined with the gene expression pattern, the finding in the present study provided fundamental bases for the ameliorative effect of GSH supplementation on the meiotic defects of CuSO4 exposed oocytes via inhibiting the mitochondrial dysfunctions, further benefiting these potential applications of GSH supplementation in the mammalian IVM system and livestock breeding suffering from the excessive Cu exposure.
Collapse
Affiliation(s)
- Jingyu Ren
- College of Life Science, Inner Mongolia University, No. 235 West Univ. Road, Hohhot, Zip Code: 010021, Inner Mongolia, China
| | - Biao Wang
- Animal Husbandry Institute, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, No. 22 Zhaowuda Road, Hohhot, Zip Code: 010031, Inner Mongolia, China
| | - Liping Li
- College of Life Science, Inner Mongolia University, No. 235 West Univ. Road, Hohhot, Zip Code: 010021, Inner Mongolia, China
| | - Shubin Li
- Center of Reproductive Medicine, Inner Mongolia People's Hospital, No. 20 Zhaowuda Road, Hohhot, Zip Code: 010021, Inner Mongolia, China
| | - Yuzhen Ma
- Center of Reproductive Medicine, Inner Mongolia People's Hospital, No. 20 Zhaowuda Road, Hohhot, Zip Code: 010021, Inner Mongolia, China
| | - Liya Su
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao North Street, Hohhot, Zip Code: 010050, Inner Mongolia, China
| | - Gang Liu
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao North Street, Hohhot, Zip Code: 010050, Inner Mongolia, China.
| | - Yongbin Liu
- College of Life Science, Inner Mongolia University, No. 235 West Univ. Road, Hohhot, Zip Code: 010021, Inner Mongolia, China.
| | - Yanfeng Dai
- College of Life Science, Inner Mongolia University, No. 235 West Univ. Road, Hohhot, Zip Code: 010021, Inner Mongolia, China.
| |
Collapse
|
7
|
Unlu G, Prizer B, Erdal R, Yeh HW, Bayraktar EC, Birsoy K. Metabolic-scale gene activation screens identify SLCO2B1 as a heme transporter that enhances cellular iron availability. Mol Cell 2022; 82:2832-2843.e7. [PMID: 35714613 PMCID: PMC9356996 DOI: 10.1016/j.molcel.2022.05.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/14/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022]
Abstract
Iron is the most abundant transition metal essential for numerous cellular processes. Although most mammalian cells acquire iron through transferrin receptors, molecular players of iron utilization under iron restriction are incompletely understood. To address this, we performed metabolism-focused CRISPRa gain-of-function screens, which revealed metabolic limitations under stress conditions. Iron restriction screens identified not only expected members of iron utilization pathways but also SLCO2B1, a poorly characterized membrane carrier. SLCO2B1 expression is sufficient to increase intracellular iron, bypass the essentiality of the transferrin receptor, and enable proliferation under iron restriction. Mechanistically, SLCO2B1 mediates heme analog import in cellular assays. Heme uptake by SLCO2B1 provides sufficient iron for proliferation through heme oxygenases. Notably, SLCO2B1 is predominantly expressed in microglia in the brain, and primary Slco2b1-/- mouse microglia exhibit strong defects in heme analog import. Altogether, our work identifies SLCO2B1 as a microglia-enriched plasma membrane heme importer and provides a genetic platform to identify metabolic limitations under stress conditions.
Collapse
Affiliation(s)
- Gokhan Unlu
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Benjamin Prizer
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Ranya Erdal
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY 10065, USA; Medical Scientist Training Program, Hacettepe University Faculty of Medicine, Ankara 06230, Turkey
| | - Hsi-Wen Yeh
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Erol C Bayraktar
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Kıvanç Birsoy
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
8
|
Pan F, Lin X, Hao L, Wang T, Song H, Wang R. The Critical Role of Ferroptosis in Hepatocellular Carcinoma. Front Cell Dev Biol 2022; 10:882571. [PMID: 35800895 PMCID: PMC9255949 DOI: 10.3389/fcell.2022.882571] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/03/2022] [Indexed: 12/14/2022] Open
Abstract
Liver cancer is the sixth most frequently diagnosed cancer and the third dominant cause of cancer death worldwide. Ferroptosis is characterized as an iron-dependent form of regulated cell death, with accumulation of lipid peroxides to lethal amounts. Evidences have showed that ferroptosis is closely associated with HCC, but the mechanisms are still poorly understood. In this review, we mainly summarize the roles of several typical molecules as well as radiotherapy in regulating the ferroptosis process in HCC. Chances are that this review may help address specific issues in the treatment of HCC.
Collapse
|
9
|
Matuz-Mares D, Riveros-Rosas H, Vilchis-Landeros MM, Vázquez-Meza H. Glutathione Participation in the Prevention of Cardiovascular Diseases. Antioxidants (Basel) 2021; 10:1220. [PMID: 34439468 PMCID: PMC8389000 DOI: 10.3390/antiox10081220] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/18/2021] [Accepted: 07/23/2021] [Indexed: 01/31/2023] Open
Abstract
Cardiovascular diseases (CVD) (such as occlusion of the coronary arteries, hypertensive heart diseases and strokes) are diseases that generate thousands of patients with a high mortality rate worldwide. Many of these cardiovascular pathologies, during their development, generate a state of oxidative stress that leads to a deterioration in the patient's conditions associated with the generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS). Within these reactive species we find superoxide anion (O2•-), hydroxyl radical (•OH), nitric oxide (NO•), as well as other species of non-free radicals such as hydrogen peroxide (H2O2), hypochlorous acid (HClO) and peroxynitrite (ONOO-). A molecule that actively participates in counteracting the oxidizing effect of reactive species is reduced glutathione (GSH), a tripeptide that is present in all tissues and that its synthesis and/or regeneration is very important to be able to respond to the increase in oxidizing agents. In this review, we will address the role of glutathione, its synthesis in both the heart and the liver, and its importance in preventing or reducing deleterious ROS effects in cardiovascular diseases.
Collapse
Affiliation(s)
| | | | - María Magdalena Vilchis-Landeros
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Cd. Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (D.M.-M.); (H.R.-R.)
| | - Héctor Vázquez-Meza
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Cd. Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (D.M.-M.); (H.R.-R.)
| |
Collapse
|
10
|
Abstract
Glutathione (GSH) is the most abundant non-protein thiol, and plays crucial roles in the antioxidant defense system and the maintenance of redox homeostasis in neurons. GSH depletion in the brain is a common finding in patients with neurodegenerative diseases, such as Alzheimer’s disease and Parkinson’s disease, and can cause neurodegeneration prior to disease onset. Excitatory amino acid carrier 1 (EAAC1), a sodium-dependent glutamate/cysteine transporter that is selectively present in neurons, plays a central role in the regulation of neuronal GSH production. The expression of EAAC1 is posttranslationally controlled by the glutamate transporter-associated protein 3–18 (GTRAP3-18) or miR-96-5p in neurons. The regulatory mechanism of neuronal GSH production mediated by EAAC1 may be a new target in therapeutic strategies for these neurodegenerative diseases. This review describes the regulatory mechanism of neuronal GSH production and its potential therapeutic application in the treatment of neurodegenerative diseases.
Collapse
|
11
|
He M, Sun H, Wei J, Zhang R, Han X, Ni Z. A highly sensitive, fast responsive and reversible naphthalimide-based fluorescent probe for hypochlorous acid and ascorbic acid in aqueous solution and living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 247:119138. [PMID: 33188969 DOI: 10.1016/j.saa.2020.119138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
It is very important to exploit real-time, ultrasensitive and specific visualization detection methods for hypochlorous acid/hypochlorite (HOCl/ClO-) in biological systems as they are the guardians of the human immune system against pathogens invasion. In our work, we designed a novel reversible naphthalimide-based fluorescent probe NAP-OH to recognize HClO/ClO- with a unique selective colorimetric and fluorescent response, a short response time (<8 s) and a high sensitivity (10.3 nM). In addition, NAP-OH exhibits a novel on-off-on fluorescence response to ClO-/ascorbic acid (AA) with good cycle stability. The fluorescence signal is quenched because HClO/ClO- oxidizes the subunit of NAP-OH to the segment 2,2,6,6-tetramethyl-1-oxo-piperidinium in NAP-O, which can be reduced by AA with the recovery of fluorescence. Finally, the confocal fluorescence imaging has been performed, which proves that NAP-OH can satisfactorily monitor intracellular endogenous and exogenous HClO/AA redox cycles.
Collapse
Affiliation(s)
- Menglu He
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, People's Republic of China
| | - Hao Sun
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, People's Republic of China
| | - Jianhua Wei
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, People's Republic of China
| | - Ran Zhang
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, People's Republic of China.
| | - Xiang'en Han
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, People's Republic of China
| | - Zhonghai Ni
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, People's Republic of China.
| |
Collapse
|
12
|
Hu WY, Li XX, Diao YF, Qi JJ, Wang DL, Zhang JB, Sun BX, Liang S. Asiatic acid protects oocytes against in vitro aging-induced deterioration and improves subsequent embryonic development in pigs. Aging (Albany NY) 2020; 13:3353-3367. [PMID: 33281118 PMCID: PMC7906213 DOI: 10.18632/aging.202184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022]
Abstract
As a pentacyclic triterpene in Centella asiatica, asiatic acid (AA) is a powerful antioxidant with many bioactivities. In the present research, we investigated whether AA has the potential to rescue the decrease in porcine oocyte quality that occurs during in vitro aging (IVA). Mature porcine oocytes were collected and then continuously cultured for an additional 24 h or 48 h with or without AA in maturation medium as an IVA model. The results revealed that AA supplementation reduced the percentage of abnormal aged porcine oocytes during IVA. Furthermore, AA supplementation effectively maintained aged porcine oocyte developmental competence, both parthenogenetic activation and in vitro fertilization. The number of sperm that bound to the zona pellucida on aged porcine oocytes was higher in the AA-supplemented group than in the non-supplemented group. Moreover, AA supplementation not only blocked IVA-induced oxidative stress but also maintained intracellular GSH levels and reduced the percentage of early apoptosis aged porcine oocytes. Mitochondrial functions were disordered during the IVA process. The intracellular ATP levels and mitochondrial membrane potential in aged porcine oocytes were dramatically increased by AA supplementation. Therefore, AA has beneficial effects on porcine oocyte quality and developmental potential maintenance during IVA.
Collapse
Affiliation(s)
- Wei-Yi Hu
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Xiao Xia Li
- College of Animal Science and Technology, Jilin Agriculture Science and Technology University, Changchun, China.,Jilin Province Key Laboratory of Preventive Veterinary Medicine, Jilin Agriculture Science and Technology University, Changchun, China
| | - Yun Fei Diao
- College of Animal Science and Technology, Jilin Agriculture Science and Technology University, Changchun, China.,Jilin Province Key Laboratory of Preventive Veterinary Medicine, Jilin Agriculture Science and Technology University, Changchun, China
| | - Jia-Jia Qi
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Da-Li Wang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Jia-Bao Zhang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Bo-Xing Sun
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Shuang Liang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| |
Collapse
|
13
|
Zhang J, Hao H, Wu X, Wang Q, Chen M, Feng Z, Chen H. The functions of glutathione peroxidase in ROS homeostasis and fruiting body development in Hypsizygus marmoreus. Appl Microbiol Biotechnol 2020; 104:10555-10570. [PMID: 33175244 DOI: 10.1007/s00253-020-10981-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/15/2020] [Accepted: 10/26/2020] [Indexed: 12/28/2022]
Abstract
Glutathione peroxidase (GPX) is one of the most important antioxidant enzymes for maintaining reactive oxygen species (ROS) homeostasis. Although studies on fungi have suggested many important physiological functions of GPX, few studies have examined the role of this enzyme in Basidiomycetes, particularly its functions in fruiting body developmental processes. In the present study, GPX-silenced (GPxi) strains were obtained by using RNA interference. The GPxi strains of Hypsizygus marmoreus showed defects in mycelial growth and fruiting body development. In addition, the results indicated essential roles of GPX in controlling ROS homeostasis by regulating intracellular H2O2 levels, maintaining GSH/GSSG balance, and promoting antioxidant enzyme activity. Furthermore, lignocellulose enzyme activity levels were reduced and the mitochondrial phenotype and mitochondrial complex activity levels were changed in the H. marmoreus GPxi strains, possibly in response to impediments to mycelial growth and fruiting body development. These findings indicate that ROS homeostasis has a complex influence on growth, fruiting body development, GSH/GSSG balance, and carbon metabolism in H. marmoreus.Key points• ROS balance, energy metabolism, fruiting development.
Collapse
Affiliation(s)
- Jinjing Zhang
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 309 Room, No. 1000, Jinqi Road, Fengxian District, Shanghai, 201403, China
| | - Haibo Hao
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 309 Room, No. 1000, Jinqi Road, Fengxian District, Shanghai, 201403, China
| | - Xuelan Wu
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 309 Room, No. 1000, Jinqi Road, Fengxian District, Shanghai, 201403, China
| | - Qian Wang
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 309 Room, No. 1000, Jinqi Road, Fengxian District, Shanghai, 201403, China
| | - Mingjie Chen
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 309 Room, No. 1000, Jinqi Road, Fengxian District, Shanghai, 201403, China
| | - Zhiyong Feng
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 309 Room, No. 1000, Jinqi Road, Fengxian District, Shanghai, 201403, China.,College of Life Science, Nanjing Agricultural University, No. 1, Weigang road, XuanWu District, Nanjing, 210095, China
| | - Hui Chen
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 309 Room, No. 1000, Jinqi Road, Fengxian District, Shanghai, 201403, China.
| |
Collapse
|
14
|
Gümüş S, Yarıktaş M, Nazıroğlu M, Cihangir Uğuz A, Aynali G, Başpınar Ş. Effect of corticosteroid (triamcinolone acetonide) and chlorhexidin on chemotherapy- induced oxidative stress in buccal mucosa of rats. EAR, NOSE & THROAT JOURNAL 2020:145561319894405. [PMID: 32921183 DOI: 10.1177/0145561319894405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Oral mucositis (OM) refers to erythematous and ulcerative lesions of the oral mucosa. This pathology can occur by various causes. Cancer therapy is one of the well-known causes of OM such as chemotherapy and/or with radiation therapy. It has been widely mentioned that oxidative stress parameters such as lipid peroxidation (LP) levels increase during cancer process. Glutathione (GSH) is one of the major intracellular enzymes to detoxify oxidant molecules. The aim of this study was to investigate and compare the effects of Triamcinolone Acetonide (TA), a synthetic steroid chlorhexidine (CHX), a chemical antiseptic, on 5- fluorouracil (5-FU), a chemotherapeutic agent and soft abrasion induced OM in buccal mucosa of rats.OM was induced in rats through a combination of 5-FU treatment and mild abrasion of the cheek pouch with a wire brush. Buccal mucosa lipid peroxidation (LP) levels were higher (p< 0.05) in 5-FU group than in control although LP levels were lower (p<0.05) in TA group than in control group. The reduced glutathione levels were lower (p<0.05) in 5-FU group than in the control group although its level was higher (p<0.05) in TA and CHX groups than in the 5-FU group. Glutathione peroxidase activity was also higher (p<0.05) in TA group than the 5- FU group. In histopathological analyses, treatment with TA reduced 5-FU induced inflammatory cell infiltration and ulceration (p<0.001) but not with CHX.In conclusion, we observed that TA and CHX treatment modulated chemotherapy induced oxidative injury in the rat OM. However, only TA histopathologically ameliorated the 5-FU induced OM of rats. These findings suggest that TA is a useful agent for management of experimental oxidative injury and OM caused by the chemotherapy.
Collapse
Affiliation(s)
- Sami Gümüş
- Department of Otorhinolaryngology, Faculty of Medicine, 52994Süleyman Demirel University, Isparta, Turkey
| | - Murat Yarıktaş
- Department of Otorhinolaryngology, Faculty of Medicine, 52994Süleyman Demirel University, Isparta, Turkey
| | - Mustafa Nazıroğlu
- Neuroscience Research Center, 52994Süleyman Demirel University, Isparta, Turkey
- Department of Biophysics, Faculty of Medicine, 52994Süleyman Demirel University, Isparta, Turkey
| | - Abdülhadi Cihangir Uğuz
- Department of Biophysics, Faculty of Medicine, 52994Süleyman Demirel University, Isparta, Turkey
| | - Giray Aynali
- Department of Otorhinolaryngology, Faculty of Medicine, 52994Süleyman Demirel University, Isparta, Turkey
| | - Şirin Başpınar
- Department of Pathology, Faculty of Medicine, 52994Süleyman Demirel University, Isparta, Turkey
| |
Collapse
|
15
|
Mrówka M, Jaszcz K, Skonieczna M. Anticancer activity of functional polysuccinates with N-acetyl-cysteine in side chains. Eur J Pharmacol 2020; 885:173501. [PMID: 32866502 DOI: 10.1016/j.ejphar.2020.173501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 12/11/2022]
Abstract
The synthesis and characteristics of functional polyesters with a potential anticancer activity have been described, followed by a post-modification process of biologically active polymers. First, biodegradable functional polysuccinates possessing pendant allyl groups, that are susceptible to thiol-ene reaction, were obtained by polyaddition of succinic anhydride and allyl glycidyl ether. The functionality of such polyesters was regulated by replacing a part of unsaturated glycidyl ether with saturated ones. Polymers containing 20-100% mers with allyl groups were reacted with N-acetyl-cysteine (NAC). The use of simple click reaction allowed obtaining polyesters containing different amounts of N-acetyl-cysteine in side chains. The thus obtained polymers with a molecular weight of several thousand are characterized by solubility in methanol as opposed to their initial precursors. Modified polyesters show no toxicity to normal human keratinocytes (HaCaT) cells, similar to the NAC in normal human fibroblasts (NHDF), whereas the anticancer activities were observed against squamous carcinoma (SCC-25), and melanoma (Me45) cells. A standard colorimetric assay (MTS), to assessing cells viability and cytotoxicity of tested compounds, was performed against NHDF for NAC, HaCaT, SCC-25, and Me45 cells, within 24-144 h long-term expositions. Neither contact with NAC alone, and tested materials, nor long incubation decreased normal cell viability or induced inflammation. That reassumed the potential of anticancer activities of tested materials, with the tendency to visible selectivity against cancer cell lines in vitro, confirmed with live microscopic imaging against the Me45 cell line.
Collapse
Affiliation(s)
- Maciej Mrówka
- Biotechnology Center, Silesian University of Technology, 8 Krzywoustego Str., 44-100, Gliwice, Poland; Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, 9. M. Strzody Str., 44-100, Gliwice, Poland.
| | - Katarzyna Jaszcz
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, 9. M. Strzody Str., 44-100, Gliwice, Poland
| | - Magdalena Skonieczna
- Biotechnology Center, Silesian University of Technology, 8 Krzywoustego Str., 44-100, Gliwice, Poland; Department of Systems Biology and Engineering, Silesian University of Technology, 16 Akademicka Str., 44-100, Gliwice, Poland
| |
Collapse
|
16
|
Wan MLY, Turner PC, Co VA, Wang MF, Amiri KMA, El-Nezami H. Schisandrin A protects intestinal epithelial cells from deoxynivalenol-induced cytotoxicity, oxidative damage and inflammation. Sci Rep 2019; 9:19173. [PMID: 31844123 PMCID: PMC6915730 DOI: 10.1038/s41598-019-55821-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/14/2019] [Indexed: 12/13/2022] Open
Abstract
Extensive research has revealed the association of continued oxidative stress with chronic inflammation, which could subsequently affect many different chronic diseases. The mycotoxin deoxynivalenol (DON) frequently contaminates cereals crops worldwide, and are a public health concern since DON ingestion may result in persistent intestinal inflammation. There has also been considerable attention over the potential of DON to provoke oxidative stress. In this study, the cytoprotective effect of Schisandrin A (Sch A), one of the most abundant active dibenzocyclooctadiene lignans in the fruit of Schisandra chinensis (Turcz.) Baill (also known as Chinese magnolia-vine), was investigated in HT-29 cells against DON-induced cytotoxicity, oxidative stress and inflammation. Sch A appeared to protect against DON-induced cytotoxicity in HT-29 cells, and significantly lessened the DON-stimulated intracellular reactive oxygen species and nitrogen oxidative species production. Furthermore, Sch A lowered DON-induced catalase, superoxide dismutase and glutathione peroxidase antioxidant enzyme activities but maintains glutathione S transferase activity and glutathione levels. Mechanistic studies suggest that Sch A reduced DON-induced oxidative stress by down-regulating heme oxygenase-1 expression via nuclear factor (erythroid-derived 2)-like 2 signalling pathway. In addition, Sch A decreased the DON-induced cyclooxygenase-2 expression and prostaglandin E2 production and pro-inflammatory cytokine interleukin 8 expression and secretion. This may be mediated by preventing DON-induced translocation of nuclear factor-κB, as well as activation of mitogen-activated protein kinases pathways. In the light of these findings, we concluded that Sch A exerted a cytoprotective role in DON-induced toxicity in vitro, and it would be valuable to examine in vivo effects.
Collapse
Affiliation(s)
- Murphy L Y Wan
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences Building, The University of Hong Kong, Pokfulam, Hong Kong
| | - Paul C Turner
- Maryland Institute for Applied Environmental Health, School of Public Health, University of Maryland, College Park, Maryland, USA
| | - Vanessa A Co
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences Building, The University of Hong Kong, Pokfulam, Hong Kong
| | - M F Wang
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences Building, The University of Hong Kong, Pokfulam, Hong Kong
| | - Khaled M A Amiri
- College of Science, Biology Department, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Hani El-Nezami
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences Building, The University of Hong Kong, Pokfulam, Hong Kong.
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
17
|
Scirè A, Cianfruglia L, Minnelli C, Bartolini D, Torquato P, Principato G, Galli F, Armeni T. Glutathione compartmentalization and its role in glutathionylation and other regulatory processes of cellular pathways. Biofactors 2019; 45:152-168. [PMID: 30561781 DOI: 10.1002/biof.1476] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 12/20/2022]
Abstract
Glutathione is considered the major non-protein low molecular weight modulator of redox processes and the most important thiol reducing agent of the cell. The biosynthesis of glutathione occurs in the cytosol from its constituent amino acids, but this tripeptide is also present in the most important cellular districts, such as mitochondria, nucleus, and endoplasmic reticulum, thus playing a central role in several metabolic pathways and cytoprotection mechanisms. Indeed, glutathione is involved in the modulation of various cellular processes and, not by chance, it is a ubiquitous determinant for redox signaling, xenobiotic detoxification, and regulation of cell cycle and death programs. The balance between its concentration and redox state is due to a complex series of interactions between biosynthesis, utilization, degradation, and transport. All these factors are of great importance to understand the significance of cellular redox balance and its relationship with physiological responses and pathological conditions. The purpose of this review is to give an overview on glutathione cellular compartmentalization. Information on its subcellular distribution provides a deeper understanding of glutathione-dependent processes and reflects the importance of compartmentalization in the regulation of specific cellular pathways. © 2018 BioFactors, 45(2):152-168, 2019.
Collapse
Affiliation(s)
- Andrea Scirè
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Laura Cianfruglia
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, Ancona, Italy
| | - Cristina Minnelli
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, Ancona, Italy
| | - Desirée Bartolini
- Clinical Biochemistry and Human Nutrition Labs, Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Pierangelo Torquato
- Clinical Biochemistry and Human Nutrition Labs, Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Giovanni Principato
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, Ancona, Italy
| | - Francesco Galli
- Clinical Biochemistry and Human Nutrition Labs, Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Tatiana Armeni
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
18
|
Abstract
Stable isotope labeled compounds are widely used as diagnostic probes in medicine. These diagnostic stable isotope probes are now being expanded in their scope, to provide precise indications of the presence or absence of etiologically significant change in metabolism due to a specific disease. This concept exploits a labeled tracer probe that is a specifically designed substrate of a “gateway” enzyme in a discrete metabolic pathway, whose turnover can be measured by monitoring unidirectional precursor product mass flow. An example of such a probe is the 13C-urea breath test, where labeled urea is given to patients with H. pylori infection. Another example of this kind of probe is used to study the tripeptide glutathione (glu-cys-gly, GSH), which is the most abundant cellular thiol, and protects cells from the toxic effects of reactive oxygen species. Within the gamma glutamyl cycle, 5-oxoproline (L-pyroglutamic acid) is a metabolite generated during GSH catabolism, and is metabolized to glutamic acid by 5-oxoprolinase. This enzyme can also utilize the substrate L-2-oxothiazolidone-4-carboxylate (OTC), to generate intracellular cysteine, which is beneficial to the cell. Thus, labeled (13C) OTC would, under enzymatic attack yield cysteine and 13CO2, and can thus track the state and capacity of glutathione metabolism. Similarly, stable isotope labeled probes can be used to track the activity of the rate of homocysteine clearance, lymphocyte CD26, and liver CYP (cytochrome P450) enzyme activity. In the future, these applications should be able to titrate, in vivo, the characteristics of various specific enzyme systems in the body and their response to stress or infection as well as to treatment regimes.
Collapse
|
19
|
Zhang YP, Zhang Y, Xiao ZB, Zhang YB, Zhang J, Li ZQ, Zhu YB. CFTR prevents neuronal apoptosis following cerebral ischemia reperfusion via regulating mitochondrial oxidative stress. J Mol Med (Berl) 2018; 96:611-620. [PMID: 29761302 DOI: 10.1007/s00109-018-1649-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 05/02/2018] [Accepted: 05/07/2018] [Indexed: 01/12/2023]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is linked to cell apoptosis and abundantly expressed in brain tissue. Mitochondrial oxidative stress plays a key role in activating apoptotic pathway following cerebral ischemia reperfusion (IR) injury. Reduced glutathione (GSH) is exclusively synthesized in cytosol but distributed in mitochondria. In the present study, we investigated whether CFTR affected mitochondrial oxidative stress via regulating GSH and thereby protected neurons against apoptosis following cerebral IR. Brains were subjected to global IR by four-vessel occlusion and CFTR activator forskolin (FSK) was used in vivo. CFTR silence was performed in vitro for neurons by RNA interference. We found that FSK suppressed neuronal apoptosis whereas CFTR silence enhanced neuronal apoptosis. FSK prevented the elevations in reactive oxygen species (ROS) and caspase activities while FSK inhibited the reductions in complex I activity and mitochondrial GSH level following IR. FSK decreased mitochondrial oxidative stress partially and preserved mitochondrial function. On the contrary, CFTR silence exaggerated mitochondrial dysfunction. CFTR loss increased hydrogen peroxide (H2O2) level and decreased GSH level in mitochondria. Importantly, we showed that CFTR was located on mitochondrial membrane. GSH transport assay suggested that GSH decrease may be a consequence not a reason for mitochondrial oxidative stress mediated by CFTR disruption. Our results highlight the central role of CFTR in the pathogenesis of cerebral IR injury. CFTR regulates neuronal apoptosis following cerebral IR via mitochondrial oxidative stress-dependent pathway. The mechanism of CFTR-mediated mitochondrial oxidative stress needs further studies. KEY MESSAGES: CFTR activation protects brain tissue against IR-induced apoptosis and oxidative stress. CFTR disruption enhances H2O2-induced neuronal apoptosis and CFTR loss leads to mitochondrial oxidative stress. CFTR regulates IR-induced neuronal apoptosis via mitochondrial oxidative stress. CFTR may be a potential therapeutic target to cerebral IR damage.
Collapse
Affiliation(s)
- Ya-Ping Zhang
- The Heart Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Yong Zhang
- The Heart Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Zhi-Bin Xiao
- The Heart Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Yan-Bo Zhang
- National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Jing Zhang
- Pediatric Heart Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Zhi-Qiang Li
- Department of Cardiovascular Surgery II, Children's Hospital, National Center for Children's Health, Capital Medical University, 56 Nan-Li-Shi Road, 100045, Beijing, People's Republic of China.
| | - Yao-Bin Zhu
- Department of Cardiovascular Surgery II, Children's Hospital, National Center for Children's Health, Capital Medical University, 56 Nan-Li-Shi Road, 100045, Beijing, People's Republic of China.
| |
Collapse
|
20
|
Shefa U, Kim MS, Jeong NY, Jung J. Antioxidant and Cell-Signaling Functions of Hydrogen Sulfide in the Central Nervous System. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1873962. [PMID: 29507650 PMCID: PMC5817206 DOI: 10.1155/2018/1873962] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/13/2017] [Accepted: 12/11/2017] [Indexed: 12/13/2022]
Abstract
Hydrogen sulfide (H2S), a toxic gaseous molecule, plays a physiological role in regulating homeostasis and cell signaling. H2S is produced from cysteine by enzymes, such as cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE), cysteine aminotransferase (CAT), and 3-mercaptopyruvate sulfurtransferase (3MST). These enzymes regulate the overall production of H2S in the body. H2S has a cell-signaling function in the CNS and plays important roles in combating oxidative species such as reactive oxygen species (ROS) and reactive nitrogen species (RNS) in the body. H2S is crucial for maintaining balanced amounts of antioxidants to protect the body from oxidative stress, and appropriate amounts of H2S are required to protect the CNS in particular. The body regulates CBS, 3MST, and CSE levels in the CNS, and higher or lower levels of these enzymes cause various neurodegenerative diseases. This review discusses how H2S protects the CNS by acting as an antioxidant that reduces excessive amounts of ROS and RNS. Additionally, H2S regulates cell signaling to combat neuroinflammation and protect against central neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS).
Collapse
Affiliation(s)
- Ulfuara Shefa
- Department of Biomedical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Min-Sik Kim
- Department of Applied Chemistry, College of Applied Sciences, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Na Young Jeong
- Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, 32 Daesingongwon-ro, Seo-gu, Busan 49201, Republic of Korea
| | - Junyang Jung
- Department of Biomedical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- East-West Medical Research Institute, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
21
|
Vázquez C, Mejia-Tlachi M, González-Chávez Z, Silva A, Rodríguez-Zavala JS, Moreno-Sánchez R, Saavedra E. Buthionine sulfoximine is a multitarget inhibitor of trypanothione synthesis in Trypanosoma cruzi. FEBS Lett 2017; 591:3881-3894. [PMID: 29127710 DOI: 10.1002/1873-3468.12904] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 10/31/2017] [Accepted: 11/02/2017] [Indexed: 11/10/2022]
Abstract
Buthionine sulfoximine (BSO) induces decreased glutathione (GSH) and trypanothione [T(SH)2 ] pools in trypanosomatids, presumably because only gamma-glutamylcysteine synthetase (γECS) is blocked. However, some BSO effects cannot be explained by exclusive γECS inhibition; therefore, its effect on the T(SH)2 metabolism pathway in Trypanosoma cruzi was re-examined. Parasites exposed to BSO did not synthesize T(SH)2 even when supplemented with cysteine or GSH, suggesting trypanothione synthetase (TryS) inhibition by BSO. Indeed, recombinant γECS and TryS, but not GSH synthetase, were inhibited by BSO and kinetics and docking analyses on a TcTryS 3D model suggested BSO binding at the GSH site. Furthermore, parasites overexpressing γECS and TryS showed ~ 50% decreased activities after BSO treatment. These results indicated that BSO is also an inhibitor of TryS.
Collapse
Affiliation(s)
- Citlali Vázquez
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico city, México
| | - Marlen Mejia-Tlachi
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico city, México
| | - Zabdi González-Chávez
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico city, México
| | - Aketzalli Silva
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico city, México
| | | | - Rafael Moreno-Sánchez
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico city, México
| | - Emma Saavedra
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico city, México
| |
Collapse
|
22
|
Gümüş S, Yarıktaş M, Nazıroğlu M, Uğuz AC, Aynali G, Başpınar Ş. Effect of a corticosteroid (triamcinolone) and chlorhexidine on chemotherapy-induced oxidative stress in the buccal mucosa of rats. EAR, NOSE & THROAT JOURNAL 2017; 95:E36-E43. [PMID: 27929606 DOI: 10.1177/014556131609501211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Oral mucositis manifests as erythematous and ulcerative lesions of the oral mucosa. Among its various causes, cancer treatment (e.g., chemotherapy with or without radiation therapy) is one of the more well known. It has been widely mentioned that oxidative stress parameters such as lipid peroxidation levels increase during the cancer process. Glutathione is one of the major intracellular enzymes used to detoxify oxidant molecules; it exists in both a reduced and oxidized state. Reduced glutathione is used as a substrate to synthesize glutathione peroxidase. We conducted a study to investigate and compare the effects of triamcinolone (a synthetic steroid) and chlorhexidine (a chemical antiseptic) on 5-fluorouracil (5-FU; a chemotherapeutic agent)-induced oral mucositis in the buccal mucosa of 36 rats. Oral mucositis was induced through a combination of 5-FU treatment and mild abrasion of the cheek pouch with a wire brush. The rats were treated with one of four regimens: saline placebo (group I), 5-FU only (group II), 5-FU plus triamcinolone (group III), and 5-FU plus chlorhexidine (group IV). Three rats in the triamcinolone group died of unknown causes on days 7 and 8, and 3 rats in the chlorhexidine group died on days 7 and 9. On day 9, the remaining 30 rats were sacrificed and examined. Buccal mucosa lipid peroxidation levels were significantly higher in the 5-FU-only group than in the control group and significantly higher in the control group than in the triamcinolone group (p < 0.05 for both). Levels of reduced glutathione were significantly lower in the 5-FU-only group than in both the triamcinolone group and the chlorhexidine group (p < 0.05). Glutathione peroxidase activity was significantly higher in the triamcinolone group than in the 5-FU-only group (p < 0.01). Histopathologic analysis revealed that treatment with triamcinolone significantly reduced 5-FU-induced inflammatory cell infiltration and ulceration (p < 0.001); no such reduction was seen with chlorhexidine. In conclusion, we observed that triamcinolone and chlorhexidine treatment modulated chemotherapy-induced oxidative injury in rat oral mucositis. However, only triamcinolone histopathologically ameliorated 5-FU-induced oral mucositis. These findings suggest that triamcinolone is a useful agent for the management of experimental oxidative injury and oral mucositis caused by 5-FU chemotherapy.
Collapse
Affiliation(s)
- Sami Gümüş
- Department of Otorhinolaryngology Süleyman Demirel University Faculty of Medicine, Isparta, Turkey
| | | | | | | | | | | |
Collapse
|
23
|
Nesfield SR, Williams TC, Hoivik DJ, Miller RT, Allen JS, Selinger K, Rickert D, Santostefano MJ. Evaluation of the Carcinogenic Potential of Clofibrate in the Neonatal Mouse. Int J Toxicol 2016; 24:341-8. [PMID: 16257853 DOI: 10.1080/10915810500210401] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
This study was conducted in support of the International Life Sciences Institute (ILSI) alternative carcinogenicity models initiative to evaluate the carcinogenic potential of clofibrate, a nongenotoxic peroxisome proliferator-activated receptor (PPAR) α agonist, following oral administration to neonatal mice. Male and female neonatal CD-1 mice were dosed with clofibrate at doses of 100, 250, and 500 mg/kg or with the positive control, diethyl-nitrosamine (DEN), at 2 mg/kg by oral gavage on days 9 and 16 post birth and observed for approximately 1 year for the development of tumors. Plasma levels of clofibric acid after the second administration increased with dose, but were not dose proportional. Clofibrate administered by gavage on litter days 9 and 16 to neonatal mice at doses of 100, 250, or 500 mg/kg did not produce a carcinogenic effect. The positive control DEN did produce tumors in the liver and lung (single and multiple adenomas and carcinomas) and harderian gland (adenoma) of both sexes. Non-neoplastic lesions related to DEN treatment were confined to myocardial degeneration/fibrosis and testicular interstitial hyperplasia in males, and to glomerulonephrosis and gastritis in both sexes.
Collapse
|
24
|
Gostimskaya I, Grant CM. Yeast mitochondrial glutathione is an essential antioxidant with mitochondrial thioredoxin providing a back-up system. Free Radic Biol Med 2016; 94:55-65. [PMID: 26898146 PMCID: PMC4851219 DOI: 10.1016/j.freeradbiomed.2016.02.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/09/2016] [Accepted: 02/15/2016] [Indexed: 12/30/2022]
Abstract
Glutathione is an abundant, low-molecular-weight tripeptide whose biological importance is dependent upon its redox-active free sulphydryl moiety. Its role as the main determinant of thiol-redox control has been challenged such that it has been proposed to play a crucial role in iron-sulphur clusters maturation, and only a minor role in thiol redox regulation, predominantly as a back-up system for the cytoplasmic thioredoxin system. Here, we have tested the importance of mitochondrial glutathione in thiol-redox regulation. Glutathione reductase (Glr1) is an oxidoreductase which converts oxidized glutathione to its reduced form. Yeast Glr1 localizes to both the cytosol and mitochondria and we have used a Glr1(M1L) mutant that is constitutively localized to the cytosol to test the requirement for mitochondrial Glr1. We show that the loss of mitochondrial Glr1 specifically accounts for oxidant sensitivity of a glr1 mutant. Loss of mitochondrial Glr1 does not influence iron-sulphur cluster maturation and we have used targeted roGFP2 fluorescent probes to show that oxidant sensitivity is linked to an altered redox environment. Our data indicate mitochondrial glutathione is crucial for mitochondrial thiol-redox regulation, and the mitochondrial thioredoxin system provides a back-up system, but cannot bear the redox load of the mitochondria on its own.
Collapse
Affiliation(s)
- Irina Gostimskaya
- University of Manchester, Faculty of Life Sciences, The Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Chris M Grant
- University of Manchester, Faculty of Life Sciences, The Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
25
|
GEORGAKOULI KALLIOPI, MANTHOU EIRINI, FATOUROS IOANNISG, DELI CHARIKLIAK, SPANDIDOS DEMETRIOSA, TSATSAKIS ARISTIDISM, KOURETAS DEMETRIOS, KOUTEDAKIS YIANNIS, THEODORAKIS YANNIS, JAMURTAS ATHANASIOSZ. Effects of acute exercise on liver function and blood redox status in heavy drinkers. Exp Ther Med 2015; 10:2015-2022. [PMID: 26668589 PMCID: PMC4665762 DOI: 10.3892/etm.2015.2792] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/29/2015] [Indexed: 12/16/2022] Open
Abstract
Excessive alcohol consumption can induce oxidative stress, resulting in the development of several diseases. Exercise has been reported to prevent and/or improve a number of health issues through several mechanisms, including an improvement in redox status. It has also been previously suggested that exercise can help individuals with alcohol use disorders reduce their alcohol intake; however, research in this field is limited. The aim of the present study was to investigage the effects of acute exercise of moderate intensity on the liver function and blood redox status in heavy drinkers. For this purpose, a total of 17 heavy drinkers [age, 31.6±3.2 years; body mass index (BMI), 27.4±0.8 kg/m2; experimental group (EG)] and 17 controls [age, 33.5±1.3 years; BMI, 26.1±1.4 kg/m2; control group (CG), who did not exceed moderate alcohol consumption], underwent one trial of acute exercise of moderate intensity (50-60% of the heart rate reserve) for 30 min on a cycle ergometer, following an overnight fast, and abstaining from smoking and alcohol consumption. Blood samples were obtained before and immediately after exercise for later determination of the indices of liver function and blood redox status. The subjects in the EG had significantly higher (p<0.05) baseline γ-glutamyl transferase (γ-GT) levels compared to the subjects in the CG. Exercise thus resulted in significantly higher γ-GT levels (p<0.005) only in the EG. No significant differences in aspartate aminotransferase (AST) and alanine aminotransferase (ALT) baseline levels were observed between the 2 groups. Following exercise, the AST levels increased significantly (p<0.001) in both groups, whereas the ALT levels increased significantly (p<0.01) only in the EG. The baseline glutathione (GSH) levels were significantly lower (p<0.05) and remained low following exercise in the EG. In addition, we observed a trend for higher (p=0.07) baseline levels of thiobarbituric acid-reactive substances (TBARS), which remained elevated post-exercise in the EG compared to the CG. Significantly increased post-exercise total antioxidant capacity (TAC; p<0.01) and uric acid (UA; p<0.05) levels were noted in the CG, whereas the TAC (p=0.06) and UA (p=0.08) levels increased and approached significance post-exercise in the EG. No significant differences in the baseline levels of total bilirubin and protein carbonyl were observed between the 2 groups, even post-exercise. Thus, the findings of the present study indicate that even though heavy drinkers may be prone to oxidative stress, their exercise-induced antioxidant response is similar to that of individuals who do not drink heavily.
Collapse
Affiliation(s)
- KALLIOPI GEORGAKOULI
- Department of Physical Education and Sport Science, University of Thessaly, Karies, Trikala 42100, Greece
- Department of Kinesiology, Institute for Research and Technology Thessaly, Karies, Trikala 42100, Greece
| | - EIRINI MANTHOU
- Department of Physical Education and Sport Science, University of Thessaly, Karies, Trikala 42100, Greece
- Department of Kinesiology, Institute for Research and Technology Thessaly, Karies, Trikala 42100, Greece
| | - IOANNIS G. FATOUROS
- Department of Physical Education and Sport Science, Democritus University, Komotini 69100, Greece
| | - CHARIKLIA K. DELI
- Department of Physical Education and Sport Science, University of Thessaly, Karies, Trikala 42100, Greece
- Department of Kinesiology, Institute for Research and Technology Thessaly, Karies, Trikala 42100, Greece
| | - DEMETRIOS A. SPANDIDOS
- Laboratory of Clinical Virology, University of Crete Medical School, Heraklion 71409, Greece
| | - ARISTIDIS M. TSATSAKIS
- Department of Forensic Sciences and Toxicology, Medical School, University of Crete, Heraklion 71003, Greece
| | - DEMETRIOS KOURETAS
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa 41221, Greece
| | - YIANNIS KOUTEDAKIS
- Department of Physical Education and Sport Science, University of Thessaly, Karies, Trikala 42100, Greece
- Department of Kinesiology, Institute for Research and Technology Thessaly, Karies, Trikala 42100, Greece
- School of Sports, Performing Arts and Leisure, University of Wolverhampton, Walsall, West Midlands WS1 3BD, UK
| | - YANNIS THEODORAKIS
- Department of Physical Education and Sport Science, University of Thessaly, Karies, Trikala 42100, Greece
| | - ATHANASIOS Z. JAMURTAS
- Department of Physical Education and Sport Science, University of Thessaly, Karies, Trikala 42100, Greece
- Department of Kinesiology, Institute for Research and Technology Thessaly, Karies, Trikala 42100, Greece
| |
Collapse
|
26
|
Lukyanova LD, Kirova YI. Mitochondria-controlled signaling mechanisms of brain protection in hypoxia. Front Neurosci 2015; 9:320. [PMID: 26483619 PMCID: PMC4589588 DOI: 10.3389/fnins.2015.00320] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 08/27/2015] [Indexed: 01/06/2023] Open
Abstract
The article is focused on the role of the cell bioenergetic apparatus, mitochondria, involved in development of immediate and delayed molecular mechanisms for adaptation to hypoxic stress in brain cortex. Hypoxia induces reprogramming of respiratory chain function and switching from oxidation of NAD-related substrates (complex I) to succinate oxidation (complex II). Transient, reversible, compensatory activation of respiratory chain complex II is a major mechanism of immediate adaptation to hypoxia necessary for (1) succinate-related energy synthesis in the conditions of oxygen deficiency and formation of urgent resistance in the body; (2) succinate-related stabilization of HIF-1α and initiation of its transcriptional activity related with formation of long-term adaptation; (3) succinate-related activation of the succinate-specific receptor, GPR91. This mechanism participates in at least four critical regulatory functions: (1) sensor function related with changes in kinetic properties of complex I and complex II in response to a gradual decrease in ambient oxygen concentration; this function is designed for selection of the most efficient pathway for energy substrate oxidation in hypoxia; (2) compensatory function focused on formation of immediate adaptive responses to hypoxia and hypoxic resistance of the body; (3) transcriptional function focused on activated synthesis of HIF-1 and the genes providing long-term adaptation to low pO2; (4) receptor function, which reflects participation of mitochondria in the intercellular signaling system via the succinate-dependent receptor, GPR91. In all cases, the desired result is achieved by activation of the succinate-dependent oxidation pathway, which allows considering succinate as a signaling molecule. Patterns of mitochondria-controlled activation of GPR-91- and HIF-1-dependent reaction were considered, and a possibility of their participation in cellular-intercellular-systemic interactions in hypoxia and adaptation was proved.
Collapse
Affiliation(s)
- Ludmila D. Lukyanova
- Laboratory for Bioenergetics and Hypoxia, Institute of General Pathology and PathophysiologyMoscow, Russia
| | | |
Collapse
|
27
|
Ekpenyong CE, Daniel NE, Antai AB. Bioactive natural constituents from lemongrass tea and erythropoiesis boosting effects: potential use in prevention and treatment of anemia. J Med Food 2015; 18:118-27. [PMID: 25162916 DOI: 10.1089/jmf.2013.0184] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study assessed the effects of lemongrass (Cymbopogon citratus) tea on hematologic indices in human volunteers. One hundred five subjects (55 men and 50 women), aged 18 to 35 years, were randomly assigned to groups set to orally receive infusion prepared from 2, 4, or 8 g of C. citratus leaves once daily for 30 days. Assessment of hematologic indices (hemoglobin concentration [Hb], packed cell volume [PCV], red blood cell [RBC] count, mean cell Hb [MCH], mean cell volume [MCV], mean cell Hb concentration [MCHC], total white blood cell [WBC-total] and differentials, and platelets) were performed 1 day before (baseline), and at 10 (acute) and 30 days (subchronic phase) after the initiation of treatment. Results obtained on days 10 and 30 were compared with baseline values. Infusions prepared from C. citratus leaf powder, which tested positive for tannins, saponins, alkaloids, flavonoids, macro- and micronutrients, significantly increased PCV, Hb, and RBC (P<.05) in all subjects, particularly in the subchronic phase of the study. MCH, MCV, and MCHC were not significantly different from baseline values in both the sexes. WBCs and differentials significantly decreased (P<.05) with the exception of neutrophils and lymphocytes, which significantly increased in some or all groups (P<.05), respectively. C. citratus leaf infusion appears to exert an erythropoiesis boosting effect, likely due to some nutritional constituents and its antioxidant and pharmacologic properties.
Collapse
Affiliation(s)
- Christopher E Ekpenyong
- 1 Department of Physiology, College of Health Sciences, University of Uyo , Uyo, Akwa Ibom State, Nigeria
| | | | | |
Collapse
|
28
|
Kowalec P, Grynberg M, Pająk B, Socha A, Winiarska K, Fronk J, Kurlandzka A. Newly identified protein Imi1 affects mitochondrial integrity and glutathione homeostasis in Saccharomyces cerevisiae. FEMS Yeast Res 2015; 15:fov048. [PMID: 26091838 DOI: 10.1093/femsyr/fov048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2015] [Indexed: 12/25/2022] Open
Abstract
Glutathione homeostasis is crucial for cell functioning. We describe a novel Imi1 protein of Saccharomyces cerevisiae affecting mitochondrial integrity and involved in controlling glutathione level. Imi1 is cytoplasmic and, except for its N-terminal Flo11 domain, has a distinct solenoid structure. A lack of Imi1 leads to mitochondrial lesions comprising aberrant morphology of cristae and multifarious mtDNA rearrangements and impaired respiration. The mitochondrial malfunctioning is coupled to significantly decrease the level of intracellular reduced glutathione without affecting oxidized glutathione, which decreases the reduced/oxidized glutathione ratio. These defects are accompanied by decreased cadmium sensitivity and increased phytochelatin-2 level.
Collapse
Affiliation(s)
- Piotr Kowalec
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Marcin Grynberg
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Beata Pająk
- Electron Microscopy Platform, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), 02-776 Warsaw, Poland
| | - Anna Socha
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Katarzyna Winiarska
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Jan Fronk
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Anna Kurlandzka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| |
Collapse
|
29
|
Rajendran P, Nandakumar N, Rengarajan T, Palaniswami R, Gnanadhas EN, Lakshminarasaiah U, Gopas J, Nishigaki I. Antioxidants and human diseases. Clin Chim Acta 2014; 436:332-47. [PMID: 24933428 DOI: 10.1016/j.cca.2014.06.004] [Citation(s) in RCA: 288] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 06/04/2014] [Accepted: 06/05/2014] [Indexed: 12/26/2022]
Abstract
Oxidative stress plays a pivotal role in the development of human diseases. Reactive oxygen species (ROS) that includes hydrogen peroxide, hyphochlorus acid, superoxide anion, singlet oxygen, lipid peroxides, hypochlorite and hydroxyl radical are involved in growth, differentiation, progression and death of the cell. They can react with membrane lipids, nucleic acids, proteins, enzymes and other small molecules. Low concentrations of ROS has an indispensable role in intracellular signalling and defence against pathogens, while, higher amounts of ROS play a role in number of human diseases, including arthritis, cancer, diabetes, atherosclerosis, ischemia, failures in immunity and endocrine functions. Antioxidants presumably act as safeguard against the accumulation of ROS and their elimination from the system. The aim of this review is to highlight advances in understanding of the ROS and also to summarize the detailed impact and involvement of antioxidants in selected human diseases.
Collapse
Affiliation(s)
- Peramaiyan Rajendran
- NPO-International Laboratory of Biochemistry, 1-166, Uchide, Nakagawa-ku, Nagoya 454-0926, Japan
| | - Natarajan Nandakumar
- Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Israel
| | | | - Rajendran Palaniswami
- Department of Applied Zoology and Biotechnology, Vivekananda College (A Gurukula Institute of Life Training), Affiliated to Madurai Kamaraj University, Thiruvedakam West, Madurai 625234, India
| | - Edwinoliver Nesamony Gnanadhas
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Uppalapati Lakshminarasaiah
- Department of Clinical Biochemistry and Pharmacology, Soroka University Medical Center, Ben-Gurion University of the Negev, Be'er-Sheva 84105, Israel
| | - Jacob Gopas
- Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Israel; Oncology Department Soroka University Medical Center, Be'er-Sheva 84105, Israel
| | - Ikuo Nishigaki
- NPO-International Laboratory of Biochemistry, 1-166, Uchide, Nakagawa-ku, Nagoya 454-0926, Japan.
| |
Collapse
|
30
|
Effect of Intracellular Glutathione on Heat-induced Cell Death in the Cyanobacterium,SynechocystisPCC 6803. Biosci Biotechnol Biochem 2014; 63:1112-5. [DOI: 10.1271/bbb.63.1112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
31
|
Muyderman H, Chen T. Mitochondrial dysfunction in amyotrophic lateral sclerosis - a valid pharmacological target? Br J Pharmacol 2014; 171:2191-205. [PMID: 24148000 PMCID: PMC3976630 DOI: 10.1111/bph.12476] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/10/2013] [Accepted: 09/23/2013] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease characterized by the selective death of upper and lower motor neurons which ultimately leads to paralysis and ultimately death. Pathological changes in ALS are closely associated with pronounced and progressive changes in mitochondrial morphology, bioenergetics and calcium homeostasis. Converging evidence suggests that impaired mitochondrial function could be pivotal in the rapid neurodegeneration of this condition. In this review, we provide an update of recent advances in understanding mitochondrial biology in the pathogenesis of ALS and highlight the therapeutic value of pharmacologically targeting mitochondrial biology to slow disease progression.
Collapse
Affiliation(s)
- H Muyderman
- Centre for Neuroscience, Discipline of Medical Biochemistry, Flinders Medical Science and Technology, School of Medicine, Flinders UniversityAdelaide, SA, Australia
| | - T Chen
- Centre for Neuroscience, Discipline of Medical Biochemistry, Flinders Medical Science and Technology, School of Medicine, Flinders UniversityAdelaide, SA, Australia
| |
Collapse
|
32
|
Akhtar MJ, Kumar S, Alhadlaq HA, Alrokayan SA, Abu-Salah KM, Ahamed M. Dose-dependent genotoxicity of copper oxide nanoparticles stimulated by reactive oxygen species in human lung epithelial cells. Toxicol Ind Health 2013; 32:809-21. [DOI: 10.1177/0748233713511512] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Copper oxide nanoparticles (CuO NPs) are of great interest in nanoscience and nanotechnology because of their broad industrial and commercial applications. Therefore, toxicity of CuO NPs needs to be thoroughly understood. The aim of this study was to investigate the cytotoxicity, genotoxicity, and oxidative stress induced by CuO NPs in human lung epithelial (A549) cells. CuO NPs were synthesized by solvothermal method and the size of NPs measured under transmission electron microscopy (TEM) was found to be around 23 nm. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) and lactate dehydrogenase (LDH) assays showed that CuO NPs (5–15 µg/ml) exert cytotoxicity in A549 cells in a dose-dependent manner. Comet assay suggested concentration-dependent induction of DNA damage due to the exposure to CuO NPs. The comet tail moment was 27% at 15 µg/ml of CuO NPs, whereas it was 5% in control ( p < 0.05). The flow cytometry data revealed that CuO NPs induced micronuclei (MN) in A549 cells dose dependently. The frequency of MN was 25/103 cells at 15 µg/ml of CuO NPs, whereas it was 2/103 cells for control. CuO NPs were also found to induce oxidative stress in a concentration-dependent manner, which was indicated by induction of reactive oxygen species (ROS) and lipid peroxidation along with glutathione depletion. Moreover, MN induction and DNA damage were significantly correlated with ROS ( R2 = 0.937 for ROS vs. olive tail moment, and R2 = 0.944 for ROS vs. MN). Taken together, this study suggested that CuO NPs induce genotoxicity in A549 cells, which is likely to be mediated through ROS generation and oxidative stress.
Collapse
Affiliation(s)
- Mohammad Javed Akhtar
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - Sudhir Kumar
- Department of Zoology, University of Lucknow, Lucknow, India
| | - Hisham A Alhadlaq
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Salman A Alrokayan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Khalid M Abu-Salah
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
33
|
Pannala VR, Bazil JN, Camara AKS, Dash RK. A biophysically based mathematical model for the catalytic mechanism of glutathione reductase. Free Radic Biol Med 2013; 65:1385-1397. [PMID: 24120751 PMCID: PMC3870161 DOI: 10.1016/j.freeradbiomed.2013.10.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 09/04/2013] [Accepted: 10/01/2013] [Indexed: 12/11/2022]
Abstract
Glutathione reductase (GR) catalyzes the reduction of oxidized glutathione (GSSG) to reduced glutathione (GSH) using NADPH as the reducing cofactor, and thereby maintains a constant GSH level in the system. GSH scavenges superoxide (O2(*-)) and hydroxyl radicals (OH) nonenzymatically or by serving as an electron donor to several enzymes involved in reactive oxygen species (ROS) detoxification. In either case, GSH oxidizes to GSSG and is subsequently regenerated by the catalytic action of GR. Although the GR kinetic mechanism has been extensively studied under various experimental conditions with variable substrates and products, the catalytic mechanism has not been studied in terms of a mechanistic model that accounts for the effects of the substrates and products on the reaction kinetics. The aim of this study is therefore to develop a comprehensive mathematical model for the catalytic mechanism of GR. We use available experimental data on GR kinetics from various species/sources to develop the mathematical model and estimate the associated model parameters. The model simulations are consistent with the experimental observation that GR operates via both ping-pong and sequential branching mechanisms based on relevant concentrations of its reaction substrate GSSG. Furthermore, we show the observed pH-dependent substrate inhibition of GR activity by GSSG and bimodal behavior of GR activity with pH. The model presents a unique opportunity to understand the effects of products on the kinetics of GR. The model simulations show that under physiological conditions, where both substrates and products are present, the flux distribution depends on the concentrations of both GSSG and NADP(+), with ping-pong flux operating at low levels and sequential flux dominating at higher levels. The kinetic model of GR may serve as a key module for the development of integrated models for ROS-scavenging systems to understand protection of cells under normal and oxidative stress conditions.
Collapse
Affiliation(s)
- Venkat R Pannala
- Biotechnology and Bioengineering Center and Department of Physiology and
| | - Jason N Bazil
- Biotechnology and Bioengineering Center and Department of Physiology and
| | - Amadou K S Camara
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ranjan K Dash
- Biotechnology and Bioengineering Center and Department of Physiology and.
| |
Collapse
|
34
|
Neuroprotection against neuroblastoma cell death induced by depletion of mitochondrial glutathione. Apoptosis 2013; 18:702-12. [PMID: 23494481 DOI: 10.1007/s10495-013-0836-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mitochondrial glutathione pool is vital in protecting cells against oxidative stress as the majority of the cellular reactive oxygen species are generated in mitochondria. Oxidative stress is implicated as a causative factor in neuronal death in neurodegenerative disorders. We hypothesized that depletion of mitochondrial glutathione leads to mitochondrial dysfunction and apoptotic death of SK-N-SH (human neuroblastoma) cells and investigated the neuroprotective strategies against GSH depletion. SK-N-SH cells were treated with two distinct inhibitors of glutathione metabolism: L-buthionine-(S, R)-sulfoximine (BSO) and ethacrynic acid (EA). EA treatment caused depletion of both the total and mitochondrial glutathione (while BSO had no effect on mitochondrial glutathione), enhanced rotenone-induced ROS production, and reduced the viability of SK-N-SH cells. Glutathione depletion by BSO or EA demonstrated positive features of mitochondria-mediated apoptosis in neuroblastoma cell death. Prevention of apoptosis by Bcl2 overexpression or use of antioxidant ebselen did not confer neuroprotection. Co-culture with U-87 (human glioblastoma) cells protected SK-N-SH cells from the cell death. Our data suggest that depletion of mitochondrial glutathione leads to mitochondrial dysfunction and apoptosis. The study indicates that preventing mitochondrial glutathione depletion could become a novel strategy for the development of neuroprotective therapeutics in neurodegenerative disorders.
Collapse
|
35
|
A review of the mechanism of injury and treatment approaches for illness resulting from exposure to water-damaged buildings, mold, and mycotoxins. ScientificWorldJournal 2013; 2013:767482. [PMID: 23710148 PMCID: PMC3654247 DOI: 10.1155/2013/767482] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 02/10/2013] [Indexed: 12/21/2022] Open
Abstract
Physicians are increasingly being asked to diagnose and treat people made ill by exposure to water-damaged environments, mold, and mycotoxins. In addition to avoidance of further exposure to these environments and to items contaminated by these environments, a number of approaches have been used to help persons affected by exposure to restore their health. Illness results from a combination of factors present in water-damaged indoor environments including, mold spores and hyphal fragments, mycotoxins, bacteria, bacterial endotoxins, and cell wall components as well as other factors. Mechanisms of illness include inflammation, oxidative stress, toxicity, infection, allergy, and irritant effects of exposure. This paper reviews the scientific literature as it relates to commonly used treatments such as glutathione, antioxidants, antifungals, and sequestering agents such as Cholestyramine, charcoal, clay and chlorella, antioxidants, probiotics, and induced sweating.
Collapse
|
36
|
Joshi G, Johnson JA. The Nrf2-ARE pathway: a valuable therapeutic target for the treatment of neurodegenerative diseases. ACTA ACUST UNITED AC 2013; 7:218-29. [PMID: 22742419 DOI: 10.2174/157488912803252023] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 05/23/2012] [Accepted: 06/06/2012] [Indexed: 12/13/2022]
Abstract
Modulation of NF-E2 related factor 2 (Nrf2) has been shown in several neurodegenerative disorders. The overexpression of Nrf2 has become a potential therapeutic avenue for various neurodegenerative disorders such as Parkinson, Amyotrophic lateral sclerosis, and Alzheimer's disease. The expression of phase II detoxification enzymes is governed by the cis-acting regulatory element known as antioxidant response element (ARE). The transcription factor Nrf2 binds to ARE thereby transcribing multitude of antioxidant genes. Keap1, a culin 3-based E3 ligase that targets Nrf2 for degradation, sequesters Nrf2 in cytoplasm. Disruption of Keap1-Nrf2 interaction or genetic overexpression of Nrf2 can increase the endogenous antioxidant capacity of the brain thereby rendering protection against oxidative stress in neurodegenerative disorders. This review primarily focuses on recent patents that target Nrf2 overexpression as a promising therapeutic strategy for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Gururaj Joshi
- Division of Pharmaceutical Sciences, School of Pharmacy, 6125 Rennebohm Hall, 777 Highland Avenue, University of Wisconsin, Madison, WI 53705, USA
| | | |
Collapse
|
37
|
Abstract
Many proteins contain free thiols that can be modified by the reversible formation of mixed disulfides with glutathione. Protein glutathionylation is of significance for defense against oxidative damage and in redox signaling. Here we outline the mechanisms and possible significance of protein glutathionylation.
Collapse
|
38
|
Greetham D, Kritsiligkou P, Watkins RH, Carter Z, Parkin J, Grant CM. Oxidation of the yeast mitochondrial thioredoxin promotes cell death. Antioxid Redox Signal 2013; 18:376-85. [PMID: 22770501 PMCID: PMC3526897 DOI: 10.1089/ars.2012.4597] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AIMS Yeast, like other eukaryotes, contains a complete mitochondrial thioredoxin system comprising a thioredoxin (Trx3) and a thioredoxin reductase (Trr2). Mitochondria are a main source of reactive oxygen species (ROS) in eukaryotic organisms, and this study investigates the role of Trx3 in regulating cell death during oxidative stress conditions. RESULTS We have previously shown that the redox state of mitochondrial Trx3 is buffered by the glutathione redox couple such that oxidized mitochondrial Trx3 only accumulates in mutants simultaneously lacking Trr2 and a glutathione reductase (Glr1). We show here that the redox state of mitochondrial Trx3 is important for yeast growth and its oxidation in a glr1 trr2 mutant induces programmed cell death. Apoptosis is dependent on the Yca1 metacaspase, since loss of YCA1 abrogates cell death induced by oxidized Trx3. Our data also indicate a role for a mitochondrial 1-cysteine (Cys) peroxiredoxin (Prx1) in the oxidation of Trx3, since Trx3 does not become oxidized in glr1 trr2 mutants or in a wild-type strain exposed to hydrogen peroxide in the absence of PRX1. INNOVATION This study provides evidence that the redox state of a mitochondrial thioredoxin regulates yeast apoptosis in response to oxidative stress conditions. Moreover, the results identify a signaling pathway, where the thioredoxin system functions in both antioxidant defense and in controlling cell death. CONCLUSIONS Mitochondrial Prx1 functions as a redox signaling molecule that oxidizes Trx3 and promotes apoptosis. This would mean that under conditions where Prx1 cannot detoxify mitochondrial ROS, it induces cell death to remove the affected cells.
Collapse
Affiliation(s)
- Darren Greetham
- Faculty of Life Sciences, The University of Manchester, Manchester, UK
| | | | | | | | | | | |
Collapse
|
39
|
Hansen SH, Grunnet N. Taurine, Glutathione and Bioenergetics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 776:3-12. [DOI: 10.1007/978-1-4614-6093-0_1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
40
|
Azfar SF, Islam N. Suppression of mycobacterium tuberculosis induced reactive oxygen species and tumor necrosis factor-alpha activity in human monocytes of systemic lupus erythematosus patients by reduced glutathione. Oman Med J 2012; 27:11-9. [PMID: 22359719 DOI: 10.5001/omj.2012.03] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 11/08/2011] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES The etiology and pathogenesis of systemic lupus erythematosus remains unknown, evidence exists for the involvement of mycobacterial antigen. This study is aimed to determine the effect of Mycobacterium tuberculosis on clinical course of SLE patients and the role of ROS and TNF-α in the pathogenesis of tuberculosis associated SLE patients. METHODS This study was done on 100 patients divided into SLE group (n=30), TB group (n=30), SLE-TB group (n=30) and control group (n=10). All patients underwent clinical, biochemical and immunological evaluation by employing techniques such as SDS-PAGE, direct binding and competition ELISA, PBMC and cell culture. RESULTS Fever, arthritis, skin rash, photosensitivity were more common in both SLE and SLE-TB group. Reduced glutathione showed amelioration of ROS and TNF-α induced action, which in turn, subsequently suppressed the immune-bindings observed in monocytes of TB and SLE patients cultured without glutathione. CONCLUSION Data shows that SLE patients are more susceptible to developing Mycobacterium tuberculosis, as ROS and TNF-α in SLE patients could activate the replication of mycobacterial Ag85B (30 kDa) after bacilli infection.
Collapse
|
41
|
Cabezas R, El-Bachá RS, González J, Barreto GE. Mitochondrial functions in astrocytes: neuroprotective implications from oxidative damage by rotenone. Neurosci Res 2012; 74:80-90. [PMID: 22902554 DOI: 10.1016/j.neures.2012.07.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 07/25/2012] [Accepted: 07/26/2012] [Indexed: 12/21/2022]
Abstract
Mitochondria are critical for cell survival and normal development, as they provide energy to the cell, buffer intracellular calcium, and regulate apoptosis. They are also major targets of oxidative stress, which causes bioenergetics failure in astrocytes through the activation of different mechanisms and production of oxidative molecules. This review provides an insightful overview of the recent discoveries and strategies for mitochondrial protection in astrocytes. We also discuss the importance of rotenone as an experimental approach for assessing oxidative stress in the brain and delineate some molecular strategies that enhance mitochondrial function in astrocytes as a promising strategy against brain damage.
Collapse
Affiliation(s)
- Ricardo Cabezas
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | | | | | | |
Collapse
|
42
|
Handy DE, Loscalzo J. Redox regulation of mitochondrial function. Antioxid Redox Signal 2012; 16:1323-67. [PMID: 22146081 PMCID: PMC3324814 DOI: 10.1089/ars.2011.4123] [Citation(s) in RCA: 372] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 12/06/2011] [Accepted: 12/06/2011] [Indexed: 02/06/2023]
Abstract
Redox-dependent processes influence most cellular functions, such as differentiation, proliferation, and apoptosis. Mitochondria are at the center of these processes, as mitochondria both generate reactive oxygen species (ROS) that drive redox-sensitive events and respond to ROS-mediated changes in the cellular redox state. In this review, we examine the regulation of cellular ROS, their modes of production and removal, and the redox-sensitive targets that are modified by their flux. In particular, we focus on the actions of redox-sensitive targets that alter mitochondrial function and the role of these redox modifications on metabolism, mitochondrial biogenesis, receptor-mediated signaling, and apoptotic pathways. We also consider the role of mitochondria in modulating these pathways, and discuss how redox-dependent events may contribute to pathobiology by altering mitochondrial function.
Collapse
Affiliation(s)
- Diane E Handy
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
43
|
Corrigan NM, Shaw DWW, Richards TL, Estes AM, Friedman SD, Petropoulos H, Artru AA, Dager SR. Proton magnetic resonance spectroscopy and MRI reveal no evidence for brain mitochondrial dysfunction in children with autism spectrum disorder. J Autism Dev Disord 2012; 42:105-15. [PMID: 21404085 DOI: 10.1007/s10803-011-1216-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Brain mitochondrial dysfunction has been proposed as an etiologic factor in autism spectrum disorder (ASD). Proton magnetic resonance spectroscopic imaging ((1)HMRS) and MRI were used to assess for evidence of brain mitochondrial dysfunction in longitudinal samples of children with ASD or developmental delay (DD), and cross-sectionally in typically developing (TD) children at 3-4, 6-7 and 9-10 years-of-age. A total of 239 studies from 130 unique participants (54ASD, 22DD, 54TD) were acquired. (1)HMRS and MRI revealed no evidence for brain mitochondrial dysfunction in the children with ASD. Findings do not support a substantive role for brain mitochondrial abnormalities in the etiology or symptom expression of ASD, nor the widespread use of hyperbaric oxygen treatment that has been advocated on the basis of this proposed relationship.
Collapse
Affiliation(s)
- Neva M Corrigan
- Department of Radiology, University of Washington, Seattle, WA, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Glutathione homeostasis and functions: potential targets for medical interventions. JOURNAL OF AMINO ACIDS 2012; 2012:736837. [PMID: 22500213 PMCID: PMC3303626 DOI: 10.1155/2012/736837] [Citation(s) in RCA: 750] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 08/30/2011] [Accepted: 10/24/2011] [Indexed: 12/25/2022]
Abstract
Glutathione (GSH) is a tripeptide, which has many biological roles including protection against reactive oxygen and nitrogen species. The primary goal of this paper is to characterize the principal mechanisms of the protective role of GSH against reactive species and electrophiles. The ancillary goals are to provide up-to-date knowledge of GSH biosynthesis, hydrolysis, and utilization; intracellular compartmentalization and interorgan transfer; elimination of endogenously produced toxicants; involvement in metal homeostasis; glutathione-related enzymes and their regulation; glutathionylation of sulfhydryls. Individual sections are devoted to the relationships between GSH homeostasis and pathologies as well as to developed research tools and pharmacological approaches to manipulating GSH levels. Special attention is paid to compounds mainly of a natural origin (phytochemicals) which affect GSH-related processes. The paper provides starting points for development of novel tools and provides a hypothesis for investigation of the physiology and biochemistry of glutathione with a focus on human and animal health.
Collapse
|
45
|
Yao JK, Keshavan MS. Antioxidants, redox signaling, and pathophysiology in schizophrenia: an integrative view. Antioxid Redox Signal 2011; 15:2011-35. [PMID: 21126177 PMCID: PMC3159108 DOI: 10.1089/ars.2010.3603] [Citation(s) in RCA: 210] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 11/26/2010] [Accepted: 12/02/2010] [Indexed: 12/19/2022]
Abstract
Schizophrenia (SZ) is a brain disorder that has been intensively studied for over a century; yet, its etiology and multifactorial pathophysiology remain a puzzle. However, significant advances have been made in identifying numerous abnormalities in key biochemical systems. One among these is the antioxidant defense system (AODS) and redox signaling. This review summarizes the findings to date in human studies. The evidence can be broadly clustered into three major themes: perturbations in AODS, relationships between AODS alterations and other systems (i.e., membrane structure, immune function, and neurotransmission), and clinical implications. These domains of AODS have been examined in samples from both the central nervous system and peripheral tissues. Findings in patients with SZ include decreased nonenzymatic antioxidants, increased lipid peroxides and nitric oxides, and homeostatic imbalance of purine catabolism. Reductions of plasma antioxidant capacity are seen in patients with chronic illness as well as early in the course of SZ. Notably, these data indicate that many AODS alterations are independent of treatment effects. Moreover, there is burgeoning evidence indicating a link among oxidative stress, membrane defects, immune dysfunction, and multineurotransmitter pathologies in SZ. Finally, the body of evidence reviewed herein provides a theoretical rationale for the development of novel treatment approaches.
Collapse
Affiliation(s)
- Jeffrey K Yao
- Medical Research Service, VA Pittsburgh Healthcare System,7180 Highland Drive, Pittsburgh, PA 15206, USA.
| | | |
Collapse
|
46
|
Garcia J, Han D, Sancheti H, Yap LP, Kaplowitz N, Cadenas E. Regulation of mitochondrial glutathione redox status and protein glutathionylation by respiratory substrates. J Biol Chem 2010; 285:39646-54. [PMID: 20937819 PMCID: PMC3000945 DOI: 10.1074/jbc.m110.164160] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 09/17/2010] [Indexed: 11/06/2022] Open
Abstract
Brain and liver mitochondria isolated by a discontinuous Percoll gradient show an oxidized redox environment, which is reflected by low GSH levels and high GSSG levels and significant glutathionylation of mitochondrial proteins as well as by low NAD(P)H/NAD(P) values. The redox potential of brain mitochondria isolated by a discontinuous Percoll gradient method was calculated to be -171 mV based on GSH and GSSG concentrations. Immunoblotting and LC/MS/MS analysis revealed that succinyl-CoA transferase and ATP synthase (F(1) complex, α-subunit) were extensively glutathionylated; S-glutathionylation of these proteins resulted in a substantial decrease of activity. Supplementation of mitochondria with complex I or complex II respiratory substrates (malate/glutamate or succinate, respectively) increased NADH and NADPH levels, resulting in the restoration of GSH levels through reduction of GSSG and deglutathionylation of mitochondrial proteins. Under these conditions, the redox potential of brain mitochondria was calculated to be -291 mV. Supplementation of mitochondria with respiratory substrates prevented GSSG formation and, consequently, ATP synthase glutathionylation in response to H(2)O(2) challenges. ATP synthase appears to be the major mitochondrial protein that becomes glutathionylated under oxidative stress conditions. Glutathionylation of mitochondrial proteins is a major consequence of oxidative stress, and respiratory substrates are key regulators of mitochondrial redox status (as reflected by thiol/disulfide exchange) by maintaining mitochondrial NADPH levels.
Collapse
Affiliation(s)
- Jerome Garcia
- From the Department of Pharmacology & Pharmaceutical Sciences, School of Pharmacy and
| | - Derick Han
- the Research Center for Liver Disease, Keck School of Medicine, University of Southern California, Los Angeles, California 90089
| | - Harsh Sancheti
- From the Department of Pharmacology & Pharmaceutical Sciences, School of Pharmacy and
| | - Li-Peng Yap
- From the Department of Pharmacology & Pharmaceutical Sciences, School of Pharmacy and
| | - Neil Kaplowitz
- the Research Center for Liver Disease, Keck School of Medicine, University of Southern California, Los Angeles, California 90089
| | - Enrique Cadenas
- From the Department of Pharmacology & Pharmaceutical Sciences, School of Pharmacy and
| |
Collapse
|
47
|
Oral N-acetylcysteine rescues lethality of hepatocyte-specific Gclc-knockout mice, providing a model for hepatic cirrhosis. J Hepatol 2010; 53:1085-94. [PMID: 20810184 PMCID: PMC2970663 DOI: 10.1016/j.jhep.2010.05.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 05/11/2010] [Accepted: 05/25/2010] [Indexed: 01/28/2023]
Abstract
BACKGROUND & AIMS Certain liver diseases have been associated with depletion of glutathione (GSH), the major antioxidant in the liver. A recent report about Gclc(h/h) mice with a hepatocyte-specific ablation of Gclc (the gene encoding the catalytic subunit of the rate-limiting enzyme in GSH synthesis) has shown an essential role of GSH in hepatic function. Gclc(h/h) mice develop severe steatosis and die of liver failure within one month, due to ~95% depletion of hepatic GSH; mitochondria are the major affected organelles, displaying abnormal ultrastructure and impaired functioning. METHODS Gclc(h/h) mice were fed with L-N-acetylcysteine (NAC; 10 g/L) in drinking water, starting at postnatal day 18. RESULTS Gclc(h/h) mice were rescued by use of NAC supplementation, and survived until adulthood. NAC replenished the mitochondrial GSH pool and attenuated mitochondrial damage, with accompanying diminished hepatic steatosis; however, abnormal liver biochemical tests, hepatocyte death, and hepatic oxidative stress persisted in the rescued mice. At 50 days of age, the liver from rescued Gclc(h/h) mice started to display characteristics of fibrosis and at age 120 days, macronodular cirrhosis was observed. Immunohistostaining for liver-specific markers as well as the expression profile of hepatic cytokines indicated that the repopulation of hepatocytes in the cirrhotic nodules involved the expansion of oval cells. CONCLUSIONS Replenishment of mitochondrial GSH and restoration of mitochondrial function by NAC prevents mortality caused by the loss of hepatocyte GSH de novo synthesis, allowing steatosis to progress to a chronic stage. Thus, with NAC supplementation, Gclc(h/h) mice provide a model for the development of liver fibrosis and cirrhosis.
Collapse
|
48
|
Sandhir R, Mehrotra A, Kamboj SS. Lycopene prevents 3-nitropropionic acid-induced mitochondrial oxidative stress and dysfunctions in nervous system. Neurochem Int 2010; 57:579-87. [DOI: 10.1016/j.neuint.2010.07.005] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 07/11/2010] [Accepted: 07/12/2010] [Indexed: 01/13/2023]
|
49
|
Abstract
MTX (mitoxantrone), an anti-tumour antibiotic, is known to cause cell death by intercalating the DNA bases. But how it interferes with the cellular proliferation is not well known. Hence, in the present study, we have tried to evaluate the interaction of this drug using proliferation dynamics to gain a better understanding of MTX's antineoplastic action. Inhibition of proliferation by these drugs was detected by evaluating its effect on cell proliferation and growth curve of the cells. MTX was also found to affect the cell viability and, thereby, cell physiology. Typical apoptotic morphologies such as condensation of nuclei and membrane permeabilization were observed through CLSM (confocal laser scanning microscopy) and fluorescence spectroscopy, which implicates commitment to cell death. Cell-cycle distribution was measured by flow cytometric measurements. The analysis demonstrated significant cell-cycle arrest on MTX treatment. Inhibition of lacZ gene expression was also observed on drug treatment, which implicates its interaction with gene expression.
Collapse
|
50
|
Abstract
The mitochondrion is the most important organelle in determining continued cell survival and cell death. Mitochondrial dysfunction leads to many human maladies, including cardiovascular diseases, neurodegenerative disease, and cancer. These mitochondria-related pathologies range from early infancy to senescence. The central premise of this review is that if mitochondrial abnormalities contribute to the pathological state, alleviating the mitochondrial dysfunction would contribute to attenuating the severity or progression of the disease. Therefore, this review will examine the role of mitochondria in the etiology and progression of several diseases and explore potential therapeutic benefits of targeting mitochondria in mitigating the disease processes. Indeed, recent advances in mitochondrial biology have led to selective targeting of drugs designed to modulate and manipulate mitochondrial function and genomics for therapeutic benefit. These approaches to treat mitochondrial dysfunction rationally could lead to selective protection of cells in different tissues and various disease states. However, most of these approaches are in their infancy.
Collapse
|